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We present the first simultaneous mapping of two-dimensional, time-dependent velocity and pres-
sure fields in a plane Couette flow pervaded by a transverse magnetic field. While electromagnetic 
forces are strongest in fluids of high electric conductivity such as liquid metals, their opacity ex-
cludes optical measurement methods. We circumvent this difficulty using a transparent electrolyte 
(Sulphuric acid), whose weaker conductivity is offset by higher magnetic fields. We describe an 
experimental rig based on this idea, where the Couette flow is entrained by a tape immersed in 
sulphuric acid and positioned flush onto the bore of large superconducting magnet, so that most of 
the flow is pervaded by a sufficiently homogeneous transverse magnetic field. Velocity and pressure 
fields are obtained by means of a bespoke PIV system, capable of recording the fluid’s accelera-
tion as well as its velocity. Both fields are then fed into a finite difference solver that extracts the 
pressure field from the magnetohydrodynamic governing equations. This method constitutes the 
first implementation of the pressure PIV technique to an MHD flow. Thanks to it, we obtain the 
first experimental velocity and pressure profiles in an MHD Couette flows and show that the transi-
tional regime between laminar and turbulent states is dominated by near-wall, isolated, anisotropic 
perturbations. 

I. INTRODUCTION 

We report the first mapping of velocity and pressure 
fields in a plane Couette flow pervaded by a transverse 
magnetic field, also called the plane MagnetoHydroDy-
namic (MHD) Couette flow. The Couette flow is one 
of the classical problems of fluid mechanics. It owes 
its popularity to its generic simplicity - a unidirectional 
flow driven by the shear due to the relative movement 
of its boundaries - and to its relevance to a very wide 
range of ideal and practical problems (lubrication, lo-
cal shear in turbulent flows, atmospheric, geophysical 
phenomena etc..). Despite its apparent simplicity, the 
Couette flow, with or without magnetic field remains an 
ideal playground to understand transition to turbulence 
and sheared turbulence, two of the major challenges of 
fluid dynamics [18]. Nevertheless, a good experimental 
approximation to the ideal Couette flow -i.e the flow 
between two infinitely extended planes, unspoilt by un-
wanted physical phenomena - is very difficult of achieve. 
Difficulties arise because of its infinitely extended geom-
etry, which plays a key role in transition mechanisms, es-
pecially in the development of patterns of localised turbu-
lence [7, 16]. Only recently did experimental work show 
that the transition to turbulence was subcritical [10, 11] 
and identified the dependence on the Reynolds number 
(based on the velocity of the moving wall) of the mini-
mal energy for a perturbation to trigger transition (Ta-
ble I provides a summary of past experiments). All of 
these were confined to the non-MHD case so it remains 
unknown how these mechanisms may be altered in an ex-
ternal magnetic field. 
MHD experiments were instead dedicated to the Taylor-
Couette (TC) flow, where the sheared layer of fluid is con-

fined between concentric rotating cylinders rather than 
between infinite planes [33]. This simplification however 
comes at the cost of new families of centrifugal instabil-
ities associated to the rotation [15], and replaces one of 
the infinitely extended direction by a periodic one. Aside 
of the fundamental interest, one of the great motivations 
for studying the Couette and TC flows arises from accre-
tion disks galaxies and the interior of stars, where mag-
netic fields may exist. The phenomenologies of the MHD 
Couette and TC flows are also relevant to engineering 
problems, in particular when handling liquid metals [26]. 
However, while the MHD TC problem has been exten-
sively studied because of its direct astrophysical relevance 
[6, 35, 38], the plane MHD Couette flow, has been mostly 
left aside. Despite the laminar MHD Couette flow being 
one of the textbooks classics [22], two papers have inves-
tigated its linear and nonlinear stability to find it linearly 
stable to arbitrarily high Reynolds number [19, 24], and 
no experiment on the plane MHD Couette flow has ever 
been conducted to our knowledge. Some of the reasons 
behind this gap are perhaps found in the additional chal-
lenges associated to MHD experiments. First, the whole 
flow must be pervaded by a magnetic field as spatially 
homogeneous as possible. Secondly, MHD experiments 
require electrically conducting fluids such as liquid met-
als, whose opacity make direct flow visualisation impos-
sible. While indirect methods based on electric potential 
velocimetry provide partial visualisations, their applica-
tion to the MHD Couette flow would be extremely diffi-
cult [5]. 
Despite these challenges, the plane configuration makes it 
possible to align an external magnetic field with velocity 
gradients rather than with the flow (as in most MHD TC 
experiments). The shear may then oppose the tendency 
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to two-dimensionality that results from the Lorentz force 
[28, 37] to produce non-trivial effects: On the one hand, 
an external magnetic field may suppress instabilities in 
shear flows [41], and Joule dissipation provides and ex-
tra mechanism to dissipate energy at all scales efficiently 
[13]. On the other hand, the change in flow structure, 
turbulent spectrum [17] and energy transfer mechanisms 
[4] incurred by the Lorentz force may suppress the dis-
sipation mechanisms themselves [29]. Hence, the mech-
anisms governing the transition to turbulence and fully 
developed turbulence in the Couette flow may turn out 
to be very different in the MHD framework, but remain 
unexplored to date. 
We propose a solution to break the experimental dead-
lock based on the observation that strong MHD effects 
can still be obtained with fluids of much lower conductiv-
ity, provided the loss of conductivity is compensated by 
high magnetic fields. To maintain the same level of elec-
tromagnetic force, the Joule time rho/σB2 , built with 
magnetic field B, the fluid’s density ρ and electric con-
ductivity σ needs do be conserved. For example, pro-
ducing the same level of electromagnetic force in trans-
parent electrolytes as in liquid metals that are typically 
104 times more conductive but 5 times heavier, requires 
fields about 50 times larger. The low conductivity how-
ever implies that the magnetic field induced by the flow 
is orders of magnitude smaller than the externally ap-
plied one (unlike in astrophysical problems) so the field 
is imposed and does not vary under the action of the flow 
[32]. Only a few experiments have taken advantage of this 
idea to date. The earliest might be by [2] who visualised 
magnetoconvective patterns applying the shadowgraph 
method to sulphuric acid, followed by LASER-based vi-
sualisations of the wake of an obstacle in a magnetic field 
by [1]. However, the first fully quantitative mapping of 
flow velocities was recently achieved in a configuration 
mimicking the rotating magnetoconvection in the liquid 
core of the Earth [3]. Being quantitative, the visualisa-
tion technique pioneered in electrolyte experiments offers 
an opportunity to transpose recently developed optical 
methods of pressure-PIV [14, 40]. These methods take 
advantage of the precise mappings of the velocity fields to 
numerically reconstruct the pressure field. Implementing 
this technique on MHD flows for the first time involves 
mostly dealing with the term representing the Lorentz 
force in the governing equations. 
In this context, we set out to build an experiment pro-
viding a good approximation to the plane MHD Couette 
flow and to obtain precise mapping for the velocity and 
pressure fields in both the laminar and turbulent states 
for the first time, based on the PIV and Pressure PIV 
techniques. The large field needed to encompass the en-
tire flow shall be obtained by means of the stray field of 
a large superconducting magnet. In the longer run, the 
facility and set of techniques developed are expected to 
open the way to full quantitative studies of the transition 
to turbulence and the fully developed turbulence in the 
plane MHD Couette flows. We shall first recall the equa-

