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Frequency-dependent signal transfer at the interface between electrogenic cells
and nanocavity electrodes
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We present a model to describe the response of chip-based nanocavity sensors during extracellular recording
of action potentials. These sensors feature microelectrodes which are embedded in liquid-filled cavities. They can
be used for the highly localized detection of electrical signals on a chip. We calculate the sensor’s impedance and
simulate the propagation of action potentials. Subsequently we apply our findings to analyze cell-chip coupling
properties. The results are compared to experimental data obtained from cardiomyocyte-like cells. We show
that both the impedance and the modeled action potentials fit the experimental data well. Furthermore, we find
evidence for a large seal resistance of cardiomyocytes on nanocavity sensors compared to conventional planar
recording systems.
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I. INTRODUCTION

The electrophysiological activity of individual cells is
generally observed using the patch clamp technique [1].
This technique and related methods [2] yield very high
signal-to-noise ratios and are ideally suited to study the
activity of ion channels. However, these techniques are limited
with regard to long-term measurements and the number of
recording units in a single experiment. Extracellular elec-
trophysiological methods, on the other hand, yield weaker
signals but allow long-term and multisite recordings of cellular
networks due to reduced interference with cell viability. A
well-established method for extracellular measurements relies
on microelectrode arrays (MEAs) [3–6]. Fields of application
for in vitro MEA systems include pharmacological high-
throughput screening, cell-based biosensors, and research on
information processing in neuronal networks [7–13]. During
the last years, the integration of complementary metal oxide
semiconductor technology (CMOS) with MEAs has led to the
development of very high-density recording units, opening up
new opportunities for the investigation of communication in
cellular networks [14,15]. Nevertheless, the simple fabrication
of low-impedance and high-spatial-resolution electrodes still
remains an experimental challenge. Attempts to lower the
impedance, including the use of advanced interface materials
[16–18] and patterning of metal electrodes [19–22], have led
to promising results. However, they often require sophisticated
techniques of production or lack mechanical stability and
longevity. We have recently introduced a sensor design which
includes a fluid-filled nanocavity covering a metal electrode
[23,24]. This approach decreases the impedance of the sensor
due to an increase of the electrode-electrolyte interface area.
The spatial resolution of such nanocavity sensors is preserved
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by the small aperture which connects the nanofluidic cavity
with the chip’s surface. Modeling the signal transduction at
the cell-sensor interface is important to optimize the system’s
design and to understand how a cell’s action potential is
related to the measured signal [25–27]. In this paper we
present a model to describe the impedance and the cell-sensor
coupling of a nanocavity electrode. Cell-sensor interfaces
have been studied in the equivalent circuit approach, namely
the area and the point-contact model and by solving the
Poisson-Boltzmann-Planck equation [28–31]. To investigate
the nanocavity sensor’s response we will rely on the equivalent
circuit approach. We calculate the response of the sensors to a
simulated action potential and compare the result with signals
of HL-1 cells measured with nanocavity electrodes. The HL-1
cell line has been derived by Claycomb et al. from mouse
cardiomyocyte tumor cells (AT-1) [32]. It exhibits spontaneous
contraction and firing of action potentials in cell culture.
Thus it is a well suited model system to study bioelectronic
devices [33,34]. We demonstrate the validity of our model
and we show evidence for an improved seal resistance of
HL-1 cells on nanocavity sensors compared to planar cell-chip
interfaces.

