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Abstract— The efficient operation of industrial processes 

requires the timely and accurate diagnosis of faults in process 

equipment, particularly sensors, as acting on faulty 

measurement data can result in inefficient or dangerous 

operation. A common fault mode in industrial pressure 

sensors is mechanical damage resulting in the leakage of the 

internal oil (used to transmit external pressure to the sensing 

element) and the development of an air pocket within the 

device. In previous work, we have experimentally determined 

the faulty measurement characteristics of a commercial 

pressure sensor, where the sensor manufacturer has provided 

modified sensors with calibrated degrees of oil loss. The 

current paper develops a mathematical model of this tenso-

resistive pressure sensor, which describes and explains the 

impact that oil loss, and hence the presence of an air pocket, 

has on the static measurement response.  

 

Keyword 

I. INTRODUCTION 

Pressure is a key parameter when investigating the 

thermodynamics properties of physical phenomenon. 

Accordingly, pressure measurement is essential in many 

applications where pressure itself play an important role 

[1]. Pressure transmitters (pressure sensors) are widely 

used in a range of industrial processes including 

automotive, industrial, aerospace, biomedical etc. [2–4]. 

Manometers, diaphragms and bourdon tubes were the first 

class of measuring pressure instruments, and were based on 

converting the magnitude of the applied pressure to a 

mechanical deflection of an indicator [5]. Technological 

progress led to the appearance of new pressure 

measurement devices in which the externally applied 

pressure (input pressure) is directly converted into an 

electrical output signal; these transmitters types are called 

mechanical-electrical transducers [5,6]. It should be noted 

that in the present paper the terms, "sensor", "transmitter" 

and "transducer" are used interchangeably, given the 

integrated nature of industrial pressure products.  

Today, many different types of pressure sensors are 

utilized, including tenso or piezo-resistive (also called 

strain gauge) [3–7], piezoelectric [8,9], capacitive [3,4], 

resonant [10,11] and optical fiber [12,13]. Each pressure 

sensor type is based on a physical property such as 

resistance, capacitance, electrical charge, etc. with its 

characteristic advantages and limitations.  

Piezoelectric pressure sensors are utilized for measuring 

highly dynamic pressure. The working principle is based 

on the piezoelectric effect, i.e. the property of materials that 

produce electrical charge when subjected to mechanical 

stress, and conversely, voltage applied to these materials 

leads to stress and consequently deflection in shape. 

Commonly used materials for piezoelectric pressure 

transmitters are PZT, BiFeO3, and ZnO  [14,15].  

Capacitive pressure transmitters detect capacitance change 

caused by relative movement between the parallel plates of 

a capacitor due to applied pressure. Increasing pressure 

reduces the distance between the parallel plates, and the 

resulting capacitance change is a function of the sensor 

design parameters. In optical pressure sensors, an optical 

fiber and the pressure diaphragm are connected via 

capillary tubing. Light from a section of the fiber is 

reflected by a small interferometer. A movable film made 

of silica glass, SiO2, or graphene is deformed by the 

applied pressure [16–20].  

In resonant pressure sensors, pressure applied to the 

sensing element adjusts the oscillation frequency of a 

resonator.  Typically, a resonant beam is suspended on a 

pressure-sensitive silicon diaphragm. The resonator is 

excited via a magnetic or electric field and the resonant 
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frequency is detected using an inductive voltage. The 

pressure-sensitive diaphragm is deformed by the applied 

pressure, which causes tensile and compressive stress to act 

on the resonator [10,11].  

Of the various types of pressure sensors, tenso-resistive 

devices have several attractive properties such as high 

sensitivity, a simple physical model and fabrication, high 

accuracy, low cost, a strong output signal and low drift; 

