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Chaotic transport of runaway electrons in a toroidal system in the presence of a weak small-scale

magnetic turbulent field with a wide mode spectrum is studied. Using a fast running mapping, the

radial profiles of turbulent diffusion coefficients are calculated. It is found that at large Kubo

numbers the chaotic transport of the electrons is described by a fractal-like radial dependence of

the diffusion coefficients with reduced or zero values near low-order rational drift surfaces which

form transport barriers. The latter can be one of the main reasons of the improved confinement of

runaway electrons in tokamaks. One can expect that this effect may lead to the formation of the

nested beams of runaway electrons. [http://dx.doi.org/10.1063/1.4736718]

I. INTRODUCTION

The transport of runaway electrons in magnetically con-

fined plasmas has been a subject of many studies over three

decades (see, e.g., Refs. 1–8). Understanding this problem is

of crucial importance in modern fusion devices. Runaway

electrons, which are generated during the start-up or during

disruptions of plasma discharges, have to be mitigated as

they may cause substantial damage of the plasma facing wall

components of fusion devices (see, Refs. 9–14 and referen-

ces therein).

A magnetic turbulence is considered as a main cause of

the radial transport of runaway electrons, which may reach

energies from a few MeV up to several tens MeV. Due to

their high velocity, they are hardly sensitive to electrostatic

turbulence like the thermal particles. This fact has been used

to study the magnetic turbulence in tokamaks by the mea-

surement of runaway electron diffusion.15,16

Theoretical studies of the runaway electron transport due

to magnetic turbulence have been based on the assumption

that it is mainly caused by the stochastic diffusion in a braided

magnetic field, i.e., due to a magnetic diffusion.17 Thereby,

the diffusion coefficients of runaway electrons, Dr, can be

expressed via the magnetic field line diffusion coefficient, DM

(Refs. 2, 3, and 18), that is Dr ’ !vkDM, where vk. c is the

parallel velocity of the runaway electrons which is close to the

speed of light c. The factor !, known as a shielding factor,

describes the deviation of the runaway electron diffusion from

the thermal electron diffusion due to the displacement of the

runaway electron orbits from the magnetic surfaces (orbit-
averaging) and their large gyro-radii, i.e., gyro-averaging.

The latter means that the runaway electrons do not experience

the full strength of the magnetic turbulence which is located at

the resonant surfaces.3–6,18 In Ref. 8, the validity of the orbit-

averaging due to the so-called orbit decorrelation effect and

its role in the possible decrease of the runaway diffusion has

been discussed.

The general asymptotical formula for the diffusion coeffi-

cients of runaway electrons which takes into account these

facts has been derived in Ref. 19. According to this approach,

the decrease of the diffusive transport with increasing electron

energies occurs at small radii due to the effect of the gyro-

averaging of a turbulent field and at large radii due to the orbit

averaging effect. The latter is believed to be responsible for

the improved confinement of runaway electrons with increas-

ing energies.

In spite of these theoretical studies, the basic mechanisms

of the runaway electron transport in a microturbulent mag-

netic field are not well understood. One of the critical issues is

the validity of the above formula for the diffusion coefficients

Dr for the runaway electrons. The knowledge of Dr is neces-

sary to study the dynamics of runaway electron populations

during tokamak discharges and to estimate the level of radial

magnetic field fluctuations (see, e.g., Refs. 7 and 20–23).

In the present work, we tackle this problem by using a

more general, ab inito approach. The microturbulence in

tokamaks is presented as fluctuating small-scale magnetic

field perturbations with a wide range of modes and a finite

correlation time. The corresponding equations of motion of

the runaway electrons are directly integrated. This approach

allows one to explore the dependence of the diffusive trans-

port of the runaway electrons not only on the level of the tur-

bulence field but also on its spectrum and the correlation

time sc. The effect of the latter can be presented by the Kubo

number K ¼ sc=Torb, i.e., the ratio of the correlation time sc

to the characteristic period Torb of a particle orbit (see, e.g.,

Ref. 24). Particularly, it would also allow one to explore the

validity of the quasilinear approximation and the condition

at which stochastic or fluctuating mechanisms of the trans-

port are dominant.

However, such an approach encounters computational

difficulties. Since the turbulent field may contain a large

number of modes which may extend up to several hundreds,

the corresponding equations of motion have a large number
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of high-frequency oscillating terms. The standard methods to

integrate such equations require huge computational times in

order to get a sufficient accuracy. To overcome these techni-

cal obstacles, we employ the canonical mapping procedure

with a mapping step equal to one full poloidal turn. Recently,

this method has been applied in Ref. 25 to study the chaotic

transport in Hamiltonian systems perturbed by a turbulent

wave-field.

Another problem is related to the presentation of micro-

turbulent fields in tokamaks. The properties of micro-

turbulent magnetic fields, such as spectra, a correlation time,

etc., are not well known. Since we are interested in the general

features of the runaway electron transport, the specific values

of the turbulent field characteristics are not necessary. We

present the turbulent magnetic field as a sum of the large num-

ber (m, n)-modes localized near the corresponding resonant

magnetic surfaces similar to the ones in Refs. 3–5 and 18.

We mainly study radial profiles of the diffusion coeffi-

cients of runaway electrons. Such a study allows one to

quantitatively explore one of the mechanisms of the radial

transport of runaway electrons, particularly, the role of low

order rational surfaces in the particle transport. It will be

shown that the chaotic transport of runaway electrons across

drift surfaces may be drastically reduced near the low-order

rational drift surfaces thereby forming transport barriers. We

will study the condition at which such transport barriers are

formed and their dependence on the mode spectra.

