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For suspensions of permeable particles, the short-time translational and rotational self-diffusion

coefficients, and collective diffusion and sedimentation coefficients are evaluated theoretically. An

individual particle is modeled as a uniformly permeable sphere of a given permeability, with

the internal solvent flow described by the Debye-Bueche-Brinkman equation. The particles are

assumed to interact non-hydrodynamically by their excluded volumes. The virial expansion of

the transport properties in powers of the volume fraction is performed up to the two-particle level.

The first-order virial coefficients corresponding to two-body hydrodynamic interactions are

evaluated with very high accuracy by the series expansion in inverse powers of the inter-particle

distance. Results are obtained and discussed for a wide range of the ratio, x, of the particle radius to

the hydrodynamic screening length inside a permeable sphere. It is shown that for x& 10, the virial

coefficients of the transport properties are well-approximated by the hydrodynamic radius

(annulus) model developed by us earlier for the effective viscosity of porous-particle suspensions.
VC 2011 American Institute of Physics. [doi:10.1063/1.3626196]

I. INTRODUCTION

One of the theoretical methods to analyze transport

properties in suspensions of interacting colloidal particles is

the virial expansion in terms of the particle volume fraction

/. For suspensions of non-permeable hard spheres with stick

hydrodynamic boundary conditions, virial expansion results

for short-time properties are known to high numerical preci-

sion up to the three-particle level, i.e., to quadratic order in /
for diffusion and sedimentation coefficients,1,2 and to third

order in / for the effective viscosity.3 The concentration

range of applicability of these hard-sphere virial expansion

results in comparison to simulation data that has been dis-

cussed in Ref. 4. Our knowledge on virial expansion coeffi-

cients of colloidal transport properties is less developed

when suspensions of solvent-permeable particles are consid-

ered. The theoretical description of their dynamics is more

complicated since one needs to account for the solvent flow

also inside the particles. Permeable particle systems are fre-

quently encountered in soft matter science. Prominent exam-

ples of practical relevance, which are the subject of ongoing

research, are dendrimers,5,6 microgel particles,7–9 a large va-

riety of core-shell particles with a dry core and an outer po-

rous layer,10–14 fractal aggregates,15 and star-like polymers

of lower functionality.16

In a series of recent articles,17–20 we have explored the

generic effect of solvent permeability on the short-time

transport using the model of uniformly permeable colloidal

spheres with excluded volume interactions. This simple

model is specified by two parameters only, namely, the parti-

cle volume fraction /¼ (4p/3)na3, where n is the number

concentration and a is the particle radius, and the ratio x of

the particle radius to the hydrodynamic penetration depth

inside a permeable sphere. Large (low) values of x corre-

spond to weakly (strongly) permeable particles. While the

model of uniformly permeable hard spheres ignores a spe-

cific intra-particle structure, it is generic in the sense that the

hydrodynamic structure of more complex porous particles

can be approximately accounted for in terms of a mean per-

meability. In our related previous publications, using a

hydrodynamic multipole simulation method of a very high

accuracy,21 encoded in the HYDROMULTIPOLE program pack-

age,1 we have calculated the short-time translational diffu-

sion properties17,18 and the high-frequency viscosity19,20 of

the permeable spheres model as functions of / and x. These

results cover the full range of permeabilities, with volume

fractions extending up to the liquid-solid transition.

While the simulation results are important for the general

understanding of permeability effects in concentrated systems,

for practical use in experimental data evaluation and as input

in long-time theories, virial expansion results based on a rigor-

ous theoretical calculation are still strongly on demand. In fact,

the knowledge of the leading-order virial coefficients can be a

good starting point in deriving approximate expressions for

transport properties, which may be applicable at concentrations

much higher than those where the original (truncated) virial

expansion result is useful. An example in case is provided in

our recent derivation20 of a generalized Saitô expression for

the effective high-frequency viscosity g1 of permeable

spheres, based on the second-order concentration expansion

result, i.e., a Huggins coefficient calculation, of this property.

