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We present the defined actuation of a single magnetic particle on a crossbar array chip. Two

orthogonal layers of parallel microwires are used to generate highly localized magnetic field

gradients for particle trapping and movement. We introduce an analytical model to simulate the

actuation of the particle, which is in precise agreement with the experimentally observed trajectory.

The single-particle approach allows us to resolve subtle features of the induced magnetic field

distribution. We demonstrate that the actuation strongly depends on the applied current sequence

and introduce switching patterns for reliable control of an individual particle. VC 2012 American
Institute of Physics. [doi:10.1063/1.3673909]

Magnetic micro- and nanoparticles have been estab-

lished as versatile tools in lab-on-a-chip applications.1,2 Due

to their magnetic properties and small dimension, they offer

possibilities to label, actuate, and separate on the micron and

submicron scale.3–7 The force exerted on a particle with a

magnetic dipole moment m when exposed to a magnetic field

B is given by Fmag 5 (m�$)�B. For superparamagnetic par-

ticles, the magnetic moment is m 5 l0
�1VvB, where l0 is

the vacuum permeability, V is the volume of the particle, and

v is the magnetic susceptibility of the particle. Combining

these two equations, the force on the particle can be

expressed as Fmag 5 l0
�1Vv(B�$)�B. Hence, the particles

are attracted by regions of high magnetic field strength.

Magnetic tweezers with highly localized fields allow the pre-

cise control of even a single magnetic particle that can be

used to study individual biomolecules.8,9 However, these

techniques make use of external magnets that are difficult to

integrate in lab-on-a-chip approaches. Alternatively, current

carrying microwires10–17 or on-chip magnetic patterns in

combination with switching external fields18–20 have been

employed for localized particle actuation. A very flexible

approach to control the position of magnetic particles on a

chip without external magnets is given by microwire cross-

bar arrays as introduced by the group of Westervelt.11 The

microwires can be fabricated using standard lithography/lift-

off technologies and are therefore easily integrated into chip-

based devices. Particle actuation is achieved by driving

appropriate current sequences through the orthogonally

arranged microwire arrays, which generate magnetic field

patterns on the chip. Lee et al. demonstrated that clouds of

magnetic particles or biological cells can be actuated, sepa-

rated, and combined with this approach.11–13 Here, we inves-

tigate on-chip actuation of an individual magnetic particle

using a crossbar microwire array system. The single-particle

approach allows defined trapping and movement without in-

terference of particle-particle interactions. We introduce an

analytical model for the actuation and demonstrate that the

trajectory of the particle is in good agreement with our calcu-

lations. A current switching protocol with intermediate steps

ensures that an individual particle is moved with 100% effi-

ciency between source and target location.

Microwire arrays for particle actuation were fabricated

in the clean room using standard microfabrication technol-

ogy. Briefly, p-doped silicon wafers (Si-Mat Silicon Materi-

als, Kaufering, Germany) were oxidized under wet

conditions to grow 1 lm of silicon oxide for substrate insula-

tion. The microwire arrays and contact pads were patterned

via photolithography on the wafer using a double layer resist

(LOR3B and NLOF2020, microresist technology, Berlin,

Germany). After optical exposure and development

(MIF326, microresist technology, Berlin, Germany), a stack

of 10 nm Ti, 150 nm Au, and 7.5 nm Ti was deposited by

electron beam evaporation followed by a lift-off in acetone.

The structure was then insulated with a silicon oxide/silicon

nitride/silicon oxide (ONO) layer (100 nm/50 nm/100 nm)

using plasma enhanced chemical vapor deposition. After-

wards, a second microwire array was patterned orthogonal to

the first array using the same fabrication steps as described

above. A final top insulation layer of oxide and nitride

(ONONONONONONO; 150 nm/75 nm, respectively) was

deposited to serve as a barrier for the liquid during magnetic

actuation experiments. The individual microwires were proc-

essed at a width of 10 lm with an interwire spacing of 4 lm

and the array consisted of two orthogonal layers of 17 wires

each. A schematic of the chip’s structure is shown in Fig. 1.

The superparamagnetic particles used in this experiment

were silanol terminated screenMAG particles with a hydro-

dynamic diameter of 1 lm (Chemicell GmbH, Berlin, Ger-

many). These particles consisted of an iron oxide core

(approx. 100 nm in diameter) suspended in a silica matrix.

The microwire arrays can be used to trap and actuate ei-

ther single particles or clouds of several tens of particles.

The latter were collected out of a homogeneous suspension

of particles by passing a series of alternating horizontal and

vertical currents (applied for 5 s each) through the wires sur-

rounding the desired target cell. In order to deploy single

particles into the magnetic trap, the particles were suspended

in Milli-Q water and loaded into a glass micro capillary.

This capillary was then brought into proximity to the active
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trap using x,y,z-micromanipulators. Subsequently, a gentle

overpressure was applied to the capillary until a single parti-

cle was trapped. By changing the potential differences

applied to each of the wires, the particle position was then

manipulated as described below. To evaluate the experi-

ments, the particle’s motion was captured using a CCD cam-

era (PL-B782U, PixeLINK, Ottawa, Canada) installed to the

microscope setup. The video data obtained in this way was

analyzed using digital image processing to determine the

particle’s position at different times during the experiment.

