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Precise response functions in all-electron methods: Application to the optimized-effective-potential
approach
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The optimized-effective-potential method is a special technique to construct local Kohn-Sham potentials from
general orbital-dependent energy functionals. In a recent publication [M. Betzinger, C. Friedrich, S. Blügel,
A. Görling, Phys. Rev. B 83, 045105 (2011)] we showed that uneconomically large basis sets were required to
obtain a smooth local potential without spurious oscillations within the full-potential linearized augmented-plane-
wave method. This could be attributed to the slow convergence behavior of the density response function. In this
paper, we derive an incomplete-basis-set correction for the response, which consists of two terms: (1) a correction
that is formally similar to the Pulay correction in atomic-force calculations and (2) a numerically more important
basis response term originating from the potential dependence of the basis functions. The basis response term is
constructed from the solutions of radial Sternheimer equations in the muffin-tin spheres. With these corrections
the local potential converges at much smaller basis sets, at much fewer states, and its construction becomes
numerically very stable. We analyze the improvements for rock-salt ScN and report results for BN, AlN, and
GaN, as well as the perovskites CaTiO3, SrTiO3, and BaTiO3. The incomplete-basis-set correction can be applied
to other electronic-structure methods with potential-dependent basis sets and opens the perspective to investigate
a broad spectrum of problems in theoretical solid-state physics that involve response functions.
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I. INTRODUCTION

Density-functional theory (DFT)1,2 in the Kohn-Sham
(KS) formalism3 has developed into a standard method for
computational calculations of electronic properties due to its
theoretical and numerical simplicity that goes along with
the required accuracy for a large range of materials. In this
theory, the many-body exchange and correlation effects that
make the microscopic quantum-mechanical description of
many-electron systems so complicated are hidden in a formally
simple local potential, the exchange-correlation (xc) potential.
Together with the classical electrostatic potential created by
the electronic and nuclear charges, it forms the local effective
potential for a fictitious system of noninteracting electrons, the
KS system, whose electron density, by construction, coincides
with that of the real system. Physical quantities, such as the
total energy, interatomic forces, dipole and magnetic moments,
etc., are then calculated as functionals of the electron density.

However, the mathematical form of the xc energy func-
tional, from which the xc potential derives, is unknown, and
one must resort to approximations in practice. Surprisingly,
already simple approximations, such as the local-density
(LDA)4,5 and generalized gradient approximations (GGA),6,7

give reliable results for a wide range of materials and
properties. However, as the functionals have been applied,
over the years, to more and more complex materials and
properties, shortcomings have become apparent: The spu-
rious self-interaction error, inherent to the LDA and GGA
functionals, leads to an unphysical description of localized
states, which as a result appear too high in energy and give
rise to erroneous hybridization effects. Second, the LDA and
GGA xc functionals do not exhibit a derivative discontinuity
at integral particle numbers, leading to semiconductor band
gaps that are underestimated by 40% or more with respect to
experiment.8,9 Furthermore, they show the wrong asymptotic

behavior when exchange and correlation effects of spatially
separate but interacting parts of a many-electron system are
investigated.

Orbital-dependent functionals form a new class of xc
functionals.10,11 Already the formally simple exact-exchange
(EXX) functional,12–14 which treats electron exchange exactly
but neglects correlation altogether, remedies the aforemen-
tioned deficiencies of the more conventional local or semilocal
functionals. It has been shown that the EXX functional leads
to KS band gaps that are in much better agreement with
experiment.15–20 By definition, the KS band gaps do not
contain the derivative discontinuity,9,21 which indicates that
the effect of neglecting correlation is roughly of the same
magnitude as the discontinuity but of different sign.22,23 Also,
localized d- and f -electron states appear at larger binding
energies compared to local or semilocal functionals, which is
a result of the exactly compensated self-interaction error.

The xc potential is given by the functional derivative of
the xc energy functional with respect to the electron density.
In the case of the conventional LDA or GGA functionals,
the functional derivative translates into a derivative of a
function and is evaluated straightforwardly. In the case of
orbital-dependent functionals, such as the exact-exchange
(EXX) functional, the construction of the local xc potential
is much more involved, because these functionals only depend
implicitly on the density through the orbitals, and a chain-rule
must be applied to evaluate the functional derivative leading
to the optimized-effective-potential (OEP) equation.11,14

This integral equation involves two kinds of response
functions, one for the electron density and one for the KS
wave functions, as well as a nonlocal term, which corresponds
to the Hartree-Fock potential in the case of the EXX functional.
The former response function, on which we will focus in the
following, describes the linear response of the electron density
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with respect to changes in the KS effective potential and is
usually calculated by standard perturbation theory as a sum
over occupied and unoccupied states.

Thus, in contrast to the Hartree-Fock method, the OEP
approach involves the whole spectrum of unoccupied states.
Physically, the unoccupied states provide variational freedom
for the electron density to respond to the changes of the
effective potential. In practical ab initio calculations, one
finds that single-particle states up to high energies have
to be taken into account, which calls for a basis set that
is able to yield accurate wave functions over a very wide
energy range, spanning from the occupied region up to
high-lying unoccupied states. This places a much higher
demand on the basis than in conventional LDA, GGA, or
hybrid-functional calculations, where only the electron density
must be described accurately, while the OEP approach requires
a sufficiently accurate description of the response functions,
as well. This is a serious issue in all-electron methods
using so-called linearized basis sets that are optimized for
a certain energy region by construction and involve atom-
centered numerical basis functions that are adapted to the local
effective potential at predefined energies. Examples include
not only the full-potential linearized augmented-plane-wave
(FLAPW)24–26 and linearized muffin-tin orbital (LMTO)27–29

methods but also methods that rely on precalculated and
tabulated basis sets constructed from atomic calculations.30–33

A similar problem arises in pseudopotential approaches due to
the pseudized form of the potential around the atomic nuclei,
which yields accurate states only in a finite energy region.

In a recent publication,20 we reported an implemen-
tation of the EXX-OEP approach within the all-electron
FLAPW method.24–26 We employed the mixed product basis
(MPB)34–36 to reformulate the OEP integral equation in terms
of a matrix equation that can be solved by standard numerical
linear algebra tools. This approach also enables the construc-
tion of the local EXX potential without shape approximations.
We found that the basis sets are not independent: The LAPW
basis must be converged with respect to a given MPB. This bal-
ance condition is a direct consequence of the sum-over-states
problem described above. Only a highly converged LAPW ba-
sis, which corresponds to a large number of unoccupied states,
lends the density enough flexibility to react adequately to the
changes of the potential, thus leading to a well-converged re-
sponse function. As demonstrated in Ref. 20, compared to con-
ventional LDA or GGA calculations, the number of basis func-
tions had to be increased typically by a factor of 4 or 5, which,
from a practical point of view, cannot be a viable approach
and effectively restricts the method to very small systems. A
similar behavior was observed for Gaussian basis sets.37

In this paper, we present a numerical correction for the
response functions, with which the balance condition is
achieved with a considerably smaller LAPW basis leading
to much faster and numerically more stable calculations.
Furthermore, much fewer empty bands are needed for the
construction of the response functions. The correction relies
on the observation that the LAPW basis is explicitly potential
dependent and optimized for a given effective potential. Any
change in this potential (other than a mere constant) will render
the basis suboptimal or even inadequate. One way to deal with
this issue is to crank up the LAPW basis such that it can

describe the Hilbert spaces for the unperturbed and perturbed
potentials at the same time—leading to large computational
costs as we have seen in Ref. 20. In this paper, we pursue
a different approach, which improves the precision of the
calculated response functions considerably without the need
of using larger basis sets and at the expense of only a small
computational overhead. We derive a numerical correction
by taking explicitly into account the changes of the LAPW
basis induced by the perturbations. These changes directly
follow from the potential dependence of the basis functions and
are calculated by solving radial scalar-relativistic Sternheimer
equations in the muffin-tin (MT) spheres. Similarly, the
response of the core states obeys fully relativistic Sternheimer
equations. Additionally, we take account of the fact that the
eigenfunctions of a Hamiltonian represented in a finite basis
set are not exact eigenfunctions of the Hamiltonian operator,
in general. Both corrections vanish in the limit of an infinite,
complete basis. As they correct for different aspects of the
incompleteness of a finite basis set, we refer to them as the
incomplete-basis-set correction.