these properties make them a good choice in many 

industrial measurement applications [6]. Piezoresistive 

pressure transmitters fall into several subcategories based 

on the material utilized for piezo-resistors [21,22], the 

material used for the plates (diaphragms) [22–24], the 

wafer type [25], the method of micromachining the 

diaphragms [23], as well as the type of pressure measured 

by the transmitter (e.g. absolute or gauge). The working 

principle of piezoresistive transmitters is that variation in 

the applied pressure causes a corresponding change in 

electrical resistance. Electrical resistance is also utilized in 

many other measurement devices such as inertial sensors, 

accelerometers, strain gauges and cantilever force sensors 

[26]. Piezoresistive pressure sensors typically include a 

flexible diaphragm or plate, which is deflected by a 

mechanical loading (pressure) applied on it.  In the design 

considered here, pressure applied to a relatively soft 

external diaphragm (called the membrane) is transferred to 

another stiffer plate (the sensing plate) via an 

incompressible fluid. The incompressible fluid between the 

membrane and sensing plate (known as interface fluid) is 

usually a silicone oil. The stiffer plate supports several 

strain gauges which measure plate deflection, generating a 

proportional electrical signal. Figure (1a) illustrates a two-

plate piezoresistive transmitter. A restriction may be 

applied on the maximum deflection of the membrane to 

prevent its plastic deformation, resulting in a limit on the 

maximum measurable pressure for the device. Any 

compressibility of the interface fluid leads to measurement 

error since energy is consumed in compressing the fluid, so 

that the external pressure is not entirely transferred to the 

sensing plate.   

The present study provides an overview of the main failure 

modes for piezo-electric pressure sensors. These include 

temperature effects, loss of the interface fluid, initial 

deflection of the diaphragms, corrosion, and sudden 

pressure loss caused by the condensing of gas (often wet 

air) trapped in the interface volume. For each failure type, 

mathematical modelling of the static and dynamic 

behaviour is proposed. However, the main investigation 

here is concerned with oil loss. To analyse this problem 

mathematically, transverse motion equations are derived 

for the membrane and the sensing plate. Should air become 

trapped in the interface, the governing equations become 

nonlinear due to compressibility of the air. The system of 

linear and nonlinear governing equations is solved using 

the SSL Method [27] combined with weighted residual 

methods based on the Galerkin approach [28,29]. It should 

be noted that the air is assumed to be an ideal gas that obeys 

the gas state law equation. 

2 MODEL DESCRIPTION 

As noted in the previous section, mechanically the 

piezoelectric type pressure transmitters consists of three 

main regions: the membrane (upper diaphragm), the 

middle volume, which is filled with the incompressible 

fluid, and the sensing plate (lower, stiffer diaphragm), 

including the strain gauges which generate the output 

signal. Figure (1-a) shows the schematic of the pressure 

sensor for the case where air is trapped in the interface 

volume due to fluid loss, which may arise due to 

mechanical damage during industrial operation. 

 

 
(a) 

 
(b) 

Fig 1: A schematic view of the cross-section of the tenso-resistive 

pressure transmitter. 

II. MATHEMATICAL MODELLING OF FALUIRE MODES 

A. Temperature Effects 

When a mechanical element such as a beam, membrane, 

plate bar etc. experiences temperature change, thermal 

stresses are produced. These stresses may lead to 

phenomenon such as buckling [30,31] or wrinkling of the 

plate and membrane. The two-plate piezoresistive pressure 

transmitters are especially vulnerable to this effect because 

their membranes are usually thin. A related fault mode is 

where the temperature is high but steady: here the pressure 

sensor may be stable below a specific pressure, however 

higher applied pressure may result in membrane instability 



(for example by inducing higher modes of transverse 

motion).  

Based on the geometry of the piezoresistive pressure sensor 

(Figure (1b)), the governing dynamic equations can be 

written as follows [1,32,33]:  
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(2) 

where 𝑤 and 𝜓 are the transverse deflections of the 

membrane and the plate. 𝐸𝑚 and 𝜐𝑚 are the elasticity 

module and the Poisson's ratio of the membrane, 

respectively (subscript “p” indicates the sensing plate). ℎ𝑚 

is the thickness of the membrane. �̂�𝑖𝑛, 𝑷𝑂𝑖𝑙  and �̅�𝑂𝑖𝑙 are the 

external pressure applied to the membrane, the pressure 

distribution inside the interface volume on the membrane, 

and the pressure distribution on the sensing plate. 휀𝐻𝑇, 𝐷𝑚 

and ∇2 are the thermal strain inside the membrane, the 

flexural rigidity of the membrane and the Laplacian 

operator, respectively, which can be written as follows: 

휀𝐻𝑇 = 𝛼𝑇ΔT   ,    𝐷𝑚 =
1

12
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2 )
  ,
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𝜕
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+
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𝑟2
𝜕

𝜕𝜃
 

 