tions governing the MHD Couette flow in the Low-Rm 
approximation (section II), before providing the techni-
cal details of the rig (section III). We then show how the 
classical PIV and pressure PIV techniques are adapted 
to the MHD problem and the specific constraints of the 
rig (section IV). Finally we provide early measurements 
of pressure and velocity fields obtained with the setup, as 
a premise to a full-blown study of the transitional regime 
between laminar and turbulent flows (section V). 

II. THE PLANE MHD COUETTE FLOW 

The ideal configuration of the magnetohydrodynamic 
Couette flow with a transverse magnetic field is repre-
sented in figure 1: a Newtonian, incompressible fluid of 
density ρ, electric conductivity σ, viscosity ν, is confined 
between two parallel infinite planes at z = 0 and z = h, 
and pervaded by a homogeneous magnetic flux density 
Bez . The bottom wall at z = 0 is static while the top 
wall moves at constant velocity U0ex. For flows of moder-
ate intensity at the scale of the laboratory, the magnetic 
field induced by fluid motion is negligible compared to 
the externally imposed field, and the system can be de-
scribed within the low-Rm, quasi-static approximation 
[32]. Physically, this approximation can be understood as 
taking into account the current induced by the motion of 
the conducting fluid in the magnetic field, but neglecting 
the magnetic field induced by this current. The low-Rm 
quasi-static equations are most conveniently expressed in 
terms of the velocity u, pressure p, current density J and 
electric potential φ. These include the momentum equa-
tion: 

1 � � 
(∂t + u · r)u + rp = Δu + Ha2J × B , (1)

Re 

Ohm’s law 

J = −rφ + u × B, (2) 

and the conservation of mass and charge: 

r · u = 0, (3) 

r · J = 0. (4) 

Here the equations have been written in non-dimensional 
form, choosing h/U0 and ρU2 as reference time and pres-0 
sure. The problem is governed by two non-dimensional 
parameters, the usual Reynold number Re = U0h/ν as 
well as the Hartmann number Ha = Bh(σ/ρν)1/2, the 
square of which measures the ratio of Lorentz to viscous 
forces. A third number, the interaction parameter can be 
formed as N = Ha2/Re, to measure the ratio of Lorentz 
to inertial forces. At both planes, the velocity field sat-
isfies a no-slip, impermeable boundary condition: 

u(z = 0) = 0, u(z = 0) = ex. (5) 
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TABLE I: Characteristics of existing and present Couette Flow experiments. Lx− streamwise length of the domain, Ly − width, 
h− height, U0 wall velocity. 

Fluid Lx × Ly /m
2 h/mm Lx/h Ly /h Re Range Lower Rec U0 /m.s

−1 

[10] water 1.3 × 0.254 7 186 36 300 − 500 325 ± 5 0.04 − 0.08 
[11] water 1.3 × 0.254 7 186 36 300 − 500 370 ± 10 0.04 − 0.06 
[39] water 1.5 × 0.36 10 150 36 345 − 950 360 ± 10 0.03 − 0.1 
[8] water 1.5 × 0.05 10 − 125 12 − 150 0.4 − 5 5 − 1.5 × 103 

[8] water 1.5 × 0.25 10 − 125 12 − 150 2 − 25 5 − 1.5 × 103 

Present H2SO4 (30 %) 1.2 × 0.38 10 − 100 12 − 120 3.8 − 38 250 − 1.2 × 104 

In the laminar regime, an exact analytical solution to the 
system (1-4) subject to boundary conditions (5) exists: 

sinh(Haz) 
u(z) = ex, rp = 0, rφ = 0. (6)

sinh Ha 

The Couette solution is represented in figure 1. As elec-
tromagnetic effects are increased (Higher field, higher 
value of Ha), the profile presents sharper gradients in 
the vicinity of the moving wall where a Hartmann bound-
ary layer of thickness Ha−1 develops. Interestingly, just 
like the Hartmann velocity profile [22], the MHD-Couette 
profile does not depend on the electric boundary condi-
tion at the walls. 

III. THE MHD PLANE COUETTE FLOW 
EXPERIMENTAL FACILITY 

A. Principle and design constraints 

The principle of the experiment is to model the top 
moving wall by means of a mechanically entrained tape 
of width Ly and length Lx, placed in a rectangular fluid 
container. As for the infinitely extended geometry of the 
theoretical MHD-Couette flow, the control parameters 
remain the Reynolds number Re and the Hartmann num-
ber Ha. The two aspect ratios Lx/h and Ly/h account 
for the finite streamwise length Lx and width Ly of the 
experimental fluid domain. In the limit where both are 
very large, the rig becomes an ever better approximation 
to the infinitely extended Couette flow, for which these 
ratios cease to be relevant. 
The challenge in our endeavour is the requirement to vi-
sualize the flow patterns: this implies that the working 
fluid must be both transparent and electrically conduct-
ing, as well as Newtonian. Since transparent fluids have 
very weak electrical conductivities (104 times lower than 
for a liquid metal at best), but also densities about 5 
times lower, magnetic fields about 40-50 times higher 
than in a liquid metal must be used to be able to conserve 
the timescale of the Lorentz force ρ/σB2 and attain inter-
action parameters corresponding to a significant Lorentz 
force. This implies using high magnetic fields, which are 
not normally available in large enough volumes to accom-
modate large fluid dynamics experiments. These conflict-
ing constraints only leave a very narrow margin for the 

design of the experiment. Considering the prohibitive 
cost of a bespoke magnet providing a homogeneous mag-
netic field over a wide surface, we adopted sulphuric acid 
concentrated at 30 % mass (of viscosity ν = 2.06 × 10−6 

m2/s, density 1.250 × 103 kg/m3, and electric conductiv-
ity 83 S/m at 25oC [9]) as the working fluid and used 
a large 4 T superconducting solenoidal magnet. How-
ever, size constraints on the experiment imply using the 
magnet’s stray field which is limited to about 1 T. 