Similar corrections are employed, for example, when shifts
of the Bloch vector are considered in k · p perturbation
theory,38 when the magnetic moment is rotated,39 and when
atomic positions are varied, i.e., in calculations of atomic
forces40,41 and phonon band structures.42,43 While in the
former cases the effective potential remains unchanged, it
does change in the latter case in principle, which should
give rise to corresponding variations in the muffin-tin basis
functions. Nonetheless, this effect has always been neglected
(rigid basis approximation), assuming that it is small, and one
takes only variations into account that are related to the spatial
displacements of the atom-centered basis functions. The
potential-dependent variations in the MT basis functions are,
thus, complementary to the incomplete-basis-set correction
known from force calculations and potentially improve the
accuracy of atomic forces, too. We intend to test this hypothesis
in a future work.

The paper is organized as follows. Sections II and III give
a brief introduction into the OEP formalism and the FLAPW
method. After a short recapitulation of the EXX-OEP im-
plementation, we develop the incomplete-basis-set correction
in detail in Sec. III. As a practical example we will use the
EXX functional for the calculations. However, we note that the
numerical corrections for the response quantities are generally
applicable, irrespective of the employed orbital-dependent
functional. The incomplete-basis-set correction facilitates the
construction of the EXX potential considerably, in terms of
both computational efficiency and numerical stability, as we
will demonstrate in Sec. V for the case of scandium nitride. In
Sec. VI we show results for the nitrides BN, AlN, and GaN, as
well as the perovskites CaTiO3, SrTiO3, and BaTiO3. Finally,
we draw our conclusions in Sec. VII.

II. THEORY

The KS formalism of DFT relies on the mapping of the
interacting electron system onto a noninteracting system of
KS electrons. These fictitious particles move in an effective
potential Veff(r) that is defined in such a way that the electron
densities of the two systems coincide. The equation of motion
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for the noninteracting KS electrons thus reads[− 1
2∇2 + Veff(r)

]
ϕnk(r) = εnkϕnk(r) (1)

with the KS wave functions ϕnk(r) and energies εnk for
the Bloch vector k and band index n. Here and in the
following we restrict ourselves to the spin-unpolarized
case and use Hartree atomic units unless stated other-
wise. The generalization to the spin-polarized case is
straightforward.

The effective potential consists of the classical electrostatic
potential created by the electronic and nuclear charges in the
system and the xc potential

Vxc(r) = δExc[n]

δn(r)
(2)

with the xc energy functional Exc[n]. In the case of LDA
(GGA), the energy functional is given as a simple function of
the electron density n(r) = 2

∑occ.
nk |ϕnk(r)|2 (and its gradient),

and the functional derivative [Eq. (2)] is evaluated straight-
forwardly. However, in the more general case of an orbital-
dependent functional, which is only an indirect functional of
the density, the application of the chain rule for functional
derivatives is requested.11,14 This leads, after multiplication
with the KS single-particle response function44

χs(r,r′) = δn(r)

δVeff(r′)
= 4

∑
k

occ.∑
n

ϕ∗
nk(r)

δϕnk(r)

δVeff(r′)
, (3)

to the OEP equation in integral form∫
χs(r,r′)Vxc(r′)d3r ′ = 4

∑
k

∑
n

∫
δExc

δϕnk(r′)
δϕnk(r′)
δVeff(r)

d3r ′ ,

(4)

where the sums over k and n run over all states. Solving this
equation yields the optimized local xc potential Vxc(r). We
note that additional terms occur on the right-hand side if Exc

exhibits an explicit dependence on the KS eigenvalues, as well.

In this work, we will employ the EXX functional

Ex = −
∑
k,q

occ.∑
n,n′

∫∫
ϕ∗

nk(r)ϕn′q(r)ϕ∗
n′q(r′)ϕnk(r′)

|r − r′| d3r d3r ′

(5)

as a practical example, whose functional derivative with
respect to the wave functions yields the expression

δEx

δϕnk(r)
=

∫
ϕ∗

nk(r′)V NL
x (r′,r) d3r ′ (6)

with the nonlocal exchange potential

V NL
x (r′,r) = −2

∑
q

occ.∑
n

ϕnq(r′)ϕ∗
nq(r)

|r′ − r| . (7)

III. FLAPW METHOD

In the all-electron FLAPW method,24–26 space is partitioned
into nonoverlapping, atom-centered MT spheres and the
remaining interstitial region (IR). The tightly bound core states
are completely confined to the spheres and are calculated
by solving the fully relativistic radial Dirac equation for the
spherically averaged local effective potential V a

eff,0(r), where
r is measured from the sphere center at Ra and a is an atom
index.

The valence-electron wave functions are represented by
linear combinations of basis functions

ϕnk(r) =
∑

G

zG(n,k)φkG(r) (8)

with the reciprocal lattice vectors G. For the basis functions
φkG(r), we employ a bi-partitioned representation:27,45 Plane
waves in the interstitial region with a momentum cutoff |k +
G| � Gmax and numerical functions ua

lp(r)Ylm(r) in the MT
sphere of atom a with the spherical harmonics Ylm(r) and a
cutoff value lmax for the angular-momentum quantum number
l. The two sets of functions denoted by p = 0,1 are matched
in value and first radial derivative at the MT sphere boundaries
to yield the LAPW basis functions

φkG(r) =
{ 1√

�
exp [i(k + G) · r] if r ∈ IR∑lmax

l=0

∑l
m=−l

∑1
p=0 Aa

lmp(k,G)ua
lp(|r − Ra|)Ylm( ̂r − Ra) if r ∈ MT(a)

(9)

with the unit-cell volume � and the matching coefficients

Aa
lmp(k,G) = 4π√

�
ilY ∗

lm(k + G) exp[i(k + G)Ra]

× (−1)p[
ua

l1(Sa),ua
l0(Sa)

] [
ua

lp(Sa),jl(|k + G|Sa)
]
,

(10)

where p = 1 − p, Sa is the radius of the MT sphere of atom a,
jl(x) are the spherical Bessel functions, and the square bracket

denotes the Wronskian

[f (r),g(r)] = f (r)
dg(r)

dr
− df (r)

dr
g(r) . (11)

In the following, we restrict ourselves to the nonrelativistic
equations. The scalar-relativistic treatment is deferred to
Appendix. The radial function ua

l0(r) is the solution of the
radial Schrödinger equation

ha
l ru

a
l0(r) = εa

l rua
l0(r) (12)
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with a predefined energy parameter εa
l and the radial Hamil-

tonian

ha
l = −1

2

∂2

∂r2
+ l(l + 1)

2r2
+ V a

eff,0(r) . (13)

Its energy derivative ua
l1(r) = ∂ua

l0(r)/∂εa
l is obtained from

ha
l ru

a
l1(r) = εa

l rua
l1(r) + rua

l0(r) . (14)

The energy parameters εa
l are typically placed in the center of

gravity of the l-projected density of the occupied states.
The energy derivative ua

l1(r) provides for variational free-
dom around these energy parameters. While states close to
the energy parameters are, thus, accurately described, the
basis becomes less adequate for states that are energetically
further away, e.g., semicore and high-lying unoccupied states.
For these states, we may extend the LAPW basis with local
orbitals.46–49 These are linear combinations of ua

l0(r), ua
l1(r),

and solutions of Eq. (12), ua
lp(r) and p � 2, with different

energy parameters either fixed at the semicore level or at higher
energies for the unoccupied states. The linear combinations
are such that they vanish at the MT sphere boundary in value
and radial derivative. Thus, the local orbitals are completely
confined to the MT sphere and need not be matched to a plane
wave outside.

IV. IMPLEMENTATION

In Ref. 20, we showed that the OEP equation [Eq. (4)] can
be cast into an algebraic matrix equation if the quantities are
formulated in terms of an auxiliary basis that is designed to
represent wave-function products. For this purpose we intro-
duced the MPB,34–36 which is built from products of LAPW
basis functions, giving rise to plane waves exp(iG · r)/

√
�

in the interstitial region and MT functions Ma
LP (r)YLM (r) in

the MT sphere of atom a with cutoff values |G| � G′
max and

L � Lmax, respectively. (For the present purpose, the MPB
functions are independent of k because of the periodicity of
the local potential.) The radial parts Ma

LP (r) are constructed
from the products ua

lp(r)ua
l′p′ (r) with |l − l′| � L � l + l′ and

also include the atomic EXX potential. We further form linear
combinations of these functions such that they are continuous
in value and radial derivative at the MT sphere boundaries
as well as orthogonal to a constant function. (The latter is
necessary to make the density response function χs invertible.)
For mathematical details, we refer the reader to Refs. 34–36.
For the present work, we have further incorporated the
boundary condition of zero slope for the MPB functions at
the atomic nuclei. This is motivated by the observation that
the local EXX potentials always show this behavior (cf. EXX
potentials in Refs. 50–52). In Sec. VI we will demonstrate that
this constraint improves the shape of the EXX potential in the
immediate vicinity of the atomic nuclei.