(3) 

where 𝛼𝑇, is the thermal conductivity coefficient of the 

membrane and Δ𝑇 is the temperature difference between 

the membrane and the external environment. It should be 

noted that the first and second terms inside the parenthesis 

of Equation (1) are the mid-plane stretching and the 

thermal force. Equation (1) can be solved in combination 

with the conduction heat transfer equation, but since the 

membrane is thin it can be assumed that the temperature 

gradient is negligible, so that temperature is only a function 

of time. Also, in a dynamic analysis, the pressure inside the 

interface fluid is not uniform so that the Navier-Stokes 

equation should be solved for the fluid domain (for brevity 

this is not included). In a static analysis, all time dependent 

terms are removed from equations (1) - (3). The initial and 

boundary conditions for equation (1) can be summarized as 

follows:  

𝐵𝐶:  𝑤(𝑅𝑚, 𝑡) =
𝜕𝑤

𝜕𝑟
|
𝑟=𝑅𝑚

= 0  ,

𝜓(𝑅𝑝, 𝑡) =
𝜕𝜓

𝜕𝜉
|
𝑟=𝑅𝑝

= 0 𝑎𝑛𝑑 finite values for 𝑤(0, 𝑡) 𝑎𝑛𝑑 𝜓(0, 𝑡)   

𝐼𝐶:  𝑤(𝑟, 0) =
𝜕𝑤

𝜕𝑡
|
𝑡=0

= 0  ,   𝜓(𝜉, 0) =
𝜕𝜓

𝜕𝑡
|
𝑡=0

= 0   

 

(4) 

To solve these equations, numerical methods such as the 

Galerkin weighted residual method combined with FEM 

method can be applied. It is clear, however, that the 

solution of the governing equations is not easy and will be 

investigated in future research. 

B. Corrosion  

Corrosion is another failure mode which may degrade the 

performance of the piezoresistive type pressure sensors. 

This phenomenon gradually destroys the materials (often 

metals) of the pressure sensor. Corrosion may arise from 

two main causes: the external fluid may create bubbles on 

the surface of the membrane, and air bubbles may arise 

within the interface fluid (fluid loss fault). Mathematical 

modelling of this fault is beyond the scope of this paper. 

However, the mathematical-chemical study of corrosion 

may lead to its prevention and/or techniques for improving 

the sensor’s performance in environments where corrosion 

is unavoidable.    

 C. Missing Oil  

Oil insufficiency or loss (i.e. a shortage of liquid to fill the 

interface volume) may arise during the fabrication process 

or as a result of sensor damage. In an ideal case, the 

interface volume between the two plates is entirely filled 

with an incompressible fluid. Missing oil may lead to two 

possible scenarios: one where air is trapped in the interface 

volume, and the other where there is a deflection offset 

caused by a vacuum. In the first scenario, when the 

chamber is filled with the interface fluid, bubbles may be 

created, filling a proportion of the middle volume. The 

focus of the present paper is to analyse the consequences 

of trapped air in the middle volume. The mathematical 

modelling is given in the next section. In the second 

scenario, air is excluded and instead a vacuum is created. 

To achieve equilibrium, the soft membrane is deflected, 

even without any applied pressure. The analysis of this 

initial deflection is very similar to the previously proposed 

models: the governing equations of a twisted circular 

membrane, coupled with the equations governing the 

sensing plate, need to be solved. The resulting behaviour of 

the sensor is similar to the fault free condition, but the 

constraint on maximum deflection results in a reduced 

pressure measurement range; this can be calculated from a 

static and dynamic analysis. The only difference concerns 

the initial conditions, which can be written as follows (from 

equations (1) and (2), with or without temperature-related 

terms):     



   𝐼𝐶:  𝑤(𝑟, 0) = 𝑤𝑖𝑛𝑖(𝑟)  ,   𝜓(𝜉, 0) = 𝜓𝑖𝑛𝑖(𝜉) (5) 

where 𝑤𝑖𝑛𝑖(𝑟) and 𝜓𝑖𝑛𝑖 , are the functions describing the 

initial deflection of the membrane and sensing plate.  

D. Sudden pressure discharge  

In the situation where air bubbles or a thin air layer are 

present in the interface volume, another potential failure is 

where high external pressure is applied, resulting in 

condensation from moist air and a corresponding reduction 

in volume.    

E. Mathematical modelling of oil loss 

Here we propose a mathematical model for the oil loss 

failure. From figure (1b), the governing dynamic equations 

are as follows: 
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0
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0
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(7) 

�̂�𝒈𝒂𝒔(𝑡)𝑉𝑔𝑎𝑠(𝑡) = 𝑛�̅�𝑇𝑔𝑎𝑠  (8) 

where �̂�𝒈𝒂𝒔 and �̅�𝑶𝒊𝒍 are the gas pressure and oil pressure 

exerted on the membrane and sensing plate, respectively. 