One should note that a possible role of the low-order

rational magnetic surfaces on the formation of the electron

and ion transport barriers has been discussed in a number of

works since the early 1990s (see, e.g., Refs. 26–39 and refer-

ences therein). It has been postulated that the appearance of

the transport barriers is due to the presence of gaps in the

density of the rational magnetic surfaces near the rational

magnetic surfaces with low m and n numbers. A recent nu-

merical study of the test particle transport in the ad hoc cha-

otic Hamiltonian systems shows that one of the conditions

for the formation of such transport barriers is a large Kubo

number of particles.25 This condition is well satisfied for the

runaway electrons.

The paper consists of seven sections and an Appendix.

The basic Hamiltonian equations for the relativistic guiding-

center motion are given in Sec. II. The model of a micro-

turbulent magnetic field used for the calculations is described

in Sec. III. The gyro-averaged Hamiltonian equation in the

presence of a turbulent magnetic field is presented and ana-

lyzed in Sec. IV. The fast symplectic mapping used to inte-

grate the Hamiltonian equations is presented in Sec. V. The

radial transport of runaway electrons in the turbulent field is

studied in Sec. VI using the quasilinear approximation and

the direct numerical calculations. In the conclusive section

VII, the obtained results are summarized and analyzed. In

Appendix, the density of rational drift surfaces is calculated

and their properties are analyzed.

II. HAMILTONIAN EQUATIONS

We use the version of the relativistic Hamiltonian equa-

tions for a guiding center motion in a toroidal system given

in Refs. 40–42. These equations are obtained by the canoni-

cal change of gyrating particle variables to the guiding-

center ones. Since the runaway electrons are passing par-

ticles, we will use a simplified version of the Hamiltonian

drift equations which are reformulated by introducing the to-

roidal angle u as the independent, time-like variable and the

corresponding canonical momentum pu as a new Hamilto-

nian H¼ –pu. The Hamiltonian equations for the canonical

guiding-center variables ðq1; q2; p1; p2Þ ¼ ðz; T; pz;�EÞ are

given (see Refs. 40 and 42)

dqi

du
¼ @H

@pi
;

dpi

du
¼ � @H

@qi
; ði ¼ 1; 2Þ: (1)

The simplified form of the Hamiltonian function H ¼ H
ðz; T; pz;�E;uÞ is given by

H ¼ �fu � rðRc=R0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e0ðc2 � 1Þ � 2xRIR

p
: (2)

In (1), z and T are the normalized vertical coordinate Z
and the time t: z¼Z/R0 and T ¼ xct, pz is a momentum con-

jugated to z. Here, xc ¼ eB0=mc is a gyrofrequency and c is

the speed of light in vacuum. The relativistic factor is

c ¼ E=e0, where e0 ¼ ðc=xcR0Þ2 is a normalized energy of

the particle at rest, E is the particle energy. The quantity

fuðR; Z;u; tÞ ¼ RAu=B0R2
0 is the normalized vector potential,

IR is the action variable conjugated to the radial gyro-phase

#R ¼ xRT þ #R0 describing the fast gyro-oscillations along

the radial coordinate R, where the radial gyrofrequency xR is

given by xR ¼ e�pz . The quantity Rc ¼ R0epz is the radial

coordinate of a guiding-center. The parameter r¼ 1 for the

runaway electrons in the TEXTOR tokamak (see Ref. 19).

The ratio k ¼ TR=TK of the gyromotion energy,

TR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2

0 þ 2xRIR

p
� e0, to the full kinetic energy of a parti-

cle, TK ¼ e0ðc� 1Þ, is considered as the initial parameter of

motion. From the experimental measurements, it follows that

the parameter k may reach a value of 0.1 (Refs. 43 and 44).

Furthermore, we will assume that k � 0:1.

The particle coordinates (R; Z;u) are related to the guid-

ing center variables (z; pz),

R ¼ Rc þ q sin#R; Z ¼ R0zþ q cos#R; (3)

where q ¼ R0epz=2
ffiffiffiffiffiffiffi
2IR

p
is the radial gyroradius.

In the equilibrium plasma, the Hamiltonian H0 ¼ H
ðz; pz;EÞ is independent of the toroidal angle u and the time t.
The particle guiding center orbits lie on the toroidal drift

surfaces given by H0¼ const. For the description of such a

motion, it is convenient to introduce the action-angle variables

ðJ; #Þ associated with the variables ðz; pzÞ. Then, H0 ¼ H
ðJ;EÞ and the position of a guiding center on the drift surface

at the time instant t is determined by linear functions of u,

# ¼ u=qpðJ;EÞ þ #p0; t ¼ u�tðJ;EÞ=2pþ t0; (4)

where qpðJ;EÞ ¼ 1=ð@H0=@JÞ is an effective safety factor.

Similar to the safety factor qMðwÞ of the magnetic field it is

equal to the number of toroidal turns made by a particle
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guiding center during one poloidal turn. At the limit E! 0,

the action variable J and qpðJ;EÞ coincide with the normal-

ized toroidal flux w and qMðwÞ, respectively. The quantity

�tðJ;EÞ ¼ @H0=@E is a transit time for a particle to make a

full toroidal turn.

