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Chaotic transport in Hamiltonian systems perturbed by a weak turbulent wave field
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Chaotic transport in a Hamiltonian system perturbed by a weak turbulent wave field is studied. It is assumed
that a turbulent wave field has a wide spectrum containing up to thousands of modes whose phases are fluctuating
in time with a finite correlation time. To integrate the Hamiltonian equations a fast symplectic mapping is derived.
It has a large time-step equal to one full turn in angle variable. It is found that the chaotic transport across tori
caused by the interactions of small-scale resonances have a fractal-like structure with the reduced or zero values
of diffusion coefficients near low-order rational tori thereby forming transport barriers there. The density of
rational tori is numerically calculated and its properties are investigated. It is shown that the transport barriers
are formed in the gaps of the density of rational tori near the low-order rational tori. The dependencies of the
depth and width of transport barriers on the wave field spectrum and the correlation time of fluctuating turbulent
field (or the Kubo number) are studied. These numerical findings may have importance in understanding the
mechanisms of transport barrier formation in fusion plasmas.
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I. INTRODUCTION

The study of transport of charged particles in turbulent
magnetic and electric fields is of a great interest in laboratory
and astrophysical plasmas (see, e.g., [1–7] and references
therein). Particularly, in magnetically confined fusion devices
one of the great challenges is to reduce the enhanced transport
of particles known as anomalous transport which is induced
by small-scale turbulent fields generated by instabilities [1,4].
Such improved confinement regimes of plasmas has been
experimentally found by heating plasma [8,9]. They are
achieved due to a creation of radially localized zones with
the reduced transport, known as transport barriers (see, e.g.,
reviews [2,4,10,11]).

The important issue of the transport barrier formation
in the turbulent plasma is a determination of its dominant
mechanisms (see [3] and references therein). At present several
possible mechanisms, like an ExB flow shear, a zonal flow, or
a magnetic shear, have been proposed. One of these issues
is the role of low-order magnetic surfaces in the formation
transport barriers which have been discussed in a number of
works [12–25].

One of the simplified approaches to the transport problem
of charged particles in laboratory and space plasmas are
test particle models in which no back reaction of media due
to a particle motion is taken into account. These models
are widely used to study the particle transport caused by
turbulent fields in fusion plasmas (see, e.g., Refs. [26–35]
and references therein) and the transport cosmic rays in
heliosphere (see Refs. [7,36,37] and references therein).
Particularly, in Refs. [27,28,32,33] the test particle models
are used to explore the effect of low and reversed magnetic
shear on the radial transport of field lines and particles in the
presence of magnetic and electrostatic perturbations.

The numerical study of particle motion in a turbulent
field encounters practical difficulties related with both the
accuracy and computational times. The standard methods to
integrate the equations of motion containing a large number
of fast-oscillating terms require very long computational

times [27]. Therefore, different computational methods have
been proposed to overcome these difficulties. Particularly,
in Refs. [29–31] a numerical mapping technique [38] has
been used to study the relativistic particle’s motion in a
tokamak plasma perturbed by a turbulence magnetic field.
In Refs. [28,32] to study the drift motion of particles in the
turbulent electrostatic fields the so-called drift wave maps
have been derived. Similar mappings have been used in
Refs. [33,34] to explore such a problem. These maps which are
similar to the standard map, perturbed twist, and nontwist maps
known in Hamiltonian dynamics (see, e.g., [39]) significantly
accelerate the calculations.

However, the computational capabilities of these mapping
models are limited to include only a moderate number of
turbulence wave field modes, at most consisting of a few
tens of modes. Therefore, they also encounter difficulties
in the studies of the particle’s motion in typical electromagnetic
turbulence fields of tokamak plasmas which may contain up
to thousands of small-scale wave modes.

In the present work we propose a new numerical approach
to the transport problem of particles in a small-scale turbulent
field which overcomes the above-mentioned difficulties. It
is based on the numerical integration of the corresponding
equations of motion using a symplectic mapping with a
time step equal to one full turn in a phase space of the
system. The construction procedure of this mapping is given in
Ref. [40].