𝑉𝑔𝑎𝑠 is the instantaneous volume of the gas. 𝑛 is the number 

of moles of gas. �̅� is the universal gas constant. 𝑇𝑔𝑎𝑠 is the 

gas temperature. It is assumed that any pressure change in 

gradual. From a static perspective, by substituting the gas 

pressure from equation (8) into equations (6) and (7) and 

then inserting the gas volume, the equations are simplified 

as follows:  
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(10) 

where 𝑉0, is the volume of the trapped gas inside the 

interface volume.  

III. NUMERICAL SOLUTION  

It is clear from the governing equations (9) and (10) that 

the physics of the problem is inherently nonlinear. The 

nonlinearity is caused by the compressibility of the trapped 

gas as well as the mid-plane stretching that may increase 

with high deflections of the membrane and plate. The mid-

plane stretching is included in the analysis, even though it 

only has a small effect on the motions of both the sensing 

plate and membrane over the operational range of pressure 

sensor.  

To overcome the difficulties of the nonlinear equations, 

conventional linearization is applied. The linearization 

method is based on Taylor's expansion where the nonlinear 

terms are linearized about a known point (e.g. initial 

conditions) of the governing equations. This approach 

delivers high accuracy for ‘small’ nonlinearities, where the 

definition of ‘small’ depends on the physics of the problem. 

To extend its range of application, step-by-step 

linearization (the SSL method) is applied, where the 

nonlinear terms in each step are linearized about the 

previous step. This approach has proved to be very 

effective, especially in the static and quasi static 

electrostatic problem [27,29,34]. To simplify the form of 

equations (9) and (10) we define: 

𝑁𝑇 =
𝑛�̅�𝑇𝑔𝑎𝑠

𝜋𝑅𝑚
2 𝑔𝑎𝑖𝑟 − 2𝜋 (∫ 𝑤(𝑟)𝑟𝑑𝑟 − ∫ 𝜓(𝜉)𝜉𝑑𝜉

𝑅𝑝

0

𝑅𝑚

0
)
,

𝑇 = ∇2,       𝐿 = ∇4 

(11) 

Note that the operators 𝐿  and 𝑇 are linear. Assuming that 

the state of the system is known at step 𝑘 for applied 

pressure �̅�𝑖𝑛
𝑘 , the change at step 𝑘 + 1 can be approximated 

using the following linear relations: 

𝑤𝑘+1 = 𝑤𝑘 + 𝛿𝑤 = 𝑤𝑘 + 𝜙(𝑟)  ,   𝜓𝑘+1 = 𝜓𝑘 + 𝛿𝜓

= 𝜓𝑘 + 𝛾(𝜉) 
(12) 

where the pressure is increased by one step: 

�̂�𝑖𝑛
𝑘+1 = �̂�𝑖𝑛

𝑘 + ∆�̂�𝑖𝑛 (13) 

From definition (11) and the linearized functions for 

transverse motion and pressure step (equations (12) and 

(13)), the set of differential equations (9) and (10) at step 

𝑘 + 1 taken following forms: 

{
𝐷𝑚𝐿(𝑤

𝑘+1) − 𝑁𝑎𝑚
𝑘+1𝑇(𝑤𝑘+1) = −𝑁𝑇𝑘+1 + �̂�𝑖𝑛

𝑘+1

𝐷𝑝𝐿(𝜓
𝑘+1) − 𝑁𝑎𝑝

𝑘+1𝑇(𝜓𝑘+1) = −𝑁𝑇𝑘+1 + �̂�𝑎𝑡𝑚
 

(14) 

 

where the axial stretching forces are given by following 

functions: 
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(16) 

In order to linearize the nonlinear term of the left-hand side 

of the set of equations (𝑁𝑇𝑘+1), using Taylor's series, 

equation (14) about step 𝑘 can be rewritten as: 



𝑁𝑇𝑘+1 =
𝑛�̅�𝑇𝑔𝑎𝑠

𝑉0 − (Δ𝑉𝑚
𝑘 − Δ𝑉𝑝

𝑘)
+
𝑛�̅�𝑇𝑔𝑎𝑠(Δ𝑉𝑚

𝑘+1 − Δ𝑉𝑚
𝑘)
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𝑘 − Δ𝑉𝑝

𝑘))
2

−
𝑛�̅�𝑇𝑔𝑎𝑠(Δ𝑉𝑝

𝑘+1 − Δ𝑉𝑝
𝑘)