II. EXPERIMENTAL METHODS

We fabricated nanocavity electrode arrays by standard
optical lithography and sacrificial etching of chromium layers.
A detailed description of the fabrication process is given
elsewhere [24]. Briefly, gold electrodes, feed lines, bond pads,
and chromium sacrificial layers were fabricated on silicon-
silicon oxide wafers using a two-step optical lithography
process. The whole structure was insulated against electrolytes
via the plasma-enhanced chemical vapor deposition of 800 nm
silicon oxide and silicon nitride layers. The apertures and
bond pads of the device were opened by reactive ion etching.
We used sacrificial layer etching of the chromium layer
to open the nanocavity covering the gold electrode. The
nanocavities above the electrodes have a diameter of 30 μm
and a height of 70 nm. The size of the central aperture is
5 μm in diameter and 800 nm in height. HL-1 cells, kindly
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provided by William Claycomb, represent a hybrid between
embryonic and adult myocytes. They form confluent layers
and are connected via gap junctions. HL-1 cells generate action
potentials spontaneously, pervading the entire cell population
[32]. We have cultured cells and seeded them onto chips as
previously described [24]. Briefly, the cells were kept in a T25
flask with a supplemented Claycomb medium (supplemented
with 10% FBS, 100 μgml−1 penicillin-streptomycin, 0.1 mM
norepinephrine, and 2 mM L-glutamine) in an incubator at
37◦C. After coalescing of the the cells to a confluent layer
they were passaged using standard procedures. Approximately
3000 cells were plated in 50 μl of the medium onto the
nanocavity chip. After 4 h of incubation, the chips were
topped up with fresh medium. The medium was changed daily
and the chips were measured after three to four days when
cells had reached confluence. Cellular activity was recorded
from the potential between the nanocavity electrodes versus an
extracellular Ag–AgCl reference electrode using a home-built
64-channel voltage amplifier system. The amplifier consists
of a preamplifier and a main stage with a total amplification
factor of 1022. Electrode signals were sampled with a rate of
10 kHz with the MED64 CONDUCTOR 3.1 software. Impedance
measurements were performed with a potentiostat Autolab,
PGSTAT 300.

III. SENSOR IMPEDANCE

The cell-sensor interface for dish electrodes has been
studied in one dimension [35] as well as in two dimen-
sions [28,30]. Common models to calculate the electrical
properties of a given cell-sensor interface are the point-contact
and the area-contact models [26,30,31,35,36]. Both models
represent elements of the membrane, the electrode, and the
chip either as resistors or capacitors. The area-contact model
dissects the cell and the chip into infinitesimal units, which
are related to each other by Kirchhoff’s laws taking the
spatial distribution of electrical elements into account. The
point-contact model is an approximation of the area-contact
model. It ignores the spatial dependency of voltages and
currents. To describe the nanocavity device we will use a
combination of both the area- and the point-contact models. We
describe the cavity by a continuous two-dimensional system
and the rest of the cell-sensor interface by a point-contact
model. The description of the cavity which we introduce
is similar to Heaviside’s Bessel cable in two dimensions.
This model has been used to describe the signal propagation
along cellular membranes [37] and between cells in a thin

layer [38,39]. An electrode immersed into an aqueous solution
can be seen as an interface, which separates electron charge
carriers from ionic charge carriers. Given that applied voltages
are small enough to avoid electrochemical processes at the
electrode, the interface can be described by a constant phase
element

Z(ω) = Z0

(iω)β
. (1)

Z0 is a constant that depends on the electrode material, the
exposed surface area, and the environment. For systems with
gold-platinum electrodes and water the value of β is around 0.8
or 0.9 [40,41]. The alleged reason for this power-law behavior
is a nonsmooth and fractal surface topology of the electrode
material [42–44]. With a model of the cell-sensor interface
(Fig. 1), we can write an equation for an infinitesimal element
in the cavity [Fig. 1(c)]

Zcav + dZcav =
(

1

Zcav
+ 1

dX

)−1

+ dR, (2)

where dX and dR are described at position s in a cylin-
drical system. s is the distance to the entry point of the
cavity, which itself is located at a radius r0. Zcav(s) is the
impedance of a ring electrode covered with a nanocavity
with inner radius r0 and outer radius r0 + s. We can also
write

dR = ρ
ds

2π (s + r0)h
≡ a

s + r0
ds, (3)

where h is the height of the nanocavity, ρ is the resistivity of
the electrolyte, and a is a constant proportional to the inverse
height. Also

dX = 1

2πCh(s + r0)(iω)βds
≡ b(ω)

(s + r0)ds
, (4)

where Ch is the quasicapacitance per unit area and β the
exponent of the constant phase element. We introduce a new
variable b(ω) to include these parameters and to simplify the
equation. Equation (2) can be expressed along an infinitesimal
element ds as a differential equation

Z′
cav(s) = a

s + r0
− Zcav(s)2(s + r0)

b
, (5)

which describes the impedance of a nanocavity electrode with
an inner radius r0 as a function of s. The boundary condition
is Zcav(s = 0) → ∞: an infinitesimally thin electrode ring has
an infinite impedance. The solution to the differential equation
is