The deviation of the drift surfaces from the magnetic

ones is illustrated in Fig. 1. It shows the poloidal sections of

the drift surfaces corresponding to different electron energies

ranging from E¼ 1 MeV up to E¼ 25 MeV (curves 1–6,

respectively). They have common points at the section

# ¼ 0. The dashed curve 7 corresponds to the magnetic flux

surfaces touching the drift surfaces at # ¼ 0. The plasma pa-

rameters correspond to the typical TEXTOR discharges with

the major radius R0¼ 1.75 m, the minor radius a¼ 0.46 m,

Bt¼ 2.2 T, Ip¼ 0.3 MA, and bpol ¼ 0:3. As seen from Fig. 1,

due to the toroidal effects the drift surfaces of the runaway

electrons do not coincide with the magnetic surfaces and the

geometrical centers of the drift surfaces are shifted outward

with respect to the one of the magnetic surfaces.

Figure 2 shows the dependencies of the effective safety

factors qpðJ;EÞ of the runaway electrons on the normalized

action variable J=Ja, where Ja is the value of J at the plasma

edge r¼ a. In Fig. 2, the curves 1, 2, 3, 4, and 5, correspond

to the electron energies E¼ 1, 5, 10, 15, and 20 MeV,

respectively. Curve 6 corresponds to the safety factor qMðwÞ
of the equilibrium magnetic field.

III. TURBULENT MAGNETIC FIELD

The nature of the magnetic fluctuations in tokamak plas-

mas, as well as electric field fluctuations, is not well known.

Therefore, we consider the small-scale magnetic fluctuations

by presenting them as a sum of a large number of (m,n)-

modes radially localized near the corresponding resonant

magnetic surfaces without specifying the nature of the mag-

netic turbulence. Similar presentations of the turbulent mag-

netic field have been used in Refs. 3–5 and 18.

A. Presentation of a turbulent magnetic field

Let ðw; #M;uÞ be magnetic field coordinates in which

the field lines are straight. We present the toroidal compo-

nent of the vector potential of the turbulent magnetic field as

a sum of (m,n)-modes with random phases vmn,

Að1Þu ðR; Z;uÞ ¼ �B0

X
mn

rm�1 bmnðwÞ cosðm#MÞ

� cosðnuþ vmnÞ; (5)

where � ¼ rA=jAð0Þu ðR; ZÞj stands for the dimensionless am-

plitude of the turbulent magnetic field, i.e., it is determined

by the ratio of the amplitude of the magnetic fluctuations,

dB ¼ r� A
ð1Þ
u to the toroidal field strength, B0, i.e.,

� � dB=B0. The functions bmnðwÞ describe the radial (w�)

dependence of the (m,n)-mode. They are localized near the

resonant magnetic surfaces wmn determined by the condition

qðwmnÞ ¼ m=n.

The magnetic fluctuations contain a wide range of poloi-

dal and toroidal modes (m,n). In a toroidal system, one can

assume that for the given toroidal mode n the different poloi-

dal modes m are not independent but they are coupled due to

a toroidicity. On the other hand, one can suppose that the

modes belonging to the different toroidal modes n are statis-

tically independent. It allows one to assume that the random

phases vmnðtÞ depend only on the toroidal mode number n,

i.e., vnðtÞ � vmnðtÞ. Furthermore, we will assume that the tur-

bulent fluctuations are a stationary random process in time

with the correlation time sc.

One of the important parameters of the magnetic turbu-

lence is its fluctuation level dB. For the latter, we consider

the magnetic turbulence caused by microtearing modes.

According to the theory by Drake et al.45 the nonlinear satu-

ration level of dB driven by the electron temperature gradient

is given by dB=B0 ’ qe=LTe
, where qe is the thermal electron

gyroradius, LTe
¼ Te=ðdTe=drÞ is the characteristic length of

the variation of the electron temperature Te. The recent gyro-

kinetic simulations46 show that the Drake formula quite well

describes the level of magnetic fluctuations, and it can be

used for rough estimations of dB. For the TEXTOR

FIG. 1. Drift orbits of runaway electrons of different energies: Curve 1 cor-

responds to E¼ 1 MeV; curve 2, E¼ 5 MeV; curve 3, E¼ 10 MeV; curve 4,

E¼ 15 MeV; curve 5, E¼ 20 MeV; and curve 6, E¼ 25 MeV. Dashed curve

7 corresponds to the field line magnetic surface, which has a common point

with the particle drift orbits at the low field side. The parameter k ¼ 0:1.

The plasma parameters: the major radius R0¼ 1.75 m, the minor radius

a¼ 0.46 m, the toroidal field Bt¼ 2.2 T, the plasma current Ip¼ 0.3 MA, the

plasma bpol ¼ 0:3.

FIG. 2. Effective safety factors, qpðJ;EÞ for runaway electrons: Curve 1

corresponds to E¼ 1 MeV, curve 2 to E¼ 5 MeV, curve 3 to E¼ 10 MeV,

curve 4 to E¼ 15 MeV, curve 5 to E¼ 20 MeV, and curve 6 describes the

safety factor of magnetic field.
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parameters, Te� 1 keV, LTe
¼ 0:1 m, and B0¼ 2.2 T, we

have dB=B0 � 10�4.

The transport of particles in a fluctuating magnetic field

depends on the Kubo number,

K ¼
vksc

lc
¼ sc

Tqp
; (6)

defined as the ratio of the correlation time sc to the character-

istic transit time TðJ;EÞqp, where vk is the parallel velocity

of a particle and lc ¼ 2pR0qp is the connection length (see,

e.g., Ref. 24). This definition of the Kubo number K is used

in Refs. 47 and 48 in the problem of the test particle trans-

port in the turbulent field. Such a definition of K is, probably,

more adequate in our problem of the runaway electron trans-

port in a fluctuating magnetic field than the Kubo number

defined in Ref. 49 for the transport of the magnetic field lines

in a turbulent magnetic field.