(𝑉0 − (Δ𝑉𝑚
𝑘 − Δ𝑉𝑝

𝑘))
2 +⋯ 

𝑁𝑇𝑘+1 ≅ 𝑁𝑇𝑘 +
𝑛�̅�𝑇𝑔𝑎𝑠𝛿(Δ𝑉𝑚)

(𝑉0 − (Δ𝑉𝑚
𝑘 − Δ𝑉𝑝

𝑘))
2

−
𝑛�̅�𝑇𝑔𝑎𝑠𝛿(Δ𝑉𝑝)

(𝑉0 − (Δ𝑉𝑚
𝑘 − Δ𝑉𝑝

𝑘))
2 

 

(17) 

 

 

 

 

(18) 

where Δ𝑉𝑚
𝑘+1 and Δ𝑉𝑝

𝑘+1 are variations of the interface 

volume associated with the deflection of the membrane and 

sensing plate at step 𝑘 + 1. Also, 𝛿(∆𝑉𝑚) and 𝛿(∆𝑉𝑝), can 

be determined using the theory of calculus of variations as 

follows: 

𝛿(Δ𝑉𝑚) = 2𝜋∫ 𝛿𝑤𝑟𝑑𝑟

𝑅𝑚

0

= 2𝜋∫ 𝜙(𝑟)𝑟𝑑𝑟

𝑅𝑚

0

 

𝛿(Δ𝑉𝑝) = 2𝜋∫ 𝛿𝜓𝜉𝑑𝜉

𝑅𝑝

0

= 2𝜋∫ 𝛾(𝜉)𝜉𝑑𝜉

𝑅𝑝

0

 

 

(19) 

(20) 

The nonlinear stretching term can be linearized by applying 

Taylor's expansion about the previous step (step 𝑘), 

yielding: 

𝑁𝑎𝑚
𝑘+1𝑇(𝑤𝑘+1)=𝑁𝑎𝑚

𝑘 𝑇(𝑤𝑘) + 𝑁𝑎𝑚
𝑘 𝑇(𝜙(𝑟)) +

𝛿𝑁𝑎𝑚𝑇(𝑤
𝑘)+𝛿𝑁𝑎𝑚𝑇(𝜙(𝑟))   

(21) 

 

𝑁𝑎𝑝
𝑘+1𝑇(𝜓𝑘+1)=𝑁𝑎𝑝

𝑘 𝑇(𝜓𝑘) + 𝑁𝑎𝑝
𝑘 𝑇(𝛾(𝜉)) +

𝛿𝑁𝑎𝑝𝑇(𝜓
𝑘)+𝛿𝑁𝑎𝑝𝑇(𝛾(𝜉)) 

(22) 

where the variations of the axial force (𝛿𝑁) for small 

increasing step of pressure (∆�̂�𝑖𝑛) can be neglected, so that 

the left-hand sides are also linearized. By applying the 

theory of calculus of variations, changes in the axial 

stretching forces are obtained as follows: 

𝛿𝑁𝑎𝑚 =
𝐸𝑚ℎ𝑚
1 − 𝜐𝑚

2
∫ (

𝜕𝑤

𝜕𝑟
)|
𝑤=𝑤𝑘

(
𝜕𝜙

𝜕𝑟
)𝑑𝑟

𝑅𝑚

0

 

𝛿𝑁𝑎𝑝 =
𝐸𝑝ℎ𝑝
1 − 𝜐𝑝

2
∫ (

𝜕𝜓

𝜕𝑟
)|
𝜓=𝜓𝑘

(
𝜕𝛾

𝜕𝜉
) 𝑑𝜉

𝑅𝑝

0

 

(23) 

 

(24) 

Substituting equations (22) to (26) into the system of 

equations (14) leads to the following form: 

𝐷𝑚𝐿(𝜙(𝑟)) − (𝑁𝑎𝑚
𝑘 𝑇(𝜙(𝑟)) + 𝛿𝑁𝑎𝑚𝑇(𝑤

𝑘))

= −2𝜋𝐻𝑘∫ 𝜙(𝑟)𝑟𝑑𝑟

𝑅𝑚

0

+ 2𝜋𝐻𝑘∫ 𝛾(𝜉)𝜉𝑑𝜉

𝑅𝑝

0

+ 𝑑�̂�𝑖𝑛 

 

(25) 

 

 

𝐷𝑝𝐿(𝛾(𝜉)) − (𝑁𝑎𝑝
𝑘 𝑇 (𝛾(𝜉) + 𝛿𝑁𝑎𝑝𝑇(𝜓

𝑘))