Zcav(s) =
√

ab

(s + r0)

−iI1
(√

a
b
r0

)
Y0

[
i
√

a
b
(s + r0)] + Y1

(
i
√

a
b
r0

)
I0

[√
a
b
(s + r0)

]
I1

[√
a
b
(s + r0)

]
Y1

(
i
√

a
b
r0

) − I1
(√

a
b
r0

)
Y1

[
i
√

a
b
(s + r0)

] , (6)

where In are modified Bessel functions of the first kind of
order n, Yn are Neumann functions (Bessel functions of the

second kind) of order n (see Appendix A for the derivation
and Appendix B for a discussion of the solution’s asymptotic
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FIG. 1. The cell-sensor interface. (a) The coupling of the cell
to the measurement system is shown. VM is the cell’s potential in
reference to extracellular space. Zjm describes the impedance of
the cell membrane covering the aperture of the sensor, Rj is the
seal resistance, scaling the leakage current from the junction to the
electrolyte. ZS is the impedance of the nanocavity sensor and ZM is
the impedance of the measurement setup. VS is the voltage measured
with the voltage amplifier. (b) The system is shown in more detail.
The cell with Hodgkin-Huxley elements embedded in the membrane
sits on the nanocavity electrode. V i

m is the Nernst voltage of the free
membrane of the ion type i, gi

m is the membrane conductivity per
unit area for this specific ion. cm is the capacitance per unit area
of the cell membrane. Analogously, V i

jm is the Nernst voltage of
the attached membrane, gi

jm the attached membrane’s conductivity,
and cjm the capacitance. Also shown is a voltage amplifier attached
to the electrode. Zc is the impedance of the central spot of the
microelectrode and Rj is the leak resistance within the junction.
h is the height of the nanocavity. (c) A segment of the nanocavity
in the radial direction is shown. dR is the ohmic resistivity of the
electrolyte and dX the constant phase impedance of the electrode.
Both R(r) and X(r) are functions of the distance r to the center of
the electrode.

behavior). To calculate the total impedance of the sensor ZS

we have to add the impedance of the central spot

ZS =
(

1

Zcav(rmax − r0)
+ (iω)βChπr2

0

)−1

. (7)

r0 is the radius of the central opening, rmax the total electrode
radius. This equation describes the impedance of a nanocavity
microelectrode exclusively as a function of the geometry,
the conductivity of the electrolyte, and the parameters of the
electrode’s impedance. We can use it to fit the experimental
data (Figs. 2 and 3).

IV. SIGNAL PROPAGATION

A. Propagation of action potentials

Cells can generate action potentials due to voltage-
dependent ion channels embedded in their membranes. The
total current density through the cell’s membrane is the sum
of capacitive and ionic current densities [30,45] and depends
on the cellular potential VM

jm = cm

dVM

dt
+

∑
i

gi
m

(
VM − V i

0

)
, (8)

where jm is the current density through the membrane, cm the
membrane capacitance per unit area, and gi

m the conductance
with respect to the ion type i per unit area. The equilibrium
(Nernst) voltage of ion type i is V i

0 . In the typical case
without current clamp control, the ionic current through
the membrane cancels the capacitive current. Thus, it is
difficult to measure an extracellular signal in the vicinity of a
membrane in Hodgkin-Huxley equilibrium. Inhomogeneities
of the membrane attached to a sensor are a prerequisite for the
recording of cellular activity [29]. Inhomogeneities of cardiac
cells on sensors are discussed elsewhere in detail [33,34].
A scaled conductance of the ion channels in the attached

FIG. 2. Shown is a Bode plot of experimental data (symbols)
and model fits (solid lines). The absolute value and the phase of the
impedance as a function of the frequency are shown. The squares are
measured values of the impedance. The circles are measured values of
the phase. The solid lines are the absolute value and phase of Eq. (7).
The microelectrode used for this measurement has a central opening
with radius r0 = 2.5 μm and a total radius of r = 15 μm. The theory
curves are calculated for a = 6 × 105 �, Ch = 59 μFcm−2, and
β = 0.89.
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FIG. 3. Shown is a plot of the phase as a function of the absolute
value of the impedance. We compare experimental data (circles) with
a fit from Eq. (7) (solid line). The parameters are the same as in Fig. 2.