In Ref. 19, we have performed virial expansion calcula-

tions for g1. We have investigated therein a simplifying

hydrodynamic radius model (HRM), where a uniformlya)Electronic mail: mekiel@ippt.gov.pl.
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permeable sphere of radius a is described by a spherical

annulus particle with an inner hydrodynamic radius

aeff(x)< a, and unchanged excluded-volume radius a. In this

annulus model (HRM), the Huggins coefficient describing

two-body viscosity contributions has been evaluated and

shown to be in a remarkably good agreement with the precise

numerical data for porous particles, characterized by a wide

range of permeabilities realized in experimental systems.

In the present article, the aforementioned theoretical work

on the virial expansion of the high-frequency viscosity is gen-

eralized to short-time diffusion properties. In Sec. II, the virial

expansion is performed for the translational and rotational self-

diffusion coefficients Dt and Dr, respectively, the sedimenta-

tion coefficient K, and the associated collective diffusion coef-

ficient DC ¼ KDt
0=Sð0Þ. Here, S(0) is the small-wavenumber

limit of the static structure factor and Dt
0 is the single-particle

translational diffusion coefficient. In Sec. III, we provide

highly accurate numerical values for the first-order (i.e., two-

particle) virial coefficients, kt(x), kr(x), kC(x), and kK(x), of Dt,

Dr, DC, and K, respectively, in the full range of permeabilities.

In Sec. IV, we also recalculate these virial coefficients approxi-

mately on the basis of the simplifying annulus model (HRM).

In Sec. VI, we conclude that in the range x& 10 typical of

many permeable particle systems, the virial coefficients are

well approximated by the annulus model.

II. THEORY

We consider a suspension made of a fluid with shear vis-

cosity g0 and identical porous particles of radius a. The fluid

flow is characterized by Reynolds number Re � 1. Outside

the particles, the fluid velocity v and pressure p satisfy the

Stokes equations,22,23

g0$
2vðrÞ � $pðrÞ ¼ 0

$ � vðrÞ ¼ 0;
(1)

and inside the particles, the Debye-Büche-Brinkman (DBB)

equations,24,25

g0$
2vðrÞ � g0 j2½vðrÞ � uiðrÞ� � $pðrÞ ¼ 0

$ � vðrÞ ¼ 0;
(2)

where j� 1 is the hydrodynamic penetration depth. The skel-

eton of the particle i, centered at ri, moves rigidly with the

local velocity ui(r)¼Uiþxi� (r� ri), determined by the

translational and rotational velocities Ui and xi of the parti-

cle i, respectively. The fluid velocity and stress tensor are

continuous across a particle surface. The effect of the parti-

cle porosity is therefore described by the ratio x of the parti-

cle radius a to the hydrodynamic screening length j� 1 of the

porous material inside the particle, i.e.,

x ¼ ja: (3)

Owing to linearity of the Stokes and DBB equations and

the boundary conditions, the particle velocity Ui depends lin-

early on the external forces Fj exerted on a particle j. In par-

ticular, for two interacting spherical particles, 1, 2, in the

absence of external torques and flows,

U1 ¼ ltt
11ðr1; r2Þ � F1 þ ltt

12ðr1; r2Þ � F2; (4)

U2 ¼ ltt
21ðr1; r2Þ � F1 þ ltt

22ðr1; r2Þ � F2: (5)

In this paper, the two-particle translational-translational mo-

bility matrices ltt
ijðr1; r2Þ are evaluated using the multipole

method of solving the Stokes and DBB equations.21 The

cluster expansion of the above mobility matrices reads,

ltt
ijðr1; r2Þ ¼ lt

0dij1þ l
ttð2Þ
ij ðrÞ; (6)

where r¼ r2�r1 and

lt
0 ¼

1

4pg0A10

(7)

is the single porous-particle translational mobility. Here A10

is a single porous-particle scattering coefficient,26 given ex-

plicitly in Appendix A. For a non-permeable hard sphere

with stick boundary conditions, Ahs
10 ¼ 3a=2.

The single particle scattering coefficients Alr, with l¼ 1,

2, 3, 4, … and r¼ 1, 2, 3,26 are essential to perform the mul-

tipole expansion. They determine the corresponding multi-

poles of the hydrodynamic force density on a particle

immersed in an ambient flow; examples are Eqs. (7) and

(24). The same coefficients Alr specify also the correspond-

ing multipoles of the fluid velocity, reflected (scattered) by a

particle immersed in a given ambient flow. This is why Alr is

called “scattering coefficients.” In the multipole approach,

differences in the internal structure of particles (e.g., solid,

liquid, gas, porous, core-shell, stick-slip) are fully accounted

for by different scattering coefficients. The other parts of the

multipole algorithm need not to be changed. The scattering

coefficients are the matrix elements of two single-particle

friction operators, Z0 and bZ0, which determine the hydrody-

namic force density exerted by a given ambient flow on a

motionless and a freely moving particle, respectively.