In this way, the OEP equation [Eq. (4)] for the EXX
functional can be expressed as∑

J

χs,IJ Vx,J = tI , (15)

where I is used to index the MPB functions,

χs,IJ =
∫∫

M∗
I (r)χs(r,r′)MJ (r′)d3r d3r ′ (16)

is the single-particle response matrix, and

tI = 2
∑

k

occ.∑
n

∫∫
δEx

δϕnk(r′)
δϕnk(r′)
δVeff(r)

M∗
I (r)d3r d3r ′ (17)

denotes the vector of the right-hand side. Inversion of Eq. (15)
yields the vector Vx,J . The local exchange potential is then
finally given by

Vx(r) =
∑

J

Vx,J MJ (r) . (18)

A. Incomplete-basis-set correction

Both the single-particle response function [Eq. (16)] and
the right-hand side of the OEP equation [Eq. (17)] involve
the derivative δϕnk(r)/δVeff(r′), which describes the linear
response of the wave function ϕnk(r) with respect to changes
of the effective potential. Equations (3), (16), and (17) show
that in our formalism these changes are parametrized by the
MPB functions {MI (r)}. We denote the linear response of the
wave function with respect to MI (r) by

ϕ
(1)
nk,I (r) =

∫
δϕnk(r)

δVeff(r′)
MI (r′) d3r ′ . (19)

According to first-order perturbation theory, ϕ(1)
nk,I (r) obeys the

normalization condition∫
ϕ∗

nk(r)ϕ(1)
nk,I (r) d3r = 0 (20)

and the inhomogeneous differential equation

[H − εnk]ϕ(1)
nk,I (r) = [

ε
(1)
nk,I − MI (r)

]
ϕnk(r) (21)

with ε
(1)
nk,I = 〈ϕnk|MI |ϕnk〉 and H = − 1

2∇2 + Veff(r). Equa-
tion (21), the so-called Sternheimer equation,53 follows from
linearizing Eq. (1) with respect to changes of the potential.
Left-multiplication with the complex conjugates of all other
eigenstates ϕn′k(r) (n′ 	= n), integration over space, and sum-
ming over n′ yield the well-known expression

ϕ
(1)
nk,I (r) =

∑
n′(	=n)

〈ϕn′k|MI |ϕnk〉
εnk − εn′k

ϕn′k(r) (22)

and, thus,

δϕnk(r)

δVeff(r′)
=

∑
n′(	=n)

ϕ∗
n′k(r′)ϕnk(r′)
εnk − εn′k

ϕn′k(r) , (23)

where the sum runs over the infinite number of eigenstates
of H .

As the diagonalization of Eq. (1) in a basis representation
yields a whole spectrum of KS wave functions ϕnk(r) and
energies εnk, comprising the occupied and a large number of
unoccupied states, the response is straightforwardly calculated
using Eq. (23), and one usually employs this equation for a
numerical implementation.

However, the number of available wave functions N is
limited in practice—it cannot exceed the number of basis
functions NLAPW—so the sum in Eq. (23) is truncated(
n′ � N � NLAPW

)
leading to a loss of accuracy. Equa-

tion (23) then only accounts for that part of the response
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that happens to lie in the Hilbert space spanned by the finite
number of wave functions. As a pragmatic solution, one can
increase the number of basis functions and, thus, the number
of eigenstates. However, as already mentioned, we observed
that Eq. (23) converges very slowly with respect to the size of
the LAPW basis. Sufficient convergence is attained only with
basis sets that are considerably larger than the standard one
used in GGA or LDA calculations (up to 5 times larger even for
the simple example of diamond), entailing high computational
costs rendering in part the calculations impractical.

The difficulty of convergence can be overcome by two
distinct corrections to the linear response of the wave function:
(i) The necessity for expanding the wave functions, in practice,
into a finite, incomplete basis set implies that the wave
functions ϕnk(r) are not pointwise exact solutions of Eq. (1).
The fact that (H − εnk)ϕnk(r) does not vanish identically for
all r in the unit cell will give rise to a small correction that for-
mally resembles the Pulay term in atomic-force calculations.
(ii) More importantly, though, the incompleteness of the basis
leads to a neglect of important response effects, in particular in
the MT spheres, where the standard LAPW basis is optimized
for band energies close to the occupied states, while for
higher-lying bands the basis becomes inadequate. (This is
generally true for linearized methods. In the pseudopotential
approach, on the other hand, it is the one-particle potential
itself that is constructed for the occupied states, making it
inappropriate for high energies.) In short, the MT functions
of the standard LAPW basis form a poor basis for the

wave-function response. This is not surprising since it should
be easy to find a perturbation out of the many functions MI (r)
that rotates the resulting wave function out of the Hilbert space
spanned by the basis functions. In fact, each of the MPB
functions (except for the constant function) will have this effect
to some extent. Having said this, the question arises whether it
is not possible to let the Hilbert space itself rotate in the same
way as the wave function ϕnk(r) does, so ϕ

(1)
nk,I (r) remains in the

corotating Hilbert space. In other words, we seek the response
of the basis functions subject to a given perturbing potential,
i.e., δφkG(r)/δVeff(r′). Indeed, it will turn out that this response
is straightforwardly calculated in the MT spheres.

We start the derivation by letting a perturbation δVeff(r′) act
on the wave function in Eq. (8), which formally gives

δϕnk(r)

δVeff(r′)
=

∑
G

[
δzG(n,k)

δVeff(r′)
φkG(r) + zG(n,k)

δφkG(r)

δVeff(r′)

]
.

(24)

(Local orbitals and core states will be discussed later.) The
second term arises from the fact that the basis functions φkG(r)
depend explicitly on the effective potential through Eqs. (12)
and (14). It contains what we have termed basis-function
response above. We will now construct this second term
explicitly and then see how it combines with the first term.

As the basis functions depend on the potential only in the
MT spheres, their linear response with respect to a change of
the potential is nonzero only within the spheres. Linearizing
Eq. (9) gives

φ
(1)
kG,I (r) =

{
0 if r ∈ IR∑

lmp

[
Aa

lmp(k,G)ua(1)
lp,I (|r − Ra|) + A

a(1)
lmp,I (k,G)ua

lp(|r − Ra|)]Ylm( ̂r − Ra) if r ∈ MT(a)
, (25)

where the quantities φ
(1)
kG,I (r), ua(1)

lp,I (r), and A
a(1)
lmp,I (k,G) denote

the linear changes of the LAPW basis function, the radial
function, and matching coefficients, respectively, in analogy to
Eq. (19). Here, we restrict ourselves to MT functions MI (r) =
MI (r) with angular momentum L = 0. [For simplicity, the
function MI (r) is already scaled with Y00(r̂) = 1/

√
4π .]

Of course, the radial functions ua
lp(r) can also respond to

nonspherical perturbations (L 	= 0) of the potential. The linear
response then consists of a superposition of |l − L|, . . . ,l + L

functions. We defer this more general and more complicated
case to a later publication and note that the case L = 0 gives
the most important contribution.

The functions u
a(1)
lp,I (r) are obtained from linearizing

Eqs. (12) and (14), which yields Sternheimer equations for
the radial functions[

ha
l − εa

l

]
ru

a(1)
l0,I (r) = [

ε
a(1)
l,I − MI (r)

]
rua

l0(r) (26)

and[
ha

l − εa
l

]
ru

a(1)
l1,I (r) = [

ε
a(1)
l,I − MI (r)

]
rua

l1(r) + ru
a(1)
l0,I (r) .

(27)

The variation of the energy parameter is given by the
expectation value

ε
a(1)
l,I = 〈

ua
l0

∣∣MI

∣∣ua
l0

〉
. (28)

The scalar-relativistic versions are again deferred to Appendix.
The radial inhomogeneous differential Eqs. (26) and (27)
are easily solved by integrating from the origin r = 0 to the
MT boundary r = Sa . The resulting special solutions are not
uniquely defined since we may always add the homogeneous
solution ua

lp(r) or a multiple of it. This freedom is removed
by requiring that ua

l0(r) is normalized, which leads to the
additional conditions∫

dr r2ua
l0(r)ua(1)

l0,I (r) = 0 (29)

and ∫
dr r2ua

l0(r)ua(1)
l1,I (r) = −

∫
dr r2ua

l1(r)ua(1)
l0,I (r) . (30)

The Eqs. (29) and (30) together with Eq. (28) ensure that
u

a(1)
lp,I (r) vanishes for constant variations of the potential.