B. General description of the experimental rig 

The setup consists of a rectangular transparent vessel 
filled with sulphuric acid (labelled B on figure 2). The 
flow is driven by a belt (1) immersed in the vessel and the 
Couette flow is generated between the moving belt and 
the plane bottom of the vessel. The distance between 
them h is adjustable. The magnetic field is generated 
by a cylindrical solenoidal magnet (E) positioned flush 
a few mm under the bottom of the vessel, so the maxi-
mum stray field pervades the fluid. A large aluminium 
NORCAN™-frame (G) supports the vessel and the con-
veyor (A) actioning the belt in this position. The system 
is enclosed in a safety container (not shown on figure 
2 for clarity) whose purpose is to contain possible acid 
leaks and to keep the fluid domain in the darkness that is 
necessary for the optical measurements. These are used 
to measure velocity in vertical and horizontal planes. A 
general view of the setup is visible in figure 2, and we 
shall now describe each of the elements in detail. 

C. Fluid and Light containment 

The main fluid vessel (B) is made of 12 mm thick 
PMMA plates. The total inner dimensions are 1576 mm 
long, 476 mm wide and 388 mm high. Plates are welded 
together at their edges with PVC. This way of joining 
the plates makes it possible to visualise the first few mil-
limetres above the bottom plate. In standard operating 
conditions, it is filled with about 200 l of sulphuric acid, 
namely about 250 mm height, so as to prevent any risk 
of splashing and also ensure that the Couette flow is suf-
ficiently far from possible surface waves that could influ-
ence it. The main vessel and the flow entrainment system 
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FIG. 1: Left: Generic configuration of the Couette flow, with top wall moving at velocity U0, fixed bottom wall, and both walls 
spaced by h. For the MHD Couette flow a magnetic field, of flux density B is applied. Right: streamwise velocity profiles for 
the non MHD (Ha = 0) and MHD Couette problem. As the electromagnetic effects increase, momentum becomes concentrated 
in an ever thinner layer near the moving wall. 

(see section III D) are housed in a plastic container fitted 
to the magnet geometry and whose purpose is two-fold: 
Its safety function is to contain any possible leak of sul-
phuric acid and to prevent any laser reflection to outside. 
Its light containment function is to minimise the amount 
of light entering the investigated fluid area, thus max-
imising contrast for the best possible PIV measurements. 
The top container is connected through plastic pipes to 
a second PVC container made of 6 mm thick glued, grey 
PVC panels and placed underneath the magnet inside the 
wooden frame supporting the magnet. An intermediate 
tube links the upper part to the lower part to protect the 
magnet bore. It is made with 1.5 mm thick PVC sheet 
and is inserted inside the bore. 
The container where the transparent tank is introduced 
was made with 5 mm transparent folded and welded 
PETG panels. The bottom panel was covered with a 
very thin black sheet. 3 mm thickness black PVC plates 
were screwed onto the lateral panels of the PETG tank 
to achieve light containment. Two Perspex windows were 
fitted to the front and side PVC panels for access to op-
tical elements and visualisations in vertical laser planes. 

D. Flow entrainment 

The flow is driven by a conveyor (A) fitted with a 
moving belt (1). As depicted in figure 2, the conveyor 
is composed of a main stainless steel frame “U” section 
(2) on which four bearing plates are fitted to support 80 
mm diameter plastic rollers (3), whose position can be 
precisely adjusted to control both the alignment and the 
tension of the belt. This system prevents the belt from 
skidding and from sagging by more than 1 mm over its 
entire surface. The belt (made of blue polyurethane, of 

length 2440 mm, width 374 mm and thickness 0.85 mm) 
is entrained by a precisely controlled electric motor from 
ORIENTAL MOTORS™, regulated to achieve constant 
speed within a precision better than 0.2% (determined 
by the motor’s electronic regulation). The whole system 
slides up and down through sliding mounts (D) connect-
ing the conveyor to the four vertical aluminium profiles 
located on the top of the frame and around the main ves-
sel. 
To control the level of fluctuations in the flow, a pertur-
bation system (14) is placed at the inlet of the Couette 
flow region, just below the belt (see fig. 2). It consists 
of rectangular grids of various steps and height, which 
cover the entire section of the inlet. They are made of 
acid-resistant and non-magnetic stainless steel cylindri-
cal rods of thickness 1.5 mm and separated by either 5 
mm or 10 mm. They are slotted in holders fitted on the 
side panels of the transparent vessel, so as to be easily 
removed or swapped. 

E. Magnetic field 

The magnetic field is generated by a superconducting 
magnet available at the High Magnetic Field Laboratory 
in Grenoble (LNCMI/CNRS). It is 635 mm length, has 
a bore of diameter 2Rmagnet = 450 mm and is positioned 
at 1710 mm high. It can be operated at field strengths 
of 0 to 4 T in its centre. The magnetic flux density was 
experimentally measured from the bottom of the trans-
parent tank along the centred vertical axis z and along 
the radius r at z = 0. Both profiles are plotted in Figure 
3. When the field is set to its maximum value of 4 T 
at the centre of the bore, the magnetic field density de-
creases from 1.04 T at the bottom of the transparent tank 
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FIG. 2: Sketch of the complete experimental apparatus on the left panel: A. Conveyor, B. PMMA vessel, C. PIV System (Laser, 
Optical system and cameras), D. Sliding mounts, E. Magnet, F. Wooden frame, G. Aluminium frame. 1. Polyurethane belt, 
2. Stainless steel frame, 3. Rollers, 4. Bearing plates, 5. Pressure screw, 6. Motor, 7. Stainless steel pulleys, 8. Polyurethane 
timing belt, 9. Conveyor frame , 10. Continuous Laser, 11. Optical system, 12. Laser sheet, 13. Cameras, 14. Perturbation 
grid (behind the LASER sheet). The motor pulls the polyurethane main belt so that the flow is directed from the right to the 
left. The external containment elements are not shown, for clarity. 

(z/h = 0) to 0.034 T at z/h = 1 m along the vertical axis 
and from 1.04 T on the solenoid axis at r/Rmagnet = 0 to 
0.63 T at r/Rmagnet = 1 (Rmagnet = 225 mm). Our in-
vestigated area extends typically from 20 mm to 60 mm 
above the upper surface of the magnet. The total inho-
mogeneity across the channel height varies from 15.3% at 
h = 30 mm to 27.3% at h = 60 mm for Bz . While lateral 
inhomogeneity exceeds 30% across the whole belt width, 
our area of interest only extends approximately 100 mm 
away from the centre of the magnet, with an homogeneity 
of around 7%. The time variations of the magnetic field 
are not measurable over timescales relevant to the ex-
periment. For comparison, in previous experiments such 
as FLOWCUBE [4, 5], precise theoretical scaling laws 
on turbulence intensity and 2D/3D cutoff scales were re-
covered with field inhomogeneity of up to 10%. As such 

the inhomogeneity in the stray field probably lies at the 
limit of what is acceptable for quantitative experiments 
in homogeneous fields. 