The typical value of the correlation time of a turbulent

field is of the order of sc � 10�5 s. The radial profiles of the

Kubo number K ¼ KðJ;EÞ (6) are shown in Fig. 3 for differ-

ent energies of the runaway electrons. It is assumed that the

correlation time sc of the turbulent field is 10�5 s at all radial

locations. As seen from Fig. 3, the Kubo number is of the

order of 102 for the runaway electrons of energies

E& 1 MeV. Such electrons “feel” the magnetic turbulent

field as a frozen one and as we will see later their radial

transport is mainly caused by the interactions of resonances.

B. A specific model of modes

For our calculations, we should specify the model for

the turbulent magnetic field. Suppose that the amplitude,

bmnðwÞ, of the (m,n)-mode is described by the following radi-

ally dependent function:

bmnðwÞ ¼ AðwÞcn exp½�ðm� nqðwÞÞ2=4w2
n�; (7)

where A(w) describes the spatial radial dependence of the

amplitude of the magnetic fluctuations and cn is its toroidal

spectrum. The poloidal mode spectrum of a given toroidal

mode n is localized near the resonant magnetic surface wmn,

qðwmnÞ ¼ m=n. The quantities wn are the widths of the

poloidal mode spectra of a given toroidal mode n. For our

model, we choose the following power-law distribution of

the toroidal modes, cn ¼ n�a, with the constant parameter

a. For simplicity, we assume that the magnetic fluctuation

level A(w) is radially homogeneous, i.e., A(w)¼ constant.

According to Eq. (5), the magnitude of the radial com-

ponent of the turbulent magnetic field Br ¼ r�1@Au=@h can

be reduced to

dB ¼
ffiffiffiffiffiffiffiffiffi
hB2

r i
q

� �B0

2

�Xnmax

n¼nmin

X
m

jbmnðwÞj2
�1=2

; (8)

where hð	 	 	Þi stands for an averaging over random phases vn

and the poloidal angle #M. Using Eq. (7) and assuming that

wn � w and nmax 
 nmin, one can obtain the following esti-

mation: dB ’ �B0C, where C ¼ ð
ffiffiffiffiffiffi
2p
p

wÞ1=2=2n
a�1=2
min . This

estimation is close to the one calculated numerically accord-

ing to Eq. (8). The latter is plotted in Fig. 4 for three different

values of the exponent a with a fixed mode width w.

IV. PERTURBATION HAMILTONIAN

Using the action-angle variables (J; #) and the relation

(3), the Hamiltonian equations (1) in the presence of non-

axisymmetric magnetic perturbations (5) can be reduced to

(see, e.g., Refs. 19 and 41)

dQi

du
¼ @H

@Pi
;

dPi

du
¼ � @H

@Qi
; ði ¼ 1; 2Þ;

H ¼ H0ðJ;EÞ þ H1ðJ;E; #; T;uÞ; (9)

where ðQ1;Q2;P1;P2Þ ¼ ð#; T; J;EÞ. The perturbation Ham-

iltonian H1ðJ;E; #; T;uÞ is obtained by averaging over the

gyro-phase #R.

Because of the periodicity of the system in the poloidal,

#, and the toroidal, u, directions the perturbation Hamilto-

nian H1 can be expanded in a Fourier series in # and u,

H1 ¼
X
m;n

HmnðJ;EÞeiðm#�nuÞ; (10)

where the Fourier coefficients HmnðJ;EÞ ¼ jHmnðJ;EÞjeivmnðtÞ

are determined by the turbulent magnetic field.

FIG. 3. Radial profiles of the Kubo number K(J,E) (6) for runaway electrons

with the different energies: Curve 1 corresponds to E¼ 0.1 MeV, curve 2 to

E¼ 1 MeV, curve 3 to E¼ 10 MeV, curve 4 to E¼ 20 MeV. The other param-

eters are the same as in Fig. 2. The correlation time sc is taken equal 10�5 s.

FIG. 4. Radial profiles of the magnitude of the turbulent magnetic field dB
(8) normalized to �B0 for the three different values of the exponent a: Curve

1 corresponds to a¼ 5/6, curve 2 to a¼ 1, and curve 3 to a¼ 4/3. The width

of the mode w¼ 6, and nmin¼ 10.
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In general, the poloidal mode spectrum Hmn for the given

toroidal mode n does not coincide with the corresponding

spectrum of the turbulent field bmn but depends on the particle

energy, its gyro-radius qg, as well as on the direction of the

particle motion due to the deviations of the drift orbits from

the magnetic surfaces and gyro-averaging of the turbulent

fluctuations. For large m
 1, the relation between Hmn and

bmn is described by the asymptotical formula of the type

(see Ref. 19)

HmnðJ; IR;EÞ � eivn
C

mc1

J0

mqg

rc1

� �
bm0n; (11)

where m0 � m=c1, r is a minor radius, J0ðzÞ is the Bessel

function, and C is a factor weakly depending on J. The pa-

rameter c1, (c1 6¼ 1), takes into account the drift of the guid-

ing center orbit with respect to the magnetic surface. It is

given by the first derivative of the poloidal angle #M of the

magnetic field with respect to the corresponding angle # of

the guiding center taken on the low field side (# ¼ 0) of the

torus, i.e., c1 ¼ d#M=d# at # ¼ 0.