As an example, we show in Fig. 1(a) the radial basis
response functions, u

Sc(1)
00,I (r) and u

Sc(1)
01,I (r), for the Sc atom of
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FIG. 1. (Color online) (a) Normalized radial basis response
functions u

Sc(1)
00 (r) [(red) solid line] and u

Sc(1)
01 (r) [(blue) dashed

line] as obtained from Eqs. (26) and (27) for angular momentum
l = 0 calculated in the MT sphere of the Sc atom in rock-salt ScN.
The perturbing potential MI (r) is shown as the (green) dotted line.
(b) Corresponding radial LAPW basis functions uSc

00(r) [Eq. (12)]
[(red) solid line] and uSc

01(r) [Eq. (14)] [(blue) dashed line].

rock-salt ScN and for l = 0 as obtained from Eqs. (26) and (27)
together with the corresponding perturbing potential MI (r).
For comparison the conventional LAPW s functions uSc

00(r)
and uSc

01(r) are presented in Fig. 1(b). According to Eq. (29),
the function u

Sc(1)
00,I (r) is orthogonal to uSc

00(r) and, as obvious
from Figs. 1(a) and 1(b), it clearly differs from uSc

01(r) by more
than a factor. As a consequence, it lies outside the Hilbert space
formed by the two basis functions and will contribute to the
incomplete-basis-set correction. A similar observation holds
for the function u

Sc(1)
01,I (r).

The linear change of the matching coefficients Aa
lmp(k,G) is

straightforwardly obtained from differentiating Eq. (10) with
respect to the potential. This finally gives rise to

A
a(1)
lmp,I (k,G) = (−1)p+1

[
ua

lp(Sa),
∑

p′ A
a
lmp′ (k,G)ua(1)

lp′,I (Sa)
][

ua
l1(Sa),ua

l0(Sa)
] .

(31)

The coefficients A
a(1)
lmp,I (k,G) guarantee that the resulting

functions φ
(1)
kG,I (r), as defined in Eq. (25), and their radial

derivatives continuously go to zero at the MT sphere bound-
aries.

We note that the rest of the derivation applies generally
to spherical (L = 0) and nonspherical perturbations (L 	= 0).
Once the φ

(1)
kG,I (r) are constructed, linear combinations with

the wave-function coefficients

ϕ̃
(1)
nk,I (r) =

∑
G

zG(n,k)φ(1)
kG,I (r) (32)

yield the second term of Eq. (24) for variations that scale with
MI (r) according to Eq. (19).

The first term of Eq. (24), in the following denoted by
ϕ̂

(1)
nk,I (r), lies completely in the Hilbert space spanned by the

LAPW basis set. Accordingly, ϕ̂
(1)
nk,I (r) can be expanded in

terms of the unperturbed KS wave functions

ϕ̂
(1)
nk,I (r) =

∑
n′

〈
ϕn′k

∣∣ϕ̂(1)
nk,I

〉
ϕn′k(r). (33)

The projection coefficient 〈ϕn′k|ϕ̂(1)
nk,I 〉 is obtained by exploiting

the fact that ϕ
(1)
nk,I (r) = ϕ̂

(1)
nk,I (r) + ϕ̃

(1)
nk,I (r) is the solution of

Eq. (21). After left multiplication of Eq. (21) with ϕ∗
n′k(r)

(n′ 	= n) and integration over space one yields

(εn′k − εnk)
〈
ϕn′k

∣∣ϕ̂(1)
nk,I + ϕ̃

(1)
nk,I

〉 + 〈
Dn′k

∣∣ϕ̂(1)
nk,I + ϕ̃

(1)
nk,I

〉
= 〈ϕn′k|ε(1)

nk,I − MI |ϕnk〉 , (34)

where we additionally allow for deviations of the calculated
wave functions ϕn′k(r) from the true eigenfunctions of the
operator H by explicitly treating Dn′k(r) = (H − εn′k)ϕn′k(r)
as a nonzero quantity. Using 〈ϕn′k|ϕnk〉 = 0 and 〈Dn′k|ϕ̂nk,I 〉 =
0 leads to 〈ϕn′k|ϕ̂(1)

nk,I 〉 for n 	= n′. The expansion coefficient for
n = n′ follows from the normalization condition Eq. (20).

By adding up ϕ̂
(1)
nk,I (r) and ϕ̃

(1)
nk,I (r) we finally end up with

the instructive result

ϕ
(1)
nk,I (r)

=
∑
n′�N

n′(	=n)

[ 〈ϕn′k|MI |ϕnk〉
εnk − εn′k

+ 〈ϕn′k|H − εn′k
∣∣ϕ̃(1)

nk,I

〉
εnk − εn′k

]
ϕn′k(r)

+
∫

d3r ′
[
δ(r − r′) −

∑
n′�N

ϕn′k(r)ϕ∗
n′k(r′)

]
ϕ̃

(1)
nk,I (r′) .

(35)

The first term contains the usual expression from first-order
perturbation theory [Eq. (22)] and a correction that takes into
account that the wave functions are not exact eigenfunctions
of the Hamiltonian operator H due to the incompleteness of
the basis. We call this correction the Pulay term in analogy
to a corresponding term—the Pulay force—in atomic-force
calculations.40,41,54 As already discussed, the first term is
inaccurate because of the truncation of the sum (n′ � N ).
This inaccuracy is corrected by the second term that arises
from the explicit variation of the basis due to a change in the
effective potential. We call this term the basis-response (BR)
correction. In the limit of a complete basis (with an infinite
number of states) the Pulay and BR terms would vanish,
and the standard perturbation theory (SPT) expression would
give the exact result. The sum over states in the BR part can
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be interpreted as a double-counting correction that subtracts
response contributions already contained in the first term.

So far, we have restricted the derivation to the augmented
plane waves defined in Eq. (9). Corresponding corrections
can be derived for the local orbitals and the core states.
While the derivation for the former closely follows the steps
already presented, the core states require some different
considerations. In contrast to the basis functions, they fulfill
the boundary condition that they approach zero for r → ∞.
This boundary condition is used to determine the energies
of the core levels, which, in contrast to the construction of
the LAPW basis functions, are not chosen as parameters but
result from an atomic eigenvalue problem. Therefore, we use
a finite-difference approach: We solve the atomic eigenvalue
problems for the perturbed potentials Veff,0(r) + λ

2 MI (r) and
Veff,0(r) − λ

2 MI (r) with λ = 0.0001, take the difference of
the resulting core wave functions, and divide by λ, which
directly yields the linear response of the core state. As the
fully relativistic Dirac equation is employed for the core states,
the finite-difference approach yields the solution of the fully
relativistic Sternheimer equation.

Finally, we use Eq. (35) to construct the density response
matrix [Eq. (16)] and the right-hand side of the OEP equation
[Eq. (17)]; also consider Eqs. (3) and (19). As a result,

χs,IJ = 4
occ.∑
nk

unocc.∑
n′�N

[ 〈MIϕnk|ϕn′k〉〈ϕn′k|ϕnkMJ 〉
εnk − εn′k

+ 〈MIϕnk|ϕn′k〉〈ϕn′k|H − εn′k
∣∣ϕ̃(1)

nk,J

〉
εnk − εn′k

]
+ 4

occ.∑
nk

[〈
MIϕnk

∣∣ϕ̃(1)
nk,J

〉
−

∑
n′�N

〈MIϕnk|ϕn′k〉
〈
ϕn′k

∣∣ϕ̃(1)
nk,J

〉]
, (36)

and

tI = 4
occ.∑
nk

unocc.∑
n′�N

[ 〈MIϕnk|ϕn′k〉
εnk − εn′k

〈ϕn′k|V NL
x |ϕnk〉

+
〈
ϕ̃

(1)
nk,I

∣∣H − εn′k|ϕn′k〉
εnk − εn′k

〈ϕn′k|V NL
x |ϕnk〉

]
+4

occ.∑
nk

[〈
ϕ̃

(1)
nk,I

∣∣V NL
x |ϕnk〉

−
∑
n′�N

〈
ϕ̃

(1)
nk,I

∣∣ϕn′k
〉〈ϕn′k|V NL

x |ϕnk〉
]

(37)

are again given as a sum over an SPT, Pulay, and BR term.
In its present form, the expression in Eq. (36) breaks the

Hermiticity of χs,IJ because the additional term is formally
asymmetric in the indices I and J . However, the numerical
deviation from Hermiticity is small. To eliminate these
inaccuracies, we take the average (χs,IJ + χ∗

s,J I )/2.

