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The behavior of the magnetic currents in one-dimensional Heisenberg XXZ spin chains kept out of equilibrium
by boundary driving fields is investigated. In particular, the dependence of the spin currents on the anisotropy
parameter � and on the boundary fields is studied both analytically and numerically in the framework of the
Lindblad master equation formalism. We show that the spin current can be maximized with appropriate choices
of the boundary fields, and for odd system sizes, N , we demonstrate the existence of additional symmetries that
cause the current to be an odd function of �. From direct numerical integrations of the quantum master equation,
we find that for an arbitrary N the current Jz(N ) vanishes for � = 0, while for � negative it alternates its sign
with the system size. In the gapless critical region |�| < 1, the scaling of the current is shown to be Jz(N ) ∼ 1/N

while in the gapped region |�| > 1 we find that Jz(N ) ∼ exp(−αN ). A simple mean-field approach, which
predicts rather well the values of Jz(N ) for the gapped region and the values of the absolute current maxima in
the critical region, is developed. The existence of two different stationary solutions for the mean-field density
matrix in the whole parameter range is also demonstrated.
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I. INTRODUCTION

Recent advances in the experimental manipulation of
nanowires and quantum dots have made it possible to in-
vestigate quantum systems consisting of a few quantum dots
or quantum bits. On the other hand, manipulations of single
quantum bits (e.g., application of a quantum gate) form the
basis of the functioning of any elementary block of a quantum
computing device. However, a theoretical understanding of
microscopic quantum systems out of equilibrium (e.g., under
constant pumping or continuous measurement by a quantum
probe) is far from being complete, apart from the most simple
cases such as a single two-level system or a quantum harmonic
oscillator under external pumping or in contact with a reservoir.
In view of this, the role of simple but nevertheless spatially
extended systems, amenable to both analytic and numerical
investigation, becomes important. In particular, it is desirable
to understand the interplay between many-body bulk properties
in extended quantum systems (e.g., magnon excitations or
magnetization currents in quantum spin systems) and local
(e.g., applied to a small part of a system) pumping driving the
system constantly out of equilibrium.

To induce a nonequilibrium situation, one can couple the
system at both ends to magnetization reservoirs at different
potentials so to create magnetic gradients in the system. This
is frequently done in the framework of the Lindblad master
equation [1,2] with reservoirs modeled by means of Lindblad
operators acting at the system ends. A model of this type was
recently considered in Ref. [3], where an XXZ quantum chain
of finite size and constant effective pumping at the first and the
last site, which induces an effective gradient along the z axis,
was proposed and studied. In particular, a negative feedback of
the boundary pumping on a conserved magnetization current
beyond a certain amplitude of the gradient was observed.

We remark that transport of magnetization in the Heisen-
berg model has been extensively investigated during the past

years (for extended reviews, see Refs. [4,5]) using a range of
alternate methods, including Bethe-ansatz calculations [6,7],
Lagrange multipliers [8,9], exact diagonalizations [10,11], the
Lanczos method [12], quantum Monte Carlo [13], etc.

In the present study, we address the problem of how
the current in a quantum chain of the type considered in
Ref. [3], which we view as a generic string of quantum bits
manipulated at the ends through a stationary pumping, can
be maximized by a suitable choice of Lindblad operators.
The model is conceptually simple. It describes a system
of interacting two-level systems (quantum bits), and in
the absence of pumping it possesses remarkable properties
(integrability). In a nonequilibrium situation, the most natural
quantities to consider are the stationary currents, these being
the simplest many-body correlation functions and the simplest
indicators of how far the system is from equilibrium. Our first
objective is the study of the behavior of stationary conserved
magnetization currents Jz(N ) in a system of size N , and to
maximize their values with respect to the boundary pumping.
In particular, we will demonstrate the following:

(i) The current Jz(N ) can be made at least one order of
magnitude larger than in Ref. [3] with an appropriate choice
of boundary conditions.

(ii) The current scales as Jz(N ) ∼ 1/N in the critical region
−1 < � < 1 and as Jz(N ) ∼ exp(−αN ) in the gapped region.

(iii) For arbitrary N , the current Jz(N ) always vanishes
for � = 0 while for � negative it alternates its sign with the
system size: sgn(Jz(N )) = (−1)N .

By neglecting nearest-neighbor correlations, we also de-
velop a simple semiclassical (mean-field) approach that pre-
dicts in an excellent manner the current Jz(N ) in the gapped
region |�| > 1 and gives a qualitatively good agreement for
the absolute current maxima in the critical region |�| < 1.
The existence of two different stationary solutions for the
mean-field density-matrix equation is demonstrated for the
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whole parameter range, and the possibility that multiple
stationary solutions can exist also in the quantum case is
suggested. This last possibility represents a very interesting
problem that deserves further investigations.