In the multipole expansion method, the two-particle mo-

bility l(2)(1, 2) (e.g., translational one, as in Eq. (6), or rota-

tional one, as in Eq. (23)) is expressed in terms of the single-

particle friction operators, Z0(i) and bZ0ðiÞ, with i¼ 1, 2, and

the Green operator G(1, 2). The later relates the flow out-

going from particle 2 and incoming on particle 1. We can

write l(2) as an infinite scattering series,

lð2Þ ¼ l0Z0ð1þGbZ0Þ�1
GZ0l0

¼ l0Z0GZ0l0 � l0Z0GbZ0GZ0l0 þ � � � : (8)

Since the multipole matrix elements of the Green tensor G

scale as inverse powers of the interparticle distance r, Eq. (8)

corresponds to a power series in 1/r. Truncating the expan-

sion at order 1/r1000, we obtain a very high precision of the

mobility calculation, actually much higher than that needed

for any practical applications.

In the present work, we investigate the short-time dy-

namics, at time scales t� a2=Dt
0, where

Dt
0 ¼ kBTlt

0; (9)

is the single-particle translational diffusion coefficient, with the

Boltzmann constant kB and temperature T. On the short-time
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scale, the system is described by the equilibrium particle dis-

tribution.27 In the further analysis, we will need only the

small-concentration limit g0(r) of the pair distribution func-

tion, where r is the interparticle distance. For particle-particle

direct interactions described by a pair potential V(r), this pair

distribution is g0(r)¼ exp(�V(r)/kBT). For non-overlapping

spheres of radius a,

g0ðrÞ ¼
0 for r � 2a;

1 for r > 2a:

�
(10)

The first-order terms in the virial expansion of the short-time

transport coefficients are obtained by averaging the corre-

sponding two-particle mobility elements. As a result, the vir-

ial coefficients are obtained as integrals, which involve the

mobility elements and g0(r).

The first-order virial expansion of the short-time transla-

tional self-diffusion coefficient has the form,

Dt ¼ Dt
0ð1þ kt/þOð/2ÞÞ: (11)

The coefficient kt is given by the relation,28

kt ¼ 8

ðþ1
1

g0ðRÞJtðRÞR2dR; (12)

with R¼ r/2a and

JtðRÞ ¼
1

lt
0

Tr l
ttð2Þ
11 ðrÞ: (13)

Here, Tr denotes the trace operation. For the sedimentation

coefficient, one obtains

K ¼ 1þ kK/þOð/2Þ; (14)

where

kK ¼
2

5a3
A12 þ

8

a
A10

ðþ1
0

½g0ðRÞ � 1�RdR; (15)

þ 8

ðþ1
1

g0ðRÞJKðRÞR2dR; (16)

and

JKðRÞ ¼
1

lt
0

Tr
h
l

ttð2Þ
11 ðrÞ þ l

ttð2Þ
12 ðrÞ � T0ðrÞ

i
: (17)

In the above expression,

T0ðrÞ ¼
1þ r̂r̂

8pg0r
(18)

is the Oseen tensor and r̂ ¼ r=r.

The scattering coefficient A12 for a porous particle26 is

given explicitly in Appendix A. For a non-permeable hard

sphere with the stick boundary conditions, Ahs
12 ¼ 5a3=2.

The collective diffusion coefficient is given by

DC ¼ Dt
0K=Sð0Þ; (19)

where S(0) is the zero-wavenumber limit of the static struc-

ture factor, S(0)¼ limq!0 S(q). The first-order virial expan-

sion of Eq. (19) has the form,

DC ¼ Dt
0ð1þ kC/þOð/2ÞÞ: (20)

For the non-overlapping spheres,27

Sð0Þ ¼ 1� 8/þOð/2Þ: (21)

In this case,

kC ¼ kK þ 8: (22)

The relation (22) follows from Eqs. (14), (19), and (20).