membrane by a factor χi where i = Na, K, Ca

gi
jm = χig

i
m (9)

leads to

jjm = cm

dVM

dt
+

∑
i

χig
i
m

(
VM − V i

0

)
, (10)

which we will take as an ansatz to simulate the measured
signals. Here we assume that the equilibrium Nernst potential
within the cleft is identical to the free membrane potential V i

0
and that the capacitance per unit area of the free membrane
cm is identical to the capacitance per area of the attached
membrane cjm. Using the equivalent circuit in Fig. 1(a),
the theoretical impedance function of the nanocavity sensor,
Eq. (7), and an impedance of the voltage amplifier ZM

consisting of a capacitance of 150 pF and a resistance of
100 M� in parallel, we can calculate signals for any cell type
given that the ion channel kinetics are known. We choose
a model of human myocardial cells as an approximation
for HL-1 cells [46]. It is a Hodgkin-Huxley model for 12
different ion channels consisting of 28 differential equations.
We consider all of the sodium currents to scale with a common

FIG. 4. The electrical activity of HL-1 cells growing on the
surface of a chip with nanocavity microelectrodes has been recorded.
We show four different signals, which are not only qualitatively but
quantitatively different. The used microelectrodes are geometrically
identical. They have a central opening with radius r0 = 2.5 μm and a
total radius of r = 15 μm. The measurements have been performed
in Claycomb’s medium against a Ag–AgCl reference electrode.

χNa. The calcium currents with χCa and the potassium currents
with χK. We have chosen a Gaussian stimulation signal Istim(t)
to excite the action potential of the model cell. The model
works with absolute currents. Estimating the radius of an HL-1
cell to be 7 μm [47] and knowing the electrode opening radius
of 2.5 μm we assume χtotal ≈ 5% of the total current Itotal

through the membrane to be important for the signal

Ijm = χtotalItotal. (11)

To calculate signals we have to convolve the model action
potential with the response function parametrized in time.
However, it is simpler to multiply the Fourier-transformed
action potential of the cell with the response function of the
measurement system and to transform the result back. The
free parameters for our model are the three scaling parameters
χi and the seal resistance Rj . The amplifier and the sensor
impedance are kept constant for all simulated signals. For
comparison we measured a total number of 57 signals on
five different chips, each with 36 nanocavity electrodes. We
present an overview of the signals, which we measured (Fig. 4)
and explain them within the framework of our model. The
results of our simulation are shown in Fig. 5. Signal 1 has a
large amplitude. We can find signals of similar magnitude and
shape in about 10% of our data. They require a very strong
sodium peak χNa = 2.7, χK = 1.2, and χCa = 1.0 and a large
seal resistance Rj = 50 M�. Similar signals are observed in
field-effect transistor experiments with rat cardiac muscle cells
as well [33,34]. The simulation of signal 2 requires a seal
resistance of Rj = 30 M�, χNa = 2.1, χK = χCa = 1.0. The
amplitude of this signal is smaller, especially the overshooting
to positive voltages after the strong negative sodium peak. It is
a typical signal which appears in about 50% of all cases. The
typical amplitude is about 0.5 mV. Signal 3 can be modeled
with Rj = 20 M�, χNa = 1.35, and χK = 1. Here we have to
split the calcium currents into two parts. The L-type calcium

FIG. 5. Simulated signals for the same type of electrode as in
Figs. 2 and 4. The presented signals have been calculated from the
circuitry in Fig. 1 and a model for human myocardial cells [46]. Free
parameters to reproduce the experimental data are the scaling of the
ion channels χi and the quality of the seal between the cell and sensor
measured with Rj . Signal 1 has been calculated with Rj = 50 M�,
χNa = 2.7 and χK = 1.2 χCa = 1.0. Signal 2 has been calculated with
Rj = 30 M�, χNa = 2.1, χK = 1.0, and χCa = 1.0. Signal 3 shows
a leaky cell with Rj = 20 M�, χNa = 1.35, χK = 1, and χ 2

Ca = 2.3.
The background calcium current is very strong χ 1

Ca = 14. Signal 4 is
calculated with Rj = 35 M�, χNa = 1.3, and χK = χCa = 1.
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current and sarcolemmal calcium pump current scale with
χ2

