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Approach to equilibrium of diffusion in a logarithmic potential
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The late-time distribution function P (x,t) of a particle diffusing in a one-dimensional logarithmic potential is
calculated for arbitrary initial conditions. We find a scaling solution with three surprising features: (i) the solution
is given by two distinct scaling forms, corresponding to a diffusive (x ∼ t1/2) and a subdiffusive (x ∼ tγ with a
given γ < 1/2) length scale, respectively, (ii) the overall scaling function is selected by the initial condition, and
(iii) depending on the tail of the initial condition, the scaling exponent that characterizes the scaling function is
found to exhibit a transition from a continuously varying to a fixed value.
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I. INTRODUCTION

There exist many physical systems whose temporal evolu-
tion is described by a diffusion process in a one-dimensional
logarithmic potential. Examples include the denaturation
process of DNA molecules [1] and the temporal evolution of
the momentum distribution of cold atoms trapped in an optical
lattice [2–4]. Effective logarithmic potentials also appear, for
example, in models of real-space condensation such as the
zero-range process [5–7], relaxation to equilibrium of long-
range interacting gases [8,9], dynamics of the two-dimensional
XY model below the Kosterlitz-Thouless transition [10], the
Alessandro Beatrice Bertotti Montorsi (ABBM) model for
Barkhausen noise [11], and dynamics of sleep-wake transitions
during a night’s sleep [12].

The Fokker-Planck equation corresponding to diffusion in
a one-dimensional potential is

∂P (x,t)

∂t
= ∂

∂x

[
V ′(x)P (x,t) + ∂P (x,t)

∂x

]
, (1)

where P (x,t) is the probability distribution. We consider
potentials that increase logarithmically at large x,

V (|x| � 1) ∼ b log(|x|), (2)

and are regular at x = 0. For simplicity, we have taken in
these equations the diffusion constant and the temperature to
be equal to 1. Here we consider the case b > 1, for which the
system evolves into a stationary state given by the normalizable
Boltzmann distribution,

P ∗(x) = 1

Z
e−V (x) ∼ 1

Z
x−b, (3)

where Z = ∫
e−V (x)dx is the normalization constant. For some

applications the variable x is by definition non-negative, x � 0,
as in the case of DNA denaturation where x corresponds to the
length of a denaturated loop. In these cases, the equation has
to be supplemented by a boundary condition at the origin.

In this paper, we use a scaling analysis to study the
long-time evolution of the probability distribution toward the
stationary state. We find that the solution of Eq. (1) relaxes to
equilibrium via a universal scaling form which depends on the
potential only through its asymptotic form (2). This scaling
form exhibits several features that are not typically found in
scaling solutions [13]: (i) At large times, the equation exhibits

two distinct scaling regimes, which we refer to as the large-x
and the small-x regimes. The two scaling functions yield, to
leading order in time, the distribution at any point x. They join
smoothly at an intermediate scale x1(t), which grows with time.
(ii) The overall scaling solution (composed of both regimes)
is not unique. There exists a one-parameter family of such
solutions, and the appropriate solution is selected by the tail
of the initial distribution. The mechanism by which the initial
condition selects the eventual scaling solution is analogous
to that encountered in, e.g., fronts propagating into unstable
states [13,14]. (iii) For a class of initial conditions whose tails
are sufficiently close to the eventual steady-state distribution,
the scaling solution is found to be independent of the details
of the initial condition. On the other hand, the scaling function
resulting from other initial conditions varies continuously with
the initial condition.

A large-x scaling solution of Eqs. (1) and (2) has recently
been analyzed in [6,7,15], where the dependence on the initial
distribution has not been considered. Although this analysis is
valid for a rather broad class of initial conditions, including
compactly supported ones, other initial conditions that may
arise in various physical circumstances are left out. The
analysis presented here applies to all initial conditions, and
provides the scaling form in both the small-x and large-x
regimes.

The paper is organized as follows. In Sec. II, we present our
scaling analysis. The scaling solution for the case of reflecting
boundary conditions at the origin is considered in Sec. II A,
where a one-parameter family of solutions is identified. In
Sec. II B, we present a mechanism by which a particular
solution is selected by the initial condition, and test it
numerically. A generalization to other boundary conditions
is discussed in Sec. II C. Finally, in Sec. III, we summarize our
results.