The plan of the paper is the following. In Sec. II, we
introduce the model equation for our open spin chain and
discuss the main properties of the master equation in the
Lindblad form. In particular, we discuss the action of Lindblad
operators at the chain boundaries and show how these operators
can be used to induce gradients and boundary magnetization
values along spatial directions. In Sec. III, we discuss and
analytically prove the existence of a nontrivial symmetry of
the Lindblad master equation with respect to the anisotropy
parameter � → −� interchange for the case of chains with
an odd number of spins. In Sec. IV, we present and discuss
numerical quantum results obtained from direct integrations
of the Lindblad master equation. Section V is devoted to the
semiclassical approach and its comparisons with the quantum
results. Finally, a brief summary of the main results of the
paper and future perspectives are given in the Conclusion.

II. MODEL EQUATIONS

We study the quantum master equation in the Lindblad form
for the XXZ model with a drive at the boundaries of the form

∂ρ

∂t
= −i[H,ρ] − 1

2

4∑
m=1

{ρ,L†
mLm + V †

mVm + W †
mWm}

+
4∑

m=1

(LmρL†
m + VmρV †

m + WmρW †
m) (1)

(here and below we set h̄ = 1 and denote with a dagger the
adjoint operator). In this approach [1], ρ is the reduced density
matrix and H is the Hamiltonian of the open XXZ chain,

H = JE

N−1∑
k=1

σx
k σ x

k+1 + σ
y

k σ
y

k+1 + �σz
k σ z

k+1. (2)

The dissipative terms of the Lindblad master equation contain
three sets of the Lindblad operators Lm,Vm, and Wm, which
we choose to act locally at the open ends (the first and the
last site) of the quantum chain. The Lindblad operators acting
on the first site k = 1 carry subscripts m = 1,2 and are given
explicitly by

L1 = α
(
σx

1 + iσ
y

1

)
, L2 = β

(
σx

1 − iσ
y

1

)
,

V1 = p
(
σ

y

1 + iσ z
1

)
, V2 = q

(
σ

y

1 − iσ z
1

)
, (3)

W1 = u
(
σ z

1 + iσ x
1

)
, W2 = v

(
σ z

1 − iσ x
1

)
.

The Lindblad operators Lm,Vm, and Wm with m = 3,4 act
on the last site i = N and are given by the expressions
for Lm−2,Vm−2, and Wm−2, respectively, with α,β,p,q,u,v

substituted by α′,β ′,p′,q ′,u′,v′. We can always choose the
constants α,β, . . . ,v′ to be real and non-negative, since in
Eq. (1) all Lindblad operators appear in pairs. The operators
Lm,Vm, and Wm, taken alone, target polarization along the

axes z, x, and y, respectively, on the boundary sites. Notice that
even in the free-fermion case � = 0, this generalized Lindblad
dynamics is not integrable, as is the case in Ref. [14], because
the Lindblad operators are not all quadratic in fermionic
variables.

It is easy to verify from (1) that ∂
∂t

Tr(ρ) = 0,ρ† = ρ,
∂
∂t

Tr(ρ2) �= 0. The first two relations are necessary for inter-
preting ρ as a density matrix with Tr(ρ) = 1, while the latter
means that we have an open system: an initially pure state
ρ = |φ〉〈φ| will not remain pure over the course of time. In
contrast to reduced density matrices of isotropic ferromagnetic
Heisenberg chains or many-body systems on complete graphs,
which can be fully characterized (see Refs. [15,16]), stationary
density matrices of an open quantum system out of equilibrium
[in this context, solutions of Eq. (1)] are largely unknown (see
Ref. [1] for a review). The action of the Lindblad operators
acting on the first site (Lm,Vm, and Wm with m = 1,2) becomes
clear if we write down the equations of motion for the
expectation values of boundary operators σx

1 ,σ
y

1 ,σ z
1 . Using

the master equation and the properties of the Pauli matrices
σ kσ jσ k = −σ j for j �= k and σ iσ j = iεijkσ

k for i �= j , one
obtains after some algebra

d
〈
σ z

1

〉
dt

= Hz
part − 
z

(〈
σ z

1

〉 − σ z
L

)
,

d
〈
σx

1

〉
dt

= Hx
part − 
x

(〈
σx

1

〉 − σx
L

)
, (4)

d
〈
σ

y

1

〉
dt

= H
y
part − 
y

(〈
σ

y

1

〉 − σ
y

L

)
,

where Hk
part denotes the term −i Tr(σ k

1 [H,ρ]) with k = x,y,z

and


z = K + (2α2 + 2β2), σ z
L = 4α2 − 4β2


z

;


x = K + (2p2 + 2q2), σ x
L = 4p2 − 4q2


x

; (5)


y = K + (2u2 + 2v2), σ
y

L = 4u2 − 4v2


y

;

K = 2(p2 + q2 + u2 + v2 + α2 + β2).