F. Physical range of parameters 

The setup is fairly flexible and its regimes of operation 
are controlled by 3 physical parameters: 

• the intensity of the magnetic field, 

• the distance h between the bottom vessel of the 
tank and the conveyor belt. Even though this dis-
tance could be taken as high as the vessel height, 
it is kept to a maximum of 60 mm in order to keep 
a good vertical homogeneity of the magnetic field. 
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FIG. 3: Profiles of axial magnetic flux density Bz measured 
in the stray field at the top of the magnet along the vertical 
axis z̃ (z̃ = z/Rmagnet) and radius r̃ (r̃ = r/Rmagnet), for a 
field of 4 T at the centre for the magnet bore. 

Distances lower than h = 20 mm, make measure-
ments difficult and increase the relative error due 
to slight vertical movement of the belt. 

• the velocity of the belt is limited by the torque of 
the electric motor to 1.5 m/s and cannot be regu-
lated below 0.01 m/s. 

These constraints imply that in theory, the setup can 
reach Re up to approximately 7.3 × 104 (for h = 0.1) 
m and N up to 0.1 at Re = 1000 (though higher values 
are possible in laminar regime). Typical operational val-
ues of these parameters are summarized in table II. It 
should be noted that the belt height h is not a relevant 
parameter of the ideal MHD-Couette problem once Ha 
and N are known. However, since the magnetic field is 
not perfectly homogeneous, measurements taken at the 
same Reynolds and Hartmann numbers but for different 
heights (and therefore different velocities) could poten-
tially differ. This effect is in part mitigated by choosing 
the field at the moving wall as a reference for Ha (and N). 
In the reminder of the paper, the values of the dimension-
less parameters are corrected after a precise measure of 
h on the PIV images. 

IV. MEASUREMENT TECHNIQUES AND 
EXPERIMENTAL PROCEDURE 

A. Particle Image Velocimetry (PIV) 

The principle of PIV is to seed the fluid with very 
small, neutrally buoyant non-inertial, highly reflective 
particles. These are then illuminated with a laser sheet. 
Cameras record successive snapshots of the laser sheets 
and the brightness distributions of successive snapshots 

TABLE II: Typical dimensional parameters (height h, mov-
ing wall velocity U0 and axial magnetic flux density Bz ) and 
dimensionless parameters (Reynolds number Re and Hart-
mann number Ha). The magnetic field is measured on the 
axis of the magnet at the location of the tape and there-
fore depends on the tape position. The interaction parameter 
is N = Ha2/Re and the maximum values correspond to a 
Reynolds number of 500 for which the flow is laminar, and 
below which the motor does not operate smoothly at h = 59.6 
mm. 

h U0 Re Bz Ha N 
(mm) (m.s−1) (T) 

30 0 - 1 0 - 1.5 × 104 0–1.05 0–5 0–0.05 
60 0 - 1 0 - 3 × 104 0–0.79 0–8.05 0–0.13 

are then correlated to infer the displacement of the par-
ticles, which can be traced to a local velocity [31]. Here, 
deriving the pressure field from measurements of the ve-
locity fields, requires the acceleration too. Thus, three 
instead of two successive snapshots are required, to be 
able to access not only the velocity associated to the dis-
placement of tracers but also its time-derivative. 
PIV measurements are performed either in a vertical 
plane in the middle of the belt or in horizontal planes 
of adjustable height between 2 mm and h − 2 mm. In 
both cases the LASER fires in the streamwise direction 
in the mid-plane of the belt, and the lens that converts 
the incoming linear beam into a plane LASER sheet is 
turned by 90o to obtain either a vertical or a horizontal 
sheet. 
A continuous laser is used to emit light at 532 nm with 
a maximum power of 4 W (labelled 10 on figure 2). The 
laser sheet is generated with a home-made optical sys-
tem (11), including divergent, convergent and cylindrical 
lenses, to reach a thickness smaller than 1 mm [23]. The 
fluid is seeded with silver-coated hollow glass sphere par-
ticles from DANTEC (10 µm diameter and 1.4 g.cm−3 

density). The effect of size and dimension of the particles 
can be estimated in terms of response time τ and rela-
tive velocity lag due to fluid acceleration (up − uf ) /uf , 
where up is the particle velocity and uf is the average 
fluid velocity in a square window of size L around the 
particle [31]: 

d2 
p

τ = ρp , (7)
18ν� � 
d2 up − uf p ρp

= − 1 Ref , (8) 
uf 18L2 ρ 

ρp represents the density of the seeding particles, dp is to 
the diameter of the seeding particle and Ref = uf L/ν. 
For the seeding particles used in the present study, the 
response time is estimated to about 3 µs and the relative 
velocity lag due to fluid acceleration is smaller than 1%. 
Flow visualisations are performed with Dalsa Genie Nano 
M1930 Monochrome cameras which offer a maximum 
continuous frame rate of 100 Hz. The specificity of this 
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FIG. 4: Measurement method with three cameras. A burst of 
three frames of time exposure t1, t2 and t3 is recorded with a 
time between frames δt smaller than the repetition time Δt. 

acquisition system is to use three cameras, which, instead 
of recording continuously, are triggered with an external 
signal. As depicted in Figure 4, a burst of three frames 
is recorded and repeated at a lower frequency. The time 
between frames within one burst is significantly smaller 
than the time between two bursts: this technique pro-
vides sufficiently fast acquisition to record acceleration 
whilst avoiding the high cost and large datasets associ-
ated to high speed cameras. Furthermore, for flows with 
high average speed, obtaining noise-free correlations be-
tween images demands a framerate with much shorter 
period than the physical timescales of the flow. A high 
framerate camera would in fact capture a large amount of 
physically redundant images. Setting the period of the 3-
image burst to a higher value that is commensurate with 
the flow time scales (typically a fraction of h/U0, and 0.2 
s for the cases at Re ' 1000–2000 presented section V) 
avoids this caveat. 
The frame size is 1920x1200 pixels2 and the spatial 

resolution is about 22.3 pixels for 1 mm of the visu-
alised area. The PIV computations are performed using 
DavisTM software from LavisionTM . Velocity fields are 
computed using the adaptive cross correlation method 
with starting and final correlation windows of respec-
tively 128 and 48 pixels in size. Typical maximal dis-
placements are about 25 to 30 pixels. The PIV grid is 
built with an overlap of 50% between windows leading to 
79x30 velocity vectors per PIV field at h = 3 cm. This 
corresponds to one velocity vector every 1 mm in the x 
and y directions. 
Measurements are calibrated by recording images of a 

laser printed target with equally spaced (1 mm) dots of 
precisely 0.5 mm diameter, placed at the location of the 
LASER sheet (and removed during the measurements). 
We made sure that using 3 cameras in slightly different 
positions did not incur any error by verifying that frames 
calibrated on each of the cameras matched each other 
(see Fig. 5). In the calibration procedure, the geometric 
parameters of a reference calibration grid (length, width 
and number, size and spacing between dots) are precisely 
known. The rms values of the discrepancy between these 
reference values and the corrected calibration grid allow 

FIG. 5: Sum of corrected PIV frames acquired at the same 
time from all 3 cameras for measurements with the moving 
wall at h = 35 mm. Note that since rms of fit parameters are 
less than 1 pixels for all three cameras, all particles overlap 
perfectly on the picture. 

us to quantify the quality of image correction. Here, the 
rms values are less than 1 pixel for each camera: 0.66 
pixels for camera 1, 0.65 pixels for camera 2 and 0.58 
pixels for camera 3. As such, the error lies just below the 
limit of the camera resolution. 