We proceed by analyzing the short-time rotational self-

diffusion coefficient. In the absence of external forces and

flows, the two-particle rotational-rotational mobility matrices

lrr
ij ðr1; r2Þ satisfy the relation analogical to Eqs. (4)–(5), with

the translational velocities replaced by the rotational ones,

and the forces replaced by the torques. The two-particle clus-

ter expansion now reads,

lrr
ij ðr1; r2Þ ¼ lr

0dij1þ l
rrð2Þ
ij ðrÞ; (23)

with

lr
0 ¼

1

8pg0A11

: (24)

The scattering coefficient A11 for a porous particle26 is given

in Appendix A. For a non-permeable hard sphere with the

stick boundary conditions, Ahs
11 ¼ a3.

The virial expansion of the rotational self-diffusion

coefficient is

Dr ¼ Dr
0ð1þ kr/þOð/2ÞÞ; (25)

where

Dr
0 ¼ kBTlr

0; (26)

and

kr ¼ 8

ðþ1
1

g0ðRÞJrðRÞR2dR; (27)

with

JrðRÞ ¼
1

lr
0

Tr l
rrð2Þ
11 ðrÞ: (28)

In the limit x!1, the first-order virial coefficients for

a suspension of hard non-permeable spheres are recovered,

and the Batchelor’s values of the first-order virial coeffi-

cients, k(x)! khs.

In the limit x ! 0, the scattering coefficients scale as

�x2, and as a result, D0� 1/x2, and k! 0, with kC� x2, and

kt, kr� x4.

III. RESULTS

To evaluate the first order virial coefficients k¼ kt, kK,

kr, we calculate two-particle mobility matrix elements, per-

forming a series expansion in powers of 1/r up to the order

1000, as described in Sec. II. Integration with respect to the
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particle positions has been performed analytically term by

term, using the expressions given in Sec. II. The virial coeffi-

cients k have been evaluated for a wide range of x. Selected

results are listed in Table I. All displayed digits are significant

(accuracy is discussed in Appendix C).

In Sec. VI, the dependence of the first-order virial coeffi-

cients k on the permeability parameter 1/x will be discussed

and plotted. Tables of values presented here can be used to

construct approximate description of suspensions made of

permeable particles with different internal structures.

IV. ANNULUS MODEL

The annulus model is another simplification, which can

be applied to describe the dynamics of suspensions made of

soft particles having a complex internal structure. The annu-

lus model is alternative to the model of uniformly permeable

particles.

In the annulus model,31 a particle suspended in a viscous

fluid is characterized by two radii, a< and a>. Its hydrody-

namic interactions are governed by the smaller radius a<. In

addition, there exist also direct pair interactions. Two par-

ticles cannot come too close to each other, with the no-over-

lap radius equal to a>. For such a model, the first-order virial

expansion of transport coefficients has been performed with

respect to the volume fraction /> ¼ ð4p=3Þna3
>. The corre-

sponding first-order virial coefficients kA ¼ kA
t ; k

A
K; k

A
r have

been evaluated as functions of �, where

� ¼ a> � a<
a<

: (29)

The method used to determine kA is described in Appendix

B. The calculated values are listed in Table II.

In Sec. VI, the dependence of the annulus first-order vir-

ial coefficients kA on the permeability parameter 1/x will be

discussed, plotted, and compared with predictions of the

model of uniformly porous particles. Tables of the annulus

values presented here can be used to construct approximate

description of suspensions made of permeable particles with

different internal structures.

V. DISCUSSION

A. Comparison with the annulus model

Now we are going to compare the first-order virial coeffi-

cients, calculated in Sec. III for porous particles, with the cor-

responding results, obtained in Sec. IV for the annulus model,

also called HRM. A similar comparison has been done in Ref.