If 
x,
y,
z are sufficiently large with respect to the exchange
constant JE of the Heisenberg Hamiltonian, the Hamiltonian
part, Hpart, in the above equations is negligible and we expect
the averages 〈σ i

1(t)〉 to relax to their “left boundary” values σ i
L,〈

σ i
1(t)

〉 = σ i
L + 〈

σ i
1(0) − σ i

L

〉
e−
i t , (6)

after a relaxation time of order 1/
i . Notice that |σ i
L| � 1

for any choice of p,q,u,v,α,β. For the right boundary, we
will obtain the equations of motion for expectation values
〈σ i

k=N 〉 by substituting α,β → α′,β ′, etc., in (4), from which
we see that the right boundary values σ i

R are given by the ratios
of the Lindblad operator amplitudes for m = 3,4. Thus, by
choosing a specific set of Linblad operators Lm,Vm, and Wm,
we may induce gradients and boundary magnetization values
along the axes x, y, and z, respectively. We remark, however,
that not all sets of possible boundary values σx

L,σ
y

L , and σ z
L

are accessible. For instance, if 
x > 2p2 + 2q2, meaning that
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some of the constants u,v,α,β are nonzero, the maximal value
of σx

L (attained by the choice q = 0) is σx
L = 4p2/ 
x < 1.

Note that the condition (σx
L)2 + (σy

L)2 + (σ z
L)2 � 1 guarantees

the positiveness of the steady-state reduced density matrix
ρ1 = Tr2,3,...,Nρ of the left boundary site i = 1 in the case
of infinitely large coupling constants 
α , the equality sign
corresponding to a pure one-site state Tr(ρ1)2 = 1.

For our study, we choose the following set of the Lindblad
operators: only three operators V1, V4, and W4 = v′(σ z

N − iσ x
N )

are nonzero and have the following amplitudes:

p =
√


, q ′ =
√

0.5
, v′ =
√


, (7)

while all the remaining constants α,β, . . . ,u′ are set to zero.
With the choice (7), we set “desirable” boundary magneti-
zation values to σ

y

L = 0,σ z
L = 0,σ x

L = 1 at the left boundary
and σ

y

L = −0.8,σ z
L = 0,σ x

L = −0.5 at the right boundary, as
can be verified straightforwardly from (5). The coupling
constant 
 will be set to 
 = 4JE in most cases, so that
the amplitudes of the Lindblad operators and the Heisenberg
exchange interaction are comparable. The choice (7) can be
argued to be a “minimal” favorable choice in order to produce
the largest possible stationary current along the the anisotropy
axis z,

Jz = σy
n σ x

n+1 − σx
n σ

y

n+1 (8)

(as a conserved quantity, it does not depend on n). It is
worth remarking that for our choice of Lindblad operators,
the averaged energies per site of nonequilibrium steady states
are very small, this corresponding to a very high (practically
infinite) temperature.

Notice that from a physical point of view, our choice of
Lindblad operators corresponds to magnetic reservoirs with
easy-plane magnetizations at the boundaries. This could be
realized by means of twisted magnetic fields at the boundary
with the twist angle fixed by the parameters in Eq. (7). This
setting is “orthogonal” to the choice made in Ref. [3], where
the boundary gradient with the help of Lindblad operators Lm

was set along the anisotropy axis. In our case, we have no
gradient along the conserved direction, σ z

L = σ z
R = 0, while

strong gradients 1 → −0.5 and 0 → −0.8 are set along the
perpendicular directions. Note that an increase of a gradient
in one (say, X) component has the expense of decreasing a
gradient in the other component; see (5). For example, it is not
possible, by keeping nonzero V1, V4, and W4 with arbitrary
(but nonzero) amplitudes (3), to realize the maximal gradients
1 → −1 in both the y and x directions.

III. SYMMETRY RELATIONS FOR ODD N

For odd N , the master equation in the Lindblad form
(1) has a nontrivial symmetry with respect to � → −�

interchange, described below. By a unitary transformation,
U = σ z

2 σ z
4 · · · σ z

N−1 = U †, the Hamiltonian H transforms as
UH (�)U † = −H (−�), while the Lindblad operators do not
transform since they are acting on the boundary sites i = 1,N .

Applying U · · · U † to the master equation (1), and taking
the complex conjugate, we obtain Eq. (1) for the transformed
density matrix ρ ′ = Uρ∗(−�)U † and Lindblad operators
L∗

i ,V
∗
i ,W ∗

i . In the basis where σx is diagonal, we obtain

L∗
i = L

†
i , V ∗

i = Vi , and W ∗
i = −Wi . For our choice of the

Lindblad operators (7) not containing operators L, the resulting
Lindblad equation for ρ ′ is identical to the original one, with
a replacement � → −�, yielding the symmetry

ρ(�,t) = Uρ∗(−�,t)U. (9)

This symmetry implies, in particular, the sign change for
one-point functions along the anisotropy axis 〈σ z

n (−�)〉 =
−〈σ z

n (�)〉, and site-to-site alternations along the other axes
〈σy

n (−�)〉 = (−1)n+1〈σy
n (�)〉, σ x

n (−�)〉 = (−1)n+1〈σx
n (�)〉.

Conserved current expectation 〈Jz(n)〉 = 〈σy
n σ x

n+1 − σ
y
n σ x

n+1〉
changes sign under � sign reversal,

〈Jz(n)〉(N,�) = −〈Jz(n)〉(N, − �) for odd N. (10)

The sign alternation produces interesting conse-
quences for the static structure factors Sαβ(k,�) =∑

n<m eik(m−n)〈σα
n σ

β

n+1〉. Such structure factors can be used
as entanglement witnesses [17,18] and are experimentally
accessible via neutron scattering. Using (9), we obtain

Szz(k,�) = Szz(k, −�),

Sαα(0,�) = Sαα(π, −�) for α = y,x.

IV. NUMERICAL RESULTS

We integrate numerically in time the full set of equations
for the reduced density-matrix elements (1), starting from
the maximally mixed initial state. Once the convergence
to the stationary state has been reached, we measure the
current 〈Jz(n)〉 = 〈σy

n σ x
n+1 − σ

y
n σ x

n+1〉 = Tr(ρJz(n)) and sta-
tionary magnetization profiles 〈σ i

n〉 = Tr(ρσ i
n). These show

the expected behavior, namely a tendency to approach the
expected boundary spin values at chain ends, e.g., 〈σy

N 〉 →
σ

y

L = −0.8 etc. (data not shown).
The current dependence on � for different sizes N � 10

is shown in Fig. 1. First, we see the antisymmetry of Jz(�)
with respect to � for odd N , in accordance with (10). Second,
we note that the flux Jz(0) = 0 for all N > 2 in the free-
fermion case � = 0. In this respect, we remark that (i) the
above property is not true for the other current components,
and (ii) the vanishing of the Jz current is very likely to be
due to the absence of σz gradient induced from boundaries
(due to our choice of Lindblad operators) and to the lack of
corresponding interaction terms in the Hamiltonian. Moreover,
for the case of odd N , the vanishing of Jz is rigorously proved,
being a direct consequence of Eq. (10). We also note that the
gradients of ∂Jz(�)/∂� at � = 0 seem to depend only on
parity of N , apart from the nongeneric cases N = 2,3, i.e.,
(Jz)′(0) = α− < 0 for even N and (Jz)′(0) = α+ > 0 for odd
N , where α± (at least numerically) is independent of N .

At large anisotropy values � → ±∞, the flux Jz tends
to zero. This can be demonstrated in the following way: For
infinitely large �, the system evolution is described essentially
by Heisenberg equations of motion for an Ising Hamiltonian
HI = ∑

n σ z
nσ z

n+1, i.e., ∂ρ

∂t
= − i

h̄
[HI ,ρ], the general time-

independent solution of which is given by ρI = ∑
αk|k〉〈k|,

where |k〉 are eigenstates of the HI , i.e., the set of all diagonal
matrices in the representation where σ z is diagonal. The flux
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FIG. 1. (Color online) Stationary spin currents Jz vs � for the
HXXZ chain of different lengths N � 10 with 
 = 4. Symbols refer
to numerical results obtained from direct integrations of the Lindblad
master equation, while joining lines are drawn only as a guide for the
eyes.

Jz in this representation is a difference of the two off-diagonal
elements of ρI and is therefore trivially 0. For large but finite
�, it is tempting to relate the exponentially small current to the
phenomenon of “edge-locking” [19] observed in the quantum
evolution of the XXZ chain without Lindblad operators. In that
case, there are blocks of spins pointing in the z direction that
are almost immobile in the vicinity of the boundary and hence
suppress a magnetization current. Apparently, the coupling to
an environment described by the Lindblad operators is not
sufficient to significantly overcome edge-locking.