B. MHD Pressure PIV 

1. Principle 

Pressure PIV is a relatively recent technique used to 
derive pressure fields from velocity fields. Here, velocity 
fields are measured over 2D rectangular windows with 
the PIV technique described in section IV A. The pres-
sure field is then reconstructed solving the equations of 
motions (1-4) numerically. There are two classical ap-
proaches. In the first approach the pressure gradient 
is first calculated directly, and the pressure is then ob-
tained by integration along a path originating sufficiently 
far from the location of interest. Though simpler, this 
method tends to accumulate errors along the path and 
may lead to inaccurate results. The second approach con-
sists in forming a Poisson equation, using the divergence 
of equation (1) and using mass conservation (4): 

Δp = −r · (u · ru) + Nr · J × B. (9) 

Though more complex, this method is more accurate, 
but requires boundary conditions for the pressure at the 
edge of the domain. The main limitation of the pressure 
PIV technique is that to be entirely accurate, it requires 
knowledge of the full 3D velocity field. This can be ob-
tained with 3D PIV techniques. Here, the PIV system 
available to us only returns 2D velocity fields, so that 
some of the source terms in (9) are missing. The pres-
sure PIV technique will only remain accurate insofar as 
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the missing terms remain small. Finally, an additional 
difficulty is that since we are dealing with MHD flows, the 
Lorentz force generates an extra source term in (9). We 
shall however see that, this term can be entirely expressed 
in terms of the velocity field and that consequently, exist-
ing pressure-PIV techniques can be adapted to the MHD 
problem we consider. 

2. Implementation 

The implementation is a purely numerical task since 
the pressure PIV relies on the data provided by the stan-
dard PIV described in section IV A. The geometry of 
interest is either of the rectangular PIV windows. For 
the purpose of this study, we shall focus on the vertical 
window (in the x − z plane), only. The pressure field is 
computed through Poisson’s equation (9). According to 
[14, 40], out of plane motion does not affect seriously the 
determination of the pressure as long as gradients in that 
direction are smaller than in the in-plane direction. This 
condition can be expected to be reasonably satisfied, at 
least for the mean flow, in the vertical plane since the 
main velocity gradient results from basic MHD Couette 
flow profile in the x−z plane. The novelty of implement-
ing the pressure PIV technique for the MHD Couette flow 
arises from the extra source term in the Poisson equation 
due to the Lorentz force. Using (1) and (2), this term is 
expressed as: 

Nrxz · J × B = Nrxz · (−rφ × ez) + 

Nrxz · [(u × ez) × ez] , (10) 

∂ux ∂uzwith rxz = + . The first term −Nrxz ·(rφ × ex)∂x ∂z 
cancels out exactly, so that the in-plane divergence of the 
Lorentz force can be expressed as: 

∂ux rxz · FL = −N . (11)
∂x 

The divergence of inertial terms, by contrast, involves 
out-of plane components that are neglected for the pur-
pose of the pressure PIV technique in the x−z plane. Fi-
nally the Poisson equation for the pressure in that plane 
is expressed as: 

∂2p ∂2p
+ = 

∂x2 ∂z2 "� #�2 � �2
∂ux ∂ux ∂uz ∂uz− + 2 + 
∂x ∂z ∂x ∂z � � 

∂ ∂ ∂ ∂ux− + ux + uz rxzu − N . (12)
∂t ∂x ∂z ∂x 

Next, boundary conditions need to be applied. At the 
lower and upper (moving) walls, the z-component of the 
Navier Stokes equations (1) readily implies that an inho-
mogeneous Neumann conditions applies: � � 

∂p 1 ∂2uz 
= . (13)

∂z Re ∂z2 
z=0,1 

The inlet and outlet boundary conditions, are, by con-
trast not constrained by the governing equations and are 
only required because in taking the divergence of the gov-
erning equations, their order has been increased. A usual, 
somewhat arbitrary choice is to apply a homogeneous 
Dirichlet condition; 

(p)x=xinlet,xoutlet = 0. (14) 

The Poisson equation (12) together with boundary con-
ditions (14) and (13) are solved numerically at every 
timestep (i.e. made of a burst of 3 consecutive images to 
resolve the time derivatives) by means of a centred finite 
difference scheme of second order in space and time. The 
code was validated using the non-MHD (N = 0) analyti-
cal solution for the velocity field and the pressure gradi-
ent of Stuart vortices, modified to include a streamwise 
translation at constant velocities ranging within v0 =3-10 
mm/s. The numerical solution was calculated on a grid 
corresponding to our PIV setup but setting p = 0 on 
all boundaries to better match the infinite domain where 
the analytical solution was obtained. For K = 1.1 (see 
[20, 25]), the relative rms error based on the L2 norm 
over the whole domain on the pressure gradient over one 
period remained below 0.017%. 

C. Experimental procedure 

Once the PIV system is calibrated, the perturbation 
grid is inserted if required, and the conveyor is lowered 
to achieve the prescribed value of h, checking horizon-
tality and operability of the belt in the process. Next, 
the magnetic field is set to the required value. This op-
eration is longest as ramping up the field from 0 to 4 T 
takes approximatively 3 hours. The motor driving the 
belt is then operated to achieve the target velocity of the 
belt. The belt reaches its nominal velocity in a matter of 
seconds. Without magnetic field a pessimistic estimate 
for the flow establishment time can be obtained from the 
laminar timescale for diffusion of momentum across the 
the layer h2/ν, i.e. ∼ 33 min at h = 0.06 m. In the 
presence of magnetic field, momentum diffusion across 
the layer of a perturbation of size l⊥ takes places over 
τ2D = (h/l⊥)

2ρ/σB2 i.e. ∼ 15 s for l⊥ = h at B = 1 
T [37]. PIV measurements are then collected once the 
flow is in a statistically steady state, for a duration of 
typically 10 min. 