V. PERFORMANCE OF THE IBC

We have implemented the incomplete-basis-set correction
(IBC), as described in the previous section, in the FLEUR

program package,55 which is based on the FLAPW method.
Before showing results for the nitrides BN, AlN, GaN, InN,
and ScN, as well as the perovskites CaTiO3, SrTiO3, and
BaTiO3 in the next section, we, first, analyze in detail how the
convergence properties of the single-particle response function
[Eq. (36)], the local exchange potential, and the band gap are
improved by the IBC for the example of rock-salt scandium
nitride. The improvements are twofold: (1) the spherical
response function converges with much smaller LAPW basis
sets than before and (2) for a given LAPW basis much fewer
unoccupied states are needed for its construction.

Unless noted otherwise, the LAPW cutoff parameters
Gmax = 3.8 a−1

0 and lmax = 8 were used for the calculations
of rock-salt ScN at the experimental lattice constant of 8.50 a0

(a0 is the Bohr radius). The Sc 1s, 2s, and 2p states as
well as the N 1s state are treated as core states. All other
states—including the 3s and 3p semicore states of Sc—are
treated as valence. The Brillouin zone is sampled with a
4 × 4 × 4 k-point mesh.

A. Response function

We remind the reader that the IBC consists of two terms,
the Pulay and the BR terms, which are derived as a correction
for the expression of standard perturbation theory abbreviated
by SPT. In principle, the core states are included in Eq. (36) as
part of the sum over the occupied states. This is reminiscent of
the fact that the IBC not only corrects for the incompleteness
of the basis but also comprises the exact core-state response,
which will give a numerically important contribution, but only
a nearly rigid shift of the convergence curves. To simplify the
discussion, we will leave the contribution of the core states out
until later.

Figure 2 shows the convergence of the trace of the matrix
χs,IJ [Eq. (36)] as well as its SPT, Pulay, and BR contributions
for ScN as a function of the number of local orbitals nLO

added to the LAPW basis for each lm channel with 0 � l � 4
and |m| � l (in addition to local orbitals already used for
the semicore 3s and 3p states of scandium). The added local
orbitals are placed at energies in the conduction band according
to the recipe of Ref. 20. For simplicity, we have employed the
same number of additional local orbitals for Sc and N. In
this case, the MPB consists of 13 spherical functions, 7 at
the Sc atom and 6 at the N atom. The trace tr(χs) = ∑

I χs,II

is restricted to these functions. The slow convergence of
the SPT [dashed (green) line] is a direct consequence of
the low flexibility of the LAPW basis in the MT spheres
with respect to changes of the effective potential. The dotted
(blue) and dot-dashed (orange) lines show the corresponding
behavior of the BR and Pulay terms, respectively. As expected,
both corrections become smaller as the basis set becomes
more and more complete toward nLO = 6. The major part
of the correction originates from the BR term, while the
Pulay term is significant only for nLO = 0 and, even there,
accounts for merely 10% of the total IBC. For nLO � 1, it
rapidly approaches zero. The BR term is much more important
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FIG. 2. (Color online) Convergence of the trace of χs for ScN as
a function of the number of local orbitals nLO per l quantum number
(0 � l � 4) and atom. The SPT [(green) dashed], BR [(blue) dotted],
and Pulay terms [(orange) dot-dashed] as well as their sum [(red)
solid line] are shown, respectively. We consider only spherical MPB
functions, and the (constant) contribution of core states is neglected.

numerically. In fact, the dotted (blue) and dashed (green) lines
appear to be mirror images of one another, showing that the
BR correction compensates nearly exactly for what is missing
in the SPT term. The sum of all terms produces the solid (red)
line, which appears to be constant on the scale of the diagram.
From the inset, which shows the curve on a much finer scale,
we see that the variations are below 0.05%, an accuracy that
we could never hope to achieve without the IBC. For this
particular case, we thus do not have to employ additional local
orbitals (i.e., nLO = 0) for the unoccupied states.

Up to now, we have discussed how the IBC affects the
convergence of the single-particle response function with
respect to the quality of the LAPW basis. A perhaps more
obvious convergence parameter is the number of states N

included in the evaluation of Eq. (36). All three terms, SPT,
Pulay, and BR, involve summations over the unoccupied states
up to the maximal band index N . Keeping in mind that the
sum in the BR part can be interpreted as a double-counting
correction, one can hope that the function ϕ̃

(1)
nk,I (r) obtained

nonperturbatively from direct integration of the Sternheimer
equation already contains, to a certain degree, information
about the whole infinite spectrum of unoccupied states. As a
matter of fact, this hypothesis is substantiated by Fig. 3, which
shows the convergence of the trace of χs for two different
LAPW basis sets with nLO = 0 (circles) and nLO = 6 (squares)
as a function of the number of unoccupied states N − Nel/2,
where Nel is the number of valence electrons per unit cell
(Nel = 16 for ScN). (The reciprocal cutoff value of the LAPW
basis has been increased to Gmax = 5.5 a−1

0 to generate up to
450 bands.) Similarly to Fig. 2, the SPT term [(green) open
symbols] shows a very slow convergence with respect to the
number of unoccupied states. We note that in the nLO = 0 case
[(green) open circles] a large part of the response is actually
missing in the SPT term, resulting in a false convergence
behavior of the curve, which seems to converge, but toward a
wrong value. As above, the BR term [(blue) solid symbols] is
much more important than the Pulay term [(orange) half-solid
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FIG. 3. (Color online) Convergence of the trace of χs for ScN
as a function of the number of unoccupied states N − Nel/2. The
SPT [(green) open symbols], BR [(blue) solid symbols], and Pulay
terms [(orange) hall-solid symbols] as well as their sum [(red) open
symbols] are shown, respectively. Circles and squares are used to
distinguish the cases nLO = 0 and nLO = 6.

circles] and counterbalances the first term almost exactly.
While the Pulay term is practically zero in the case nLO = 6,
also compare Fig. 2, it is significant in the case nLO = 0 and
yields a small but important contribution to the sum of all
terms. In fact, this sum nearly follows the same curve [(red)
open symbols; circles and squares correspond to nLO = 0 and
nLO = 6, respectively] in the two cases, showing again that
with the IBC we can restrict ourselves to the conventional
LAPW basis, i.e., nLO = 0. The total sum converges extremely
fast, thanks to the BR term, in which the infinite spectrum of
eigenstates is already incorporated to a large extent. Without
showing further results we note that the IBC affects the
convergence of the right-hand side [Eq. (37)] in a similarly
beneficial way.

So far, we have not discussed the contribution of the
core states to the density response χs. For the core state
response we solve a fully relativistic Sternheimer equation
by a finite-difference approach as discussed in Sec. IV A.
The resulting solution embodies the full infinite spectrum
of unoccupied states by construction and can, therefore, be
considered to represent already the exact core-state response
(up to numerical errors connected with the finite-difference
approach, which can be made arbitrarily small, though).
Therefore, we can set N to the number of occupied states
in Eq. (36). The first term is then zero, and only the BR term
remains.

The contribution of the core states to the response function
is numerically important. In the case of ScN it is more than 4
times larger than the valence contribution. However, it should
be noted that the effective quantity for the construction of the
local exchange potential is not the response function itself
but its inverse [see Eq. (4)]. Therefore, large eigenvalues
of χs become comparatively unimportant in χ−1

s . This is
confirmed by the following observation. We find that the
SPT expression alone is incapable of describing the core-state
response. Even with nLO = 6 and N = 450, only about 20%
of the contribution of the core states is accounted for, which
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manifests the hardly surprising fact that the LAPW valence
basis is unsuitable to describe changes in the core states.
However, this shortcoming affects the resulting exchange
potential and KS transition energies only slightly, as we will
see below.