The typical radial dependencies of the parameter c1 at

different values of the runaway electron energy are plotted in

Fig. 5.

From the asymptotical form (11) of Hmn, it follows that

for the given toroidal mode n the poloidal mode m of the per-

turbation spectra Hmn is determined by the m0 � m=c1 poloi-

dal mode of the turbulent field. This effect leads to the

dependence of the turbulent transport on the particle energy.

In Eq. (11), the term with the Bessel function JoðmdÞ takes

into account the gyro-averaging effect of the turbulent field

modes m, which effectively cuts off the contributions of the

higher poloidal modes m>mc to the turbulent transport,

where mc ¼ c1r=qg is the critical poloidal mode number.

The corresponding toroidal mode number nc is equal to

nc ¼ mc=qp ¼ c1r=qpqg.

The typical radial dependencies of nc are shown in Fig.

6 for different energies of the runaway electrons.

V. FAST SYMPLECTIC MAPPING

Numerical simulations of the particle transport in a tur-

bulent field with a large number of (m,n)-modes encounter

mainly two kinds of difficulties related to the accuracy and

computational times. In the problem of the particle transport

in a turbulent field, the number n can be of the order of

102 � 103. It would require to take a very small step Du in

the direct numerical integration of the equations of motion

for a sufficient accuracy, and therefore, enormous computa-

tional times. To avoid these difficulties, we employ the fast

mapping method with an integration step equal to one full

turn in # (see Refs. 19 and 50).

Let Pk be the k-th crossing point of the orbit with the

section # ¼ 0 as it is schematically shown in Fig. 7. The

mapping Pk ! Pkþ1 relates the point Pk with the next cross-

ing point Pkþ1. Suppose that ðhk;uk; TkÞ are the values of the

Hamiltonian H0(J, E), the toroidal angle u, and the time T at

the crossing point Pk of the orbit, respectively. We suppose

that the fluctuating turbulent field does not change the par-

ticle’s energy E. Then, the simplified form of the mapping

Pk ! Pkþ1 reads

hkþ1 ¼ hk � �
@Pk

@uk

;

ukþ1 ¼ uk þ p½qpðhk;EÞ þ qpðhkþ1;EÞ� þ �
@Pk

@hkþ1

;

Tkþ1 ¼ Tk þ �tðhk;EÞðukþ1 � ukÞ=2p;

(12)

where

Pk � P
�

hkþ1;E;uk þ pqpðhk;EÞ; Tk

�
(13)

FIG. 5. Radial profiles of c1 for runaway electrons: Curve 1 corresponds to

E¼ 1 MeV; curve 2 corresponds to E¼ 5 MeV; curve 3, E¼ 10 MeV; curve

4, E¼ 15 MeV; curve 5, E¼ 20 MeV, curve 6, E¼ 25 MeV. The parameter

k¼ 0.1. The plasma parameters are the same as in Fig. 2.

FIG. 6. Radial profiles of nc for runaway electrons: curve 1 corresponds to

E¼ 0.1 MeV; curve 2 corresponds to E¼ 1 MeV; curve 3, E¼ 10 MeV;

curve 4, E¼ 20 MeV. The plasma parameters are the same as in Fig. 2.

FIG. 7. Schematic view of the mapping, Pk ! Pkþ1.
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is the value of the Poincaré integral Pðh;E;u; TÞ, which is

taken along the closed contour of the unperturbed orbit:

Pðh;E;u; TÞ ¼
ð2pqp

0

H1

�
h;E; #ðu0Þ; Tðu0Þ;uþ u0

�
du0:

(14)

It can be presented in the form

Pðh;E;u; TÞ ¼
Xnmax

n¼nmin

Rnðh;EÞexpðinuþ ivnðTÞÞ; (15)

where Rnðh;EÞ is the Poincaré integral corresponding to the

mode number n. The latter can be approximated asymptoti-

cally with the Fourier coefficients HmnðJ;EÞ and presented

as a sum, Rn ¼ RðregÞ
n þ RðoscÞ

n , of the regular RðregÞ
n and the

oscillatory RðoscÞ
n parts:

RðregÞ
n ¼ pqpHnðnqpÞ;

RðoscÞ
n � cos2ðpnqpÞ � 1þ i

sinð2pnqpÞ
2

� �
RðregÞ

n ; (16)

where HnðmÞ � HmnðJ;EÞ is the function defined by extend-

ing the value of the integer number m to the continuous

one. Note that at the resonant drift surfaces Jmn,

qpðJmn;EÞ ¼ m=n, the oscillatory part RðoscÞ
n ¼ 0. Further-

more, we will omit E in all notations, i.e., qpðJÞ � qpðJ;EÞ.
In order to take into account the finite correlation time

sc, the phases vn are randomly changed after M mapping

steps, where M is equal to the integer part of the Kubo num-

ber K, i.e., M¼ [K].

The optimal number of toroidal modes nmax in Eq. (15)

which give the main contribution to the Poincaré integral

Pðh;E;uÞ is chosen by the following procedure. We calcu-

lated the dispersion of the random function Pðh;E;uÞ, i.e.,

rP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hP2ðh;E;uÞi

p
as a function of nmax. Initially, the dis-

persion rP grows monotonically with nmax and then reaches

its saturation level for nmax exceeding a certain critical num-

ber nP. The latter depends on the spectrum of the turbulence

cn ¼ n�a and on the energy of the electrons. In the calcula-

tions, nmax is taken equal to the critical number nP.

