Selective Adsorption of C₆₀ on Ge/Si Nanostructures

Stefan Korte, Konstantin Romanyuk, Bastian Schnitzler, Vasily Cherepanov, and Bert Voigtländer

Peter Grünberg Institut (PGI-3), Forschungszentrum Jülich, 52425 Jülich, Germany, and JARA-Fundamentals of Future Information Technology

Sergey N. Filimonov

Department of Physics, Tomsk State University, Tomsk, 634050 Russia (Received 30 November 2011; published 12 March 2012)

Selective adsorption of C_{60} on nanoscale Ge areas can be achieved, while neighboring Si(111) areas remain uncovered, if the whole surface is initially terminated by Bi. Fullerene chemisorption is found at Bi vacancies which form due to partial thermal desorption of the Bi surfactant. The growth rate and temperature dependence of the C_{60} adsorption were measured using scanning tunneling microscopy and are described consistently by a rate equation model. The selectivity of the C_{60} adsorption can be traced back to an easier vacancy formation in the Bi layer on top of the Ge areas compared to the Si areas. Furthermore, it is also possible to desorb C_{60} from Ge areas, allowing the use of C_{60} as a resist on the nanoscale.

DOI: [10.1103/PhysRevLett.108.116101](http://dx.doi.org/10.1103/PhysRevLett.108.116101) PACS numbers: 68.55.ag, 68.55.ap

Nanostructuring using epitaxial growth processes can lead down to sizes in the single digit nanometer range or even ultimately to the single molecule or atom range which is not accessible by lithography. Serious challenges in these efforts are size fluctuations during the growth process and the ability to place self-assembled nanostructures at desired positions. However, in some cases it has been possible to grow nanowires of Fe or organic molecules using regularly stepped Si surfaces as templates [[1](#page-4-0)[,2\]](#page-4-1). A great help in these nanostructuring attempts is the ability to directly inspect the nanostructure formation by chemically sensitive surface imaging techniques. For instance, in our previous studies it has been shown that the use of Bi as a surfactant $[3,4]$ $[3,4]$ $[3,4]$ $[3,4]$ $[3,4]$ not only largely suppresses Si/Ge intermixing but also allows the distinction between Si and Ge on the nanometer scale [[5,](#page-4-4)[6\]](#page-4-5). Using a step flow growth mode during Bi mediated Ge epitaxy on a vicinal Si(111) substrate, we successfully fabricated an array of 4 nm wide one atomic layer high Ge nanowires [[7](#page-4-6)]. These nanowires are quite appealing from the structural point of view and could serve as templates for growth of even more complicated nanostructures based on different material combinations (e.g., metal on semiconductor). However, attempts to either desorb Bi selectively from Ge areas or decorate the Ge nanowires by a metal have failed so far [[8](#page-4-7)]. The fundamental reason for this lack of selectivity is that Si and Ge are, in fact, chemically very similar materials. To achieve the selectivity a physical mechanism has to be found that would enhance the material difference.

In this Letter we show that the use of surfactants is a means to control the selectivity of C_{60} adsorption and leads to new nanostructuring opportunities. Deposition of C_{60} on a Bi-terminated surface results in selective replacement of Bi by C_{60} in Ge surface areas [Fig. [1\(a\)\]](#page-0-0). Our analysis shows that the high selectivity of C_{60} adsorption is made possible due to a complex mechanism of C_{60} adsorption, involving the formation of vacancies in the Bi layer followed by vacancy-mediated chemisorption of C_{60} on Ge surface areas only.

FIG. 1 (color online). (a) Selective growth of C_{60} on Ge areas, while Si areas remain uncovered. The slight height difference between Si and Ge areas is highlighted by dashed lines at the Si/Ge boundaries. The C₆₀ are seen as round protrusions with intramolecular structure on the Ge areas. $(5 \text{ ML } C_{60}$ deposited at $T = 440$ °C during 10 min) (b) Selective adsorption of C₆₀ at Si step edges (2 ML C₆₀ deposited at $T = 420$ °C during 10 min).

In our experiments a Bi-terminated Si(111) surface was prepared by adsorbing one atomic layer of Bi (1 ML Bi corresponds to 7.8×10^{14} atoms/cm²) on the clean $Si(111) - (7 \times 7)$ $Si(111) - (7 \times 7)$ $Si(111) - (7 \times 7)$ as described in [7]. Then a submonolayer amount of Ge (1 ML Si or Ge corresponds to 1.56×10^{15} atoms/cm²) was deposited. During Ge growth Bi floated up at the surface as usual in surfactant mediated growth [[4\]](#page-4-3). A Bi flux was maintained during Ge growth in order to keep a 1 ML Bi termination. C_{60} was evaporated from a Knudsen cell. Upon the growth the surface was imaged with STM.

Figure [1\(a\)](#page-0-0) shows an STM image of a Si(111) sample on which Ge nanowires have been grown at step edges using Bi mediated epitaxy. The borders between the Si and the Ge areas (each with 1 ML Bi on top), which show different apparent heights in the STM images [\[5,](#page-4-4)[6\]](#page-4-5), are highlighted by dashed lines. Subsequently 5 ML of C_{60} were deposited onto this Ge nanowire template at a temperature of 440 °C. As seen in Fig. [1\(a\)](#page-0-0) only a small fraction of the deposited 5 ML of C_{60} actually remains on the surface whereby C_{60} adsorbs selectively on the Ge areas. The selectivity is perfect in the sense that virtually no C_{60} adsorbs on the Si; however, the Ge nanowires are not completely covered by C_{60} . When no Ge area is present on the surface, deposition of C_{60} on Bi/Si(111) leads to selective adsorption of C_{60} at the Si step edges [Fig. [1\(b\)](#page-0-0)].

In order to identify the reason for the selective adsorption of C_{60} on Ge areas we analyzed the C_{60} adsorption as a function of temperature, which shows a different behavior on the surfactant terminated surface than on clean Si or Ge [\[9](#page-4-8),[10](#page-4-9)]. The results are summarized schematically in Fig. [2.](#page-1-0) At room temperature C_{60} adsorbs on top of the Bi layer and forms large two-dimensional islands consisting of well-ordered hexagonally arranged C_{60} molecules. The

FIG. 2 (color online). Schematic of the C_{60} adsorption on Si (Ge) as a function of temperature. (a) At room temperature C_{60} adsorbs in a weakly bound physisorption state on top of the Bi layer. (b) At 200–400 °C no C_{60} adsorption occurs. (c) Above 420 °C chemisorption of C_{60} occurs at Bi vacancies on Ge. (d) Under Bi flux C_{60} desorbs from the Ge surface.

observed height of the C_{60} islands above the Bi layer of \sim 8 Å is close to the distance between the (111) planes in a bulk fullerite $(8.15 \text{ Å } [11])$ $(8.15 \text{ Å } [11])$ $(8.15 \text{ Å } [11])$, which suggests a weak van der Waals bonding of C_{60} to Bi/Ge/Si(111) and $Bi/Si(111)$ surfaces. In this weakly bound physisorption state C_{60} shows no selectivity and grows both on Si and on Ge areas. After short annealing at $200\degree C$ the physisorbed C_{60} layer completely desorbs, restoring the Bi covered surface. Depositing C_{60} in a temperature range of 200–400 °C does not lead to any adsorption of C_{60} [Fig. [2\(b\)](#page-1-1)].

At temperatures above 420 $^{\circ}$ C adsorption of C₆₀ could be seen on Ge, and starting from about 460 °C also on Si terraces [\[12\]](#page-4-11), leading to a complete coverage of C_{60} on the Ge and Si areas. At Si step edges the adsorption occurs already at somewhat lower temperatures, cf. Fig. [1\(b\)](#page-0-0). However, in this high temperature range the adsorption mechanism differs considerably from that observed at room temperature. At submonolayer surface coverages most of the C_{60} adsorb either as single molecules, or forming small irregular clusters. The measured apparent height of the C₆₀ above the surrounding Bi layer is only 4 A which is much smaller than the \sim 8 Å measured for the physisorbed C_{60} , suggesting that at elevated temperatures C_{60} adsorbs directly to Si (Ge), i.e., without Bi below C_{60} [Fig. [2\(c\)](#page-1-1)]. The irregular arrangement of the C_{60} clusters hints at the strong covalent bonding of C_{60} to the underlying Si (Ge) surface, in agreement with results of studies on C_{60} adsorption on clean $Si(111)$ and $Ge(111)$ surfaces [\[13\]](#page-4-12).

Direct bonding of C_{60} to Si and Ge surfaces may occur either at vacancies in the Bi layer or via displacement of Bi atoms by C_{60} . In the following we will present an experimental proof of the vacancy-mediated chemisorption of C_{60} on the Bi-terminated Si(111) surface. In control experiments we deposited the same amount of C_{60} in two different ways. In the first experiment, 1.3 ML of C_{60} was deposited continuously for 5 min at 480° C, while in the second experiment the sample was first annealed for 5 min at 480 °C and then the same amount of C_{60} was deposited in a burst of only 10 sec at a low temperature of 350 °C. STM images of the surface after C_{60} deposition in the first and the second experiment are shown in Figs. [3\(a\)](#page-2-0) and [3\(b\)](#page-2-0), respectively. As can be seen, both the amount of C_{60} that actually stick to the surface (approximately 0.3%) of the deposited 1.3 ML) and the density of C_{60} clusters $(4500 \ \mu m^{-2})$ are almost identical in both cases. This indicates that the annealing phase lasting the same time as the continuous deposition experiment, determines the island density and not the actual C_{60} deposition which was performed at a 30 times higher deposition rate.

The major effect of the annealing is a partial desorption of Bi and formation of vacancies in the Bi layer which can be directly seen in an STM image of the surface after merely annealing for 5 min at 480° C [Fig. [3\(c\)\]](#page-2-0). Therefore, we conclude that the chemisorption of C_{60}

FIG. 3. (a) Formation of 2D C_{60} islands on a Bi covered Si (111) surface during continuous deposition (1.3 ML C_{60} deposited at $T = 480$ °C during 5 min). (b) Two step deposition consisting of annealing at $T = 480 \degree C$ for 5 min and then a burst deposition of C_{60} for 10 sec (1.3 ML C_{60} deposited at $T = 350 \degree C$. This leads to the same island density as in (a). (c) Formation of Bi vacancies after annealing for 5 min at $T = 480$ °C. (d) Single vacancies and vacancy islands in the Bi layer created by 15 min annealing at $T = 480 \degree C$.

occurs at vacancies in the Bi layer which are formed by thermal desorption of Bi.

A more detailed analysis of the vacancies shows that there are single vacancies where only one Bi trimer of the there are single vacancies where only one Bi trimer of the $\sqrt{3} \times \sqrt{3}$ Bi reconstruction has converted to a Bi monomer, as well as small vacancy islands with more Bi trimers reduced to the $1/3$ ML coverage Bi monomer phase [Fig. [3\(d\)](#page-2-0)]. The density of the observed vacancy islands corresponds well to the density of C_{60} single molecules plus C_{60} clusters observed in the experiments shown in Figs. [3\(a\)](#page-2-0) and [3\(b\)](#page-2-0); therefore, we conclude that one missing Bi trimer is not enough to trigger C_{60} adsorption, but larger vacancies are needed as nucleation centers for C_{60} .

As an additional check for the proposed adsorption mechanism of C_{60} on Bi/Si(111) we have performed C_{60} deposition under the same conditions as in the experiment shown in Fig. [3\(a\)](#page-2-0) but supplying a Bi flux to prevent Bi desorption. In this case the formation of Bi vacancies is inhibited (deposited Bi fills the vacancies), and the vacancy-mediated C_{60} chemisorption should be suppressed. The control experiments confirmed this prediction.