Specifically, we consider the chaotic transport in an one-
degree-of-freedom Hamiltonian system perturbed by a weak
turbulent wave field. It corresponds to the simplified problem
of the stochastic particle transport in magnetically confined
plasmas in the presence of turbulent electromagnetic fields.
We assume that the turbulent field contains a large number
of modes extending up to several thousands. Moreover, we
suppose that the mode phases are fluctuating with a finite
correlation time.

The problem itself may also have a theoretical interest
as a dynamics of Hamiltonian systems subjected to small
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amplitude time-dependent perturbations with a wide spectrum
of frequencies. We will study the role of rational tori on the
chaotic transport in such systems. It will be shown that a
profile of diffusion coefficients across tori may have a fractal
nature. Particularly, the chaotic transport is reduced near the
low-order rational tori thereby forming transport barriers. We
will study the condition of forming these transport barriers and
their dependence on the mode spectra and correlation time of
turbulent field.

The paper consists of six sections. The description of a
Hamiltonian system, the methods of symplectic integrations,
particularly, fast mapping, and the specification of the model
of a Hamiltonian system are given in Sec. II. The analysis of
transport in a Hamiltonian system caused by the fluctuating
turbulence field is described in Sec. III. The density of
rational tori and its properties are studied in Sec. IV. The
conditions of the transport barrier formation near the low-
order rational tori are explored in Sec. V. In the final Sec.
VI the summary of obtained results and conclusions are
made.

II. HAMILTONIAN PROBLEM

In this section we first describe the Hamiltonian system and
the assumptions on the turbulence field. Then the two methods
of symplectic integration of this Hamiltonian system will be
presented.

A. Description of Hamiltonian system

Consider a one-degree-of-freedom Hamiltonian system
which describes a motion in finite domain of the phase
space of canonical variables (q,p). This system is integrable
with the constant of motion H0(p,q) = const, and one can
introduce the action-angle variables (J,ϑ). The trajectories
lie on the closed curve Cp in the phase plane (q,p) with
J (q,p) = const. The angle variable ϑ , (mod 2π ) determining
the position of a point on the curve is a linear function of time
ϑ = ω(J )t + ϑ0, where ω(J ) = dH0(J )/dJ is a frequency of
motion.

In the presence of time-dependent perturbations the action
variable J does not conserve any more; the evolution of
variables (J,ϑ) is governed by the two-dimensional (2D)
Hamiltonian system,

dϑ

dt
= ∂H

∂J
,

dJ

dt
= −∂H

∂ϑ
, (1)

where H = H (J,ϑ,t) is the Hamiltonian function of the
system. It can be presented as a sum of the unperturbed
Hamiltonian H0(J ) and the part H1(J,ϑ,t) corresponding to
the perturbations,

H (J,ϑ,t) = H0(J ) + H1(J,ϑ,t). (2)

The perturbation Hamiltonian describing the effect of a weak
turbulent field can be presented by a Fourier series in ϑ

and t ,

H1(J,ϑ,t) = ε
∑
m,n

Hmn(J ) cos (mϑ) cos (�nt + χmn(t)) ,

(3)

where the Fourier coefficients Hmn(J ) of the (m,n)-wave mode
with the random phases χmn(t), �n is the frequency of the nth
mode, and ε stands for the dimensionless amplitude of the
turbulent field. Furthermore, we will set �n = n which cor-
responds 2π -time-periodic perturbations. In magnetic fusion
devices ε is less than or of order of 10−4 to 10−3.

The turbulent field contains a wide spectrum of modes
(m,n) ranging in the interval mmin � m � mmax, nmin � n �
nmax with mmax � 1, nmax � 1. We assume that the (m,n)
modes with the different m but the same number n are not
independent, but the modes belonging to the different mode
n are statistically independent. It allows one to assume that
the random phases χmn(t) depend only on the mode number n

[i.e., χn(t) ≡ χmn(t)]. This assumption allows one to present
the perturbation Hamiltonian in the form,

H1 = ε

nmax∑
n=nmin

Hn(ϑ,J ) cos (nt + χn(t)) ,

(4)

Hn(ϑ,J ) =
mmax∑

m=mmin

Hmn(J ) cos(mϑ).