We investigated the influence of the applied current pat-

tern on the actuation of a single particle from one cell of the

array to another. To this end, switching between two mag-

netic traps on the chip was induced by different current pro-

tocols. Direct switching (switching the initial cell off and the

target cell on in one step) yielded low transfer efficiencies

and the particle was lost after several switching events. A

linear switching protocol (ramping the currents from the ini-

tial to the target cell state) ensures a smoother transition of

the magnetic field peak. Nevertheless, transition efficiencies

of the particle are even lower than for the direct switching

due to splitting of the peak during transition (see supplemen-

tary material21 for a more detailed description of direct and

linear switching). In order to reliably move an individual

particle, a current pattern with intermediate switching steps

was introduced (see Figs. 2(a)–2(d)).

The simulation for this pattern shows that the peak of the

magnetic field is gradually shifted from the initial to the target

cell. In the experiments, we applied a repetitive sequence of

the pattern for several tens of minutes with a minimum of

500 ms period between two states. Using this approach, we

observed that a single particle reliably followed the magnetic

field peak with 100% efficiency. To evaluate the stability and

precision of the system, a single particle was moved repeti-

tively in a small square on the array applying a current

sequence with 1 s per state. The extracted positions were com-

pared with an analytical simulation of the trajectory (see Figs.

3(a)–3(d)). For the simulation, we integrated over the cross-

section of each current conductor and subsequently summed

the contributions of all wires on the magnetic field. The particle

trajectory was computed assuming that the magnetic and the

viscous drag force are equal at all times (see supplementary

material21 for a detailed description of the simulation). Figures

3(e) and 3(f) show plots of the simulated and experimentally

determined x- and y-positions of the particle against time. As

can be seen from the graphs, the experimental and simulated

trajectories are in good agreement. Slight deviations are prob-

ably caused by discrepancies between the simulation and the

experimental parameters. Comparing the graphs in Figs. 3(e)

and 3(f), we observe a small difference in the lengths of the

jumps in x- and y-directions for both experimental and simu-

lated trajectories (dx,exp¼ 10.08 6 0.01 lm, dy,exp¼ 10.53

6 0.02 lm, and dx,sim¼ 10.68 lm, dy,sim¼ 11.60 lm). This

effect is caused by the shape of the maximum in the magnetic

field. Since the orthogonal microwire arrays are located in dif-

ferent layers, the y-oriented structures are �420 nm closer to

the chip’s surface. Thus, the magnetic field exhibits a sharper

peak in the y-direction and the particle has to move further to

reach a stable condition. The single-particle approach allows us

to reveal detailed features of the magnetic field such as the

observed asymmetry and peak splitting (see supplementary in-

formation21). This information is lost with a cloud approach

due to the repellent interactions of the individual polarized par-

ticles. The observed trajectory demonstrates the strong influ-

ence of small geometrical variations in the structure, which are

taken into account in our analytical model.

In conclusion, we demonstrated reliable single-particle

actuation using a chip-based microwire array system. Effi-

cient current sequence patterns were developed and the cor-

responding time-dependent magnetic fields were calculated

using an analytical model. We showed that the simulated tra-

jectories of the particle matched the experimental traces,

revealing even the subtle features of the magnetic field pat-

tern due to the single-particle approach. By applying appro-

priate current sequences, individual particles were reliably

moved over the chip’s surface with a step size in the low mi-

crometer range. While the maximal actuation distance is

mainly limited by the geometrical layout of the device, effi-

ciency, step-size, and precision can be tuned by the magnetic

switching pattern. We believe that our approach opens up the

possibility for various on-chip applications involving the

FIG. 1. (Color online) Schematic of the crossbar array chip. The microwires

are processed on Si/SiO2 substrates and are insulated by a silicon oxide/sili-

con nitride layer system (transparent). By controlling the current in the

microwires, single particles (black) can be actuated on the chip’s surface.

FIG. 2. (Color online) Simulated magnetic fields for the individual states in

the switching protocol. The directions of the currents are indicated in white.

The horizontal wires are labelled 1-4 and the vertical wires are labelled A-

D. Additionally, the wires’ positions are indicated by shaded regions. By

introducing two intermediate steps with only three active wires, the peak in

the magnetic field can be gradually moved from one cell to another (color

scale: 1-10 mT; blue to red, respectively).
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manipulation of individual cells in vitro. For example, being

able to control a single particle allows for precise stimulation

of mechanosensitive cells with subcellular resolution.
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FIG. 3. (Color online) (a)-(d) Image series of a single

particle moving in a square of four cells on the array.

The particle’s current position is marked by a white

arrow, whereas previously detected positions are shown

as white dots. The horizontal wires are labelled 1-3,

while the vertical wires are labelled A-C. (e)-(f) Plots

of the x- and y-positions against time of three experi-

ments in which a single particle is lapping the square

three times (lines) and the simulated data (symbols).

The edges of the corresponding horizontal and vertical

wires (wires 2 and B, respectively) are marked by a

dashed line at 2 and 12 lm, respectively (enhanced

online) [URL: http://dx.doi.org/10.1063/1.3673909.1].
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