II. SCALING ANALYSIS

A. Scaling solutions for reflecting boundary conditions

We begin our analysis by introducing a function G(x,t)
defined as

P (x,t) = P ∗(x)[1 + G(x,t)]. (4)
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The deviation P ∗(x)G(x,t) from the steady state also satisfies
Eq. (1), but its normalization is zero. For x � 1, where the
deviation of the potential from the logarithmic form (2) is
negligible, G satisfies

∂G(x,t)

∂t
= −b

x

∂G(x,t)

∂x
+ ∂2G(x,t)

∂x2
. (5)

To be specific, we consider the case where the equation is
defined on the positive real axis, x � 0, with a reflecting
boundary condition at x = 0. This implies ∂G(x = 0,t)/∂x =
0. We later comment on other boundary conditions.

The scaling solution of Eq. (5) may in fact be obtained
by an exact solution of Eqs. (1) and (2). This is done by
transforming the Fokker-Planck equation into an imaginary-
time Schrödinger equation via the transformation P (x,t) =
e−V (x)/2ψ(x,t) [16]. The resulting equation for the “wave
function” ψ is

∂ψ(x,t)

∂t
= ∂2ψ(x,t)

∂x2
− Vs(x)ψ(x,t), (6)

with the Schrödinger potential Vs(x) = V ′(x)2

4 − V ′′(x)
2 . For a

potential of the form (2) this gives

Vs(x � 1) ∼ γ /x2, (7)

with γ = b
2 ( b

2 + 1). For large x, this equation describes the
well-studied problem of a quantum particle moving in a
repulsive inverse square potential [17]. The solution of this
equation may be found by expanding it in eigenfunctions,
ψ(x,t) = ∫

dk ake
−k2tψk(x), where ψk(x) can be expressed

in terms of Bessel functions. The long-time scaling behavior
is then obtained by studying the small-k behavior of the
amplitudes ak . Carrying out this expansion, we find that any
localized initial condition for the function G evolves at long
times to

G(x,t) ∼ t−1f1

(
x√
t

)
with f1(u) = ub+1e−u2/4. (8)

The analysis is rather lengthy and will be presented elsewhere
[18]. Below we derive the long-time solution directly by
assuming a scaling form. We make use of the result (8) only in
relating the appropriate scaling solution to the initial condition.

Let us now present the scaling solution of this equation and
outline its derivation. As we demonstrate below, two length
scales emerge at large times: a large-x regime with x ∼ t1/2,
and a small-x regime, x ∼ tγ , with a b-dependent γ satisfying
γ < 1/2. Starting with the small-x regime, we consider a
scaling solution of the form

G(x,t) = t−δg(z), z = x

tγ
, (9)

with some function g and exponents γ and δ. Substituting (9)
in Eq. (5) yields

g′′(z) − b

z
g′(z) = −[γ zg′(z) + δg(z)]t−(1−2γ ). (10)

The right-hand side of this equation may be neglected as long
as γ < 1/2, yielding the solution

g(z) = C̃ + Czb+1, (11)

where C and C̃ are integration constants. Thus, for z � 1 one
has G(ztγ ,t) ∼ t−δC̃. In fact, since for z � 1 this solution
satisfies the boundary condition at x = 0, it is valid down
to x = 0.

In order to determine γ and δ one needs the solution in
both small-x and large-x regimes. We thus consider a different
scaling function for x ∼ t1/2,

G(x,t) = t−βf (u), u = x

t1/2
, (12)

where the scaling exponent β and the function f (u) are to
be determined. Substituting (12) in Eq. (5) yields a family of
ordinary differential equations for f (u), parameterized by β:

f ′′ +
(

u

2
− b

u

)
f ′ + βf = 0. (13)

Requiring that the small-x and large-x solutions join smoothly
at an intermediate scale

tγ � x1(t) � t1/2, (14)

one concludes from (9), (11), and (12) that

f (u � 1) ∼ Cub+1 (15)

and
δ = β + (b + 1)

(
1
2 − γ

)
. (16)

The solution of Eq. (13), which satisfies (15), is [19]

f (u) = Cub+1
1F1

(
1 + b + 2β

2
;
b + 3

2
; −u2

4

)
, (17)

where 1F1 is the hypergeometric function. For small and large
arguments f (u) satisfies [19]

f (u) ∼

⎧⎪⎨
⎪⎩

ub+1 for u � 1

Bu−2β for u � 1,β �= 1,2,3, . . .