Selective adsorption of C_{60} at Si step edges observed on $Bi/Si(111)$ at 420 °C [Fig. [1\(b\)\]](#page-0-0) is also in agreement with the proposed vacancy-mediated adsorption mechanism. As has been shown in a previous study, Bi desorbs from the upper side of the Si step edges at temperatures for which the Bi termination of the $Si(111)$ terraces is still maintained [\[7\]](#page-4-6). This allows C_{60} molecules to bind covalently to Si forming one-dimensional chains at the descending Si steps.

Based on the experimental observations the following model of the high temperature submonolayer growth of C_{60} on Bi-terminated $Si(111)$ and $Ge(111)$ surfaces is proposed. C_{60} molecules arriving at the surface with the incoming flux F first adsorb in a weakly bound physisorbed (precursor) state on top of the Bi layer. The physisorbed C_{60} molecules are very mobile as can be seen from the low density and large size of the islands formed on $Bi/Si(Ge)/Si(111)$ at room temperature deposition. From the precursor state C_{60} can either desorb or go to the chemisorbed state by finding a vacancy island in the Bi layer where C_{60} can bind directly to the Si(Ge) surface. Alternatively the C_{60} can attach to an already existing chemisorbed C_{60} island by displacing chemisorbed Bi to its precursor state on top of the Bi layer. Since chemisorption immobilizes C_{60} , a single chemisorbed C_{60} molecule represents a stable nucleus which can grow further by capturing more migrating precursor molecules. The rate of nucleation of the C_{60} islands (i.e., of single chemisorbed C_{60} molecules plus C_{60} clusters) is therefore given by the rate of filling the Bi-vacancy islands by C_{60} precursors.

To confirm the proposed adsorption mechanism we have constructed a rate equations model describing the C_{60} nucleation kinetics. The rate equations are expressed in terms of spatially uniform densities of precursor C_{60} molecules on top of the Bi layer *n*, single Bi vacancies n_v , vacancy islands N_v , and C_{60} islands N. These equations relate the experimentally observable macroscopic quantities, such as N, with the kinetic rates of atomic scale surface processes:

$$
\frac{dn}{dt} = F - J_{\text{des}} - DnN_v - D^*nN \tag{1}
$$

$$
\frac{dn_v}{dt} = k_v - G_v \tag{2}
$$

$$
\frac{dN_v}{dt} = G_v - DnN_v \tag{3}
$$

$$
\frac{dN}{dt} = DnN_v.
$$
\n(4)

Here F and J_{des} are the C₆₀ deposition and desorption fluxes, respectively, D is the attachment rate of a precursor C_{60} to a Bi-vacancy island, D^* is the attachment rate of a precursor C_{60} to an existing C_{60} island, k_v is the formation rate of single Bi vacancies, and G_v is the formation rate of vacancy islands. Writing Eqs. ([2\)](#page-2-1) and [\(3](#page-2-2)) we assumed rapid desorption of Bi adatoms adsorbed on top of the Bi layer and therefore neglected the terms describing the refilling of single vacancies and vacancy islands by Bi adatoms. It follows from Eqs. [\(2](#page-2-1))–([4\)](#page-2-3) that in a steady state the C_{60} islands nucleate at the same rate as new single Bi vacancies form, and the steady-state density of C_{60} islands is given by

$$
N \sim t \exp(-E/k_B T). \tag{5}
$$

Here t is the deposition time, T is the substrate temperature, and E is the activation energy for the creation of a single vacancy in the Bi layer. Bearing in mind that the vacancy islands have a Bi monomer structure, as shown in Fig. [3\(d\),](#page-2-0) we assume the Bi trimer dissociation together with the transfer of two Bi atoms to a weakly bound adsorption state on top of the Bi layer as the rate limiting step for the vacancy formation and associate the activation energy E with this process.