Another sign of an intrinsic interplay between the local
action of Lindblad operators and bulk behavior governed by
the Hamiltonian H is seen if we look at the scaling of the
current Jz with system size N . In the region |�| � 1, the Jz

decreases as Jz ∼ exp(−γN ) for fixed �, while in the region
|�| � 1 the flux decreases algebraically as max Jz ∼ 1/N ,

Jz(N ) ∼
{

exp(−γN ) for |�| > 1,

1/N for |�| < 1.
(11)

Notice that in this case we look at the absolute maxima of the
current; see Fig. 2. Since in the infinite system N = ∞ the
region |�| < 1 (|�| > 1) corresponds to the critical gapless
phase with algebraically decaying correlations (gapped phase
with exponentially decaying correlations), it is natural to
suppose that the behavior of the current Jz induced by the
local pumping is influenced by the critical properties of the
Hamiltonian. It is quite remarkable that one can see the signs
of the bulk behavior already at small system sizes N � 10.
With the help of the quasiclassical approximation presented
in the next section, which turns out to work qualitatively
well in the |�| � 1 region, we can arrive at much larger
system sizes and confirm our conclusions. Note that transport
properties of integrable systems are often anomalous, e.g.,
characterized by a ballistic spin and heat transport [20]. This
corresponds to finite Drude weights, which sometimes can
be computed analytically [6,21]. We remark that in our case

FIG. 2. Maxima of the |〈Jz〉| currents depicted in Fig. 1 vs N for
the range � > 0 (left panel) and � < 0 (right panel). Continuous
curves show that the scaling follows a law of the type a/N with
a = 2.285 for the left panel and a = 1.24 for the right panel. Other
parameters are fixed as in Fig. 1. The maxima of the current modulus
for odd-N values have not been displayed in the right panel because,
due to the symmetry relations discussed in Sec. III, they are the same
(and obviously follow the same scaling) as in the left panel.

the nonequilibrium steady states are characterized by at most
diffusive transport [see Eq. (11)], in contrast to what was
recently reported for the XXZ Heisenberg model with a
different realization of boundary reservoirs (two Lindblad
operators at each system end, not optimized for maximal
transport) [22]. In particular, from the data depicted in Fig. 1
it follows that the scaling at the isotropic point � = 1 follows
the same scaling in (11) for the critical (gapless) region (with a
prefactor a ≈ 2), in contrast with the scaling 1/

√
N obtained

in Ref. [22] (this being another example of the influence of
boundary reservoirs on bulk properties).

Another remarkable observation can be made if we look
at the signs of the flux Jz in the � < 0 region. This sign
respects the parity of N : sgn(Jz(N )) = (−1)N . An explanation
of this phenomenon is related to the alternating structure
of the stationary profiles 〈σy

n 〉,〈σ z
n 〉, as illustrated in Fig. 3.

It is worth pointing out that a perturbation theory in the
small parameter ε = �−1 � 1 around the point � = −∞,
which could in principle explain the phenomenon of flux
alternation, is difficult to build for the following reason: The
scaling Jz(N ) ∼ exp(−γN ) for fixed � implies a scaling
|Jz(�)| ∼ 1/|�|N−γ = εN−γ for fixed N . From the numerical
data, we estimate |Jz(�)| ≈ C/|�|N−3/2 = CεN−3/2. So the
first nonvanishing order of perturbation theory (at least for
the quantity Jz in which we are interested) is εN−3/2, where
the N is the system size. On the other hand, in the opposite
limit � → −0, the analytical treatment might be possible,
because at � = 0 the Hamiltonian H becomes a free-fermion
Hamiltonian. Several analytic results are available for the
Lindblad master equation at the free-fermion point [14,23–26];
however, these results are not applicable to our choice of the
Lindblad operators (7).

We have studied the dependence of the flux Jz on various
parameters, including the coupling strength 
. At large
coupling strength, one expects an effective freezing of the
hoppings of the boundary spins due to the quantum Zeno effect.
However, unlike in the setting [3], where a quantum Zeno effect
suppresses the magnetization current, for our choice of the
Lindblad operators the current suppression is not observed; see
Fig. 4. The reason is that through large couplings we “freeze”
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FIG. 3. Comparison between quantum (dots joined by dotted
lines) and semiclassical (continuous lines) mean currents 〈Jz〉 vs �

for 
 = 4 and N = 6,7 (top left and right panels, respectively) and
N = 8,9 (corresponding bottom left and right panels).

the boundary σy and σx spin components, while hoppings in
the σ z component, contributing to the current Jz, may still
occur.