Furthermore we will assume that the turbulent fluctuations as
a stationary random process in time with the correlation time
τc defined as

〈
ei(χn(t+τ )−χn′ (t))〉 = δn,n′e−τ/τc , (5)

where 〈· · · 〉 stands for the averaging over ensemble of
realization of phase χ . The turbulent transport of particles
depends on the Kubo number K = τc/T , defined as a ratio
of the correlation time τc to the unperturbed period of motion
T = 2π/ω(J ).

One can note that a transport problem of test particles
caused by a microscale magnetic turbulence in tokamak
plasmas can be reduced to the described Hamiltonian
system (1)–(3) (see, e.g., [46]). Then the Hamiltonian
equation (1) describes a guiding-center motion in the
action–angle variables (ϑ,J ), with the action J normalized to
B0R

2
0, where B0 is the strength of the toroidal magnetic field

at the torus center of radius R0. The action J labels also the
drift surfaces. The angle ϑ and the time t would correspond to
the poloidal and the toroidal angles of the torus, respectively.
The frequency ω(J ) would be a winding number, that is, a
ratio of the poloidal turns of a guiding-center orbit per one
toroidal turn on the given drift surface J .

B. Symplectic integration

The Hamiltonian system given by Eqs. (1)–(3) can
be integrated using the symplectic mapping described in
Refs. [40–42]. Let (ϑk,Jk) be the values of canonical variables
(ϑ,J ) at the time instants tk = k�t , (k = 0, ± 1, ± 2, . . . ),
where �t is a mapping step. The evolution of the system is
described by the mapping,

(ϑk,Jk) → (ϑk+1,Jk+1). (6)

The general symplectic form of the mapping given by
Eq. (6) obtained by the method of canonical transformation
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of variables has the following form:

ψk = Jk − ∂Sk

∂ϑk

, 
k = ϑk + ∂Sk

∂ψk

,


̄k = 
k + (tk+1 − tk) ω(ψk), (7)

Jk+1 = ψk + ∂Sk+1

∂ϑk+1
, ϑk+1 = 
̄k − ∂Sk+1

∂Jk+1
,

where Sk ≡ Sk(ϑk,ψk), Sk+1 ≡ Sk(ϑk+1,ψk) are values of the
generating function S = S(ϑ,ψ,t,ε) at t = tk and t = tk+1,
respectively. The generating function S of this mapping is
found as a solution of the corresponding Hamilton-Jacobi
equation in a finite interval tk � t � tk+1. The generating
function in the first order of the perturbation parameter ε is
given in Refs. [40–42]. However, this generating function is not
convenient for the practical calculations for the Hamiltonian
systems containing a large number of modes like in Eq. (3). In
this case it is convenient to use the formula for the generating
function obtained in Ref. [43]. It has the following form:

Sk = S(ϑk,Jk,t),

Sk+1 = −S(ϑk+1,ψk,tk+1), (8)

S(ϑ,ψ,t) = �t

2
H1(ϑ,ψ,t).

Numerical simulations of particle transport in a turbulent
field with a large number of (m,n) modes encounter mainly two
kinds of difficulties related to the accuracy and computational
times. In the problems of particle transport in a turbulent
field the number n can be of order of 102 to 103. It would
require one to take a very small step �t in the direct numerical
integration of the equations of motion with sufficient accuracy,
and therefore, enormous computational times.

C. Fast symplectic mapping

To avoid difficulties we employ a fast symplectic mapping
to integrate the Hamiltonian system (1) (see Refs. [40,44,45]).
The mapping is constructed via canonical transformation of
variables and has a large integration step equal to one full turn
in the angle ