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Excitation energies and transition probabilities of the first 2+ excitations in even tin and lead
isotopes as well as the quadrupole moments of odd neighbors of these isotopes are calculated within
the self-consistent Theory of Finite Fermi Systems based on the Energy Density Functional by
Fayans et al. The effect of the density dependence of the effective pairing interaction is analyzed
in detail by comparing results obtained with volume and surface pairing. The effect is found to be
noticeable. For example, the 2+-energies are systematically higher at 200-300 keV for the volume
paring as compared with the surface pairing case. But on the average both models reasonably agree
with the data. Quadrupole moments of odd-neutron nuclei are very sensitive to the single-particle
energy of the state λ under consideration due to the Bogolyubov factor (u2

λ − v2λ). A reasonable
agreement with experiment for the quadrupole moments has been obtained for the most part of odd
nuclei considered. The method used gives a reliable possibility to predict quadrupole moments of
unstable odd nuclei including very neutron rich ones.

PACS numbers: 21.10.-k, 21.10.Jx, 21.10.Re, 21.60-n

I. INTRODUCTION

Presently there are two theoretical approaches which
can quantitatively describe the bulk properties of nuclear
isotope chains with a small number of effective coupling
constants: selfconsistent mean field theories and density-
functional theory. The successes and open problems of
the mean field approaches are reviewed in Refs. [1–3].
The Kohn-Sham density functional theory was originally
proposed for chemistry and solids [4, 5]. Important theo-
retical developments have been made: an extension of the
Hohenberg-Kohn theorem to pairing degrees of freedom
by Oliveira, Gross, and Kohn allowed studies of super-
fluids [6] and the generalization of functional theory to
study excited states made it possible to investigate the
electromagnetic response of correlated electron materials
[7]. In nuclear physics, a self-consistent Theory of Fi-
nite Fermi Systems (TFFS) was derived by Khodel and
Saperstein [8] on the basis of the TFFS by Migdal [9] sup-
plemented with the many-body theory self-consistency
relation [10] for the nucleon mass operator. As it was
shown in [11], the self-consistent TFFS for nuclei with-
out pairing can be reformulated as a particular version
of the density functional method with a rather compli-
cated ρ-dependence of the energy functional. It contains
also τ -dependent terms but with rather small strength
resulting for the effective mass in a small difference of
|m∗

n,p(r) −m| ≃ 0.05m. In a series of articles by Fayans

et al. [12, 13], (see also [14] and Refs. therein) the energy
density functional (EDF) method was generalized for su-
perfluid nuclei. Just as in the original Kohn–Sham ap-
proach, the identity m∗ = m was imposed. A fractional
form of the density dependence for the central part of
the normal component of the EDF was introduced. The
coordinate dependence of it resembled that of [11] but
the functional form was much simpler making the self-
consistent QRPA calculations easier. Note that a recent
generalization of the Skyrme force in [15] contains a new
term with a density dependence resembling that in [14].
In addition, the velocity dependent force in [15] is rather
weak leading to the effective mass m∗ ≃ 0.9m. Thus,
the selfconsistent mean field approaches may eventually
converge with the density functional methods.

The non-relativistic versions of the self-consistent
mean field theories introduce three-nucleon forces which
are often expressed as a density dependent two-body in-
teraction. In general, one assumes a fractional power of
the density dependence. Recent advances in Effective
Field Theory open the possibility to connect the density
functional with the effective two- and three- nucleon sys-
tems which are determined from two-nucleon scattering
and few-nucleon reactions. Reviews about the current
status of such attempts are given in Refs.[16, 17].

The question arises whether the pairing interaction
should have an analogous dependence on the normal nu-
clear density. Several studies derived pairing interactions
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from free two-nucleon interactions. Baldo et al. solved
the gap equation in semi-infinite nuclear matter [18], nu-
clear slab [19], and finite nuclei [20, 21]. The Paris and
Argonne v18 NN potentials were used, results being al-
most identical. To make results more appropriate for
practical nuclear self-consistent calculations dealing with
pairing in a model space, the pairing problem was treated
in a two-step way. The gap equation was solved in a
model space with limiting energy E0 = 30 ÷ 40 MeV
with the use of the effective pairing interaction. The lat-
ter is found in the subsidiary sub-space in terms of a free
NN potential. For all systems under consideration and
the two NN potentials the effective pairing interaction
found is much stronger, up to ten times, at the surface
than inside. The Milan group concentrated on the 124Sn
nucleus, a traditional benchmark for the nuclear pairing
problem, and solved the gap equation starting from the
Argonne v14 potential [22]. In addition to the free NN
interaction, they included corrections due to exchange
with low-lying surface vibrations (“phonons”) [23] and
high-lying excitations, mainly spin-dependent ones, [24].
In the last article, a local 3-parameter density-dependent
effective pairing interaction is constructed for the model
space with E0 = 60 MeV which reproduce approximately
exact gap values. Qualitatively, it is similar to that de-
scribed above. Without all corrections, it consists of a
strong surface attraction and very weak attraction inside.
Taking into account of the phonon exchange makes the
inner interaction repulsive. At last, inclusion of the spin-
dependent excitations makes the inner repulsion rather
strong. Thus, the ab initio calculations of the effective
pairing interaction predict essential density dependence
with strong surface attraction.

As an alternative to consideration of the gap equation
with complete realistic NN interactions, Bulgac and Yu
used the fact that this equation depends mainly on the
low-k behavior of NN force which can be approximated
with a rather simple analytical function. It helped to
develop a renormalization scheme for the gap equation
without any cutoff in terms of zero-range interactions
with explicit coordinate dependence of the effective pair-
ing interaction and to suggest an EDF for superfluid nu-
clei [25, 26].

The calculations by Fayans et al. employed both vol-
ume pairing and surface pairing interactions. The bind-
ing energies and the proton and neutron separation en-
ergies were found to be insensitive to the type of pairing
force used. But the odd-even staggering of charge radii
can be quantitatively reproduced only if the strong den-
sity dependence of the pairing force is introduced [14].

In this work, we investigate the excitation energies and
transition rates of the low-lying 2+-states in spherical nu-
clei with the aim to analyze the sensitivity of those ob-
servables to the details of the pairing interaction. We will
compare two opposite limits, the “volume pairing” with
density independent effective pairing interaction Fξ and
the case of the function Fξ with the surface dominance.
The latter will be named for brevity the “surface pair-

ing”. Several sets of calculations of these characteristics
of the first 2+-excitations were carried out recently within
the QRPA method with Skyrme force [27, 28] and within
the Generator Coordinate Method with the Gogny force
[29]. No systematic analysis of the density dependence of
the pairing force was performed in these studies. Deal-
ing with low-laying quadrupole excitations, it is natural
to include into analysis also quadrupole moments of odd
nuclei which give test of static quadrupole polarization.
In this paper, we use the EDF method [14] with the

functional DF3-a [30]. In the latter the spin-orbit and
effective tensor terms of the original functional DF3 [13,
14] were modified. All the QRPA-like TFFS equations
are solved in the self-consistent basis (ελ, ϕλ) obtained
within the EDF method with the functional DF3-a.