V. MEAN-FIELD APPROACH

Studies of the quantum system dynamics via solving the
full system (1) or by an appropriate Monte Carlo scheme
are inevitably restricted to small system sizes N due to
exponentially growing complexity. It is therefore desirable
to complement them with other approaches that might help
to study a given specific feature of the quantum system
and advance our understanding. It turns out that the simple
mean-field approach described below captures the quantities
we are interested in (one-point correlation functions and flux
Jz) with very good precision for large values of � and correctly
reproduces the alternation of the sign of the current with N .
Also, in spite of the very qualitative behavior found inside the
� < 1 region, the main Jz peaks in this region are predicted
reasonably well (see Fig. 3 and the discussion below).

Since the complexity in the mean-field approach grows
algebraically with the size (rather than exponentially), we can
easily handle much larger system sizes than in the quan-
tum case. Neglecting correlations, i.e., setting 〈σx

n σ z
n+1〉 =

〈σx
n 〉〈σ z

n+1〉, we write down the set of equations of motion
for spin operators 〈σx

n 〉,〈σy
n 〉,〈σ z

n 〉:

d

dt
σ y

n = �σz
n−1σ

x
n − σx

n−1σ
z
n + (n − 1 → n + 1),

d

dt
σ z

n = −σ
y

n−1σ
x
n + σx

n−1σ
y
n + (n − 1 → n + 1),

d

dt
σ x

n = σ
y

n−1σ
z
n − �σz

n−1σ
y
n + (n − 1 → n + 1)

0.1 0

-0.2

-0.1

0.0

0.1

0.2

J z

Γ

FIG. 4. Mean-field (black dotted curves) and quantum (open
circles) numerical solutions vs the coupling parameter 
 for a chain
of N = 5 sites and for two opposite values of �: � = 1.5 (Jz > 0
curves) and � = −1.5 (Jz < 0 curves).

in the bulk n = 2,3, . . . ,N − 1, and at the boundaries (n = 1),

d

dt
σ y

n = �σz
n+1σ

x
n − σx

n+1σ
z
n − 
y

(
σy

n − σ
y

L

)
,

d

dt
σ z

n = −σ
y

n+1σ
x
n + σx

n+1σ
y
n − 
z

(
σ z

n − σ z
L

)
,

d

dt
σ x

n = σ
y

n+1σ
z
n − �σz

n+1σ
y
n − 
x

(
σx

n − σx
L

)
,

where 
i and σ i
L are given by the expressions (5). Analogously,

we write down the mean-field equations for the right boundary
n = N . Solving them numerically for the stationary state, we
find qualitative agreement with the quantum problem at least
in part of the parameter range (see Fig. 3).

Note that for |�| > 1, we found also a qualitative agreement
for the flux Jz, which becomes more accurate as N or � grows.
To explain this agreement, we note that the current Jz can be
written as a sum of the disconnected and the connected part,

Jn,z = 〈
σx

n

〉 〈
σ z

n+1

〉 − 〈
σy

n

〉 〈
σx

n+1

〉 + 〈
σx

n σ z
n+1

〉
c
− 〈

σy
n σ x

n+1

〉
c
,

the contribution of the latter being neglected in the mean-field
approach. In the full quantum system, one observes a drastic
decrease of the “weight” of the connected part outside the
critical region |�| < 1. Thus, outside the critical region,
the current Jz(�) is determined essentially by one-point
correlations, thus validating the mean-field assumption.

The alternation of the sign of the flux Jz(N ) with N within
the mean-field description is a consequence of the oscillatory
behavior of the one-point functions 〈σ z

n 〉 and 〈σ z
n 〉; see Fig. 5.

We expect, however, this oscillatory behavior to govern the
flux alternation also in the quantum case for � � −1, where
the flux Jz is determined, essentially, by one-point correlations
(data not shown).

Quite remarkably, in the mean-field description we find
two different stationary solutions ρ for a given value of � and
in the whole parameter range (see the black dotted curves in
Fig. 4), which are characterized by different fluxes Jz and differ
by the sign of the average z magnetization Mz = ∑

n〈σ z
n 〉.

