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Flat-histogram techniques provide a powerful approach to the simulation of first-order-like phase
transitions and are potentially very useful for protein studies. Here, we test this approach by implicit
solvent all-atom Monte Carlo (MC) simulations of peptide aggregation, for a 7-residue fragment
(GIIFNEQ) of the Cu/Zn superoxide dismutase 1 protein (SOD1). In simulations with 8 chains, we
observe two distinct aggregated/non-aggregated phases. At the midpoint temperature, these phases
coexist, separated by a free-energy barrier of height 2.7 kBT . We show that this system can be suc-
cessfully studied by carefully implemented flat-histogram techniques. The frequency of barrier cross-
ing, which is low in conventional canonical simulations, can be increased by turning to a two-step
procedure based on the Wang-Landau and multicanonical algorithms. © 2011 American Institute of
Physics. [doi:10.1063/1.3643328]

I. INTRODUCTION

Generalized-ensemble techniques have become a widely
recognized tool for speeding up statistical-mechanical simu-
lations of systems with complex free-energy landscapes. For
protein folding and aggregation studies, the currently most
widely used among these techniques is replica exchange,1–3

also called parallel tempering, which requires very little pre-
processing and is ideally suited for parallel computation. A
closely related method is simulated tempering.4, 5

The replica exchange and simulated tempering meth-
ods have been successfully used to study small polypeptide
chains, which typically do not show a pronounced two-state
folding behavior. However, for systems exhibiting a first-
order-like phase transition, these methods are expected to fail.
To overcome this problem, generalizations of the methods
have been proposed.6–9

Another possibility is to turn to flat-histogram methods
such as the multicanonical algorithm.10 The first step in a
multicanonical calculation is to estimate the density of states,
g(E), where E denotes internal energy. Having obtained this
estimate, g̃(E), one simulates the ensemble defined by the mi-
crostate probability distribution Pν ∝ 1/g̃(Eν), in which the
distribution of E is approximately uniform. Finally, properties
of the original system are recovered by means of reweighting
techniques.11–14

The first multicanonical study of the folding of a small
peptide was reported already several years ago,15 and previ-
ous applications of this method also include coarse-grained
simulations of peptide aggregation.16 However, the algorithm
has not gained the same popularity as the convenient replica
exchange method, in part because of the required estimation
of g(E).

a)Electronic mail: sigurdur.aegir@thep.lu.se.
b)Electronic mail: s.mohanty@fz-juelich.de.
c)Electronic mail: anders@thep.lu.se.

An important step forward was the development by Wang
and Landau17, 18 of a simple and general scheme for this task.
The Wang-Landau method has been applied to a variety of
problems, including the phase structure of long homopolymer
chains.19, 20

It has been shown that flat-histogram techniques such as
the multicanonical and Wang-Landau methods can be useful
for atomic-level protein simulations as well.15, 21–25 However,
none of the protein systems studied so far displayed a first-
order-like phase transition. Therefore, the full potential of this
approach remains incompletely explored.

In this article, we study the aggregation of a 7-residue
peptide by implicit solvent all-atom MC simulations with
8 chains. We use this system as a testbed for a simulation pro-
cedure based on flat-histogram techniques. For comparison,
we also carry out canonical constant-temperature simulations
of the same system.

The peptides are found to form β-sheet-containing ag-
gregates at low temperatures, while being disordered and non-
aggregated at high temperatures. At the midpoint temperature,
the two phases coexist, as manifested by a bimodal energy
distribution.

For complex systems such as proteins, the bottom part
of the energy landscape may consist of narrow minima that
are difficult to sample and not necessarily low in free energy,
at the temperatures of interest. In this situation, flat-histogram
techniques must be implemented with care, because a uniform
sampling in energy all the way down to the lowest lying level
might be both costly and unnecessary. Otherwise, one risks
slowing down the simulations through a time-consuming ex-
ploration of narrow minima with a negligible occupancy at
biologically relevant temperatures.

Our simulations of the above mentioned peptide sys-
tem focus on the transition between the aggregated and non-
aggregated phases. To study this transition, we introduce a
generalized ensemble, in which the energy distribution is
flat in the coexistence range. Outside this range, the energy
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distribution falls off rapidly, to avoid unnecessary sampling
of low energies. Our calculations consist of two steps. The
first step serves to determine this generalized ensemble, by
means of the Wang-Landau method. In the second step, corre-
sponding to a multicanonical production run, the generalized
ensemble is simulated using standard MC techniques.

II. METHODS

A. Simulated ensemble

Our simulation procedure assumes that the system of in-
terest displays two distinct phases as a function of tempera-
ture, and that the energy distribution is bimodal at the mid-
point temperature, which we will denote by Tm. Let E1 and
E2 denote the energies at which the two peaks are centered.

The procedure amounts to first constructing and then
simulating a generalized ensemble, the definition of which
is illustrated in Fig. 1. The microstate probability distribu-
tion is given by Pν ∝ 1/γ (Eν), where the function γ (E) (see
Fig. 1(a)) is defined by

γ (E) ∝
{

g(E) if E1 ≤ E ≤ E2,

exp(E/kBTm) otherwise,
(1)

where kB is Boltzmann’s constant. With this Pν , the probabil-
ity distribution of E (see Fig. 1(b)) becomes

P (E) ∝
{

1 if E1 ≤ E ≤ E2,

g(E) exp(−E/kBTm) otherwise.
(2)

For brevity, this ensemble will be referred to as the “1/γ ” en-
semble. It is defined so as to have a flat P (E) between E1

and E2, to promote transitions between the two phases. Out-
side this range, P (E) is proportional to the canonical energy
distribution at T = Tm. This choice ensures that low energies
will not be more extensively sampled than what is needed to
characterize the system at T = Tm.

To determine γ (E), one has to estimate g(E) for E1 ≤
E ≤ E2. To this end, we use the Wang-Landau method.17, 18

In principle, this calculation can be restricted to the interval
E1 ≤ E ≤ E2. In practice, a slightly larger interval must be
used, because E1 and E2 are a priori unknown.

Having determined γ (E), we simulate the 1/γ ensem-
ble by standard MC methods. From this simulation, canonical
averages are extracted by use of reweighting techniques.12

In the 1/γ ensemble, P (E) is thus flat in the coexis-
tence region, while P (E) ∝ Pcan(E) outside this range. This
may be compared with the recently proposed well-tempered
ensemble,26 where the energy distribution is Pcan(E)1/a for
some 1 < a < ∞, corresponding to a global but finite flatten-
ing of the canonical energy distribution.

B. The Wang-Landau algorithm

This section provides a brief outline of the Wang-Landau
method,17, 18 followed by a description of two non-standard
choices we made when implementing it.

The Wang-Landau algorithm successively builds up an
estimate, g̃(E), of the density of states, g(E). Usually, the
function g̃(E) is initially set to 1 for all energies (or energy
bins). After each step in the simulation, g̃(E) is increased
by a factor f > 1, g̃(E) → f g̃(E), for the current energy E,
while it is left unchanged for all other E. The simulation is
controlled by an accept/reject question, where the acceptance
probability is given by

Pacc(ν → ν ′) = min

[
1,

g̃(Eν)

g̃(Eν ′)

]
. (3)

Since Pacc depends on the current g̃(E), detailed balance is
fulfilled only in the limit f → 1.

The modification factor f is typically assigned an ini-
tial value of f = e. During the course of the simulation, f is
gradually decreased toward 1, by changing f → √

f when-
ever a certain criterion is met. Usually, this criterion has the
form17, 18

min
E

h(E) > α h(E), (4)

where h(E) is a histogram of the energies visited since the
last change of f , α < 1 is a parameter, and h(E) denotes an
instantaneous average of h(E) over E. The simulation is con-
tinued until ln f < ε, where ε > 0 is a stopping parameter.

The convergence properties of this scheme were analyzed
by several groups. One important result is that the error in the
estimated density of states at a given f , scales as

√
ln f .27

Furthermore, it was demonstrated that f should be decreased
as 1/t with simulation time t , rather than exponentially, in or-
der to avoid asymptotic saturation of the error for small f .28

Methods addressing the error saturation problem have been
devised.28–31 In the present study, we stick to the fast expo-
nential update f → √

f , because we use the Wang-Landau

E1 E2

ln
γ (

E)

(a) slope 1/kBTm

ln γ(E)
ln g(E)

E1 E2

P(
E)

(b) P(E)
Pcan(E)

FIG. 1. Schematic illustration of the simulated ensemble. (a) The definition of the function γ (E) (see Eq. (1)), which determines the microstate probability
distribution, Pν ∝ 1/γ (Eν ). (b) The probability distribution of energy, P (E) (see Eq. (2)), along with the canonical energy distribution at T = Tm, Pcan(E).
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method to prepare for multicanonical production runs, rather
than to generate final results.

Our implementation of the Wang-Landau method is es-
sentially as described above, but with two modifications. The
first modification is in the criterion for when to change f .
Instead of using Eq. (4), we update f when the number of
tunneling events since the last change of f , nt, satisfies

nt > τ (5)

where τ is a threshold parameter. A tunneling event is a
traversal of the whole energy spectrum, from one end to the
other. The tunneling frequency is a key characteristic of the
dynamics.32 We were led to replace Eq. (4) by Eq. (5) be-
cause of results from toy model calculations, as described in
the Appendix.

Our second modification lies in the initial values of g̃(E)
and of the parameter f . At the early stages of preliminary runs
started with f = e, virtually no β-structure was seen. Instead,
the system was driven into kinetically more easily accessible
α-helical low-energy states. A balanced sampling of α- and
β-structure was observed only after f had been reduced sev-
eral times. In the calculations below, we therefore start with
ln f = 2−10, instead of ln f = 1. Because of a relatively small
step-size parameter ln f , we further use an improved initial
guess for ln g̃(E), ln g̃(E) = E/kBTm + constant, in place of
ln g̃(E) = constant. Having a rough estimate of the a priori
unknown parameter Tm is sufficient for this linear ansatz to
be useful.

C. Peptide model

The peptide we study is a 7-residue fragment, GIINFEQ,
of the protein SOD1. This fragment is part of the second β-
strand in native SOD1 (residues 16–22; Protein Data Bank
code 1AZV). A link between SOD1 and amyotrophic lateral
sclerosis (ALS) exists, as over 100 ALS-associated mutations
in SOD1 have been identified.33

We simulate a system of 8 GIINFEQ peptides enclosed
in a periodic box of size (126 Å)3. All simulations are started
from random initial conditions, with different random number
seeds in different runs.

Our simulations are based on an implicit solvent all-atom
model with torsional degrees of freedom, which has been de-
scribed in detail in Refs. 34 and 35. In short, the potential
is composed of four terms, E = Eloc + Eev + Ehb + Esc. The
first term, Eloc, contains local interactions between atoms sep-
arated by only a few covalent bonds. The other three terms
are non-local in character: Eev represents excluded-volume
effects, Ehb is a hydrogen-bond potential, and Esc describes
residue-specific interactions, based on hydrophobicity and
charge, between pairs of side chains. Energies quoted below
are given in a unit corresponding to ∼1.33 kcal/mol.

This potential was developed through folding thermody-
namics studies of a structurally diverse set of peptides and
small proteins, while deliberately keeping it as simple as
possible.35 It is worth noting that the same set of parameters is
used for α, β, as well as α/β proteins. Previous applications
of this model include aggregation studies of the 42-residue
amyloid β-peptide36 and of several short peptides.37, 38

D. MC details

We simulate GIINFEQ aggregation using MC dynamics.
Five different elementary moves are employed: (i) rotations
of individual backbone angles, (ii) a semi-local backbone
update, biased Gaussian steps, which rotates eight consecu-
tive angles simultaneously,39 (iii) rotations of individual side-
chain angles, (iv) rigid-body translations of whole chains, and
(v) rigid-body rotations of whole chains. The relative frequen-
cies of the updates (i)–(v) are 25 %, 12 %, 47 %, 8 %, and 8 %,
respectively.

All our simulations are carried out using the open source
package PROFASI,40 to which a new routine for Wang-Landau
simulations was added. Statistical errors quoted below are cal-
culated using the jackknife method.41

III. RESULTS AND DISCUSSION

The simulated system of 8 GIIFNEQ peptides in a peri-
odic box displays two distinct phases: a disordered and non-
aggregated high-temperature phase, and a low-temperature
phase in which the peptides form β-sheet-containing aggre-
gated structures. The two phases coexist in a narrow temper-
ature range, where the energy distribution is bimodal (see be-
low). Examples of aggregated structures can be seen in Fig. 2.
A vast majority of the observed low-energy conformations
share a common overall β-sandwich topology. However, there
is no single dominant aggregated structure, because the β-
strand organization varies, as illustrated by Fig. 2.

In preliminary runs with 2 and 4 GIIFNEQ peptides, at
identical peptide concentration, the same phase structure was
observed, but the free-energy barrier between the two co-
existing phases was lower for these system sizes. In what
follows, we focus on the 8-chain system, as a challenging
testbed for the two-step simulation procedure described in
Sec. II.

The first step of the procedure is to determine the func-
tion γ (E) of Eq. (1), and thus construct the 1/γ ensemble
illustrated in Fig. 1. To this end, we estimate the density of
states g(E) for 25 ≤ E ≤ 165 through a set of 16 indepen-
dent Wang-Landau runs. The runs are started with a modifi-
cation factor of ln f = 2−10 and stopped when ln f < 2−23.
Figure 3(a) shows the MC time evolution of the energy E in a
typical Wang-Landau run. The tunneling frequency is high in
the beginning of the run, where the system tends to be driven
away from the last visited region. This bias decreases as ln f

FIG. 2. Snapshots from the simulations showing typical low-energy confor-
mations for the system of 8 GIIFNEQ peptides. The structures share an over-
all β-sandwich topology, but differ in the organization of the strands. The
energies are (a) E ≈ −21.6, (b) E ≈ −21.2, and (c) E ≈ −20.2.
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FIG. 3. MC time evolution of the energy in typical runs with three different methods for the system of 8 GFIINEQ peptides. The right panel shows histograms
of energies visited in the respective runs. Each run required ∼470 core hours on a 2.26 GHz Nehalem processor. For each of the three methods, 16 independent
runs of this length were generated. (a) Wang-Landau simulation, (b) simulation of the 1/γ ensemble (see Fig. 1), and (c) canonical-ensemble simulation at
kBT = 0.496.

is reduced. As a result, the tunneling frequency goes down,
but tunneling events still continue to occur throughout the run.

The coexistence range E1 ≤ E ≤ E2 can be identified
through an indentation in the calculated ln g(E), as indicated
in Fig. 1. This way we estimate E1 ≈ 28, E2 ≈ 155, and
kBTm ≈ 0.4960. These parameters along with the calculated
shape of g(E) for E1 ≤ E ≤ E2 determine the function γ (E).

Knowing γ (E), we next simulate the 1/γ ensemble by
standard MC techniques. To collect statistics, a set of 16 inde-
pendent runs is generated in this case as well. A representative
run-time trajectory can be seen in Fig. 3(b). The distribution
of energies visited in the run is approximately flat in the in-
terval E1 ≤ E ≤ E2, as it should be. Figure 4 displays the
canonical energy distribution, P (E), at kBT = 0.496, as ob-
tained from the 1/γ -ensemble simulations by reweighting.12

The bimodality of P (E) shows that the transition between
the two phases indeed is first-order-like. A small asymme-
try in peak height indicates that the true Tm is slightly higher
than what we estimated above based on the Wang-Landau

 0

 0.004

 0.008

 0.012

 0.016

 0  50  100  150

P
(E

)

E

1/γ
Canonical

FIG. 4. Probability distribution of E for the system of 8 GFIINEQ peptides
at kBT = 0.496, as obtained from simulations of the 1/γ (blue) and canonical
(red) ensembles, respectively. Dashed lines indicate statistical 1σ errors.

runs (kBTm ≈ 0.4960). The improved estimate provided by
the 1/γ -ensemble simulations is kBTm ≈ 0.4967. At T = Tm,
we find that P (E) is suppressed by a factor 15 in the valley
between the two equally high peaks, which corresponds to a
free-energy barrier of height 2.7 kBT .

To validate and assess the efficiency of this two-step sim-
ulation procedure, we now compare the results above with
data from a set of 16 conventional canonical-ensemble sim-
ulations at kBT = 0.496. The P (E) distribution extracted
above turns out to be in perfect agreement with the results
obtained from these control simulations, as can be seen from
Fig. 4, thus confirming the validity of the two-step procedure.
Compared to the canonical-ensemble simulations, it can fur-
ther be seen that the results from the 1/γ -ensemble simula-
tions have smaller statistical errors, despite that the runs are
equally long in both cases. The use of the 1/γ ensemble thus
yields a more efficient sampling.

Another even more direct way to see this is to study
the run-to-run variation of some observable. Figure 5 shows
normalized single-run estimates of the heat capacity, Cv, at
kBT = 0.496, for both sets of simulations. In both cases, each
data point represents one of 16 independent runs. The spread
of the data is large for the canonical-ensemble simulations. It

 0  1  2

Cv,i / C
 −

v

Canonical
1/γ

FIG. 5. Run-to-run variation of the heat capacity Cv = (〈E2〉 −
〈E〉2)/kBT 2, calculated at kBT = 0.496, in simulations of the canoni-
cal (red) and 1/γ (blue) ensembles. The single-run estimates, Cv,i , are
normalized by the mean, C̄v. The length of the runs is the same with both
methods.
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is smaller for the 1/γ -ensemble simulations, which confirms
that sampling is more efficient in this case.

The origin of this speedup is evident from the run-time
trajectories in Fig. 3. In the canonical run (Fig. 3(c)), the sys-
tem is stuck in the same state for long periods, which in par-
ticular makes the relative population of the two phases statisti-
cally difficult to estimate. This problem can, at least in part, be
overcome by the use of the 1/γ ensemble (Fig. 3(b)). Com-
pared to the canonical runs, we find that the tunneling fre-
quency, on average, is a factor 2.8 higher in the 1/γ -ensemble
simulations, where intermediate energies are not statistically
suppressed. The tunneling frequency is a key figure when
studying surface effects16, 42 and properties that strongly de-
pend on the relative population of the coexisting states, such
as the heat capacity.

A critical property of the above two-step procedure is that
unnecessary sampling of low energies is avoided. In the pro-
duction runs, low energies are suppressed by the weight factor
1/γ (E). In the preparatory Wang-Landau runs, it is sufficient
to cover the coexistence range E1 ≤ E ≤ E2. In our Wang-
Landau runs, the sampled energy range was 25 ≤ E ≤ 165,
whereas the ground-state energy is < −20 for this system (see
Fig. 2). In preliminary calculations, we observed a notably
(�50 %) slower convergence upon a moderate extension of
the energy range to 5 ≤ E ≤ 165. A further extension down
to the ground-state level would have made the calculations
much more time-consuming.

Finally, let us mention that we also performed replica
exchange simulations of the same system, using a set of
16 temperatures between 0.42 and 0.56 (distributed so as to
have a constant overlap between neighboring energy distri-
butions). Here, the tunneling frequency was lower by fac-
tors 4.0 and 11.2 compared to our canonical and 1/γ simu-
lations, respectively. In peptide folding studies, Okamoto and
co-workers found the multicanonical method to be more effi-
cient than replica exchange, which in turn was more efficient
than canonical-ensemble methods.43–45 When applied to our
very different system, the order of the methods need not be
same. On the other hand, it is likely that the poor tunneling
frequency observed in our replica exchange simulations could
have been improved by increasing the minimum temperature
(0.42) to a value closer to Tm (≈0.4967). Even more interest-
ing, however, would be to try instead one of the replica ex-
change variants specifically meant for first-order-like phase
transition,6–8 but that is beyond the scope of the present
article.

IV. SUMMARY AND OUTLOOK

We have implemented and tested a two-step procedure
for protein simulations, based on flat-histogram techniques.
Our test system exhibits a first-order-like transition between
two aggregated/non-aggregated phases. As far as we know,
this is the first time flat-histogram techniques have been used
for atomic-level simulations of a protein system at phase co-
existence.

In the proposed approach, we construct and simulate an
ensemble, Pν ∝ 1/γ (Eν), whose energy distribution is flat
only in the coexistence range E1 ≤ E ≤ E2, while falling off

rapidly outside this range. For convenience, we used a single
parameter, Tm, to set the shape of the tails of the distribution.
The exact shape of the tails is unimportant. The main point is
to avoid unnecessary sampling of low energies.

In our simulations of the 1/γ ensemble, we find that the
tunneling frequency is improved by a factor 2.8, compared
to canonical-ensemble simulations. This is the speed-up fac-
tor we expect for long accurate simulations, when the relative
cost of the preparatory Wang-Landau runs becomes negligi-
ble. This factor is not very large, but can still be helpful if
the simulations require weeks or months to complete. More-
over, it is important to remember that the free-energy bar-
rier of the present system, although clear, is only moderately
high (2.7 kBT ). Experimentally estimated folding/unfolding
barriers are often higher than this. With a higher barrier, we
expect the speed-up factor to increase.

Because of the suppression of low energies, our method
alone is not well suited for ground-state searches, but it may
be used to generate a diverse set of starting points for fast
local minimizations by, for instance, the conjugate gradient
method. It should be pointed out, however, that knowledge of
the ground state of a protein model need not be thermodynam-
ically important, because the ground state may be insignif-
icantly populated throughout the limited temperature range
which is biologically relevant.