II. BRIEF OUTLINE OF THE FORMALISM

For completeness, we describe shortly the EDF method
of [14] using mainly the notation of [31]. In this method,
the ground state energy of a nucleus is considered as a
functional of normal and anomalous densities,

E0 =

∫
E [ρn(r), ρp(r), νn(r), νp(r)]d3r. (1)

The normal part of the EDF Enorm contains the cen-
tral, spin-orbit and effective tensor nuclear terms and
Coulomb interaction term for protons. The main, cen-
tral force, term of Enorm is finite range with Yukawa-type
coordinate dependence. It is convenient to extract the
δ(r − r′)-term from the Yukawa function separating the
rest of

D(r−r′) =
1

4πr2c |r− r′| exp
(
−|r− r′|

rc

)
−δ(r−r′) (2)

to generate the “surface” part Es which vanishes in in-
finite matter with ρ(r) = const. The Yukawa radius rc
is taken the same for the isoscalar and isovector chan-
nels. The “volume” part of the EDF, Ev(ρ), is taken
in [13, 14, 31] as a fractional function of densities ρ+ =
ρn + ρp and ρ− = ρn − ρp:

Ev(ρ) = C0

[
av+

ρ2+
2
fv
+(x) + av−

ρ2−
2
fv
−(x)

]
, (3)

where

fv
±(x) =

1− hv
1±x

1 + hv
2±x

. (4)

Here x = ρ+/(2ρ0) is the dimensionless nuclear den-
sity where ρ0 is the density of nucleons of one kind
in equilibrium symmetric nuclear matter. The factor
C0 = (dn/dεF)

−1 in Eq. (3) is the usual TFFS nor-
malization factor, inverse density of states at the Fermi
surface.
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To write down the surface term in a compact form
similar to (3), the “tilde” operator was introduced in [31]
denoting the following folding procedure:

φ̃(r) =

∫
D(r− r′)φ(r′)dr′. (5)

Then we obtain

Es(ρ) = C0
1

2

[
as+(ρ+f

s
+)

˜(f s
+ρ+) + as−(ρ−f

s
−)

˜(f s
−ρ−)

]
,

(6)
where

f s
±(x) =

1

1 + hs
±x

. (7)

All the above parameters, av±, a
s
±, h

v
1±h

v
2±, h

s
±, are dimen-

sionless.
In the momentum space, the operator (2) reads

D(q) = − (qrc)
2

1 + (qrc)2
. (8)

In the small rc limit it reduces to D(q) = −(qrc)
2, and

Eq. (6) could be simplified to a Skyrme-like form pro-
portional to (∇ρ)2.
The spin-orbit interaction reads

Fsl = C0r
2
0(κ+κ′

τ1τ2) [∇1δ(r1 − r2)× (p1 − p2)]·(σ1+σ2),
(9)

where the factor r20 is introduced to make the spin-
orbit parameters κ, κ′ dimensionless. It can be ex-
pressed in terms of the above equilibrium density, r20 =
(3/(8πρ0))

2/3.
In nuclei with partially occupied spin-orbit doublets,

the so-called spin-orbit density exists,

ρτsl(r) =
∑

λ

nτ
λ〈φτ∗

λ (r)(σl)φτ
λ(r)〉, (10)

where τ = n, p — is the isotopic index and averaging
over spin variables is carried out. As it is well known, see
e.g. [8], a new term appears in the spin-orbit mean field
induced by the tensor forces and the first harmonic ĝ1 of
the spin Landau–Migdal (LM) amplitude. We combine
those contributions into an effective tensor force or first
spin harmonic,

Fs
1 = C0r

2
0(g1 + g′1τ1τ2)δ(r1 − r2)(σ1σ2)(p1p2). (11)

In Table 1, we present all parameters of the normal
part of the EDF DF3-a we use. Note that the major
part of these parameters is identical to the ones used in
the DF3 functional [14]. With one exception, all parame-
ters for the central force part remained the same and only
the spin-orbit and the first spin harmonic are changed ac-
cording [30]. Application of the volume part (3) to equi-
librium nuclear matter, with the equilibrium relation, i.e.
vanishing pressure p(ρ) = ρ2∂(E/ρ)/∂ρ, permits to find
the parameters av+, h

v
1+ and hv

2+ in terms of the nuclear

matter density ρ0, the chemical potential µ0, and the
compression modulus K0 = 9dp/dρ. The asymmetry en-
ergy parameter β0 yields a relation between the constants
av−, h

v
1− and hv

2−. They are given in the upper half of Ta-
ble 1. The radius r0 introduced above is shown instead
of ρ0. The value used in Ref. [14] was recalibrated in
Ref. [30] to obtain a more accurate description of nu-
clear charge radii [32]. One more remark should be made
concerning the table. The “natural” TFFS normalizing
factor C0 = 2ε0F/(3ρ0) = 308.2 MeV fm3 corresponding
to parameters of nuclear matter in the third column of
the table differs from the one, C0 = 300 MeV fm3, recom-
mended in the second edition of the Migdal’s textbook on
the TFFS [33]. To make a comparison with other articles
within the TFFS, we recalculated all the strength param-
eters to the latter. It explains a small difference of some
values in the second column in the table from the original
those in [14]. An essential difference between DF3 and
DF3-a functionals takes place for the “spin-dependent”
sector in the bottom of the table. As we found in [30], the
second one describes the spin-orbit splitting of doublets
better.
The anomalous component of the EDF [14]reads

Ean(r) =
∑

τ

Fξ,ττ(r; [ρ])|ντ (r)|2, (12)

where the effective pairing interaction reads:

Fξ = C0f
ξ = C0

(
f ξ
ex + hξx2/3 + f ξ

∇
r20(∇x)2

)
. (13)

The first two terms are similar to those in the TFFS
[34, 35] or in the SHFB method [36]. The third in (13) is
a new one introduced in [13]. In this paper we use an ap-

proximate version of (13) with f ξ
∇
= 0. We will compare

two models for nuclear pairing: the “volume” pairing
(hξ = 0) and the “surface” pairing where both the pair-
ing parameters f ξ

ex and hξ are nonzero. One more remark
should be made concerning the pairing problem. In the
approach [14] pairing was considered in the coordinate
representation explicitly, solving the Gorkov equations
with the method developed in Ref. [37]. However, it
was found that the results are practically equivalent to
those obtained within a more simple BCS-like scheme us-
ing the gap ∆λλ′ = ∆λδλλ′ in a sufficiently large model
space, ελ < Emax. The effective pairing interaction (13)
for the BCS approximation is a little stronger than that
in the coordinate representation (at ≃ 5÷ 10%, depend-
ing on Emax). For the systematic calculations in this
article we use this simplified method of considering the
pairing problem with Emax = 36 MeV. We do not apply
this method for nuclei close to the dripline for which the
diagonal approximation doesn’t work [14].
Within the TFFS, the response of a nucleus to the ex-

ternal quadrupole field V0 exp (iωt) can be found in terms
of the effective field. In systems with pairing correlations,
equation for the effective field can be written in a com-
pact form as

V̂ (ω) = V̂0(ω) + F̂Â(ω)V̂ (ω), (14)
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TABLE I: Parameters of the normal part of the EDF

Parameter DF3 [14] DF3-a [30]
µ0, MeV -16.05 -16.05
r0, fm 1.147 1.145

K0, MeV 200 200
β, MeV 28.7 28.7

av
+ -6.598 -6.575

hv
1+ 0.163 0.163

hv
2+ 0.724 0.725
av
− 5.565 5.523

hv
1− 0 0

hv
2− 3.0 3.0
as
+ -11.4 -11.1

hs
+ 0.31 0.31

as
−

-4.11 -4.10
hs
− 0 0

rc, fm 0.35 0.35
κ 0.216 0.190
κ′ 0.077 0.077
g1 0 0
g′1 -0.123 -0.308

where all the terms are matrices. In the standard TFFS
notation [9], we have:

V̂ =




V
d1
d2


 , V̂0 =




V0

0
0


 , (15)

F̂ =




F Fωξ Fωξ

Fξω Fξ Fξω

Fξω Fξω Fξ


 , (16)

Â(ω) =




L(ω) M1(ω) M2(ω)
O(ω) −N1(ω) N2(ω)
O(−ω) −N1(−ω) N2(−ω)


 , (17)

where L, M1, and so on stand for integrals over ε of the
products of different combinations of the Green function
G(ε) and two Gor’kov functios F (1)(ε) and F (2)(ε). They
can be found in [9] and we write down here only the first
of them which is of the main importance for us,

L =

∫
dε

2πi

[
G(ε)G(ε+ ω)− F (1)(ε)F (2)(ε+ ω)

]
. (18)

Isotopic indices in Eqs. (15-17) are omitted for brevity.
In Eq. (16), F is the usual LM amplitude,

F =
δ2E
δρ2

, (19)

whereas the amplitudes Fωξ = Fξω stand for the mixed
second derivatives,

Fωξ =
δ2E
δρδν

. (20)

In the case of volume pairing, we have Fωξ = 0. The
explicit form of the above equations and (18) is written
down for the case of the electric (t-even) symmetry we
deal with. A static moment of an odd nucleus can be
found in terms of the diagonal matrix element 〈λ0|V (ω =
0)|λ0〉 of the effective field over the state λ0 of the odd
nucleon.
The effective field operator V̂ (ω) has a pole in the ex-

citation energy ωs of the state |s〉 under consideration,

V̂ (ω) =

(
V̂0Â(ωs)ĝ0s

)
ĝ0s

ω − ωs
+ V̂R(ω). (21)

The quantity ĝ0s has the meaning of the corresponding
excitation amplitude. It obeys the homogeneous coun-
terpart of Eq. (14) and is normalized as follows [9],

(
ĝ+0s

dÂ

dω
ĝ0s

)

ω=ωs

= −1, (22)

with obvious notation.
For excitation probabilities, it is more convenient to

use the transition density operator which is conjugated
to ĝ0s,

ρ̂tr0s = Âĝ0s. (23)

The explicit definition of the normal and anomalous
components of ρ̂tr0s is as follows

ρ
tr(0)
0s (r, r′) =

∫
dε

2πi
δG(r, r′; ε, ωs), (24)

ρ
tr(1,2)
0s (r, r′) =

∫
dε

2πi
δF (1,2)(r, r′; ε, ωs). (25)

The TFFS equation for transition densities for nuclei
with pairing correlations,

ρ̂tr0s = Â(ωs)F̂ ρ̂tr0s, (26)

is a complete analogue of the QRPA set of equations.
Therefore we will often name it the QRPA equation. The
transition density is normalized due to Eq. (22), and the
transition matrix element for the excitation of the state
|s〉 with the external field V0 is given by

M0s =

∫
V̂0ρ̂

tr
0s(r)dr. (27)

III. CHARACTERISTICS OF THE 2+1
EXCITATIONS

The formalism described in the previous Section was
used to describe 2+1 states in two isotopic chains of semi-
magic nuclei, lead and tin. We investigate both a pure
surface and a pure volume version of pairing. More cal-
culational details can be found in Ref. [14]. We use
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the so-called developed pairing approximation. In par-
ticular, we don’t make any corrections to particle non-
conservation effects induced with the Bogolyubov trans-
formation. Therefore in the vicinity of double magic nu-
clei, the results should be considered as very approxi-
mate. As it was found in [14], it is impossible to describe
neutron and proton separation energies Sn and Sp for all
nuclei, from calcium up to lead, with sufficient accuracy
using a fixed set of parameters in Eq. (13), the effective
strength of the pairing interaction should be diminished
with increasing nucleon number A.
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FIG. 1: (Color online) Neutron separation energies Sn for
lead isotopes. The volume pairing corresponds to (fξ

ex =
−0.31; hξ = 0), the surface one, to (fξ

ex = −1.05; hξ = 0.94).
The HFB theory predictions with the HFB-17 Skyrme func-
tional are taken from [38].
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FIG. 2: (Color online) Neutron separation energies Sn for
tin isotopes. The volume pairing corresponds to (fξ

ex =
−0.33; hξ = 0), the surface one, to (fξ

ex = −1.05; hξ = 0.92).
The HFB theory predictions with the HFB-17 Skyrme func-
tional are taken from [38].

In this paper, we limit ourselves to two long isotopic

chains, the lead and the tin chains. Therefore we deal
with neutron pairing only. A short comment should be
made on the procedure of solving the pairing problem.
No particle number projection procedure is used in our
calculations, i.e. particle number is conserved only on
average, corresponding to the chosen chemical potential
µ for the kind of nucleons under consideration. The accu-
racy of this approximation is examined in a lot of papers.
For the self-consistent SHF method with the SLy4 force,
it was found in recent article [39] that the average differ-
ence between exact and approximate gap values is 0.12
MeV, the error being bigger in vicinity of magic nuclei.

For finding the parameters of the pairing force (13)
we use the strategy of “soft” variation of them to obtain
better values of Sn for both the chains under considera-
tion. Values of Sn for both kinds of pairing are compared
with the data in Fig. 1 and Fig. 2. Explicit values of
the pairing parameters are given in the figure captions.
Remind that we use the two-parameter version of (13),

with f ξ
∇

= 0. For the volume pairing (hξ = 0), one pa-
rameter remains which is smaller for lead than for tin
approximately at 6%. For the surface pairing we deal
with a two-parameter form of Fξ. The “external” pair-
ing parameter f ξ

ex is taken A-independent, in accordance
with its physical meaning as the free NN T -matrix taken
at negative energy E = 2µ [18]. As to the second one,
hξ, it increases from the Sn chain to the Pb one at 2%,
the resulting pairing attraction again becoming weaker,
but only a little. Thus, the A-independence of the pair-
ing parameters in the case of surface pairing is weaker
than for the volume one. This finding suggests to fa-
vor surface pairing. As we see, the difference between
the predictions for neutron separation energies is small
for both versions and agreement with the experimental
data is nearly perfect. For comparison, we display the
predictions of the HFB-17 version of the Skyrme force
[36] which has a record accuracy in overall description
of nuclear masses. We see that for these two chains our
accuracy in description of neutron separation energies is
even better. Of course, we achieved the agreement by a
small variation of one of two paring parameters whereas
calculations [36] are carried out with an universal set of
parameters. However, the pairing part of the HFB-17
functional contains five parameters.