19 for the effective viscosity. The key concept in this proce-

dure is the hydrodynamic radius of a porous particle. For the

translational diffusion (self-diffusion and sedimentation), the

hydrodynamic radius at
eff is obtained from the single-particle

translational diffusion coefficient, with the use of the relation,

Dt
0 ¼

kBT

6pg0at
eff

: (30)

The dependence of at
eff on the porosity parameter x follows

from Eqs. (7) and (9), which determine the translational diffu-

sion coefficient of a single porous particle,24,25,32 and Eq. (A1),

which specifies the scattering coefficient A10. Explicitly,

at
effðxÞ ¼ a

2x2ðx� tanhðxÞÞ
2x3 þ 3ðx� tanhðxÞÞ : (31)

For the rotational self-diffusion, the hydrodynamic ra-

dius ar
eff is obtained from the rotational diffusion coefficient

of a single porous particle,32,33 with the use of the relation,

Dr
0 ¼

kBT

8pg0ðar
effÞ

3
: (32)

TABLE I. First virial coefficients kt, kK, and kr for the short-time transla-

tional self-diffusion, sedimentation, and rotational self-diffusion, respec-

tively. The limit x!1 corresponds to hard non-permeable spheres.

x kt kK kr

3 � 0.2497 � 3.4451 � 0.03257

4 � 0.4159 � 4.1066 � 0.06336

5 � 0.5692 � 4.5539 � 0.09682

6 � 0.7021 � 4.8722 � 0.12956

7 � 0.8149 � 5.1084 � 0.16012

8 � 0.9102 � 5.2898 � 0.18802

9 � 0.9909 � 5.4328 � 0.21327

10 � 1.0598 � 5.5480 � 0.23606

11 � 1.1190 � 5.6426 � 0.25662

13 � 1.2151 � 5.7884 � 0.29208

16 � 1.3202 � 5.9380 � 0.33426

18 � 1.3730 � 6.0095 � 0.35692

20 � 1.4161 � 6.0662 � 0.37628

30 � 1.5499 � 6.2335 � 0.44202

40 � 1.6190 � 6.3149 � 0.48007

50 � 1.6610 � 6.3628 � 0.50497

65 � 1.7001 � 6.4064 � 0.52959

100 � 1.7460 � 6.4563 � 0.56075

1 � 1.8315 � 6.5465 � 0.63102

TABLE II. First-order virial coefficients kA
t , kA

K , and kA
r for the short-time

translational self-diffusion, sedimentation, and rotational self-diffusion,

respectively, for a suspension of the annulus particles.

� kA
t kA

K kA
r

0.00 � 1.8315 � 6.5464 � 0.63055

0.01 � 1.7523 � 6.4601 � 0.56666

0.02 � 1.6793 � 6.3769 � 0.51671

0.03 � 1.6109 � 6.2962 � 0.47417

0.04 � 1.5466 � 6.2179 � 0.43699

0.05 � 1.4860 � 6.1419 � 0.40402

0.06 � 1.4286 � 6.0680 � 0.37451

0.07 � 1.3743 � 5.9962 � 0.34791

0.08 � 1.3228 � 5.9263 � 0.32381

0.09 � 1.2739 � 5.8582 � 0.30189

0.10 � 1.2274 � 5.7918 � 0.28187

0.11 � 1.1832 � 5.7272 � 0.26354

0.13 � 1.1008 � 5.6027 � 0.23122

0.18 � 0.9253 � 5.3166 � 0.16974

0.24 � 0.7595 � 5.0135 � 0.12034

0.31 � 0.6111 � 4.7051 � 0.08296

0.45 � 0.4093 � 4.1986 � 0.04242

0.66 � 0.2401 � 3.6278 � 0.01775
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The dependence of ar
eff on the porosity parameter x follows

from Eqs. (24) and (26), with the scattering coefficient A11

given by Eq. (A2). As a result,

ar
effðxÞ ¼ a 1þ 3

x2
� 3 cothðxÞ

x

� �1=3

: (33)

For large x,

ar
effðxÞ ¼ at

effðxÞ þ Oð1=x2Þ: (34)

A porous particle of radius a and the porosity parameter

x is modeled as an annulus particle, see Fig. 1, by matching

its geometrical radius a to the annulus no-overlap radius

a>¼ a. The smaller annulus radius a<¼ aeff is determined

by the effective hydrodynamic radius aeff, given in Eqs.

(31)–(33).

In this way, the annulus parameter �, defined in Eq. (29),

becomes the following function of x:

�ðxÞ ¼ a� aeffðxÞ
aeffðxÞ

; (35)

with aeff(x) determined by Eqs. (31) and (33).