For positive �, these solutions can be associated with the
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1 2 3 4 5 6

-1

0

1

<
σ nα >

n

-1

0

1

<
σ nα >

n

FIG. 5. Magnetization profiles 〈σx
n 〉,〈σ y

n 〉,〈σ z
n 〉 shown with bro-

ken, solid, and dotted lines, respectively. The mean-field flux between
sites 1 and 2 is given by J z

1 = σ
y

1 σ x
2 − σ x

1 σ
y

2 ≈ −σ
y

2 , because
σ x

1 ≈ σ x
L = 1,σ

y

1 ≈ σ
y

L = 0. Note that σ y
n is alternating its sign with

n and tends to fixed (independent of N ) boundary values σ
y

L and
σ

y

R . Therefore, an increase of the system size N → N + 1 changes
the sign of σ

y

2 , which entails the change of the sign of the flux Jz;
compare the left panel (N = 6) and the right panel (N = 7). The
above arguments are valid also for the quantum (computed from the
Lindblad equation) case for � < −1, where the flux Jz is determined
essentially by one-point correlation functions.

first λ1 ≈ N/2 and the second λ2 = λ1/2 harmonics in the
respective 〈σy

n 〉,〈σx
n 〉 density profiles (see Fig. 6). We remark

that the mean-field solutions with larger absolute Jz are more
difficult to obtain from random initial conditions due to smaller
attraction basins. Also, the specular symmetry of the mean-
field curves around the Jz = 0 axis clearly indicates that the
odd-N symmetry of the quantum problem extends to the mean-
field model as well.

It is also worth noting that the (apparently single) quantum
solution for a fixed value of � in Fig. 4 (open circles) closely
follows and partially overlaps the mean-field solution with
smaller flux Jz, while the (possibly) missing second quantum
solution is the one corresponding to the classical curve with
larger flux and a smaller basin of attraction (this last fact could
explain the failure of all our attempts to find this solution).
However, the possibility of the existence of multiple stationary
solutions in the quantum case cannot be excluded, and more
investigations are required to clarify the issue. In this respect,
we remark that, apart for the very special case of Lindblad
operators taken as eigenoperators of the Hamiltonian H (this
being not our case), there is no general proof, to the best
of our knowledge, of the uniqueness of the solution of the
Lindblad master equation (in the mentioned special case,
the evolution equations for the populations of the energetic
levels become the classical master equation with a stochastic
matrix, and the uniqueness of the solution follows from
the Perron-Frobenius theorem). Considering the very good
agreement observed between mean-field and quantum results
in the |�| > 1 region, the possibility that multiple stationary
solutions could exist also in the quantum case should not be
overlooked.

VI. CONCLUSION

In summary, we have studied the magnetization current
induced in the one-dimensional quantum XXZ spin chain by
magnetic boundary fields and showed that this current can be
controlled and maximized by appropriate boundary magnetic

3 6 9

-1

0

1

<
σ nα >

n

<σ >

<σ >

<σ >

-1

0

1

<
σ nα >

n

<σ >

<σ >

<σ >

FIG. 6. The left panel shows magnetization profiles of 〈σα
n 〉 for

two stationary mean-field solutions. Parameters: N = 9,� = 0.52.
The solution shown in the right panel corresponds to negative Jz and
is “quantistically unstable.” The quantum stable solution (left panel)
carries positive flux Jz. The profile corresponds to positive Jz and
N = 9.

fields. The dependence of the current on the anisotropy
parameter � and on the boundary field strengths has been
characterized analytically and numerically both by means of
system symmetries and by the numerical evaluation of the
stationary density matrix in the framework of the Lindblad
master equation. We have shown that for odd system sizes N ,
the existence of additional symmetries in the system causes
the current to become an odd function of �. For arbitrary
sites and for � negative, the current was also shown to
alternate its sign with the system size, sgn(Jz(N )) = (−1)N .

The scaling properties of the current with the system size
have been characterized both in the critical and in the gapped
regions.

We found that in the critical region, −1 < � < 1, the
current scales as Jz(N ) ∼ 1/N while in the gapped re-
gion it scales as Jz(N ) ∼ exp(−αN ). The behavior of the
magnetization conductivity in the critical region shows a
nonmonotonic behavior with the existence of relative maxima
at intermediate values and with the current always vanishing
for � = 0. This behavior is notably different from the free
quantum evolution of an XXZ chain without boundary fields
but with a step initial state with opposite magnetizations
[27,28]. In that case, a nonequilibrium state with a current of
order 1 is attained even when � = 0. A simple mean-field
approach neglecting nearest-neighbor correlations predicts
qualitatively well the value of Jz(N ) for the gapped region
and the value of the absolute maximum in the critical
region.