Fig. 3 demonstrates that the normal neutron density
ρn(r) and the anomalous one, νn(r), both are practi-
cally insensitive to the kind of paring used in the calcu-
lation. On the contrary, the gap itself is very sensitive.
For comparison, we took also a “medium” version, with
(f ξ

ex = −0.70; hξ = 0.50). It gives Sn value approxi-
mately with the same accuracy as the previous two.

Let us now examine to what extent predictions for
characteristics of 2+1 states are different for these two
versions of pairing force which are equivalent in describ-
ing the Sn values. A comment should be made be-
fore presenting results of the QRPA calculations. Our
QRPA code doesn’t include the spin-orbit (9) and spin
(11) terms of the effective interaction, therefore the self-
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FIG. 3: (Color online) Neutron density (pannel a), gap (b)
and anomalous density (c) in 200Pb nucleus. Solid and dot-
ted lines correspond to the surface and volume versions cor-
respondingly, the dashed one, to the medium version (fξ

ex =
−0.70; hξ = 0.50).

consistency is not complete and the excitation energy of
the ghost 1−-state does not automatically vanish. In the
present investigation, we fine tuned the parameter av+ in
(3) in order to decouple the ghost state. This change is
different for different nuclei but on average the value of
|av+| increases at ≃ 3% in comparison with that given in
Table 1.

Let us begin with the lead chain. Excitation ener-
gies ω2 are displayed in Fig. 4 and the probabilities
B(E2, up), in Fig. 5. Experimental data for both quan-
tities are taken from [40]. For comparison, results of
the QRPA calculations of [27] with the SkM* and SLy4
force are shown. Note that they were carried out with
density independent pairing. We see that the difference
δω2 = ωvol

2 − ωsurf
2 is, on average, of the order of 0.3

MeV, that is the effect under discussion is noticeable for
this quantity. The results for volume pairing are sys-
tematically higher, with the exception of the 210,212Pb
isotopes for which the two versions practically coincide.
Agreement with the data is, on average, quite reason-
able for both the versions. Predictions of both the SkM*
and SLy4 QRPA calculations for ω2 values have approx-
imately the same accuracy as ours.

For excitation probabilities the situation is more com-
plex. For isotopes heavier than 198Pb our “surface” and
“volume” curves are very close to each other. For lighter
part of the chain the volume pairing generates larger
probabilities than surface pairing does, producing differ-
ences up to ≃ 30%. Comparing with Fig. 4, we see
that there is some unusual correlation between excita-
tions energies and probabilities. Indeed, in magic nuclei
where the pairing is absent for low-lying collective excita-
tions there is a rule that a lower energy implies a larger
probability. It can be qualitatively explained with the
hydrodynamical Bohr-Mottelson (BM) model [41] which
gives a simple relation for the transition density of a L-
vibration:

ρtr,BM
L = αL

dρ

dr
, (28)

where αL = 1/
√
2ωLBL, and BL is the collective mass

parameter of the BM model proportional to the nuclear
mass. Then one obtains

B(EL, up) =
2L+ 1

2ωLBL
(ML)

2, (29)

where MBM
L = (3Ze/4π)RL−1, R being the nuclear ra-

dius. Thus, in the BM model a lower value of the excita-
tion energy ωL inevitably leads to a higher value of the
excitation probability. In our calculations, the situation
is opposite. In principle, this is not strange. Indeed, even
in magic nuclei the BM model works only qualitatively
[8]. If one solves equations of the self-consistent TFFS or
any HF+RPA equations for nuclei without pairing, Eq.
(28) remains approximately true, but the mass parameter
becomes ω-dependent and deviates from the BM model
prescription significantly [8]. In nuclei with pairing, the
situation becomes even more different from this simplest
model as the normal component of the transition density
(24) depends now from the anomalous transition ampli-

tudes ĝ
(1,2)
0s (see Eq. (26)). They strongly depend on

the kind of pairing. As a result, the correlation between
the ωL and B(EL) values of the BM-type (29) can be
destroyed.
Experimental probabilities are known only for four

even 204−210Pb isotopes. For all of them, the SkM* and
SLy4 calculations are in perfect agreement with the data.
Agreement of our calculations is poorer. It is especially
true for the magic 208Pb nucleus where there is no any
pairing. It should be noted that in this nucleus the collec-
tivity of the 2+1 -state is not high: the B(E2) value is only
about 8 single-particle units (spu). For a comparison,
the B(E3) value for the 3−1 -state exceeds 30 spu. But for
excitations with low collectivity in nuclei without pairing
the RPA solution depends strongly on the single-particle
spectrum, and even a small inaccuracy in the positions
of single-particle levels can change results significantly.
In any case, some modification of the normal part of the
functional DF3-a is necessary to obtain better agreement
for the 208Pb nucleus.



7

184 188 192 196 200 204 208 212

1

2

3

4

5

 exp.
 surf.
 vol.
 SkM*

 SLy4

 

 

E 2 (
M

eV
)

A

Pb

FIG. 4: (Color online) Excitation energies ω(2+1 ) for lead isotopes. Predictions for mean field approach with the forces
SkM*(dashed blue line) and SLy4(dashed green line) are taken from [27]. The energy density functional results are given by
the solid lines.

In the tin chain, see Fig. 6, the situation with the ex-
citation spectrum is partially similar to the one in lead.
Again, 2+1 -levels are higher for volume pairing than in the
surface case, and again the difference δω2 is ≃ 300 keV,
the surface predictions being closer to the experimental
data. As to the SkM* spectrum, for isotopes heavier than
122Sn it practically coincides with our “surface” one, both
being higher than the experimental spectrum by approx-
imately 200 ÷ 300 keV. For lighter isotopes, it deviates
from our surface spectrum significantly in an irregular
way whereas the latter practically coincides with the ex-
periment in this A region. As to the SLy4 spectrum, it
also looks reasonable for the heavy part of the chain but
for isotopes lighter of 124Sn it strongly oscillates around
the experimental curve. In the dip minimum for 112Sn
the ω2 value is less than the experimental one at approx-
imately 1 MeV and it is close to an instability.

The excitation probabilities are displayed in Fig. 7.
Here the results show a very complex pattern. For the
heavier part of the chain, beginning at the 124Sn nucleus,
our two theoretical curves and the SkM* practically co-
incide, all being close to the experiment. The SkM*
curve behaves in a non-regular way with strong devia-
tions from the experimental data, up to ≃ 50÷100%. The
Sly4 interaction produces excitation probabilities which
strongly decrease with the nucleon number A, implying

drastic deviations from the data. The density functional
approach is able to describe the A-dependence of the
experimental B(E2, up) values rather well. For lighter
tin isotopes, our two curves began to deviate from each
other, the volume one being higher by ≃ 25÷30%, and a
first glance may suggest that the volume pairing interac-
tion performs much better. On the other hand, one has
to notice the large error bars of the experimental data in
the mass region below A=114.

To investigate the role of pairing itself and of the type
of its density dependence in detail, let us analyze dif-
ferent components of the transition amplitude. Let us
begin from the anomalous terms ĝ(1,2) (the index “0s”
is for brevity omitted). They are displayed in Fig. 8
for the 200Pb nucleus. We see, first, that, for both the
versions, the g(1) amplitude value is much bigger than
|g(2)|. Second, the coordinate dependence of the main
g(1) amplitude is absolutely different for the two versions
under comparison. In the surface pairing case, a strong
surface maximum dominates whereas in the volume case
g(1) is spread over the volume, with rather strong oscil-
lations. In addition, it is seen that the integral effect of

g
(1)
surf should be noticeably bigger than that of g

(1)
vol. All

this shows some asymmetry for Bogolyubov quasiparti-
cles and quasiholes. Such a situation is typical for nuclei
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FIG. 5: (Color online)B(E2, up) values for lead isotopes. Predictions for the SkM* and SLy4 force are taken from [27].
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FIG. 6: (Color online) Excitation energies ω(2+1 ) for tin isotopes. Predictions for the SkM* and SLy4 force are taken from [27].
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FIG. 7: (Color online) B(E2,up) values for tin isotopes. Predictions for the SkM* and SLy4 force are taken from [27].
Experimental data are taken for 114−124Sn from [40], for 126−134Sn from [42], and for 106−112Sn from [43–45].

which are close to the magic core.
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FIG. 8: (Color online) The neutron anomalous transition am-

plitudes g(1,2) in 200Pb nucleus. Solid lines correspond to sur-
face, dotted to volume, and dashed, to the medium kind of
pairing, see Fig. 3.

The normal proton and neutron amplitudes g(0) for
the same nucleus are displayed in Fig. 9. As we see,
for this quantity the influence of the kind of pairing used

is minimal. Thus, evidently, the rather big value of the
difference δω2 ≃ 300 keV for this nucleus is explained
with different contributions of the anomalous amplitude
g(1) which is much stronger in the case of surface pair-
ing. For the transition densities, see Fig. 10, the effect is
rather small but a little bigger than for the normal ampli-
tudes g(0). This additional enhancement of the surface
maximum of ρtr(0)(r) in the surface pairing case again
originates from the term with g(1) in Eq. (23). In its
turn, it explains the increase of the B(E2) value in this
nucleus for the surface case.

Let us go to the tin chain. Figs. 11–13 present for the
118Sn nucleus the same quantities which were displayed
in Figs. 8–10 for the 200Pb nucleus. This nucleus is in the
middle of the chain, and all properties of the “developed”
pairing, in particular, particle-hole symmetry should take
place. Indeed, now (see Fig. 11) the amplitudes g(1)

and g(2) possess a similar form and absolute value and,
being of the opposite sign. In the result, we have |g(−) =
g(1) − g(2)| ≫ |g(+) = g(1) + g(2)| as it should be [9].
Again, as in the 200Pb case, the effect of the kind of
pairing on the magnitude of g(1,2) is drastic. As to that
for the normal amplitudes g(0) and transition densities
ρtr(0), again it is rather moderate but of the another sign.
Now in the volume case, the surface peaks in both these
quantities are higher and, correspondingly, the B(E2)
value is bigger. Evidently, in this case we deal with some
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FIG. 9: (Color online) The proton and neutron normal transi-

tion amplitudes g(0) in 200Pb nucleus. Solid lines correspond
to surface pairing, dotted ones, to volume pairing.
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FIG. 10: (Color online) The proton and neutron transition

densities ρtr(0) in 200Pb nucleus. Solid lines correspond to
surface pairing, dotted ones, to volume pairing.

destructive interference between normal and anomalous
contributions to solutions of the equations of Section 2.
To summarize, we see an effect of the type of pairing

on the characteristics of the 2+1 -states in spherical nuclei.
The excitation energies ω2 are systematically lower in the
surface case to δω2 ≃ 300 keV, and the surface values are,
as a rule, closer to the data. For B(E2) values, the effect
is not so regular and here the volume version predictions
on average look better. Thus, the present analysis is
compatible with both volume and surface pairing.
The issue could be naturally raised to what extent the

small differences seen in the observables can be traced to
the kind of pairing employed. In other words, is it possi-
ble to fine tune the interaction parameters such that the
both volume and surface pairing produce indistiguishable
results, while keeping the mass differences and separation
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FIG. 11: (Color online) The neutron anomalous transition

amplitudes g(1,2) in 118Sn nucleus. Solid lines correspond to
surface pairing, dotted ones, to volume pairing.
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FIG. 12: (Color online) The same as in Fig. 9 but for the
118Sn nucleus.

energies close to the experimental data? We carried out
such an analysis for the tin chain. We consider the double
mass differences

D(N) =
1

2

(
Sn(N)− 1

2
(Sn(N − 1) + Sn(N + 1))

)
,

(30)
N even, which is very sensitive to the value of pairing
gap. Note that the approximate relation D(N) ≃ ∆̄
takes place where ∆̄ is an average gap value. We cal-
culate the average difference between theoretical and ex-
perimental values of this quantity,

〈δD〉 =
√

1

N

∑

N

(Dth(N)−Dexp(N))
2
, (31)

N even. We include into the analysis isotopes from 106Sn
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FIG. 13: (Color online) The same as in Fig. 10 but for the
118Sn nucleus.

TABLE II: Dependence of the 2+1 -state characteristics of the
118Sn nucleus on the strength of pairing force.

version 〈δD〉 (MeV) ω2 (MeV) B(E2,up)(e2b2)
surface 0.10 1.216 0.172

vol. fξ = −0.33 0.11 1.470 0.206
vol. fξ = −0.32 0.16 1.375 0.193
vol. fξ = −0.34 0.11 1.570 0.216

till 128Sn for which the developed pairing approximation
seems to be reasonable. Results are presented in Table
II, for the surface pairing and for three versions of the
volume pairing with different values of the strength pa-
rameter f ξ. For all of them the characteristics of the
2+1 -state in the example 118Sn nucleus are given. It is
seen that with increase of |f ξ| from the optimal value
f ξ = −0.33 deviations from the surface version predic-
tions grow. With decrease of |f ξ| they become less, but
this effect is much less than the initial difference even
for the value f ξ = −0.32 for which description of the
mass differences is essentially worse than for the optimal
value. An additional decrease of |f ξ| will absolutely de-
stroy the nuclear mass description. In other isotopes of
the tin chain, influence of variation of the f ξ parameter
to values of ω2 and B(E2) is quite similar. Thus, the ef-
fect under discussion originates mainly due to the surface
nature of pairing versus the volume one.

In conclusion of this Section we compare in Fig. 14 the
charge transition density ρtrch(r) in the 118Sn nucleus with
the experimental transition charge density found with a
model independent analysis of the elastic electron scat-
tering in [46]. The theoretical charge density is obtained
from ρtrp (r) and ρtrn (r) functions displayed in Fig. 13 with
taking into account relativistic corrections [47]. For both
versions of pairing the agreement with the data is quite
reasonable, and it is a little better in the surface case.
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FIG. 14: (Color online) The charge transition densities ρ
tr(0)
ch

in 118Sn nucleus. Solid lines correspond to surface pairing,
dotted ones, to volume pairing.

IV. QUADRUPOLE MOMENTS OF ODD

NUCLEI
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FIG. 15: (Color online) Static effective fields Vn Vp and d+n
in 204Pb nucleus. Solid lines correspond to surface pairing,
dotted ones, to volume pairing.