In Figs. 2–4, the annulus coefficients kAð�Þ, with �ðxÞ
specified by Eq. (35) (dashed lines), are plotted together with

the porous-particle virial coefficients k(x) (solid lines).

As shown in Fig. 2, for a low permeability, the coefficient

kK 	 khs
K þ 10=x is approximately a linear function of 1/x. The

coefficients kt and kr as functions of 1/x are shown in Figs. 3

and 4, respectively. In the plots, 1/x � 0.1, i.e., for x 
 10. For

1/x¼ 0, i.e., for x¼1, the limit of a non-permeable hard

sphere with radius a is recovered, khs¼ k(1).

The annulus model slightly underestimates the accurate

values of the first-order virial coefficients for suspensions of

uniformly permeable particles, and this very small difference

slightly increases when x decreases (when the particles

become more permeable).

For the sedimentation coefficient, the annulus model is

accurate, with a half-percent relative accuracy already at

x¼ 20 and a reasonable 3% precision at x¼ 5. For the trans-

lational self-diffusion, the annulus model is less accurate, but

still it gives only a 2% error for x¼ 20, a 5% error for

x¼ 10, and a 7% error for x¼ 5. The least accurate is the

annulus prediction for the rotational self-diffusion, with a

5% error for x¼ 20 and a 11% error for x¼ 10.

Summarizing, the annulus model (HRM) approximates

well with the first virial coefficients of porous particles sus-

pensions, in the range of intermediate and small particle per-

meability (i.e., for moderate and large values of x).

FIG. 1. The annulus (or hydrodynamic radius) model of a porous particle.

FIG. 2. (Color online) Two-particle sedimentation virial coefficient kK(x).

Our precise results for porous particles (solid line) are well-approximated by

the annulus model (dashed line).

FIG. 3. (Color online) Two-particle translational self-diffusion virial coeffi-

cient kt(x). Our precise results for porous particles (solid line) are well-

approximated by the annulus model (dashed line).

FIG. 4. (Color online) Two-particle rotational self-diffusion virial coeffi-

cient kr(x). Our precise results for porous particles (solid line) are well-

approximated by the annulus model (dashed line).
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B. Comparison with other results for permeable
particles suspensions

In this section, we compare our first-order virial approxi-

mation for diffusion and sedimentation of porous particles

suspensions, given by Eqs. (11), (14), (20), and (25), with

the corresponding values evaluated by other methods, and

with the accurate data obtained from numerical simulations

of the same system, what allows to estimate the range of va-

lidity of the first-order virial approximation.

In Fig. 5, our first-order virial expansion of the short-

time translational self-diffusion coefficient of a porous-parti-

cle suspension (dashed lines) is compared with the accurate

simulation results performed in Ref. 17 for a porous-particle

suspension in the whole range of volume fractions / � 0.45

(solid lines, which interpolate the simulation points indicated

by symbols). The first order virial expansion, see Eq. (11),

can be used as an accurate approximation of Dt in a very

wide range of volume fractions, even for relatively large val-

ues of x (i.e., low permeabilities).

The small difference between the simulations and the

first virial expansion has a tendency to increase when the

volume fraction is increased. The reason is that in this case,

the two-particle hydrodynamic interactions, taken into

account in the first-order virial expansion, are not sufficient

to describe very accurately the whole system, in which the

N-particle hydrodynamic interactions, with N 
 3, become

more and more important.

Also, it is intuitive that at larger volume fractions, the

first-order virial approximation is closer to the accurate

value, when x is smaller, i.e., for a larger permeability—in

this case the effect of many-body hydrodynamic interactions

is smaller.

In contrast to the translational self-diffusion, values of

the sedimentation coefficient K differ significantly from the

first-order virial estimation already at rather small volume

fractions, see Ref. 17. Our values of kK(1) reproduce with a

higher accuracy, the classic Batchelor’s result,29 for non-per-

meable hard spheres. For uniformly porous particles, the

boundary collocation method was applied by Chen and Cai30

to evaluate kK¼� 3.46, � 5.50, � 6.23, � 6.44 for x2¼ 10a,

with a¼ 1, 2, 3, 4, respectively. Comparing their results with

our very accurate values, kK¼� 3.5723, � 5.5480, � 6.2504,

� 6.4563, we conclude that the uncertainty of their results is

decreasing from 3% at a¼ 1 to 0.3% at a¼ 4. The accuracy

of the boundary collocation method is worse at smaller values

of x, i.e., for larger permeabilities.