The existence of two different stationary solutions for
the mean field ρ in the whole parameter range has been
demonstrated, and the possibility that multiple stationary
solutions could exist also in the quantum case has been
suggested. This last possibility represents a very interesting
problem that deserves further investigations.
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(MIUR) through a Programma di Ricerca Scientifica di
Rilevante Interesse Nazionale (PRIN) initiative.

031137-6



BEHAVIOR OF MAGNETIC CURRENTS IN ANISOTROPIC . . . PHYSICAL REVIEW E 85, 031137 (2012)

[1] H.-P. Breuer and F. Petruccione, The Theory of Open Quantum
Systems (Oxford University Press, Oxford, 2002).

[2] M. B. Plenio and P. L. Knight, Rev. Mod. Phys. 70, 101
(1998).

[3] G. Benenti, G. Casati, T. Prosen, and D. Rossini, Europhys. Lett.
85, 37001 (2009).

[4] F. Heidrich-Meisner, A. Honecker, and W. Brenig, Eur. Phys. J.
Special Topics 151, 135 (2007), and references therein.

[5] X. Zotos, J. Phys. Soc. Jpn. Suppl. 74, 173 (2005), and references
therein.

[6] B. S. Shastry and B. Sutherland, Phys. Rev. Lett. 65, 243 (1990).
[7] X. Zotos, Phys. Rev. Lett. 82, 1764 (1999); J. Benz, T. Fukui,
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[24] M. Žnidarič, J. Phys. A 43, 415004 (2010).
[25] D. Karevski and T. Platini, Phys. Rev. Lett. 102, 207207

(2009).
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Rev. E 71, 036102 (2005).

031137-7

http://dx.doi.org/10.1103/RevModPhys.70.101
http://dx.doi.org/10.1103/RevModPhys.70.101
http://dx.doi.org/10.1209/0295-5075/85/37001
http://dx.doi.org/10.1209/0295-5075/85/37001
http://dx.doi.org/10.1140/epjst/e2007-00369-2
http://dx.doi.org/10.1140/epjst/e2007-00369-2
http://dx.doi.org/10.1143/JPSJS.74S.173
http://dx.doi.org/10.1103/PhysRevLett.65.243
http://dx.doi.org/10.1103/PhysRevLett.82.1764
http://dx.doi.org/10.1143/JPSJS.74S.181
http://dx.doi.org/10.1143/JPSJS.74S.181
http://dx.doi.org/10.1103/PhysRevLett.78.167
http://dx.doi.org/10.1103/PhysRevE.57.5184
http://dx.doi.org/10.1103/PhysRevE.57.5184
http://dx.doi.org/10.1103/PhysRevB.53.983
http://dx.doi.org/10.1103/PhysRevB.58.R2921
http://dx.doi.org/10.1103/PhysRevB.58.R2921
http://dx.doi.org/10.1103/PhysRevB.70.205129
http://dx.doi.org/10.1103/PhysRevB.70.205129
http://dx.doi.org/10.1103/PhysRevLett.88.077203
http://dx.doi.org/10.1088/1367-2630/10/4/043026
http://dx.doi.org/10.1103/PhysRevA.71.012301
http://dx.doi.org/10.1103/PhysRevA.72.032327
http://dx.doi.org/10.1209/0295-5075/84/30007
http://dx.doi.org/10.1103/PhysRevE.82.011142
http://dx.doi.org/10.1007/s10440-010-9585-3
http://dx.doi.org/10.1103/PhysRevLett.103.100502
http://dx.doi.org/10.1103/PhysRevLett.103.100502
http://dx.doi.org/10.1103/PhysRevLett.106.020401
http://dx.doi.org/10.1103/PhysRevLett.106.020401
http://dx.doi.org/10.1103/PhysRevA.82.012108
http://dx.doi.org/10.1103/PhysRevB.55.11029
http://dx.doi.org/10.1103/PhysRevB.55.11029
http://dx.doi.org/10.1088/0305-4470/35/9/307
http://dx.doi.org/10.1103/PhysRevLett.106.220601
http://dx.doi.org/10.1088/1742-5468/2010/05/L05002
http://dx.doi.org/10.1088/1751-8113/43/41/415004
http://dx.doi.org/10.1103/PhysRevLett.102.207207
http://dx.doi.org/10.1103/PhysRevLett.102.207207
http://dx.doi.org/10.1103/PhysRevLett.105.060603
http://dx.doi.org/10.1103/PhysRevE.59.4912
http://dx.doi.org/10.1103/PhysRevE.59.4912
http://dx.doi.org/10.1103/PhysRevE.71.036102
http://dx.doi.org/10.1103/PhysRevE.71.036102