= 2𝜋𝐻𝑘∫ 𝜙(𝑟)𝑟𝑑𝑟

𝑅𝑚

0

− 2𝜋𝐻𝑘∫ 𝛾(𝜉)𝜉𝑑𝜉

𝑅𝑝

0

 

 

(26) 

where 𝐻𝑘 is defined as: 

𝐻𝑘 =
𝑛�̅�𝑇𝑔𝑎𝑠

(𝑉0 − (Δ𝑉𝑚
𝑘 − Δ𝑉𝑝

𝑘))
2 

(27) 

Solving equations (27) and (28) is a boundary value 

problem. Several techniques, such as Galerkin’s weighted 

residual method, finite difference analysis (FEA) etc. can 

be utilized to solve this problem. In the present paper 

Galerkin' based weighted residual method is employed for 

solving the set of boundary value equations. Initially, finite 

function spaces are selected as follows: 

𝜙(𝑟) =∑𝑎𝑚𝑖𝜇𝑖(𝑟)   ,    𝛾(𝜉) =∑𝑎𝑝𝑗Ω𝑗(𝜉)

𝑀

𝑗=1

𝑁

𝑖=1

 
(28) 

where 𝜇𝑖(𝑟) and Ω𝑗(𝜉), are basis functions (or equivalently 

mode shapes) of the membrane and sensing plate, 

respectively. Substituting equation (28) into equations (25) 

and (26), a reduced order model is obtained: 

∑𝐷𝑚𝐿(𝑎𝑚𝑖𝜇𝑖(𝑟)) − 𝑁𝑎𝑚
𝑘

𝑁

𝑖=1

∑𝑇(𝑎𝑚𝑖𝜇𝑖(𝑟))

𝑁

𝑖=1

−
𝐸𝑚ℎ𝑚
1 − 𝜐𝑚

2
𝑇(𝑤𝑘)∑𝑎𝑚𝑖

𝑁

𝑖=1

∫ (
𝜕𝑤

𝜕𝑟
)|
𝑤=𝑤𝑘

(
𝜕𝜇

𝜕𝑟
) 𝑑𝑟

𝑅𝑚

0

= −∑ 2𝜋𝐻𝑘∫ 𝑎𝑚𝑖𝜇𝑖(𝑟)𝑟𝑑𝑟

𝑅𝑚

0

𝑁

𝑖=1

+∑2𝜋𝐻𝑘∫ 𝑎𝑝𝑗Ω𝑗(𝜉)𝜉𝑑𝜉

𝑅𝑝

0

+

𝑀

𝑗=1

∆�̂�𝑖𝑛 + 𝐸1 

∑𝐷𝑝𝐿(𝑎𝑝𝑗Ω𝑗(𝜉)) − 𝑁𝑎𝑝
𝑘

𝑀

𝑗=1

∑𝑇(𝑎𝑝𝑗Ω𝑗(𝜉))

𝑀

𝑗=1

−
𝐸𝑝ℎ𝑝
1 − 𝜐𝑝

2
𝑇(𝜓𝑘)∑𝑎𝑝𝑗

𝑀

𝑗=1

∫ (
𝜕𝜓

𝜕𝜉
)|
𝑤=𝑤𝑘

(
𝜕Ω

𝜕𝜉
)𝑑𝜉

𝑅𝑝

0

= −∑ 2𝜋𝐻𝑘∫ 𝑎𝑚𝑖𝜇𝑖(𝑟)𝑟𝑑𝑟

𝑅𝑚

0

𝑁

𝑖=1

+∑2𝜋𝐻𝑘∫ 𝑎𝑝𝑗Ω𝑗(𝜉)𝜉𝑑𝜉

𝑅𝑝

0

𝑀

𝑗=1

+ 𝐸2 

 

 

 

(29) 

 

 

 

 

 

(30) 

where 𝐸1 and 𝐸2 are residuals or errors related to the 

approximation by the finite space function. Applying the 

Galerkin method, the integral of the weighted residuals 

over the membrane and plate domains (0 − 𝑅𝑚 for Eq. (29) 

and 0 − 𝑅𝑝 for Eq. (30)) are forced to zero. Therefore, we 

have: 



∑∫ 𝐷𝑚𝜇𝑗𝑗(𝑟)𝐿(𝑎𝑚𝑖𝜇𝑖(𝑟))𝑑𝑟

𝑅𝑚

0

𝑁

𝑖=1

−∑∫ 𝑁𝑎𝑚
𝑘 𝜇𝑗𝑗(𝑟)𝑇(𝑎𝑚𝑖𝜇𝑖(𝑟))