Ca = 2.3, the background calcium current is quite strong
χ1

Ca = 14. Very large inhomogeneities in the calcium-current
contributions have been described previously [33,34]. Signals
of this shape appear in about 10% of the measurements.
This might be an indication of cell damage from the large
leakage current. Signal 4 is a typical example of a weak signal
with an amplitude around 0.3 mV that appeared in 30% of
our measurements. Rj = 35 M�, χNa = 1.3, χK = χCa = 1.
Signals of this type have no visible overshoot after the
sodium peak. The seal resistance for the simulated signals
above are in the range of a few tens of M�s. Previously
reported seal resistances for plain chips are a factor of 10
smaller [33,48]. So far, high seal resistances without active
suction or penetration of the probe have only been shown for
spine-shaped gold protrusions [49]. We explain the excellent
sealing of the electrode by the small opening which can be
covered completely by the cell. Electron microscopy studies
of the cell-chip interface reveal that the cell membrane seals
the opening very well [24]. It did not escape out attention
that we have not found any signals which stand out with their
potassium contributions although we find examples for strong
calcium and strong sodium currents. The absence of potassium
signals has been described by [33] as well.

B. Influence of the geometry on signal propagation

From the equation describing the nanocavity impedance,
Eq. (7), we can study how changing the radius influences the
impedance of the electrode and the signal transfer from the cell
to the sensor. The signal transfer function of an attached cell
can be calculated if the junction membrane impedance Zjm(ω)
is known. We use a linear model where this impedance consists
of a parallel capacitance and a resistance which is described in
detail in [30]. We want to ascertain the signal transfer function
h(ω) which is in frequency space defined by

VS(ω) = h(ω)VM (ω) (12)

for different electrode sizes. Figure 6 shows the signal transfer
function for sensors with electrode radii of 10, 15, and 50 μm.

FIG. 6. Three response functions calculated for three different
electrode radii. The graphs show the absolute values |h(f )| and the
phases arg(h(f )) as indicated by the arrows. All other parameters,
Ch = 59 μFcm−2, a = 6 × 105 �, Rload = 108 �, Cload = 150 pF,
Rj = 15 M�, β = 0.89, Rjm = 20 G�, and Cjm = 2.5 pF are kept
constant.

The diameter of the inner opening is 5 μm. We can see that
the nanocavity sensor system is a high pass filter with a
step-like shape. The slope of the step depends weakly on
the electrode diameter. The value to which |h(ω)| converges
depends on the seal resistance, the sensor impedance, and
the impedance of the measurement setup. Greater electrode
diameters increase the maximum value of |h(ω)| and shift
the cutoff frequency of the high pass filter toward smaller
frequencies. In this sense, a larger electrode diameter improves
the sensor performance at constant aperture size.

V. CONCLUSION AND OUTLINE

In summary, we have calculated the complex impedance
of a nanocavity sensor, which is in good agreement with
experimental data obtained from impedance spectroscopy
measurements. Furthermore, we have presented a model for
analyzing the signal transfer of cells growing on top of
the sensor array. Action potentials have been calculated and
compared with the measurements from HL-1 cells in vitro. We
have confirmed the validity of our model and demonstrated
the influence of the geometry of such devices. As a result of
our analysis we find that the seal resistance between the cell
and the chip is a factor of 10 greater than in the plain standard
electrode system. Thus, cell signals can reliably be measured
with a high spacial resolution. A next step is the application
of our model to dual-electrode nanocavity devices [23]. These
sensors feature a top electrode at the ceiling of the cavity and
allow signal-correlation analysis, which will possibly result in
an improved signal-to-noise-ratio for extracellular recording
of action potentials.

ACKNOWLEDGMENTS

The authors thank William Claycomb for providing the
cells, Rita Fricke for support with the cell culture, and
Michael Pabst and Philipp Moritz for comments on the paper
and support with the calculations. Manuel Schottdorf thanks
Elitenetzwerk Bayern for financial support. The project is
funded by the Helmholtz Young Investigator Program.