It follows from Eq. ([5](#page-3-0)) that the total density of single C_{60} molecules plus C_{60} clusters chemisorbed on the Biterminated $Si(111)$ or $Ge(111)$ surface, N, should not depend on the C_{60} deposition rate and should obey an Arrhenius-type temperature dependence increasing with increasing substrate temperature. The increasing temperature dependence of the C_{60} island density is in contrast to the predictions of standard nucleation theories [[14](#page-4-13)], and is directly related to the proposed vacancy-mediated nucleation mechanism of C_{60} . Here higher temperatures mean a higher rate of vacancy formation, and, hence, higher C_{60} island density. The experimental rate and temperature dependences of the density of C_{60} islands on Bi/Si (111) are shown in Figs. [4\(a\)](#page-3-1) and [4\(b\)](#page-3-1) and agree with the predictions of Eq. [\(5](#page-3-0)). Good agreement of the experimentally measured flux and temperature dependencies of the C_{60} island densities with that predicted by rate equations confirm the proposed atomistic mechanism of the C_{60} adsorption. A slight increase of the C_{60} island density with the deposition flux F seen in Fig. [4\(a\)](#page-3-1) indicates that our assumption of the balance between the Bi-vacancy creation and filling by C_{60} is only approximately fulfilled and for lower fluxes some of the Bi vacancies are refilled by Bi adatoms, inhibiting the C_{60} chemisorption.

An Arrhenius-type temperature dependence was also found for the C₆₀ island density on Ge(1 ML)/Si(111) as shown in Fig. [4\(b\).](#page-3-1) By fitting the experimentally measured C_{60} island densities with Eq. ([5](#page-3-0)) we obtain a much higher vacancy formation energy for Bi on Si $(3.2 \pm 0.3 \text{ eV})$ than for Bi on Ge $(1.7 \pm 0.3 \text{ eV})$. This finally explains the selectivity of the C_{60} chemisorption. One can tune the temperature to a range (T_{sel}) , such that Bi-vacancy formation occurs readily at the Ge areas, leaving Bi vacancies which can serve as nucleation centers for C_{60} , while on the neighboring Si areas the activation energy for a Bi-vacancy formation is so high that no Bi vacancies form at T_{sel} . There might be also additional factors that enhance C_{60} adsorption selectivity even further. For instance, Bi desorption energy from the top of the Bi layer on Si might be higher than from the Bi layer on Ge. In this case the density of Bi precursors will be larger on the Si areas suppressing the vacancy formation there.

In order to use C_{60} as a resist in further nanostructuring attempts it is necessary to be able also to remove it from the surface after use. Simple annealing did not result in a

FIG. 4 (color online). Rate dependence (a) and temperature dependence (b) of the C_{60} island density on a 1 ML Bi/Si(111) surface. In (b) additionally the C_{60} island density on a $Bi:Ge/Si(111)$ surface is shown. The smaller slope indicates a lower vacancy formation energy for Bi on Ge than for Bi on Si. Growth conditions where (a) deposition at $480\degree$ C for 5 min, (b) 0.8 ML C_{60} during 2 min. The error bars were estimated from the counting statistics and an assumed error of 10% for the measurement of the area due to the nonlinearity of the piezo elements.

desorption; however, annealing of a C_{60} covered Ge(1 ML)/Si(111) surface at $420 °C$ in a flux of Bi (4 ML/min) leads to a desorption of C_{60} [\[12\]](#page-4-11) according to the mechanism sketched in Fig. [2\(d\).](#page-1-1) The Bi substitutes the C_{60} and fills the vacancies in the Bi termination layer. An almost complete C_{60} desorption can be achieved, leaving less than 1% of the C₆₀ bound to the surface. This occurs probably because the remaining C_{60} bond to Si, since due to some residual Ge/Si intermixing a small amount of Si is also present at a nominally Ge covered surface [[6\]](#page-4-5). On the other hand C_{60} chemisorbed on a Si (111) surface cannot be desorbed, with or without Bi flux. While annealing to temperatures up to $650\degree C$ leaves the C_{60} on Si(111) unchanged, annealing beyond 700 °C leads to a decomposition of the C_{60} , as already reported previously [\[15\]](#page-4-14).

In conclusion, selective adsorption of C_{60} at Ge areas and at Si step edges has been achieved. The mechanism for the selective adsorption is the nucleation and growth of C_{60} at Bi vacancies which form preferentially on Ge areas due to the lower vacancy formation energy compared to Si, as revealed by our growth model. It is possible to selectively cover Ge nanowire templates, with C_{60} (and to remove it afterwards) in order to use C_{60} as a resist in further nanostructuring steps.