𝑅𝑚

0

𝑁

𝑖=1

𝑑𝑟

−∑∫ 𝑎𝑚𝑖 (
𝐸𝑚ℎ𝑚
1 − 𝜐𝑚

2
𝑇(𝑤𝑘)∫ (

𝜕𝑤

𝜕𝑟
)|
𝑤=𝑤𝑘

(
𝜕𝜇

𝜕𝑟
) 𝑑𝑟

𝑅𝑚

0

)

𝑅𝑚

0

𝑁

𝑖=1

𝑑𝑟

= −∑∫ 𝜇𝑗𝑗(𝑟)(2𝜋𝐻
𝑘∫ 𝑎𝑚𝑖𝜇𝑖(𝑟)𝑟𝑑𝑟

𝑅𝑚

0

)𝑑𝑟

𝑅𝑚

0

 

𝑁

𝑖=1

+∑∫ 𝜇𝑗𝑗(𝑟)(2𝜋𝐻
𝑘∫ 𝑎𝑝𝑗Ω𝑗(𝜉)𝜉𝑑𝜉

𝑅𝑝

0

)𝑑𝑟

𝑅𝑚

0

𝑀

𝑗=1

+∫ 𝜇𝑗𝑗(𝑟)∆�̂�𝑖𝑛𝑑𝑟

𝑅𝑚

0

 

 

∑∫ 𝐷𝑝Ω𝑖𝑖(𝜉)𝐿(𝑎𝑝𝑗Ω𝑗(𝜉))

𝑅𝑝

0

𝑑𝜉

𝑀

𝑗=1

−∑∫ 𝑁𝑎𝑝
𝑘 Ω𝑖𝑖(𝜉)

𝑅𝑝

0

𝑇(𝑎𝑝𝑗Ω𝑗(𝜉))𝑑𝜉

𝑀

𝑗=1

−∑∫ Ω𝑖𝑖(𝜉)𝑎𝑝𝑗
𝐸𝑝ℎ𝑝
1 − 𝜐𝑝

2
𝑇(𝜓𝑘)(∫ (

𝜕𝜓

𝜕𝜉
)|
𝑤=𝑤𝑘

(
𝜕Ω

𝜕𝜉
)𝑑𝜉

𝑅𝑝

0

)𝑑𝜉

𝑅𝑝

0

𝑀

𝑗=1

= −∑ ∫ Ω𝑖𝑖(𝜉)(2𝜋𝐻
𝑘∫ 𝑎𝑚𝑖𝜇𝑖(𝑟)𝑟𝑑𝑟

𝑅𝑚

0

)

𝑅𝑝

0

𝑁

𝑖=1

𝑑𝜉

+∑∫ Ω𝑖𝑖(𝜉)(2𝜋𝐻
𝑘∫ 𝑎𝑝𝑗Ω𝑗(𝜉)𝜉𝑑𝜉

𝑅𝑝

0

)

𝑅𝑝

0

𝑀

𝑗=1

𝑑𝜉 

 

 

 

 

(31

) 

 

 

 

 

 

 

 

 

(32

) 

It should be noted that equations (31) and (32) are 

multiplied into 𝜇𝑗𝑗(𝑟) and Ω𝑖𝑖(𝜉), respectively.  

Solving this set of algebraic equations (with (𝑀 + 𝑁) 

unknown variables and (𝑀 + 𝑁) equations) for each step, 

the static changes in deflection for the membrane and 

sensing plate are obtained. 

    

VI. RESULTS AND DISCUSSION  

This section presents the results obtained from modeling 

the piezoresistive-type pressure transmitter shown in figure 

(1). Table (1) provides a summary of the variables and their 

corresponding values used to generate the numerical 

results. Note that other variables mentioned in the 

following text are shown in figure (1b). As stated above, 

the main focus of this paper is on the effects of oil loss on 

the static behavior of the pressure sensor. Accordingly, our 

simulation results examine the effects of trapped gas 

(assumed to be air) on the deflection of the plates (i.e. the 

maximum displacement occurring at 𝑟 = 0 and 𝜉 = 0), the 

maximum measurable pressure (MMP) and the sensor 

sensitivity. 

 

Table 1: Simulation variables and selected values.  