APPENDIX A: DERIVATION OF THE IMPEDANCE
EQUATION (6)

Equation (5) is a Riccati equation of the form

z′(s) = f (s)z2(s) + h(s), (A1)

with f (s) = −(s + r0)/b and h(s) = a/(s + r0). The Riccati
differential equation can be transformed into a second-order
differential equation

y ′′(s) − f ′(s)

f (s)
y ′(s) + f (s)h(s)y(s) = 0, (A2)

such that z(s) = −y ′(s)/[f (s)y(s)] is the solution of the
original Riccati equation [50]. After this transformation we

031917-5



MANUEL SCHOTTDORF et al. PHYSICAL REVIEW E 85, 031917 (2012)

( (

( (

FIG. 7. This figure shows the error measure Eq. (B7) for the
approximations Eq. (B4) (dashed line) and Eq. (B5) (solid line).
Since λ depends on ω, the quality of the approximation Eq. (B4) is
deteriorating for greater frequencies. We can see that for the presented
nanocavity sensors, Eq. (B5) is a good approximation.

get

y ′′(s) − y ′(s)

s + r0
− a

b
y(s) = 0. (A3)

The substitution x = i
√

a/b(s + r0) leads to the slightly
modified Bessel equation

x2 d2y

dx2
− x

dy

dx
+ x2y = 0, (A4)

solved by y(x) = x[c1J1(x) + c2Y1(x)], where Jn and Yn

are Bessel functions of the first and second kinds of order
n. Putting everything together, with dy/dx = x[c1J0(x) +
c2Y0(x)], we get

z(s) =
√

ab\ i

s + r0

J0(x(s)) + αY0(x(s))
J1(x(s)) + αY1(x(s))

with α = c2/c1.

(A5)

To fix the constant α a boundary condition is necessary. In the
limit

z(s → 0) =
√

ab
[
I0

(√
a
b
r0

) + αY0
(
i
√

a
b
r0

)]
r0

[
I1

(√
a
b
r0

) − iαY1
(
i
√

a
b
r0

)] , (A6)

where In(x) = i−nJn(ix), the condition of a vanishing denom-
inator fixes α so that we obtain the final result which is given
in Eq. (6).

APPENDIX B: ASYMPTOTIC BEHAVIOR

To study the asymptotic behavior of the solution Eq. (6),
we rewrite it in units of a and in the parameters λ(ω) =√

a
b(ω) (r0 + s) and ν = r0

r0+s
, which are both dimensionless

Zcav(s) = a
−iI1(νλ)Y0(iλ) + I0(λ)Y1(iνλ)

λ(−I1(νλ)Y1(iλ) + I1(λ)Y1(iνλ)
. (B1)

Given λ 	 1, for small resistivities and not too large frequen-
cies, we can linearize the equation. The limit λ → 0 (for ν not
necessarily small) is

Zcav(λ 	 1) = a

(
2

(1 − ν2)λ2
+ O(1)

)
(B2)


 2b

2r0s + s2
(B3)

= 1

π (2sr0 + s2)Ch(iω)β
. (B4)

The approximately equal sign indicates that we neglect the
O(1) term. The result is what we would expect as impedance
from an electrode ring with area A = π [(r0 + s)2 − r2

0 ] =
π (2r0s + s2). If the radius of the electrode s + r0 is large
compared to the aperture r0, ν is small (for λ not necessarily
small). In this case

Zcav(ν 	 1) = a

(
I0(λ)

λI1(λ)
+ O(ν2)

)

 aI0(λ)

λI1(λ)
. (B5)

Using the parameters from Fig. 2 and typical angular frequen-
cies of ω ∈ [0,2π × 10 000Hz] 
 [0,60 000 1

s
] for

λ =
√

a

b(ω)
(r0 + s) =

√
2πaCh(iω)β (r0 + s) (B6)

we get that |λ| ∈ [0,3]. Also ν ≈ 0.2, which indicates that for
small frequencies, both approximations are comparable. For
greater frequencies, Eq. (B5) should be the better approxima-
tion. In Fig. 7 we compare Eqs. (B4) and (B5) with the full
solution as a function of f = ω/2π . The error measure shown
is

E = |Zcav| − ∣∣Zappr
cav

∣∣
|Zcav| , (B7)

where Zcav is the full solution, and Z
appr
cav are the two

approximative solutions. This figure confirms our conclusion.
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A. Offenhäusser, Phys. Rev. E 60, 2171 (1999).

[34] S. Ingebrandt, C.-K. Yeung, M. Krause, and A. Offenhäusser,
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