Bub+2β−1e− u2

4 for u � 1,β = 1,2,3, . . . ,

(18)

where B is a known constant that depends on b and β.
Once the small-x and large-x scaling functions are known,

conservation of probability enables us to determine the scaling
exponent γ and the integration constant C̃. We evaluate the
normalization condition

∫ ∞
0 P ∗(x)G(x,t)dx = 0 by splitting

the integral into two domains: 0 � x � x1(t) and x1(t) �
x � ∞. Using the solutions found in the two domains and
evaluating the integrals to leading order in t we obtain

γ = 1

b + 1
and δ = β + b − 1

2
. (19)

Also,

C̃ = −C

Z

∫ ∞

0
u−bf (u)du = −C

Z

2(b + 1)

2β + b − 1
. (20)

Summarizing the results of the scaling analysis, we find
that the solution of Eqs. (1) and (2) is, to leading order in t ,

P (x,t) ≈ P ∗(x) + P ∗(x)

⎧⎨
⎩

g
(

x
tγ

)
t−δ, x � x1(t)

f
(

x
t1/2

)
t−β, x � x1(t),

(21)

where f and g are given in Eqs. (11) and (17), γ and δ

are given in (19), and x1(t) satisfies (14). We thus obtain
a one-parameter family of scaling solutions parameterized
by β. Below we denote a member of this family by
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FIG. 1. (Color online) A schematic representation of the scaling
solution G(x,t) [see Eq. (21)] at a given late time t � 1 (not drawn
to scale). The red double line represents the small-x scaling form
g(x/t1/(b+1))t−δ while the blue solid line represents the large-x scaling
form f (x/t1/2)t−β . The interval on which the two solutions overlap
Eq. (14) is labeled x1(t).

Pβ(x,t) ≡ P ∗(x)[1 + Gβ(x,t)]. The overall form of these
scaling solutions for G is given schematically in Fig. 1. For
small-x, the function is flat, with a value that approaches zero
as t−δ . For x � x1(t), it exhibits a peak at x ∼ √

t , whose
height scales as t−β . Thus, as time progresses, the peak shrinks
and moves to the right, and G approaches its steady-state value
G(x,t → ∞) = 0.

B. Selection mechanism

To conclude our analysis, we argue now that the parameter
β is selected by the tail of the initial distribution. To this end,
we consider initial distributions of the form

G0(x � 1) ∼ Ax−a, (22)

where a > b − 1 and A are parameters. Initial conditions
G0(x) which decay faster than algebraically correspond to
a = ∞. Note, however, that localized initial distributions
P (x,0) correspond to a = 0. Since the dynamical process
of Eq. (1) is diffusive, one would naively expect the tail of
the distribution to remain unchanged for x � √

t . Using the
asymptotics (18), this suggests that β = a/2. The parameter
C is then given by C = A/B. Substituting the value of B

yields [19]

C = �(1 − a/2)

21+b+a�
(

3+b
2

) A. (23)

This naive argument is found to be valid only for a < 2.
For a > 2 we make use of Eq. (8) to demonstrate that the
correct scaling solution is given by β = 1. This is done by
analyzing the stability of a scaling solution with a given β.
We thus consider a perturbation δP (x,t) around the scaling
solution (21):

P (x,t) − P ∗(x) = P ∗(x)Gβ(x,t) + δP (x,t), (24)

which is initially localized in x, such as a function with
compact support. Normalization dictates that

∫
δPdx = 0.

This perturbation satisfies Eqs. (1) and (2).
The scaling solution Gβ is stable to such perturbations and

will dominate the approach to equilibrium only if at late times
δP (x,t) is negligible compared to it. The exact solution of
Eq. (1) reveals that the scaling solution (8) to which a localized
initial condition converges at long times is of the form (21) with

β = 1 [18]. This can be understood heuristically by noting that
β = 1 is the most localized of all scaling solutions; see (18).
Therefore, the scaling form at large x of Eq. (24) is given by

P (x,t) − P ∗(x) = P ∗(x)Gβ(x,t) + δP (x,t)

≈ P ∗(x)