VI. CHAOTIC TRANSPORT

A turbulent magnetic field induces the radial transport

of the electrons across the drift surfaces. Such a transport is

caused by two effects: the fluctuating field with the finite cor-

relation time sc and the overlapping of neighboring islands

created by the resonance interaction of orbits with (m,n)-

modes of the turbulent field. The latter case known as chaotic

transport appears at amplitudes of the turbulent field exceed-

ing a critical level �c, which depends on the mode content

and the turbulent field spectrum Hmn.

The radial transport of particles is quantified by the dif-

fusion coefficient defined as Dr ¼ r2
0ðtÞ=2t, where r2

0ðtÞ is

the second moment of the radial displacements given by

r2
0ðtÞ ¼

D
ðr � rð0ÞÞ2

E
¼ 1

Nt

XNt

i¼1

ðriðtÞ � rið0ÞÞ2: (17)

In Eq. (17), hð	 	 	Þi stands for an averaging over the initial

phases vnð0Þ, nmin � n � nmax, randomly chosen in the inter-

val ½0; 2p�, riðtÞ is the radial coordinate of an orbit corre-

sponding to the i-th trial, and Nt is the total number of trials.

All initial coordinates ri(0) are taken on the given drift sur-

face J¼ constant.

By fitting the dependence of r2
0ðtÞ on the time t with the

function 2Drt at time intervals t > tK one obtains the diffusion

coefficient Dr, where tK is the decorrelation time of the phases

u. The latter is determined by the e-folding time of the

correlation function of the phases CnðtÞ ¼ hexpðin½uðtÞ
�uð0Þ�Þi � expð�t=tKÞ at the toroidal mode n¼ nmin. The

details of these calculations can be found in Ref. 25.

A. Quasilinear approximation

The chaotic diffusion can be described by the quasilin-

ear diffusion coefficient D(J), which can be presented in the

following form (see Ref. 19):

DrðJÞ ¼ vkR
�1
0

dr

dJ

� �2

DJ; DJ ¼
�2qp

8p

Xnmax

n¼nmin

n2jRðregÞ
n ðJÞj2:

(18)

The quantity DJ is the quasilinear diffusion coefficient

in the action variable J, i.e., DJ ¼ hðJðuÞ � Jð0ÞÞ2i=2u.

FIG. 8. Quasilinear diffusion coefficients: (a) DJðJÞ ¼ hðJ � J0Þ2i=2u (18)

and (b) DrðJÞ ¼ hðr � rðJÞÞ2i=2t for the different runaway electron ener-

gies: Curve 1 corresponds to E¼ 1 keV; curve 2, E¼ 10 keV; curve 3,

E¼ 102 keV; curve 4, E¼ 5� 102 keV; curve 5, E¼ 1 MeV; curve 6, E¼ 10

MeV; curve 7, E¼ 20 keV. The turbulent level � ¼ 10�4, the mode width

w¼ 6, and the exponent a¼ 5/6.
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Figures 8(a) and 8(b) show the radial profiles of the qua-

silinear diffusion coefficients DJ and Dr in Eq. (18) for the

different electron energies. The intervals of the modes are

chosen for nmin ¼ 10 � n � nmax ¼ ncðJÞ � 102, where

ncðJÞ is plotted in Fig. 6 (curve 2). The exponent a is taken

equal to 5/6, which corresponds to the power spectrum

jHmnj2 � n�5=3 and the turbulence level � ¼ 10�4, which cor-

responds to the magnetic turbulence level dB shown by curve

1 in Fig. 4.

As seen from Fig. 8(a), the diffusion coefficient DJ char-

acterizing the chaotic transport of the orbits takes the highest

values for electrons with low energies. At the electron ener-

gies between E¼ 1 keV and E¼ 102 keV (curves 1–3), DJ

practically coincides with the diffusion coefficients of the

field lines. By increasing the electron energies, the diffusion

coefficients DJ monotonically decrease as shown by the

curves 4-7 corresponding to electron energies from 500 keV

to 20 MeV. This is due to a weakening the effect of the mag-

netic turbulence on the runaway electrons by increasing their

energy due to the growth of the deviations of the orbits from

the magnetic surfaces and the gyro-averaging.

The diffusion coefficients Dr characterizing the transport

rate along the radial coordinate r change non-monotonically

with the energy. Since Dr � vkDJ , the diffusion coefficient

Dr grows in the energy interval from 1 keV to 1 MeV

because of the increase of the parallel velocity vk with the

energy E and reaches the maximal value at E� 1 MeV. If

the energy is increased further Dr starts to decrease due to

the decay of DJ while vk approaches the speed of light c.

B. Numerical diffusion coefficients

Now, we consider the radial profiles of the numerically

calculated diffusion coefficients Dr. The dependence of Dr

on the action variable J is presented in Fig. 9 for the runaway

electrons of the energy E¼ 1 MeV at the turbulent field pa-

rameters as in Fig. 8: curve 1 corresponds to the quasilinear

prediction (18), curve 2 describes the numerically calculated

Dr, and curve 3 [right-hand axis] corresponds the radial

profile of the effective safety factor qpðJÞ. The vertical and

horizontal lines describe the positions of the low-order

rational drift surfaces Jmn, qpðJmnÞ ¼ m=n. The correspond-

ing radial profile of the Kubo number was shown in Fig. 3

(curve 2). It is of order of K� 100. At the chosen turbulence

level � and the large Kubo number K of the order of K� 102,

the radial transport is mainly caused by the chaotic diffusion

due to the overlapping of neighboring resonances.