A property unanticipated by us was the artificial pref-
erence for α-structure over β-structure seen for large val-
ues of the Wang-Landau parameter f . The formation of
β-structure, which requires the establishment of long-range
contacts, seemed to be hampered by the bias away from the
last visited region present at large f . This problem might be
general and show up in simulations of other protein systems
as well. Due to this problem, we found it advantageous to use
a relatively small initial f .

The aggregation of the peptide studied here, GIIFNEQ,
has, to our knowledge, not been investigated experimen-
tally. However, the aggregation prediction program WALTZ

(Ref. 46) points at this part of the SOD1 protein as partic-
ularly prone to form amyloid structure.47 Our observation
of β-sheet-rich aggregated structures is consistent with this
prediction.

Let us finally stress that the flat-histogram calculations
presented here were carried out without exhausting the tool-
box of possible refinements. One possibility we did not

 0

 5

 10

 15

 20

 25

 30

 0  1e+07  2e+07

Δ(
g~ )

NMC

Histogram
Tunneling

FIG. 6. Average error in the estimated density of states against average num-
ber of steps required for convergence, in toy model Wang-Landau simulations
with the histogram-based (Eq. (4)) and tunneling (Eq. (5)) criteria. Different
data points correspond to different α and τ , respectively.
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FIG. 7. Mean (+) and standard deviation (�) of the number of steps required for convergence, NMC, in toy model simulations with two different criteria for
when to change the Wang-Landau parameter f . (a) The histogram criterion, Eq. (4). (b) The tunneling criterion, Eq. (5).

explore is the use of control variables other than the en-
ergy. Another possible improvement would be to fine-tune the
shape of the energy distribution in the coexistence range so as
to maximize the tunneling frequency, rather than prescribing
a flat distribution.48, 49
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APPENDIX: TOY MODEL ANALYSIS OF THE f
PARAMETER

We mentioned two different criteria, given by Eqs. (4)
and (5), for when to change the Wang-Landau modification
factor f . In this appendix, we compare these criteria by sim-
ulations of a simple toy model.

We consider a system with N + 1 possible states ν. Each
state (ν = 0, . . . , N ) is assigned an energy

Eν = Emaxν

N
(A1)

and an entropy

Sν =
{

Smaxν/N − 2Sbν/N if ν ≤ N/2,

Smaxν/N − 2Sb(1 − ν/N) if ν > N/2,
(A2)

where Emax, Smax, and Sb are parameters (all assumed
positive). In the calculations below, we set N = 99, Emax

= 25 (a.u.), Smax/kB = 25, and Sb/kB = 12.
At T = Tm = Emax/Smax, the free energy Fν = Eν

− T Sν is tent shaped, with two degenerate minima at ν = 0
and ν = N . The minima are separated by a barrier of height
TmSb centered at ν = N/2.

An elementary Wang-Landau update of this system
can be defined as follows. If the system is in state ν, a
new state ν ′ = ν or ν ± 1 is proposed with probability
min(1, e(Sν′ −Sν )/kB )/2 for ν ′ = ν ± 1. This proposal is ac-
cepted or rejected, with a probability of acceptance given by
Eq. (3).

Using this dynamics, we examine the convergence times
with the criteria, Eqs. (4) and (5), respectively, through sim-
ulations for a broad range of values of the parameters α and

τ . For each parameter value, a set of ≥128 independent runs
is generated. Each run is started with ln f = 1 and stopped
when ln f < 10−7. Two quantities are recorded: the number
of elementary updates required for convergence, NMC, and the
deviation 	(g̃) of the final estimate g̃(E) from the true density
of states (eSν/kB ), calculated as

	(g̃) =
∑

ν

∣∣∣∣ln g̃(Eν)

g(Eν)

∣∣∣∣ . (A3)

Figure 6 summarizes the results of these simulations, for
different α and τ , by showing how the error 	(g̃) varies with
NMC. From this figure, it can be seen that the average compu-
tational effort required to achieve a given accuracy is slightly
lower with the tunneling criterion, Eq. (5), than it is with
the histogram-based criterion, Eq. (4), but the difference is
small.

Figure 7 shows the mean and standard deviation of NMC

as functions of α and τ . The standard deviation of NMC is
strikingly smaller with Eq. (5) than it is with Eq. (4). Although
the average computational effort is similar with both criteria,
we thus find that the run-to-run variation is much smaller with
the tunneling criterion. Because of this robustness, we decided
to use the tunneling criterion, Eq. (5), in our peptide simula-
tions. The toy model analysis was repeated in the absence of
a free-energy barrier (Sb = 0), with similar results.
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