B. Local exchange potential

Figure 4 shows the local exact exchange potential between
neighboring scandium and nitrogen atoms for three calcula-
tions, all of them without any local orbitals for the unoccupied
states. For these calculations an MPB with G′

max = 2.8 a−1
0

and Lmax = 4 is employed, and the IBC is applied to both
core and valence electrons. Without the IBC (green dashed
line) we obtain an unphysical, strongly varying potential that
even tends to an unreasonable positive value at the position of
the nitrogen nucleus. In Ref. 20 we showed that the spurious
oscillations can be avoided by augmenting the LAPW basis
with local orbitals leading to a smooth and physical potential,
at the expense of a very costly calculation. As shown in Fig. 4,
the same smooth shape of the local exact exchange potential
is realized by employing the IBC with a considerably smaller
computational overhead. We emphasize that no local orbitals
are used in this calculation.

When one watches closely, one still sees very slight
anomalies of the dotted curve at the atomic nuclei, here more
pronounced at the nitrogen nucleus (see also the insets). These
result from the fact that the radial MT potential enters with
a factor r2 into the equations. The region close to the nuclei
has only little weight and is, therefore, difficult to converge.
On the one hand, for small r the total effective potential
is dominated by the potential of the nucleus −Z/r as well
as the centrifugal kinetic energy barrier l(l + 1)/(2r2) such
that slight inaccuracies at the nuclei prove to be irrelevant
in the calculation of the electronic structure. On the other
hand, we can find a simple remedy by an additional constraint
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FIG. 4. (Color online) Local EXX potential for ScN on a line
connecting the neighboring Sc and N atoms. We have used a
conventional LAPW basis without local orbitals for the unoccupied
states. The (blue) dotted and (green) dashed curves correspond to
calculations with and without the IBC. For the (red) solid curve
we have employed an additional constraint for the MPB (see text).
Equation (4) defines the potential only up to a constant. Here, we use
the convention

∫
Vx(r) d3r = 0.
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FIG. 5. (Color online) (a) Comparison of Vx(r) close to the atomic
nucleus of Sc for calculations with [(green) dashed line, nLO = 1] and
without [(red) solid line, nLO = 0] local orbitals. (b) Vx(r) with [(red)
solid line] and without [(green) dashed line] the core response of the
IBC.

for the spherical functions (L = 0) of the MPB, which has
the additional benefit of reducing their number by one for
each atom in the unit cell. We require the gradient of these
functions to vanish at r = 0. As already mentioned in Sec. III,
this behavior has been observed for the local exact exchange
potential in previous publications.50–52 Thus, the constraint
does not induce errors. With such a modified MPB the
anomalies of Vx(r) at the nuclei disappear, and we obtain the
red solid line shown in Fig. 4. We also note that the numerical
stability benefits from this modification.

As already pointed out, the IBC is presently only applied
to spherical variations of the potential. To converge the
nonspherical contributions properly we still need a few local
orbitals. Figure 5(a) shows this effect, which is strongest close
to the atomic nucleus of Sc. Using a single set of local orbitals,
i.e., nLO = 1, gives a slight correction of the potential, which
gives rise to changes in single-particle transition energies in the
order of 0.10–0.15 eV. (We have considered the gap transitions
� → �, � → X, and � → L.) For nLO = 2 changes are less
than 0.03 eV. It is important to note that the calculations always
converge to the same result, irrespective of whether or not
the IBC is used. We expect that once the IBC is extended to
the nonspherical MPB functions, no extra local orbitals are
required anymore.

As already discussed, taking into account the exact core
response yields a numerically important contribution to the
single-particle response function. To demonstrate the effect
on the local exchange potential, we switch the IBC for
the core states off. Figure 5(b) shows that this has only
a comparatively small effect on the shape of the resulting
potential. At first sight, the incurred changes in the potential
are more pronounced than in Fig. 5(a), but, in contrast to
Fig. 5(a), they mostly affect the region close to the nucleus,
where the effective potential is dominated by the potential
of the nucleus and the angular kinetic energy. In fact, the
single-particle transition energies are influenced only little:
they change by less than 0.04 eV. However, it should be noted
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FIG. 6. (Color online) Convergence of the direct gap of ScN with
respect to the number of local orbitals (nLO) added to the LAPW basis
for one-shot EXX calculations with [(red) solid line] and without
[(green) dashed line)] the IBC. The computation time is shown on
the right scale.

that the exact core response is evaluated at virtually no extra
cost.

C. KS band gap

After discussing the effect of the IBC on the ingre-
dients of the OEP integral equation and the local exact
exchange potential, we now turn to the KS band gap. As
we have presently derived the IBC only for the spherical
MPB functions, we employ the cutoff Lmax = 0 for this test
calculation in order to highlight the improvements resulting
from the IBC. This will produce a potential Vx(r) that is
purely spherical in the muffin-tin spheres. We note again
that a generalization to nonspherical functions (L > 0) is
possible but not yet implemented. Furthermore, we restrict
the interstitial exchange potential to a constant for simplicity.

Figure 6 shows the direct (� → �) gap of ScN for this
specific numerical setup as a function of the number of local
orbitals per l channel added to the LAPW basis. The case
nLO = 6 corresponds to 300 additional basis functions. It is
known that small inaccuracies in the band gap can occur due to
the linearization error of the LAPW basis (in the case nLO = 0).
To eliminate this pure basis-set effect, we have taken two
measures: (1) we have performed only a single EXX-OEP
iteration (starting from a PBE7 ground state), and (2) the final
diagonalization of the KS Hamiltonian was performed with the
most accurate basis set (nLO = 6). The value nLO shown on
the abscissa thus corresponds to the basis used in solving the
OEP equation, and variations in the band gap can be attributed
exclusively to the precision of the local exchange potential
without additional basis-set effects. We note that, in spite of
the very small MPB used here and in spite of performing only
one iteration, the resulting band gap is surprisingly close to
the fully converged one (see Table I).

Without the IBC [(green) dashed curve] four sets of local
orbitals (nLO = 4) are necessary to obtain a direct gap with an
accuracy of 0.05 eV (we note that, judging from the form of the
curve, the accuracy at nLO = 3 seems to be due to a fortuitous
cancellation of errors). On the other hand, the calculation with

the IBC yields a reliable gap with an accuracy of 0.007 eV
already without any local orbitals for the unoccupied states
(nLO = 0). Both curves converge to the same band-gap value,
while the convergence of the IBC values is hardly visible on
the scale of the diagram. We have indicated the computation
time on the right scale. The computational overhead of the IBC
calculations is due to the additional evaluation of the Pulay and
BR term, in particular for the matrix elements 〈ϕnk|V NL

x |ϕ̃(1)
nk,I 〉

in Eq. (37). It is difficult to compare the efficiency of the
calculations, since the least accurate calculation with the IBC
is still more accurate than the most accurate one without. If
we take an accuracy of 0.05 eV as a criterion, one would
deduce an acceleration of the code by a factor of four. Using
less unoccupied states (cf. Fig. 3) could further reduce the
computation time.

VI. RESULTS AND DISCUSSION

In Table I we report KS transition energies, i.e., KS
eigenvalue differences, for the III-V nitrides in the zincblende
structure and for rock-salt ScN, calculated with the EXX and
EXXc functionals. The latter contains additionally the LDA
correlation functional in the parametrization of Perdew and
Zunger.56 While the ground-state crystal structure of the III-V
nitrides is wurtzite, they can be synthesized in the metastable
zincblende structure by epitaxial growth techniques. All cal-
culations were performed at the experimental lattice constants
(ScN, 8.50 a0; BN, 6.84 a0; AlN, 8.26 a0; GaN 8.50 a0; InN
9.41 a0) with an 8 × 8 × 8 k-point sampling and with local
orbitals for the complete semicore shell (e.g., 2s and 2p

states of Al). The numerical cutoff parameters Gmax, G′
max,

lmax, and Lmax as well as the number of local orbitals are
determined such that the transition energies are converged
to within 10 meV. We compare our results with plane-wave
pseudopotential calculations and experimental values from the
literature.

The EXX and EXXc functionals give KS transition energies
that are much closer to the experimental value than LDA. InN
and ScN, which are metallic in LDA, are correctly predicted
to be semiconductors. The inclusion of the LDA correlation
functional in EXXc increases the values by about 0.01–0.2 eV
but does not yield a systematic improvement when compared
to experiment. For AlN and ScN our EXXc values agree well
with those from the pseudopotential studies. The differences
are mostly of the same order as the differences in the LDA
transition energies.