V. EXPERIMENTAL RESULTS 

For the purpose of identifying the effect of the magnetic 
field on the flow profiles, we shall use visualisations in 
the vertical plane only, without perturbation grid and 
for a channel heights of 32 mm and 59.6 mm, Ha = 0 
(without magnetic field) and the highest magnetic field 
currently available to us (flux density of 4 T at the centre 
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of the magnet bore), for which Ha = 5 (h =32 mm) and 
Ha = 8.05 (h =59.6 mm)). A more quantitative analysis 
of the MHD Couette flow is left for future studies. In all 
cases presented here, the flow is always directed along the 
motion of the conveyor belt. Short PIV measurements in 
a horizontal plane near the belt and measurements in the 
vertical plane indicate that the flow returns above the 
container, and not on the side nor between the belt and 
the bottom of the vessel. The free surface located approx 
25 cm above the bottom of the vessel showed no sign of 
significant surface waves so it is safe to assume that it 
has no detectable influence on the flow. Furthermore, 
measurements in the horizontal plane did not reveal any 
noticeable bias toward central or outer regions (along y) 
so global three-dimensional effects don’t seem to play a 
role, at least in the regime of parameters we explore here 
(bearing in mind that most of the fluctuations discussed 
in this section are, of course, three-dimensional). 

A. Velocity measurements 

Values of the Reynolds number between Re = 993.6 
and Re = 2135 are considered. The profiles of mean 
streamwise velocity obtained with and without magnetic 
field are shown on figure 6-(left). Dimensionally, these 
correspond to tape velocities of either 3.5 × 10−2 m/s 
(Re = 993 at h = 59.6 mm), 7 × 10−2 m/s (Re = 1068 at 
h = 32 mm or Re = 1987 at h = 59.6 mm) or 1.4 × 10−1 

m/s (Re = 2145 at h = 32 mm). In the absence of mag-
netic field, the profiles show a nearly constant velocity in 
the bulk, a sharp gradient in the vicinity of the moving 
wall (near z/h = 1), and a linear region near the bottom 
wall. These features are expected from turbulent Couette 
flows. They appear more pronounced at Re ' 2000 than 
Re ' 1000 for both channel heights, as does the reduction 
in thickness of both top and bottom shear layers. Note 
that missing points near z = 0 and the absence of conver-
gence to a value of ux/U0 = 1 in the vicinity of z/h = 1 
are due to limitations of the PIV setup, which cannot 
return valid values of the velocity in regions very close to 
boundaries (approx. within 3 mm). For these reasons, 
areas of reliable PIV data are delimited by green lines on 
the figures. Unsurprisingly, mean vertical velocities (Fig. 
6-(right)) stand approximately two orders of magnitude 
lower than the streamwise velocity. As the flow becomes 
more unstable, residual vertical velocities due to passing 
perturbations develop up to a fraction 0.01-0.02 of the 
belt velocities. The reason these values are not closer to 
zero on average will be better understood from the anal-
ysis of flow fluctuations. 
For Ha = 5, 8.05 and all Reynolds numbers, the mean 
streamwise velocity is in every point smaller than for 
Ha = 0, leading to a significant reduction of the total 
flowrate. Unlike for Ha = 0, the profiles at Re = 993.6 
and Re = 1987.6 nearly coincide. This may be attributed 
to the balance between the Lorentz force and viscous fric-
tion playing a dominant role in the boundary layer near 

the moving wall in both cases. Indeed the thickness of 
the shear region is consistent with the theoretical thick-
ness of the Hartmann boundary layer (indicated with red 
dashed lines on the graph). In the bulk, the velocity for 
Ha = 8.05 is down to around half its value at Ha = 0, 
and slightly lower at Re = 993.6 than Re = 1987.6, as 
inertial effects are weaker at lower Re against the Lorentz 
force (N = 0.0326 vs. N = 0.0652). Since the effect of 
the field is significant, the reason both profiles differ so 
little for both values of Reynolds, is that with an im-
posed velocity at the tape, a boundary layer thickness 
imposed by the value of Ha, and only residual veloc-
ity in the bulk, the profile is strongly constrained. As 
such, it takes dominating inertia to break this constraint 
and take the flow outside the MHD regime. By contrast, 
for Ha = 5 profiles at Re = 1068 and 2135 differ sig-
nificantly, with barely noticeable effects of the magnetic 
field at Re = 2135, for which N = 0.0117. This suggests 
that the Lorentz significantly influences the mean veloc-
ity profiles for N ' 0.02 but doesn’t below this value. 
The effect of the magnetic field on the average vertical 
spanwise velocity is less obvious, partly because of the ex-
perimental difficulties in resolving their very low values, 
but also partly because of the inherently erratic nature 
of this quantity, that is exclusively associated to large, 
rare perturbations. Nevertheless, the residual value be-
ing closer to 0 for Ha > 0 than Ha = 0, provides an early 
indication that the z− velocity component is damped by 
the magnetic field. 
With or without magnetic field, relative streamwise ve-
locity fluctuations (Fig.7) remain mostly in a range be-
tween 0.04 and 0.12. The intensity of spanwise fluctua-
tions is lower, around 0.01 indicating a strong anisotropy 
of the underlying flow structures. The profiles of stream-
wise velocity fluctuations exhibit two regions of higher 
intensity, the more prominent of which is located near 
the top (z/h ' 0.8) and the weaker one near the bottom 
(z/h ' 0.2). These regions correspond to the passing of 
isolated structures. Together with the damping of verti-
cal velocity near the walls, these explain the higher in-
tensity of the vertical velocity fluctuations in the middle 
of the layer. 
The effect of the Lorentz force is much more noticeable 
on the z−component of the velocity fluctuations: while 
the difference between streamwise velocity fluctuations 
at Ha = 5 and Ha = 8.05 on the one hand and their 
Ha = 0 counterpart on the other is down to the level of 
statistical convergence of the data, the spanwise veloc-
ity component is clearly damped in all MHD cases, and 
all the more so at the interaction parameter N is high. 
The effect is even still slightly noticeable at N = 0.0117. 
Indeed, even for this value, if the ratio of the Lorentz 
force to inertia was evaluated using the length and veloc-
ity scales of fluctuations (respectively the width the the 
region of higher transverse fluctuations ' 0.8h and the 
fluctuation velocity ' 0.1U0), the corresponding param-
eter N 0 would lie in the region of N 0 ' 0.1, as opposed to 
N ' 0.01. As such perturbations are significantly more 

http:0.01-0.02
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FIG. 6: Vertical profile of mean streamwise (left) and spanwise (right) velocities for several values of Ha = 0 and Ha = 5 
(top) and Ha = 0 and Ha = 8.05 (bottom), with no perturbation grid at the inlet. The red dashed line shows the location of 
the Hartmann layers, while the green solid lines indicate the limits of reliability of the PIV data. The black line indicates the 
position of the moving wall. Dimensionally, measurements at Ha = 5 (resp. Ha = 8.05) were obtained with h = 32 mm (resp. 
h = 59.6 mm) and B = 4 T at the centre of the magnet bore. 

sensitive to the Lorentz force than the mean flow. It 
is also noteworthy that the damping of the field-aligned 
velocity component in the presence of Hartmann walls 
[30] persists in the presence of strong mean shear. By 
contrast, this component does not vanish in periodic or 
unbounded geometries [12, 21, 34]. 