As seen from Fig. 9, the radial profile of Dr (curve 2)

has a fractal-like dependence which in average follows the

quasilinear prediction (18). One can see that near the low-

order rational drift surfaces (vertical lines), m/n¼ 1, 3/2, 2/1,

5/2, and 3/1, the diffusion coefficient drops to lower values

significantly deviating from the quasilinear values. One can

say that effective barriers to the radial transport are formed.

At the given turbulence level �, the width and depth of these

barriers depend on the exponent a in the power-law distribu-

tion of the toroidal modes cn ¼ n�a. For example, at a¼ 5/6

the barrier near the rational surface m: n¼ 2:1 is rather small

(see Fig. 9). For a larger value of a when the contribution of

higher toroidal modes n is decreased the transport barrier

becomes wider and deeper. It is shown in Fig. 10 where the

radial profiles of Dr are plotted for two different values of a
the rational drift surface m:n¼ 2:1. Curve 1 corresponds to

a¼ 4/3 for the turbulence level � ¼ 10�4 (Dr is multiplied by

the factor 10), curve 2 corresponds to the same a¼ 4/3 but

� ¼
ffiffiffiffiffi
10
p

� 10�4, and curve 3 corresponds to the same a¼ 1

for � ¼ 101=6 � 10�4.

The reduced radial transport near the low-order rational

drift surfaces is related to the gaps in their density there. As

shown in Appendix, the gap width Dw is inversely propor-

tional to the maximal toroidal mode number nmax � nc for

which the corresponding terms Rn in the function (15) are

not negligible. One would expect that with increasing the

energy of the electrons the transport barriers become wider

and deeper since the number of the toroidal modes n > nc

contributing to the transport effectively decays. This is

shown in Figs. 11(a) and 11(b) where the radial profiles of

FIG. 9. Radial profile of diffusion coefficient DJ for the runaway electron

energy E¼ 1 MeV. Curve 1 corresponds to the quasilinear prediction, curve

2 corresponds to the mapping results with the Poincaré functions

Rnc ¼ pqpKnqp;n, Rns¼ 0; curve 3 describes the effective safety factor pro-

files, qpðJÞ [right-hand axis]. The positions of the low order resonant drift

surfaces, Jmn, are shown by vertical straight lines. The number of orbits

N¼ 103, the toroidal modes 10 � n � nc, Ja ¼ 3:32658� 10�2.

FIG. 10. Radial profile of the diffusion coefficient Dr for the runaway elec-

tron of energy E¼ 1 MeV near the rational drift surface qp ¼ 2 for the sev-

eral values of the exponent a in the power-law cn: curve 1 (10� Dr)

corresponds to a¼ 4/3 at the perturbation level � ¼ 10�4, curve 2 corre-

sponds to a¼ 4/3 at the perturbation level � ¼
ffiffiffiffiffi
10
p

� 10�4, curve 3 corre-

sponds to a¼ 1 at the perturbation level � ¼ 101=6 � 10�4. The position of

the rational drift surface qp¼ 2, Jmn, is shown by vertical straight lines.
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the diffusion coefficients for the runaway energies E¼ 10

MeV and E¼ 20 MeV are plotted.

As seen from Figs. 11(a) and 11(b), there are also

regions outside the low-order rational surfaces where the dif-

fusion coefficients are much smaller than the quasilinear val-

ues. In these regions, the radial transport is caused mainly by

the fluctuations of the turbulent field in time. There, the cha-

otic transport is reduced or absent because of the low density

of the rational surfaces (not gaps) which is not sufficient for

an overlapping of the resonances. However, when one

approaches the low-order rational surfaces the diffusion

coefficients grow to their local maximal values and then

drop drastically. The radial profile of Dr near these areas is

similar to the behavior of the density qðq;NÞ near low-order

rational numbers q¼m/n as it is shown in Fig. 13.

C. Effect of isolated MHD modes

MHD modes are frequently excited in real tokamak dis-

charges. Typically, the MHD modes with low poloidal and

toroidal mode numbers (m,n) are isolated and do not disrupt

the plasma. They are localized near the rational magnetic

surfaces Jmn, qðJmnÞ ¼ m=n. These MHD modes may signifi-

cantly influence the chaotic transport caused by the microtur-

bulence field near the corresponding rational drift surfaces.

In the presence of the (m,n) MHD mode alone, the struc-

tures of the field lines and particle orbits near the correspond-

ing rational surfaces are modified. Particularly, it creates an

island which traps the particles with the appropriate initial

conditions. The particle motion can be characterized by

introducing the averaged safety factor defined by

qav ¼
1

N

XN

k¼0

ukþ1 � uk

2p
; N 
 1; (19)

where uk (k ¼ 0; 1; 2;…;N) is the sequence of the toroidal

angles in the mapping (12) and the averaging is done

over large number of mapping iterations N, N 
 1.

The radial profile of qavðJÞ is flattened in the region Jmn

�Wmn=2 < J < Jmn þWmn=2 near the resonant surface Jmn,

where Wmn ¼ 4½�Hmn=dq�1
p =dJ�1=2

is the island width.

According to (A1) and (A2), such a profile of qav leads to a

widening of the gap in the density of the rational surfaces,

and thus reduces the chaotic transport due to interactions

with the modes of the turbulent field.

Figure 12 shows the example of a reduced turbulent

transport near the (m:n)¼ (2:1) rational surface in the pres-

ence of the corresponding MHD mode: Curve 1 describes

the quasilinear diffusion coefficients Dr, curves 2 and 3 cor-

respond to the numerical Dr without and with MHD mode,

respectively. Curves 4 and 5 [right-hand axis] describe the

FIG. 11. The same as in Fig. 9 but for the electron energies E¼ 10 MeV (a)

and E¼ 20 MeV (b). The other parameters are the same as in Fig. 9.

FIG. 13. Density of rational numbers near q¼ 1/2 for the different N at the

fixed M¼ 1. It also shows the rescaling law (A2) of the distribution density

qðq;M;NÞ for the different numbers N near the q¼ 1/2. The rescaling pa-

rameters k¼ 400/N.

FIG. 12. The same as in Fig. 9 but in the presence of the isolated

(m,n)¼ (2:1) MHD mode: Curve 1 corresponds to the quasilinear prediction,

curves 2 and 3 correspond to the numerical results without and with MHD

mode, respectively. Curves 4 and 5 [right-hand axis] describe the averaged,

qavðJÞ, and effective, qpðJÞ, safety factors, respectively. The amplitude of

the MHD mode is taken equal to � ¼ 10�4. The other parameters are the

same as in Fig. 9.
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averaged, qavðJÞ, and the effective, qpðJÞ, safety factors,

respectively. It is assumed that the MHD mode has a local-

ized radial structure given by Eq. (7) and the amplitude of

the MHD mode is taken equal to � ¼ 10�4. The electron

energy E is taken as 1 MeV.

As seen from Fig. 12, there is a strong reduction of the

turbulent diffusion near the rational surface where qav is flat-

tened (see curve 4). The width of the transport barrier is of

the order of the width of the corresponding island Wmn. How-

ever, the diffusion has large spikes just outside the island. It

is reduced to the quasilinear level (curve 1) in the regions far

from the island.

VII. CONCLUSION

In conclusion, we have studied the radial transport of

runaway electrons in a toroidal system in the presence of a

background turbulent magnetic field. It is assumed that such

a turbulent field has a wide spectrum of modes with a finite

correlation time. The numerical calculations of diffusion

coefficients are carried out using the fast symplectic mapping

constructed from the Hamiltonian equations for the relativis-

tic guiding-center motion of the electrons. The latter takes

both effects into account, the deviation of the electron drift

orbits from the magnetic surfaces and the gyro-averaging of

the turbulent magnetic field.

Since the runaway electrons have large Kubo numbers,

their radial transport in a turbulent magnetic field is mainly

caused by the chaotic transport due to overlapping islands,

which are formed by the interactions of particle orbits with

the resonant components of the turbulent field. The numeri-

cal calculations show that the radial profiles of the diffusion

coefficients of the chaotic transport have fractal-like struc-

tures with a reduced diffusivity near the low-order rational

drift surfaces thus forming transport barriers for the radial

transport. The fractal-like dependence of the runaway elec-

tron diffusion stems from the large values of the correspond-

ing Kubo number when the high speed electrons “feel” the

structure of the turbulent magnetic field. The width and

depth of the transport barriers depend on the toroidal mode

spectrum cn ¼ n�a as well as on the energy of the runaway

electrons. The barriers become more pronounced by increas-

ing the electron energy. The latter is caused not only by the

cutting out of higher modes by gyro-averaging but also by

the increase of the Kubo number.

The described mechanism of the turbulent transport of

energetic electron can be one of the main reasons for the

improved confinement of runaway electrons in tokamaks

additional to the effects of the gyro-averaging and the orbit-

averaging mechanisms. One can expect that this effect may

lead to the formation of the nested beams of runaway elec-

trons. To study such a possibility, one should study processes

of the generation and acceleration of electron beams in the

presence of magnetic micro-turbulence perturbations.
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APPENDIX: DENSITY OF RATIONAL DRIFT SURFACES

Here, we briefly describe the density of the rational

surfaces and its property. The detailed description of this

problem is given in Ref. 25.

Let Jmn be resonant values of the drift surfaces,

qðJmnÞ ¼ m=n, corresponding to the mode numbers (m,n).

Assume that the interval of the toroidal modes is M � n � N.

Let DP be a number rational surfaces Jmn in the interval

J; J þ DJ. Then, the density qðJÞ of rational surfaces is

defined as qðJ;M;NÞ ¼ DP=DJ. One can also introduce the

density of the rational numbers q¼m/n, qðq;M;NÞ, as follow

qðJ;M;NÞ ¼ DP=DJ. The relation between qðJ;M;NÞ and

qðq;M;NÞ is given by

qðJ;M;NÞ ¼ qðq;M;NÞ dq

dJ
: (A1)

We have numerically calculated the density function

qðq;M;NÞ in the interval 0 � q � 1 for different values of N.

It shows that the distribution density function has indeed gaps

near the low-order rational numbers qmn ¼ m=n: 0/1, 1/1, 1/2,

1/3, and 2/3. Moreover, qðq;M;NÞ has a self-similarity

behavior near these numbers qmn. The self-similarity of

qðq;NÞ � qðq; 1;NÞ is expressed by the following rescaling

law:

qðq� qm;n;NÞ � q
q� qm;n

k
; kN

� �
; (A2)

where k is a constant. The gaps and the rescaling law for the

distribution density qðq;NÞ near q¼ 1/2 are illustrated in

Fig. 13. From the rescaling property (A2), it follows that the

gap width Dw is inversely proportional to the number N.
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