Recently magnetic moments of odd spherical nuclei
have been calculated [48, 49] within the same self-
consistent approach as the one used here. A reasonable
description of the data for more than hundred of spher-
ical nuclei was obtained. Especially high accuracy was
reached for semi-magic nuclei considered in the “single-
quasiparticle approximation” where one quasiparticle in
the fixed state λ = (n, l, j,m) with the energy ελ is added
to the even-even core. According to the TFFS, a quasi-
particle differs from a particle of the single-particle model
in two respects. First, it possesses the local charge eq (in
our case, we have epq = 1, enq = 0), and, second, the core
is polarized due to the interaction between the particle
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FIG. 16: (Color online) Static effective fields Vn Vp and d+n
in 116Sn nucleus. Solid lines correspond to surface pairing,
dotted ones, to volume pairing.

and the core nucleons via the LM amplitude. In other
words, the quasiparticle possesses the effective charge eeff
caused by the polarizability of the core which is found by
solving the above TFFS equations. In the many-particle
Shell Model [50], a similar quantity is introduced as a
phenomenological parameter which describes polarizabil-
ity of the core consisting of outside nucleons.
In non-magic nuclei, the term quasiparticle takes a

double meaning. In addition to the initial LM concept
we consider the Bogolyubov quasiparticles with occu-
pation numbers nB

λ=(Eλ − ελ)/2Eλ and energies Eλ =√
(ελ − µ)2 +∆2

λ and solve the set of the QRPA equa-
tions (14) instead of one RPA equation.
The success of the single-quasiparticle approximation

in describing the magnetic moments of semi-magic nuclei
makes it of interest to try to use the same approach for
quadrupole moments. In this article, we do such anal-
ysis limiting ourselves with odd neighbors of the even
tin and lead isotopes considered in the previous Section.
To our knowledge, there is no systematic calculations of
quadrupole moments of these nuclei.
The static quadrupole moment of an odd nucleus in

the single particle state λ can be found in terms of the
effective field (14) with the static external field V0 =√
16π/5r2Y20(θ) as follows [9, 51]:

Qp,n
λ = (u2

λ − v2λ)V
p,n
λ , (32)

where uλ, vλ are the Bogolyubov coefficients and

Vλ = −2j − 1

2j + 2

∫
V (r)R2

nlj(r)r
2dr. (33)

The j-dependent factor in (33) appears due to the angu-
lar integral [52]. For j > 1/2 it is always negative. For
odd neighbors of a magic nucleus the “Bogolyubov” fac-
tor in (32) reduces to 1 for a particle state and to −1 for
a hole one.

Components of the static effective field V̂ (ω=0), that

is V n,p(r) and d+n (r)=d
(1)
n (r) + d

(2)
n (r), are displayed in

Figs. 15, 16 for 204Pb and 116Sn nuclei, correspondingly.
Note that the identity d−(ω=0)=0 takes place [9]. One
can see large surface maxima of the quantities V n,p(r)
similar to those in Figs. 9, 12 for the BM-like transition

amplitudes g
(0)
n,p(r). In-volume (“quantum”) corrections

are relatively small, therefore the integral in Eq. (33)
is always positive. For protons, it is noticeably larger
than the similar integral with the bare field V 0, see the
discussion on the effective charges below.

Diagonal matrix elements (33) of the proton effective
field are displayed in Fig. 17 for the tin isotopes and in
Fig. 18, for the lead ones. As it is seen, for a major part of
the tin isotopes, the difference between values of proton
matrix elements V p

λ surface and volume pairing is quite
small. Only for 112−116Sn nuclei it reaches 10%. In the
lead region, the difference is more pronounced reaching
≃ 30÷ 40% for 9/2− and 11/2− states.

Corresponding quadrupole moments for nuclei with
odd proton number Z = 50 ± 1 and Z = 82 ± 1 are
presented in Table III. As it was noted above, in this
case the Bogolyubov factor in (32) is trivial, equal to ±1.
In order to check our approach, we selected only nuclei
where there are experimental data and those which sat-
isfy presumably the single-quasiparticle approximation.
In particular, we excluded several light Tl isotopes with
known quadrupole moments of low-lying excited 9/2−

states. If to suppose that they are single-quasiparticle
1h9/2 states, they should have essentially higher excita-
tion energies than it takes place.

Experimental data are taken from the compilation [53].
From several cases of proton excited isomeric states we
limit ourselves with only two, the 1g ∗

7/2 state in the 121Sb

and 2d ∗

3/2 state in 205Tl nuclei, for which the hypothe-

sis on the single-quasiparticle structure seems to us more
or less safe. Again, we presented results for both the
kinds of nuclear pairing (the quantities Qsurf

th and Qvol
th

for surface and volume pairing, correspondingly). In the
6-th column of the table, the single-particle quadrupole
moment is presented which is found from Eqs. (32), (33)
with substitution V → V0. As it follows from Fig. 17, for
odd-proton neighbors of the tin isotopes, difference be-
tween values of quadrupole moments for surface and vol-
ume pairing is quite small, in limits of 10%. In the lead
region, see Fig. 18, the difference is more pronounced,
but here the number of the data is very small, only 4.
In addition, only in the 203,205Bi and 205Tl case neutron
pairing exists. For these nuclei, the effect under discus-
sion reaches ≃ 30÷ 40%.

For the long chain of twelve In isotopes agreement with
the data is quite reasonable. For five Sb isotopes (six val-
ues of the quadrupole moment) agreement is rather poor,
disagreement reaching ≃ 50÷ 100%. A similar situation
takes place for two lighter Bi isotopes. For the 209Bi iso-
tope where pairing is absent experimental data are con-
tradictory. We think that the main reason of existing
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TABLE III: Quadrupole moments Q (e b) of odd-proton nu-
clei.

nucl. λ0 Qexp Qsurf
th Qvol

th Q0 esurfeff evoleff
105In 1g9/2 +0.83(5) +0.83 +0.90 +0.18 4.6 5.0
107In 1g9/2 +0.81(5) +0.98 +1.07 +0.18 5.4 5.9
109In 1g9/2 +0.84(3) +1.11 +1.14 +0.18 6.2 6.3
111In 1g9/2 +0.80(2) +1.16 +1.10 +0.19 6.1 5.8
113In 1g9/2 +0.80(4) +1.12 +1.02 +0.19 5.9 5.4
115In 1g9/2 +0.81(5), 0.58(9) +1.03 +0.97 +0.19 5.4 5.1
117In 1g9/2 +0.829(10) +0.96 +0.95 +0.19 5.1 5.0
119In 1g9/2 +0.854(7) +0.91 +0.92 +0.19 4.8 4.8
121In 1g9/2 +0.814(11) +0.83 +0.84 +0.19 4.4 4.4
123In 1g9/2 +0.757(9) +0.74 +0.74 +0.19 3.9 3.9
125In 1g9/2 +0.71(4) +0.66 +0.74 +0.19 3.8 3.9
127In 1g9/2 +0.59(3) +0.55 +0.49 +0.19 2.9 2.6
115Sb 2d5/2 -0.36(6) -0.88 -0.81 -0.14 6.3 5.8
117Sb 2d5/2 -0(2) -0.82 -0.77 -0.14 5.9 5.5
119Sb 2d5/2 -0.37(6) -0.77 -0.76 -0.14 5.5 5.4
121Sb 2d5/2 -0.36(4), -0.45(3) -0.72 -0.73 -0.14 5.1 5.2

1g ∗

7/2 -0.48(5) -0.81 -0.81 -0.17 4.8 4.8
123Sb 1g7/2 -0.49(5) -0.74 -0.74 -0.17 4.4 4.4
205Tl 3d ∗

3/2 0.74(15) +0.23 +0.23 +0.12 1.9 1.9
203Bi 1h9/2 -0.68(6) -1.32 -0.91 -0.25 5.3 3.6
205Bi 1h9/2 -0.59(4) -0.94 -0.72 -0.25 3.8 2.9
209Bi 1h9/2 -0.37(3), -0.55(1) -0.34 -0.34 -0.25 1.4 1.4

-0.77(1), -0.40(5)

disagreements is neglecting the phonon coupling effects.