B. Energy fluctuations 

We shall now examine more in detail the issue of sta-
tistical convergence. This issue is particularly apparent 
through the fact that in both MHD and non-MHD cases, 
average z−components of the velocity represent up to 

about 30% of the intensity of the transversal fluctuations, 
when this average is expected to be 0. An element of ex-
planation for it is found through a closer analysis of the 
time-dependence of the total energy of the fluctuations 
in the measurement area, defined as ZZ 

E(t) = u(x, z)02dxdz. (15) 
x,z 

Fig. 8 shows records of E(t) corresponding to the ve-
locity profiles reported in sections V A. Both the MHD 
and the non-MHD flows exhibit rare but extreme peaks 
of E(t) reaching typically 10 times its average value (at 
t = 48.52 (Ha = 0, Re = 1000), t = 141.6 (Ha = 8.05, 
Re = 1000), t = 57.53, 152.9, 157.2 (Ha = 0, Re = 2000) 
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FIG. 7: Vertical profile of the rms of streamwise (top) and spanwise (bottom) velocity fluctuations for Ha = 0 and Ha = 5 
(top) and Ha = 0 and Ha = 8.05 (bottom), with no perturbation grid at the inlet. Dimensionally, measurements at Ha = 5 
(resp. Ha = 8.05) were obtained with h = 32 mm (resp. h = 59.6 mm) and B = 4 T at the centre of the magnet bore. The 
red dashed line shows the location of the Hartmann layers, while the green solid lines indicate the limits of reliability of the 
PIV data. 

and t = 35.22, 68.8, 174.7 (Ha = 8.05, Re = 20000). A 
closer inspection of the flow field during these peaks in-
dicates that they are incurred by the passage of localised 
perturbations of much greater intensity than the back-
ground fluctuations (visible on the snapshots represent-
ing the contours of local energy u02(x, z) on figures 9 & 10 
(left)). The full recordings used to calculate the profiles 
of mean velocity and the rms of its fluctuation, typi-
cally exhibit 2 or 3 of these events, when a large number 
of them would be required to achieve statistical conver-
gence. This would imply extremely long time series (of 
the order of 10 hours). 
Perturbations associated to extreme events also explain 
the two-maximum structure of the streamwise perturba-

tion profile, as movies and snapshots in Fig. 9 & 10 show 
that the most intense perturbations navigate in the re-
gion where the plug flow in the bulk meets the high-shear 
region near the moving wall. These perturbations are 
strongly anisotropic, typically elongated in a 1:10 ratio in 
the streamwise direction. Their upstream region comes 
very close to the moving wall, although the blind PIV 
region there hides how close exactly. The upstream part 
of the perturbation dips into the bulk of the flow, giv-
ing the perturbations a wormy shape sitting at an acute 
angle with the streamwise direction. The maximum in 
streamwise velocity fluctuations near z/h ' 0.2 occurs 
because of similar but less intense perturbations located 
there. 
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FIG. 8: Time evolution of the total energy of velocity fluctua-
tions for Re = 1000 and Re = 2000 for Ha = 0 and Ha = 8.05 
in the vertical plane. Besides the lower base level of fluctu-
ation at Ha = 8.05 compared to Ha = 0, rare but intense 
fluctuations persist that carry most of the energy. Note that 
sharp isolated peaks are faulty images, that are filtered out 
for the processing of statistical quantities and spectra. Ex-
treme events translate into peaks in the vertical plane. The 
red arrows indicate the time of the snaphots shown on figures 
9 and 10. 

The time evolution of E(t) shows that its base value is 
reduced in the presence of magnetic field, for cases at 
the same value of Re. Movies indeed show that back-
ground fluctuations are damped across the entire layer. 
This is further quantified by calculating the time av-
erage of the energy of the fluctuations, excluding rare 
fluctuations whose energy exceeds the average calculated 
over all times by more than 100%: at Re = 993.6 (resp. 
Re = 1987), this quantity drops from 33.85 (resp. 24.92) 
for Ha = 0 to 19.62 ( (resp. 19.03 )for Ha = 8.05. At 
this stage, it is however difficult to infer the impact of 
the magnetic field on the frequency and the intensity of 
the rare, extreme events that skew the average over all 
times. 
Nevetherless, a better insight on the effect of the Lorentz 
force can be inferred from the spectral distribution of en-
ergy amongst streamwise wavenumbers kx, since x is the 
only invariant direction in the vertical plane. Also, since 
the analysis of velocity fields highlighted the importance 
of the region near the moving wall, we calculate spectra 

along a line located at as close as possible to the moving 
wall, whilst still within the region of reliable PIV data, 
which is approximately 3 mm away from the wall. The 
corresponding non-dimensional coordinate zs/h therefore 
depends on the channel height (zs/h = 0.873, and 0.942 
for h =32 mm and 59.6 mm respectively). Time averaged 
spectra hE(zs, kx, t)it are reported on Fig. 11 for Ha =0, 
5 and 8.05, for all values of Re previously considered. 
Spectra in all cases present a similar topology with a 
fairly constant slope of the order of k−2 with a slight x 
bump between kxh = 2 and kxh = 3. Towards the high-
end of the spectrum, the slope reduces. This is a known 
artefact of PIV measurements [27]. 
The Lorentz force affects the spectra in two ways: al-
though the general shape of the spectra is not signifi-
cantly changed, the MHD spectra appear consistently a 
little steeper than their non-MHD counterpart. Further-
more, the energy is lower at all scales of the fluctuations, 
with the exception of the very largest scale, which does 
not seem to follow a clear pattern when either Ha and 
Re are varied. Since the largest scales (of the stream-
wise size of the domain) cannot be resolved, this is not 
an indication that larger scales (respectively kxh =0.34, 
0.37, 0.63 for h = 32 mm, 35.5 mm and 59.6 mm) are 
not affected by the magnetic field. Furthermore, since 
hE(zs, kx, t)it decreases monotonically with kx, this im-
plies that the main contribution to energy fluctuations 
would need a domain of larger streamwise extension to 
be resolved. In a way, this is the spatial-spectral coun-
terpart of the temporal limitation observed on the sta-
tistical convergence of the rms of velocity fluctuations. 
Furthermore the structures undergo significant distortion 
through vortex-wall and vortex-vortex interaction dur-
ing their transit through the visualisation windows. This 
makes it very difficult to overcome the limitation on win-
dow size with approaches based on Taylor’s hypothesis. 
The analysis of the spectra lifts part of the uncertainty 
raised during the analysis of the velocity profiles in that 
they confirm a damping of velocity fluctuations at all 
scales by the magnetic field, that is, at first sight, com-
mensurate with the interaction parameter N . 