In the case of GaN and InN the situation is more complex
because of the semicore d states. In pseudopotential calcula-
tions they can be treated approximately as atomic core states in
the pseudopotential or, at a considerably larger computational
expense, as valence electrons within the plane-wave basis.
Therefore, Table I lists two values for each system and
functional from calculations where the d semicore electrons
are treated as valence (“with d”) or not (“no d”). The former
values, which are systematically smaller than the latter, must
be considered to be more accurate. Of course, we do not have
to make such a distinction in our calculations, because the
FLAPW method treats valence and core electrons, down to
the 1s state, on an equal footing. Indeed, our LDA transition
energies compare better with the pseudopotential calculations
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TABLE I. KS transition energies (in eV) obtained with the LDA, EXX, and EXXc potentials for the III-V nitrides and ScN. An 8 × 8 × 8
k-point sampling has been employed for all calculations. For comparison, plane-wave pseudopotential results and experimental values from
the literature are given.

This work Plane-wave PP

LDA EXX EXXc LDA EXXc Expt.

ScN � → � 2.35 4.41 4.42 2.34a 4.59a, 4.7b 3.8b

� → X −0.14 1.58 1.67 −0.15a 1.7a,1.6b 1.3b

X → X 0.79 2.48 2.56 0.75a 2.59a,2.9b 2.40b

BN � → � 8.68 9.80 9.88
� → L 10.18 10.88 10.95
� → X 4.34 5.42 5.58 6.4c

AlN � → � 4.20 5.46 5.59 4.27d 5.66e,5.74d 5.93f

� → L 7.24 8.42 8.55 7.25d 8.58d

� → X 3.22 4.77 4.96 3.27d 5.03e,5.06d 5.3f

No d With d No d With d

GaN � → � 1.76 3.11 3.24 2.22d 1.65d 3.52d 2.88d 3.27g

� → L 4.55 5.94 6.05 4.88d 4.43d 6.23d 5.64d

� → X 3.25 4.61 4.80 3.43d 3.30d 4.99d 4.66d

InN � → � −0.41 0.98 1.12 0.27d −0.44d 1.49d 0.81d 0.596h,0.61i

� → L 3.01 4.37 4.50 3.51d 2.95d 4.75d 4.14d

� → X 2.83 4.23 4.42 2.87d 2.82d 4.63d 4.20d

aReference 59.
bReference 60.
cReference 61.
dReference 58.
eReference 18.
fReference 62.
gReference 63.
hReference 64.
iReference 65.

“with d.” However, we find a much larger discrepancy for the
EXXc functional. In all cases the all-electron values fall in
between the two pseudopotential results, often being equally
far away from either value. Engel and Schmid57 pointed out
for the case of transition metal monoxides that the complete
semicore shell, comprising the 3s, 3p, and 3d states, must
be treated as valence to obtain accurate EXX values within
the pseudopotential approach. It is to be expected that this also
holds for GaN and InN, which would explain the discrepancies
observed for the pseudopotential calculations with respect to
the all-electron results.

Table II shows the energetic positions of the d levels in GaN
and InN with respect to the Fermi level, which is fixed at the
valence band edge. It is well known that the LDA underbinds
the 3d states, which is usually attributed to the self-interaction
error of LDA. However, in spite of the fact that the EXX(c) is

TABLE II. Energetic positions of the d levels in GaN and InN in
eV with respect to the Fermi energy and averaged over the Brillouin
zone and the d bands.

LDA EXX EXXc HF Expt.

GaN −13.08 −13.93 −14.15 −21.28 −17.7a

InN −12.72 −12.65 −12.83 −18.22 −14.9b

aReference 67.
bReference 68 (measured for the wurtzite compound).

free of this error, the position of the d bands is hardly improved.
While in GaAs the d levels are lowered by about 1 eV, they
remain nearly at the same energy in InN. In comparison to
the experimental values, 17.7 eV (GaN) and 14.9 eV (InN;
measured for wurtzite structure), this is hardly an improvement
over LDA. On the other hand, we find that the HF method
yields d-band positions at 21.28 eV (GaN) and 18.22 eV (InN),
respectively, i.e., even below the experiment. As the HF and
EXX-OEP methods employ the same energy functional, the
question arises why the d-band positions appear at different
energies. In short, what is the meaning of the EXX-OEP single-
particle energies? According to Koopmans’ theorem,66 the
single-particle energies in the HF approach can be understood
as total-energy differences between an excited state and the
ground state, neglecting orbital relaxation effects. For the d

states, �E = EN−1
d − EN

0 = 〈d|hHF|d〉 = εHF
d , where the two

total energies correspond to the many-body states with and
without a hole in a d level, εHF

d is the HF single-particle energy
of that d level, and hHF is the HF single-particle Hamiltonian.
The OEP approach was originally intended as a procedure
to simplify the solution of the HF equations by introducing
a local potential that minimizes the HF total energy. In fact,
the EXX-OEP and HF ground-state total energies are nearly
identical.20,37 This indicates that the slight difference in shape
of the single-particle wave functions has only a negligible
effect on the ground-state total energy EN

0 , a statement that
should also hold for the hole-state energy EN−1

d . Using
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FIG. 7. (Color online) Comparison of the LDA and EXX band
structures and densities of states (DOS) for CaTiO3. The total and
partial DOS for Ca 3d , Ti 3d , and O 2p are shown as (black) solid,
(blue) dot-dashed, (green) dashed, and (red) dotted lines, respectively.

Koopman’s theorem again with the EXX-OEP wave functions
instead of the HF ones, we should obtain practically the same
�E. However, as seen in Table II, the HF eigenvalue εHF

d

differs from the corresponding EXX-OEP eigenvalue εEXX
d by

� = εHF
d − εEXX

d = 〈d|V NL
x − Vx|d〉. As a consequence, the

underbinding of the d bands in LDA—and also in EXX(c)—
cannot be solely ascribed to the self-interaction error, contrary
to common belief. Part of this underbinding is due to the
forced locality of the effective potential, which gives rise to
a nonzero energy shift that is very similar in spirit to the
derivative discontinuity9,21 of the xc functional. Even with the
exact functional we cannot expect that the d-band positions
lie at the experimental positions in the same way as we cannot
expect the KS band gap to equal the experimental gap.

Finally, we report results for the electronic structure of
the perovskite transition-metal oxides CaTiO3, SrTiO3, and
BaTiO3. We have calculated the materials in the ideal cubic
structure at experimental lattice constants (CaTiO3, 7.35 a0;
SrTiO3, 7.46 a0; BaTiO3, 7.60 a0) and with the functionals
LDA, EXX, and EXXc. The Ti 3s and 3p states as well as the
first subshell of the cations (Ca, 3s 3p; Sr, 4s 4p; Ba 5s 5p)
have been treated with local orbitals. The electronic structures
of the three systems are very similar. They are semiconductors
with an indirect band gap between the R and the � point and
a direct gap at the � point. We compare the LDA and EXX
band structures and densities of states of CaTiO3 in Fig. 7. The
EXX functional shifts the Ti 3d conduction bands away from
the O 2p valence bands and, thus, opens the band gap, while
the band dispersions remain nearly unaffected. However, the
valence band width is slightly decreased.

KS transition energies are reported in Table III. The LDA
underestimates the energies by roughly 50%. Although the
EXX(c) functionals yield values that are closer to experiment,
we observe a pronounced overestimation by about 25%.
This might be due to two reasons: (1) The fortuitous error
cancellation arising from the neglect of correlation, on the one
hand, and of the derivative discontinuity, on the other hand,

TABLE III. Direct and indirect KS band gaps (in eV) for cubic
CaTiO3, SrTiO3, and BaTiO3 compared with experimental values. A
6 × 6 × 6 k-point sampling was employed.

LDA EXX EXXc Expt.

CaTiO3 � → � 2.24 4.70 4.74
R → � 1.77 4.28 4.31 3.57a

SrTiO3 � → � 2.09 4.51 4.54 3.75b

R → � 1.73 4.20 4.22 3.25b

BaTiO3 � → � 1.81 4.08 4.12
R → � 1.7 4.08 4.11 3.2c

aReference 69.
bReference 70.
cReference 71.

does not work for these transition-metal oxides; and (2) the
ideal cubic structure used in our study does not correspond to
the experimentally measured systems. It is known that these
perovskite materials undergo a number of structural phase
transitions. For example, SrTiO3 is cubic at room temperature
but tetragonal at low temperatures. BaTiO3, on the contrary,
is cubic at elevated temperatures and tetragonal at room
temperature.