Geometry parameters 

Membrane radius 𝑅𝑚  

Middle hole radius 𝑅ℎ 0.56 𝑚𝑚 
Plate radius 𝑅𝑝  

Thickness of the membrane ℎ𝑚 0.04 𝑚𝑚  
Thickness of the plate ℎ𝑝 0.3 𝑚𝑚 

Height of upper cylinder  ℎ𝑢0 0.1 𝑚𝑚 
Height of the middle cylinder 
(hole between upper and lower 

cylinders) 

ℎℎ 32 𝑚𝑚 

Height of lower cylinder ℎ𝑙0 0.3 𝑚𝑚 
Thickness of air film when no 
pressure is applied 

𝑔𝑎𝑖𝑟  

                                             Material properties 

Young’s modulus of 

membrane 
𝐸𝑚 205 𝐺𝑝𝑎 

Young’s modulus of plate 𝐸𝑝 205 𝐺𝑝𝑎 

Poisson’s ratio of 

membrane 
𝜐𝑚 0.3 

Poisson’s ratio of plate 𝜐𝑝 0.3 

Universal gas constant �̅� 8.314 
𝐽
𝑚𝑜𝑙. 𝐾⁄  

 

Figure (2) illustrates the sensor output (maximum 

deflection of the sensing plate) and the membrane 

displacement as a function of the applied pressure for 

different values of oil loss. The variable % Oil-Loss 

indicates the percentage by volume of oil lost due to the 

leakage fault, so that 0% oil-loss is the fault-free condition. 

The simulation results suggest that, with any gas present, 

the behavior of the membrane is quite nonlinear, while the 

sensor output still behaves linearly. However, increasing 

the amount of air in the interface volume leads to the 

reduction in the linear range of the pressure measured by 

the sensor before output saturation occurs. 

The sensor output remains linear despite the presence of air 

and non-linear behavior of the membrane, because the 

sensing plate is much stiffer than the membrane. As a 

result, the main interaction is between the softer membrane 

and the air volume. With higher air content, the membrane 

displacement becomes increasingly sensitive to applied 

pressure, but once displacement reaches its limit, no further 

transmission of pressure to the sensing plate is possible, 

and the sensor output saturates. 

In other simulations, the sensor output shows nonlinear 

behavior when the stiffness of the sensing plate is similar 

to that of the membrane. In this situation, the sensor 

behaves poorly for low applied pressure (since plate is 

much stiffer than air) resulting in a very low MMP. 

Accordingly, the material and geometry parameters should 

be selected to ensure that any output nonlinearity is limited 

and that the MMP remains within a reasonable range.  

 

 



 

(a) 

 

(b) 

Fig 2: The variations of the sensing plate and membrane displacement 

(center point) versus input pressure for different levels of Oil-Loss. 

𝑅𝑚 = 9 𝑚𝑚 , 𝑅𝑝 = 7 𝑚𝑚. 

From the structure of the pressure sensor (figure (1a)), it 

can be understood that the MMP is restricted by the 

maximum permitted displacement of the membrane, based 

on the geometry (ℎ𝑢0) and the elastic limit (avoiding plastic 

deformation). Accordingly, the MMP is a key performance 

metric when considering the impact of oil loss faults and 

its interaction with sensor design parameters. For example, 

Figure (3) shows the relationship between the MMP and 

the oil loss percentage,  for different membrane radii. It can 

be seen that the impact of oil loss on MMP is strongly 

influenced by the geometry of the sensor design. 

 

Fig 3: Variations of the MMP as a function of the percentage of filler oil 

for different membrane radii.  

Sensitivity is another important concept in the design and 

analysis of sensors. The sensitivity is usually defined as the 

change in the sensor output per unit change in the sensor 

input [35]. As shown in figure (4), loss of filler oil results 

in a drop in the sensitivity of the pressure sensor, 

demonstrating once again the importance of preventing 

and/or detecting the introduction of air into the filling oil. 

 

Fig 4: The sensitivity of the sensor versus percent of filler oil for different 

membrane radius. 

VI. CONCLUSION 

In this paper, the main failures modes of the piezoresistive-

type pressure sensors were discussed. The failures were 

divided into four categories: temperature effects, corrosion, 

oil loss and pressure discharge. For the cases of 

temperature-related faults and oil loss, mathematical 

models were proposed, with solutions derived for oil loss. 

The nonlinear governing equations were linearized using 

the SSL method, and then the Galerkin-based residual 

method was used to solve the resulting linear equations for 

each increasing pressure step. The simulated behavior with 

oil-loss was reported for three of the main parameters for 

strain gauge type pressure transducers: the sensor output, 

the MMP and the sensitivity.   
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