C. Pressure field 

Fig. 12 shows the vertical profiles of time-averaged 
pressure and time-rms of its fluctuations for cases at 
h = 0.06 m. In all cases, the average pressure is of the 
order of 10 times lower than the fluctuations (bearing in 
mind that the reference pressure at the inlet and outlet 
is 0), as expected for a flow without a driving pressure 
gradient. As such, the average value of the pressure is 
more an indication of the lack of statistical convergence 
due to the passage of large, rare perturbations. Further-
more, the pressure fluctuations are more important near 
the moving wall. This effect is also clearly visible on 
the snapshots of pressure fluctuations on figures 9 & 10 
(right): perturbations of local energy navigating in the 
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FIG. 9: Contours of local energy of the fluctuations (left) and pressure fluctuations (right) for Re = 993.6, for Ha = 0 and 
Ha = 8.05 in the vertical plane. The flow is directed from left to right. The energy tends to be concentrated in localised 
perturbations of higher intensity, leading to extreme energy peaks during ”rare events”. 

region z/h ' 0.8 incur regions of excess pressure and 
deficit pressure around them. As a consequence, the max-
imum intensity of the pressure fluctuations tends to be 
located near the upper wall. This also explains why the 
average pressure has a higher absolute value in this re-
gion, as regions of excess or deficit pressure accumulate 
there over time but would require a large number of the 
large passing perturbations to cancel out on average. A 
second type of pressure perturbation occurs at the centre 
of high vorticity perturbations, this time under the form 
of a depression (visible in the example at Ha = 8.05, 
Re = 1987). These tend to be localised in the region 
z ' 0.8, and to a much lower extend z ' 0.2. 
This phenomenology operates in the same way with and 
without magnetic field. As such the effect of the Lorentz 
force on the pressure field is indirect, through its action 
on the occurrence and intensity of the perturbations. 

VI. CONCLUSION 

This work produced several outcomes. First, we have 
reproduced a finite, plane MHD-Couette flow in a trans-
parent and electrically conducting electrolyte. The de-
vice that achieved it operates in parameter range deter-

mined by the strength of the magnet used and the mo-
tor driving the belt that acts as the single moving wall. 
With the equipment at hand, Hartmann and Reynolds 
numbers respectively up to approximately 10 and 12000 
can be reached. This makes it possible to investigate 
flow spanning regimes from laminar to turbulent. For 
the sake of characterising the effect of the field in flows 
of intermediate complexity, we have focused on selected 
parameters in a transitional regime. 
The main advantage of this setup is to provide access to 
2D velocity and pressure fields in planes containing the 
streamwise direction and one spanwise direction. This 
was made possible by using electrolytes in high magnetic 
fields, but at the cost of several limitations: the low con-
ductivity of the electrolyte (sulphuric acid) leaves the sort 
of high Hartmann numbers accessible in liquid metal ex-
periments (such as 4 × 104 in [5]) out of reach. The prob-
lem is exacerbated by the large size of the experiment 
that precludes fitting it in the bore of high field solenoidal 
magnets. Instead, pervading the entire domain with the 
magnetic field led us to place the rig in the weaker and 
less homogeneous stray field. Despite these limitations, 
we were able to implement the pressure PIV technique for 
the first time in a magnetohydrodynamic flow and mea-
sure the fluctuations of pressure induced by perturbations 
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FIG. 10: Contours of local energy of the fluctuations (left) and pressure fluctuations (right) for Re = 1987 (bottom), for Ha = 0 
and Ha = 8.05 in the vertical plane. The flow is directed from left to right. The energy tends to be concentrated in localised 
perturbations of higher intensity, leading to extreme energy peaks during ”rare events”. 

conveyed by the mean flow in the transitional regime of 
the MHD Couette flow. There is no doubt that future 
technological developments will help significantly miti-
gate the limitations we mentioned (for example guiding 
flux lines with appropriate polar pieces, could increase 
the effective field in the fluid approximately 3 fold, and 
even further with a split-pair magnet). 
The analysis of the flow itself revealed that the Lorentz 
force creates a zone of strong shear in the vicinity of the 
moving tape of thickness scaling as Ha−1 . In a way, 
this is the first optical visualisation of a Hartmann layer, 
45 years after Shercliff’s elegant experimental evidence 
[36]. The mean flow in the bulk is, by contrast severely 
damped, as soon as the interaction parameter N based 
on the tape velocity exceeds approximately a value as low 
as 0.02. Overall the Lorentz force reduces the flow rate at 
a given Reynolds number. This value should however not 
be understood as a transition point but as a first estimate 
based on observations of the mean flow in the few cases 
presented here. A precise quantification of the effect of 
the Lorentz force would require an extensive parametric 
study. 
In the transitional regime, the flow was shown to be 
dominated by isolated perturbations navigating in two 
symmetric regions with respect to the mid-plane (at 

z/h ' 0.2 and z/h ' 0.8), with significantly more in-
tense near-tape perturbations. This asymmetry in in-
tensity may be attributed to the asymmetric inlet flow 
where the near-tape region undergoes a strong accelera-
tion, which is absent near the bottom wall. These per-
turbations are strongly anisotropic, with significant elon-
gation in the streamwise direction and seem attached to 
the tape. They incur regions of higher pressure impact-
ing the upper moving wall only, as pressure fluctuations 
associated to the region z ' 0.2 were low. Areas of low 
pressure also occur at the centre of perturbations with 
high vorticity in the upper part of the fluid layer but 
these are not as confined to the near-wall region as the 
regions of high pressure. The occurrence of these pertur-
bations is rare at low Re and becomes more frequent at 
higher Reynolds number (a fact that we have been able to 
verify on more measurements than presented here). As 
such, they play a significant role in the flow’s transition 
to turbulence, and deserve a more systematic analysis. 
Their scarcity makes it very difficult to obtain converged 
statistics. Nevertheless, power density spectra do reveal 
that the Lorentz force indeed damped all scales we could 
detect in this setup and in this range of parameters, even 
with interaction parameters as low as N ' 10−2 . In-
deed, both the cases shown here and other preliminary 
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FIG. 11: 1D energy spectra of energy fluctuations at z = zs 

for Ha = 0, 5 and 8.05 and several values of Re with no per-
turbation grid at the inlet. The dashed line indicates kxh = 1 
for which the streamwise size of the perturbation corresponds 
to the height of the channel. 
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[3] K. Aujogue, A. Pothérat, F. Debray, I. Bates, and 
B. Sreenivasan. Little earth experiment: a device to 
model planetary cores. Rev. Sci. Instrum., 87(8):084502, 
2016. 
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