Let us go to odd-neutron nuclei, the odd tin and lead
isotopes. The results are presented in Table IV and Figs.
19,20. In selecting nuclei for the table, we used the same
concept as for protons. In this case, we included into the
analysis twelve excited states, in addition to the ground
ones. With the only exception of the 209Pb nucleus, all
the nuclei under consideration exhibit pairing effects and
the factor (u2

λ − v2λ) in Eq. (32) becomes non-trivial. It
changes permanently depending on the state λ and the
nucleus under consideration. Note that in the case of
magnetic moments the factor of (u2

λ + v2λ) = 1 appears
in the relation analogous to (32) [51]. In our case, this
factor determines the sign of the quadrupole moment.
In all cases when the sign of the experimental moment is
known the theoretical sign is correct. This permits to use
our predictions to determine the sign when it is unknown.
The factor under discussion depends essentially on values
of the single-particle basis energies ελ reckoned from the
chemical potential µ as we have (u2

λ−v2λ) = (ελ−µ)/Eλ.
Keeping in mind such sensitivity, we found this quantity
for a given odd nucleus (Z,N + 1), N even, with taking
into account the blocking effect in the pairing problem
[51] putting the odd neutron to the state λ under con-
sideration. For the Vλ value in Eq. (32) we used the
half-sum of these values in two neighboring even nuclei.
We consider agreement with the data reasonable if we
have |Qth − Qexp| < 0.1 ÷ 0.2 e b. If to use such a
criterion, there are 7 “bad” cases in Table IV, and 16
“good”. Several rather strong disagreements with the

experimental data in Table IV for high-j levels 1h11/2 in
Sn isotopes and 1i13/2 in Pb isotopes originate just from
their too distant positions from the Fermi level. Thus,
the Q values depend strongly on the single-particle level
structure. Again, as for protons, the difference between
predictions of the two models under consideration is, as
a rule, rather small, and only for 1i13/2-states in the lead
chain it reaches ≃ 20÷ 30%.

In the last two columns of Tables III and IV, the ef-
fective charges are presented which are defined as ep,neff =
V p,n
λ /(V p

0 )λ. It is a direct characteristic of the core polar-
izability by the quadrupole external field. In these tables,
there are only two nuclei, 209Bi and 209Pb, with a double-
magic core, and in this case the polarizability is rather
moderate, epeff = 1.4, eneff = 0.9. In nuclei with an unfilled
neutron shell it becomes much stronger, eeff ≃ 3 ÷ 6.
The reason is rather obvious. Indeed, for the case of a
positive parity field V0, virtual transitions inside the un-
filled shell begin to contribute and small energy denomi-
nators appear in the propagator Ln (18) playing the main
role in the problem under consideration. It enhances the
neutron response to the field V0 and, via the strong LM
neutron-proton interaction amplitude Fnp, the proton re-
sponse as well. Results for the chain 203,205,209Bi show
how the polarizability grows with increase of the number
of neutron holes. Keeping in mind this physics, one can
represent the effective charges as epeff = 1+eppol, e

n
eff = enpol

where ep,npol is the pure polarizability charge. To separate

TABLE IV: Quadrupole moments Q (e b) of odd-neutron nu-
clei.

nucleus λ0 Qexp Qsurf
th Qvol

th esurfeff evoleff
109Sn 2d5/2 +0.31(10) +0.25 +0.27 3.5 3.7
111Sn 1g7/2 +0.18(9) +0.05 +0.10 4.0 3.9
113Sn 1h ∗

11/2 0.41(4), 0.48(5) -0.78 -0.75 4.4 4.1
115Sn 1g ∗

7/2 0.26(3) +0.38 +0.38 3.9 3.6
1h ∗

11/2 0.38(6) -0.70 -0.67 4.2 3.8
117Sn 1h ∗

11/2 -0.42(5) -0.59 -0.58 3.9 3.7
119Sn 2d ∗

3/2 +0.094(11), -0.03 -0.02 3.0 2.9
-0.065(5),
-0.061(3)

1h ∗

11/2 0.21(2) -0.46 -0.45 3.6 3.5
121Sn 2d3/2 -0.02(2) +0.06 +0.08 2.9 2.9

1h ∗

11/2 -0.14(3) -0.29 -0.29 3.3 3.3
123Sn 1h11/2 +0.03(4) -0.12 -0.10 3.0 2.9
125Sn 1h11/2 +0.1(2) +0.04 +0.06 2.7 2.7
191Pb 1i ∗13/2 +0.085(5) +0.0004 +0.10 5.3 5.9
193Pb 1i ∗13/2 +0.195(10) +0.33 +0.39 6.5 5.5
195Pb 1i ∗13/2 +0.306(15) +0.69 +0.66 6.6 5.2
197Pb 3p3/2 -0.08(17) +0.19 +0.14 5.2 3.8

1i ∗13/2 +0.38(2) +0.98 +0.78 6.4 4.6
199Pb 3p3/2 +0.08(9) +0.27 +0.19 4.5 3.1
201Pb 2f5/2 -0.01(4) +0.14 +0.09 4.2 2.8
203Pb 2f5/2 +0.10(5) +0.28 +0.22 3.2 2.3
205Pb 2f5/2 +0.23(4) +0.34 +0.28 2.6 2.0

1i ∗13/2 0.30(5) +0.67 +0.56 3.0 2.2
209Pb 2g9/2 -0.3(2) -0.26 -0.26 0.9 0.9
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FIG. 17: (Color online) Diagonal matrix elements V p
λ of the effective proton quadrupole field in the tin isotopes. Solid lines

correspond to surface pairing, dotted ones, to volume pairing.
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FIG. 18: (Color online) The same as in Fig. 17, but for the lead isotopes.
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FIG. 19: (Color online) Quadrupole moments of odd tin isotopes. Solid lines correspond to surface pairing, dotted ones, to
volume pairing. Experimental data are shown with N for 3/2+, H for 11/2−, △ for 5/2+, and ▽ for 7/2+ states.

191 193 195 197 199 201 203 205 207
-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2
 3/2- surf.
 3/2- vol.
 13/2+ surf.
 13/2+ vol.
 5/2- surf.
 5/2- vol.