[
t−βfβ

(
x√
t

)
+ t−1f1

(
x√
t

)]
,

(25)

where fβ is the solution (17) corresponding to β. For β < 1
the second term on the right-hand side is negligible compared
to the first, and therefore the fβ solution is stable. On the other
hand, for β > 1 the second term is dominant and the scaling
solution is given by f1. Thus,

β = β(a) =
{ a

2 if a < 2

1 if a > 2.
(26)

The exact solution of the Fokker-Planck equation further
reveals that when a = 2, there are logarithmic corrections to
Eq. (21) [18]. Note that for a > 2, the constant C is not given
by (23) and it depends on the details of the initial condition.
The large-x scaling solution for localized initial distributions
(corresponding to a = 0) agrees with the results previously
obtained in [6,7,15]. Knowledge of the scaling solution
for other initial conditions is often required for calculating
correlation functions of physical interest. Applications of this
approach to physical examples where the late-time behavior
is determined by the initial conditions will be presented
elsewhere [18].

In order to check the applicability of the scaling solution
found in this analysis, we studied numerically the evolution
of a single-site zero-range process at criticality [5]. In this
process, particles hop into a site with a constant rate 1, and
hop out of this site with rate w(n) = 1 + b/n, where n is
the number of particles in the site. The occupation number
probability distribution P (n,t) satisfies the master equation

∂

∂t
P (n) = P (n−1) + w(n+1)P (n+1) − [1 + w(n)]P (n).

(27)
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FIG. 2. (Color online) The (a) small-x and (b) large-x scaling
collapse obtained by numerically integrating Eq. (27) for b = 3.5 and
a = 1. Different curves correspond to different times in increasing
order in the arrow direction. The dashed curve is the theoretical
function (21), with no fitting parameter. Inset shows a magnified
region around the origin.
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FIG. 3. (Color online) The scaling exponents δ and σ obtained by
numerical integration of (27), compared with theoretically predicted
values. Here b = 2.9 and A = 1. The transition at a = 2 is readily
seen.

This is a discrete version of (1) and (2). Its steady state is
given by P ∗(n) ∝ [w(1) . . . w(n)]−1 ∼ n−b. We have studied
the relaxation to the steady state starting from various initial
conditions. In Fig. 2 we display the results obtained for an
initial condition with a = 1. A very good agreement with
the predicted scaling functions is obtained at long times. To
investigate the dependence (26) of the scaling exponents on the
initial condition, we have measured G(0,t), which is predicted
to decay to zero as t−δ (19). As an independent measure, we
calculated 〈n(t)〉, which is predicted to decay to its equilibrium
value 〈n〉eq as t−σ with σ = β + b/2 − 1. This can be easily
obtained using the scaling function (21):

〈n(t)〉 − 〈n〉eq ≈ t−(β+b/2−1)C

∫ ∞

0
u1−bf (u)du. (28)

In Fig. 3 we compare numerical measurements of δ and σ to
the theoretical predictions and find a very good agreement,
both for a < 2 and a > 2.

C. Other boundary conditions

The analysis presented above may be extended to consider
other boundary conditions as well. For example, for an

absorbing boundary condition at x = 0, namely, P (0,t) = 0,
the stationary distribution vanishes. Defining G(x,t) by

P (x,t) = e−V (x)G(x,t) (29)

and repeating the derivation outlined above for the evolution of
G, we find that in the scaling limit it takes the same form (12)
as before, with f unchanged, γ = 0, and a different function
g(z), which can be calculated explicitly [18]. Equation (26),
which yields the relation between β and a, remains valid.
However, since G is defined differently in this case, the same
initial distribution P (x,0) would correspond to different values
of a depending on whether the boundary condition is reflecting
or absorbing. Other boundary conditions, and the case where
the equation is defined on the entire x-axis, may be treated
similarly [18].

III. CONCLUSION

In summary, the approach to equilibrium of a diffusion
process in a logarithmic potential is analyzed in the scaling
limit and is shown to exhibit uncommon and interesting
features. These include the existence of two characteristic
length scales, the fact that the scaling function depends on
the tail of the initial distribution, and the nonanalytic way
the scaling exponents varies with the initial condition. The
mechanism by which the scaling exponents are selected is
similar to the one encountered in problems of velocity selection
in propagating fronts [13,14]. Here, however, unlike problems
of front propagation, the evolution equation is linear, although
inhomogeneous. This facilitates the explicit demonstration of
the selection mechanism.
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