VI. CONCLUSIONS

In this paper, the short-time diffusion properties of

dilute suspensions of uniformly porous spherical particles

have been investigated. The first-order virial coefficients k of

the diffusion and sedimentation coefficients have been eval-

uated as functions of the permeability parameter x, equal to

the ratio of the particle radius to the hydrodynamic screening

length. In the limit of x ! 1, the hard non-permeable limit

is recovered, with the Batchelor’s values of the first-order

virial coefficients.

It is worthwhile to point out that values of the first-order

virial coefficients calculated in this work are essential also

for concentrated suspensions of uniformly porous particles.

As it has been recently shown in Ref. 34, the first-order virial

coefficients provide such a significant information about sus-

pension of permeable particles, that they are sufficient to

determine very accurately the translational and rotational

self-diffusion in the whole range of volume fractions up to

/¼ 0.45, based on the known results for a non-permeable

hard-sphere suspension of the same volume fraction. A sim-

ple and accurate (but not straightforward) scaling has been

found and described in detail in Ref. 34. Therefore, the first-

order virial coefficients evaluated here are of fundamental

importance for the self-diffusion in concentrated systems of

permeable particles.

In this work, it has been checked that values of the first-

order virial coefficients k are well-approximated by the

annulus (hydrodynamic radius) model, if the parameter x is

sufficiently large, i.e., the permeability is sufficiently low.

Systematically, the annulus approximation slightly underes-

timates the virial coefficients of porous particle suspensions.

For rotational diffusion, a reasonable 5% accuracy of this

model is reached at x& 20. For translational diffusion

(collective and self), the comparable or even better 3%–5%

precision is obtained already for x& 10. For the sedimenta-

tion coefficient, the accuracy is even higher (a 3% precision

already at x¼ 5), owing to much larger absolute values of

kK¼ 8þ kC.

The annulus model is expected to work well also for sus-

pensions of uniformly porous particles at larger volume frac-

tions, if the permeability parameter x is sufficiently large.

The accuracy of this approximation at larger volume frac-

tions will be investigated in a separate publication.

The annulus model is an approximate model of real sus-

pensions of particles, which can exhibit a complex non-uni-

form internal structure. The advantage of the annulus model

is its simplicity—there is only one parameter, i.e., the inner

(hydrodynamic) radius, which can be easily determined from

experiments with individual particles. Here we provide

FIG. 5. (Color online) Translational self-diffusion coefficient Dt for a sus-

pension of porous particles. Symbols connected by splines (solid lines) rep-

resent accurate simulation results from Ref. 17. Dashed straight lines

represent first-order virial expansion calculated in this work.
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tables of values for the virial coefficients following from this

model, and we check that the model is reasonably accurate

for the special case of a suspension made of uniformly per-

meable (porous) particles. The tables of the annulus virial

coefficients presented in this work can be used also in a wide

range of other contexts, to estimate diffusion and shear vis-

cosity coefficients of suspensions made of particles charac-

terized by a different internal structure. The core-shell is an

example. Comparison with experiments, polydispersity, non-

uniform porosity, core-shell particles, and relation to practi-

cal aspects are the subjects of future studies.
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APPENDIX A: SCATTERING COEFFICIENTS

The scattering coefficients for a uniformly permeable

sphere with x¼ja, where a is the sphere radius and 1/j is

the hydrodynamic penetration depth, have the form,32

Al0 ¼
ð2lþ 1ÞglðxÞ

2gl�2ðxÞ
1þ lð2l� 1Þð2lþ 1ÞglðxÞ

ðlþ 1Þx2gl�2ðxÞ

� ��1

a2l�1;

(A1)

Al1 ¼
glþ1ðxÞ
gl�1ðxÞ

a2lþ1; (A2)

Al2 ¼
2lþ 3

2l� 1
þ 2ð2lþ 1Þð2lþ 3Þ

ðlþ 1Þx2

� �
a2Al0 �

2lþ 3

2l� 1
a2lþ1;

(A3)

Bl2 ¼ 1þ 2ð2l� 1Þð2lþ 1Þ
ðlþ 1Þx2

� �
a2Al2 � a2lþ3; (A4)

where l¼ 1, 2, … and glðxÞ ¼
ffiffiffiffiffiffiffiffiffiffi
p=2x

p
Ilþ1=2ðxÞ is the modi-

fied spherical Bessel function of the first kind.