Pb

 

 

Q
 (e

 b
)

A

FIG. 20: (Color online) Quadrupole moments of odd lead isotopes. Solid lines correspond to surface pairing, dotted ones, to
volume pairing. Experimental data are shown with N for 13/2+, H for 3/2−, and △ for 5/2− states.
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contributions of the unfilled shells and core nucleons ex-
plicitly, one can divide the Hilbert space of the QRPA
equations (14) to the “valent” and subsidiary ones and
carry out the corresponding renormalization procedure
[54].

V. DISCUSSION AND CONCLUSIONS

The effect of the density dependence of the pairing
interaction to low-lying quadrupole excitations in spher-
ical nuclei is analyzed for two isotopic chains of semi-
magic nuclei. Static quadrupole moments of neighbor-
ing odd nuclei are also examined. The complete set of
the QRPA-like TFFS equations for response functions is
solved in a self-consistent way within the EDF approach
to superfluid nuclei with previously fixed parameters of
the functional. The DF3-a functional [30] is used which
is a small modification of the functional DF3 [13, 14].
Specifically, spin-orbit and effective tensor terms of the
initial EDF DF3 were changed. Two models for effective
pairing force are considered, the surface and the volume
ones, which give rise to approximately the same accu-
racy in reproducing mass differences. A noticeable effect
in excitation energies ω2 is found: predictions for the
volume model are systematically higher than the surface
ones by δω2 ≃ 200÷ 300 keV. As to the excitation prob-
abilities B(E2, up), the effect is not so regular, however,
as a rule, the volume values are also higher. Thus, the
correlation between these two quantities typical for the
BM model, where a higher frequency always results in
a lower probability, is destroyed. On the average, both
models reasonably agree with the data. In addition, they
both reproduce rather well the model-independent charge
density ρtrch(2

+
1 ) for the

118Sn nucleus.
Comparison with recent QRPA calculations [27] with

the Skyrme force SkM* and SLy4 shows that for the lead
chain they agree with the data a little better than our
results but for the tin chain the situation is opposite and
our predictions occur to be essentially better. The sur-
face model is systematically better in describing the en-
ergies ω2 whereas the excitation probabilities are, as a
rule, reproduced better with the volume model.
Whereas the charge radii study [14] and ab initio the-

ory of paring [18, 24] favor the surface pairing, the ω(2+1 )
and B(E2, up) data do not allow to prefer any of the two
kinds of pairing.
A reasonable agreement with experiment for the

quadrupole moments of odd neighbors of the even tin
and lead isotopes has been obtained for the most part
of nuclei considered. For odd-proton this confirms that
the single-quasiparticle approximation works sufficiently
well. For odd-neutron isotopes under consideration, va-
lidity of this approach was checked previously with the
analysis of magnetic moments [49]. In the case we con-
sider, the problem is more complicated than for odd
proton isotopes as the Bogolyubov factor (u2

λ − v2λ) =
(ελ − µ)/Eλ comes to the quadrupole moment value, in

addition to the matrix element of the effective field Vλ.
This factor makes the quadrupole moment value very sen-
sitive to accuracy of calculating the single-particle energy
ελ of the state under consideration, especially near the
Fermi surface as the quantity Qλ vanishes at ελ = µ. For
such a situation, the influence of the coupling of single-
particle degrees of freedom with phonons, see [49, 55],
should be especially important. This rather complicated
problem will be considered separately.
As to the effect of the density dependence of pairing,

for quadrupole moments it is, on the average, less than
for quadrupole transitions. It depends on a nucleus ex-
amined and on the odd-nucleon state as well. In the tin
region, it is, as a rule, of the order of ≃ 10%. However,
in the lead region it is higher and reaches ≃ 30÷ 50% for
203,205Bi and 205Pb.
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Goutte, and S. Péru, Phys. Rev. Lett. 99, 032502 (2007).
[30] S. V. Tolokonnikov and E. E. Saperstein, Phys. Atom.

Nucl. 73, 1684 (2010).
[31] D. J. Horen, G. R. Satchler, S. A. Fayans, and E. L.

Trykov, Nucl. Phys. A600, 193 (1996).
[32] E. E. Saperstein and S. V. Tolokonnikov, Phys. Atom.

Nucl. 73, to be published (2011).
[33] A. B. Migdal, Theory of finite Fermi systems and ap-

plications to atomic nuclei, Second Edition (in Russian,
Moscow, “Nauka”, 1982).

[34] E. E. Saperstein and M. A. Troitsky, Sov. J. Nucl. Phys.
1, 284 (1965).

[35] M. V. Zverev and E. E. Saperstein, Sov. J. Nucl. Phys.
42, 683 (1985).

[36] S. Goriely, N. Chamel, and J. M. Pearson, Phys. Rev.
Lett. 102, 152503 (2009).

[37] S. T. Belyaev, A. V. Smirnov, S. V. Tolokonnikov, S. A.
Fayans, Sov. J. Nucl. Phys. 48, 995 (1988).

[38] S. Goriely, http://www-astro.ulb.ac.be/Html/masses.
html

[39] Abhishek Mukherjee, Y. Alhassid, and G. F. Bertsch,
Phys. Rev. C 83, 014319 (2011).

[40] S. Raman, C. W. Nestor Jr., and P. Tikkanen, Atom.
Data Nucl. Data Tables 78, 1 (2001).

[41] A. Bohr and B. R. Mottelson, Nuclear Structure (Ben-
jamin, New York, Amsterdam, 1974.), Vol. 2.

[42] D. C. Radford, et al., Nucl. Phys. A752, 264c (2005).
[43] J. Cederkäll, et al., Phys. Rev. Lett. 98, 172501 (2007).
[44] C. Vaman, et al., Phys. Rev. Lett. 99, 162501 (2007).
[45] A. Ekström, et al., Phys. Rev. Lett. 101, 012502 (2008).
[46] J. E. Wise, et al., Phys. Rev. C 45, 2701 (1992).
[47] J. L. Friar, J. Heisenberg, and J. W. Negele, in Proceed-

ings of the June Workshop in Intermediate Energy Elec-

tromagnetic Interactions, Ed. by A.M. Bernstein (Mas-
sachusetts Institute of Technology, 1977), p. 325.

[48] I. N. Borzov, E. E. Saperstein, and S. V. Tolokonnikov,
Phys. Atom. Nucl. 71, 469 (2008).

[49] I. N. Borzov, E. E. Saperstein, S. V. Tolokonnikov, G.
Neyens, and N. Severijns, EPJ A 45, 159 (2010).

[50] M. Honma, T. Otsuka, B. A. Brown, T. Mizusaki, Phys.
Rev. C 69, (2004) 034335.

[51] V. G. Soloviev, Theory of Complex Niclei, (Oxford: Perg-
amon Press, 1976).

[52] A. Bohr and B. R. Mottelson, Nuclear Structure (Ben-
jamin, New York, Amsterdam, 1969.), Vol. 1.

[53] N. J. Stone, Atom. Data Nucl. Data Tables, 90, 75
(2005).

[54] S. P. Kamerdzhiev, Sov. Nucl. Phys. 9, 324 (1969).
[55] S. P. Kamerdzhiev, A. V. Avdeenkov and D. A.

Voitenkov, Phys. Atom. Nucl. 73, to be published (2011).

http://arxiv.org/abs/0811.1338
http://arxiv.org/abs/0906.1463
http://arxiv.org/abs/1103.4137
http://www-astro.ulb.ac.be/Html/masses