- [1] J.-L. Lin, D. Y. Petrovykh, A. Kirakosian, H. Rauscher, F. J. Himpsel, and P. A. Dowben, [Appl. Phys. Lett.](http://dx.doi.org/10.1063/1.1345830) 78, 829 [\(2001\)](http://dx.doi.org/10.1063/1.1345830).
- [2] H. Rauscher, T. A. Jung, J.-L. Lin, A. Kirakosian, F. J. Himpsel, U. Rohr, and K. Müllen, [Chem. Phys. Lett.](http://dx.doi.org/10.1016/S0009-2614(99)00236-5) 303, [363 \(1999\)](http://dx.doi.org/10.1016/S0009-2614(99)00236-5).
- [3] M. Copel, M. C. Reuter, Efthimios Kaxiras, and R. M. Tromp, [Phys. Rev. Lett.](http://dx.doi.org/10.1103/PhysRevLett.63.632) 63, 632 (1989).
- [4] M. Horn-von Hoegen, [Appl. Phys. A](http://dx.doi.org/10.1007/BF00348268) **59**, 503 (1994).
- [5] M. Kawamura, N. Paul, V. Cherepanov, and B. Voigtländer, Phys. Rev. Lett. 91[, 096102 \(2003\)](http://dx.doi.org/10.1103/PhysRevLett.91.096102).
- [6] N. Paul, S. Filimonov, V. Cherepanov, M. Cakmak, and B. Voigtländer, Phys. Rev. Lett. 98[, 166104 \(2007\)](http://dx.doi.org/10.1103/PhysRevLett.98.166104).
- [7] K. Romanyuk, J. Myslivecek, and V. Cherepanov et al., Phys. Rev. B 75[, 241309\(R\) \(2007\).](http://dx.doi.org/10.1103/PhysRevB.75.241309)
- [8] V. Cherepanov and B. Voigtländer, [Surf. Sci.](http://dx.doi.org/10.1016/j.susc.2008.03.045) 602, 1954 [\(2008\)](http://dx.doi.org/10.1016/j.susc.2008.03.045).
- [9] Y. Z. Li, M. Chander, J. C. Patrin, J. H. Weaver, L. P. F. Chibante, and R. E. Smalley, Phys. Rev. B45[, 13837 \(1992\).](http://dx.doi.org/10.1103/PhysRevB.45.13837)
- [10] Hang Xu, D.M. Chen, and W.N. Creager, [Phys. Rev. B](http://dx.doi.org/10.1103/PhysRevB.50.8454) 50[, 8454 \(1994\).](http://dx.doi.org/10.1103/PhysRevB.50.8454)
- [11] Y. Iwasa, T. Arima, and R. M. Fleming et al., [Science](http://dx.doi.org/10.1126/science.264.5165.1570) 264, [1570 \(1994\)](http://dx.doi.org/10.1126/science.264.5165.1570).
- [12] See Supplemental Material at [http://link.aps.org/](http://link.aps.org/supplemental/10.1103/PhysRevLett.108.116101) [supplemental/10.1103/PhysRevLett.108.116101](http://link.aps.org/supplemental/10.1103/PhysRevLett.108.116101) for STM images showing C_{60} simultaneously adsorbed on Ge and Si, and C_{60} desorption experiments on Ge.
- [13] P.J. Moriarty, [Surf. Sci. Rep.](http://dx.doi.org/10.1016/j.surfrep.2010.08.001) 65, 175 (2010).
- [14] J. A. Venables, G. D. T. Spiller, and M. Hanbücken, [Rep.](http://dx.doi.org/10.1088/0034-4885/47/4/002) Prog. Phys. 47[, 399 \(1984\)](http://dx.doi.org/10.1088/0034-4885/47/4/002).
- [15] D. Chen and D. Sarid, *Phys. Rev. B* **49**[, 7612 \(1994\)](http://dx.doi.org/10.1103/PhysRevB.49.7612).