APPENDIX B: THE ANNULUS (HYDRODYNAMIC
RADIUS) MODEL

For a suspension of particles described by the annulus

(hydrodynamic radius) model, the virial coefficients kA are

functions of the model parameter �, defined by Eq. (29) and

listed in Table II. In this Appendix, we explain how these

values have been evaluated.

The first-order virial expansion of Dt=Dt
0, DC=Dt

0, K, and

Dr=Dr
0, can be performed with the use of /< ¼ ð4p=3Þna3

<,

or /> defined by the analogical expression,

1þ kAð�Þ/> þOð/2
>Þ ¼ 1þ �kAð�Þ/< þOð/2

<Þ: (B1)

Therefore,

kAð�Þ ¼
�k

Að�Þ
ð1þ �Þ3

: (B2)

To evaluate �kAð�Þ, we now introduce the dimensionless inter-

particle distance as R¼ r/2a<, and we replace the pair distri-

bution function from Eq. (10) by the following expression:

g0ðRÞ ¼
0 for R � 1þ �;
1 for R > 1þ �:

�
; (B3)

which corresponds to the no-overlap condition at a larger ra-

dius a>. Then, we apply the Eqs. (12), (16), and (27), taken

in the non-permeable hard-sphere limit, x¼1. We obtain

the following expressions:

�kA
t ð�Þ ¼ 8

ðþ1
1þ�

JtðRÞR2dR

¼ khs
t � 8

ð1þ�

1

JtðRÞR2dR; (B4)

�kA
Kð�Þ ¼

2

5a3
<

Ahs
12 �

4

a<
Ahs

10ð1þ �Þ
2

þ 8

ðþ1
1þ�

JKðRÞR2dR

¼ khs
K � 8

ð1þ�

1

�JKðRÞR2dR; (B5)

�kA
r ð�Þ ¼ 8

ðþ1
1þ�

JrðRÞR2dR

¼ khs
r � 8

ð1þ�

1

JrðRÞR2dR; (B6)

where

�JKðRÞ ¼
1

lt
0

Tr½lttð2Þ
11 ðRÞ þ l

ttð2Þ
12 ðRÞ�: (B7)

In this Appendix, all the mobility coefficients, the associated

functions J, and the superscript hs, refer to the hard spheres

with the stick boundary conditions.

The above formulas have been applied to compute the

functions kA
t ð�Þ, kA

Kð�Þ, and kA
r ð�Þ, listed in Table II. The func-

tions �kA
t ð�Þ, �kA

Kð�Þ, and �kA
r ð�Þ will be also listed in our future

publication, where they are applied to model diffusion and vis-

cosity of particles with a hard solid core and a thin porous shell.

APPENDIX C: ACCURACY OF THE VIRIAL
COEFFICIENTS

The virial coefficients k for uniformly permeable particles

are calculated as a series expansion in powers 1/rk, with

k¼ 1,…, 1000. Accuracy of this expansion has been estimated

by calculating k(n) as the sum of all the terms k¼ 1,…, n.

Then, the relative error of this sum has been evaluated,

DkðnÞ ¼ kðnÞ � kð1000Þ
kð1000Þ

����
����: (C1)

The relative error Dk(n) is plotted in Fig. 6 as a function of

n. Here, we took the largest value of x¼ 100, since the larger

value of x, the slower is the convergence rate. For a smaller

x, the error is smaller.
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Concluding, the accuracy of the first-order virial coeffi-

cient for suspensions of permeable particles is very high,

exceeding significantly precision obtained usually in

experiments.
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FIG. 6. (Color online) Estimation of the relative uncertainty Dk(n) of the

first-order (two-particle) virial coefficients as a function of the truncation pa-

rameter n of the power expansion in the inverse interparticle distance. Dk is

defined in Eq. (C1), and t, r, and K refer to the translational and rotational

self-diffusion and sedimentation, respectively.
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