VII. CONCLUSIONS

We have described an efficient way to calculate precise all-
electron response functions within the FLAPW method. The
key is the development of an incomplete-basis-set correction
(IBC), which was derived by describing the response of the
LAPW basis functions to changes of the effective potential
explicitly by means of radial Sternheimer equations. In this
way, the IBC incorporates important response contributions
that lie outside the Hilbert space formed by the LAPW
basis set. The resulting formula for the response function
consists of three terms: the conventional sum-over-states
expression of standard perturbation theory (SPT term) and
two additional terms, the basis-response and the Pulay terms.
The mathematical expression of the latter resembles that of the
Pulay force of atomic force calculations. The basis-response
term is more important numerically than the Pulay term. Both
vanish in the limit of a complete, infinite basis. Together
they constitute the IBC, which also yields an explicit and, in
principle, exact treatment of the response of the core states that
avoids the sum-over-states expression. The total correction is
not small. It can be as large as the SPT term.

As a practical example, we have employed the IBC to the
EXX-OEP method, an approach that allows the construction
of a local exchange potential from the orbital-dependent
EXX functional. It involves two response quantities: the
density response function and a response function for the
single-particle states. We have implemented the IBC for
both and demonstrated explicitly for the case of rock-salt
scandium nitride that it improves the convergence with respect
to the LAPW basis and the number of unoccupied states
considerably. While without the correction the solution of the
OEP equation requires a highly converged LAPW basis with
a large number of local orbitals,20 no extra local orbitals are
needed when we use the IBC. A similar statement can be made
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about the number of unoccupied states in the sum-over-states
expression related to perturbation theory. As the numerical
solution of the Sternheimer equation already incorporates
the infinite single-particle spectrum to a certain degree, the
response function converges at much fewer bands.

With this new scheme we have performed all-electron
EXX(c)-OEP calculations for the III-V nitrides in the
zincblende structure as well as rock-salt ScN. Our results agree
favorably with plane-wave pseudopotential EXXc calculations
from the literature. However, larger deviations are observed for
GaN and InN, which we attributed to the neglect of semicore
states (3s, 3p of Ga and 4s, 4p of In) in the pseudopotential
calculations. This is in accordance with a recent publication by
Engel and Schmid.57 Despite the fact that the EXX functional
is self-interaction free, it does not necessarily improve the
position of the d states with respect to LDA, as shown for
the semicore d states of GaN and InN. We have explained
this observation by the forced locality of the exchange
potential, which has the effect that the KS eigenvalues of the
occupied states cannot be associated with ionization energies
via Koopmans theorem. In order to invoke the latter, extra
terms similiar in spirit to the derivative discontinuity of the xc
potential have to be considered. Consequently, even with the
exact xc potential the d states cannot be expected to appear at
the experimental positions.

Furthermore, we discussed the EXX(c) electronic structure
of the three cubic perovskites CaTiO3, SrTiO3, and BaTiO3 in
comparison with LDA. The EXX functional opens the band
gap in all materials but leaves the dispersion of the bands
nearly unaffected, except most notably for a slight reduction
of the valence band width. While LDA underestimates the band
gaps by about 50%, the EXX(c) potential overcompensates this
error and leads to an overestimation of 25%, which we attribute
to an incomplete error cancellation between the neglect of
correlation and the neglect of the xc derivative discontinuity.
On the other hand, differences in the crystal structure between
the theoretical setups and experimental realizations might also
play a role.

We note that the IBC is a general approach, which is not
restricted to the FLAPW method. It applies to all electronic
structure methods with a basis set optimized for the effective
potential, including those which are atom centered and based
on precalculated and tabulated basis sets. Typical electronic
structure methods of this type include LMTO,27–29 DMOL,32

FHIAIMS,30 OPENMX,33 and the SIESTA code.31

Furthermore, with suitable generalizations, the IBC can be
applied to a broad spectrum of response functions in solid-state
physics, e.g., response quantities arising from the displacement
of external potentials (e.g., phonons, elastic constants, and
stress tensor) or from external fields (e.g., g tensor, chemical
shift and nuclear magnetic resonance, dielectric response,
infrared and Raman intensities, and magnetoelastic and mag-
netoelectric tensors), or from more general perturbations of
the Hamiltonian (e.g., Born effective charges, polarizability),
to name a few.

Another method that may profit from the IBC is the GW
approximation for the electronic self-energy, which involves
the calculation of a dynamical density response function and
the single-particle Green function. It is well known, and zinc
oxide is a prominent example of it,72,73 that, similarly to the

KS response function in EXX-OEP, GW calculations usually
converge badly with respect to the basis set and the number of
unoccupied states.
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APPENDIX: SCALAR-RELATIVISTIC EQUATIONS

In the scalar-relativistic approximation74 for the Dirac
equation the large and small radial component, r−1p(r) and
(cr)−1q(r), of an electron in a spherical potential Veff,0(r) at
energy ε obey the equations of motion

dp(r)

dr
= 2mrelq(r) + 1

r
p(r), (A1)

dq(r)

dr
= −1

r
q(r) + wp(r), (A2)

with mrel = 1 + [ε − Veff,0(r)]/(2c2) (c denotes the speed
of light) and w = [l(l + 1)]/[2mrelr

2] + Veff,0(r) − ε. For a
given spherical perturbation that scales with M(r) (index I

omitted to simplify the notation), the linear changes of p(r)
and q(r) are given by the solutions of the differential equations

dp′(r)

dr
= 2mrelq

′(r) + 1

r
p′(r) + 1

c2
[ε′ − M(r)]q(r),

(A3)

dq ′(r)

dr
= −1

r
q ′(r) + wp′(r)

−
[

1 + l(l + 1)

4m2
relr

2c2

]
[ε′ − M(r)]p(r) . (A4)

By direct differentiation we find the differential equations for
the energy derivatives ṗ(r) = dp(r)/dε and q̇(r) = dq(r)/dε

dṗ(r)

dr
= 2mrelq̇(r) + 1

r
ṗ(r) + 1

c2
q(r), (A5)

dq̇(r)

dr
= −1

r
q̇(r) + wṗ(r) −

[
1 + l(l + 1)

4m2
relr

2c2

]
p(r), (A6)

as well as for the linear changes of ṗ(r) and q̇(r)

dṗ′(r)

dr
= 2mrelq̇

′(r)+1

r
ṗ′(r)+ 1

c2
{[ε′−M(r)]q̇(r) + q ′(r)},

(A7)

dq̇ ′(r)

dr
= −1

r
q̇ ′(r) + wṗ′(r) −

[
1 + l(l + 1)

4m2
relr

2c2

]
×{[ε′ − M(r)]ṗ(r) + p′(r)}
+ 2l(l + 1)

8m3
relr

2c4
[ε′ − M(r)]p(r) . (A8)

In the nonrelativistic limit (c → ∞), these formulas reduce to
Eqs. (12), (14), (26), and (27).
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21L. J. Sham and M. Schlüter, Phys. Rev. Lett. 51, 1888 (1983).
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23M. Grüning, A. Marini, and A. Rubio, Phys. Rev. B 74, 161103

(2006).
24E. Wimmer, H. Krakauer, M. Weinert, and A. J. Freeman, Phys.

Rev. B 24, 864 (1981).
25M. Weinert, E. Wimmer, and A. J. Freeman, Phys. Rev. B 26, 4571

(1982).
26H. J. F. Jansen and A. J. Freeman, Phys. Rev. B 30, 561 (1984).
27O. K. Andersen, Phys. Rev. B 12, 3060 (1975).
28H. L. Skriver, The LMTO Method (Springer, New York, 1984).
29M. Methfessel, M. van Schilfgaarde, and R. Casali, in

Electronic Structure and Physical Properies of Solids, Vol. 535
of Lecture Notes in Physics, edited by H. Dreysse (Springer,
Berlin/Heidelberg, 2000), pp. 114–147.

30V. Blum, R. Gehrke, F. Hanke, P. Havu, V. Havu, X. Ren, K. Reuter,
and M. Scheffler, Comput. Phys. Commun. 180, 2175 (2009).

31J. M. Soler, E. Artacho, J. D. Gale, A. Garcia, J. Junquera,
P. Ordejon, and D. Sanchez-Portal, J. Phys.: Condens. Matter 14,
2745 (2002).

32B. Delley, J. Chem. Phys. 92, 508 (1990).
33T. Ozaki, Phys. Rev. B 74, 245101 (2006).
34C. Friedrich, A. Schindlmayr, and S. Blügel, Comput. Phys.
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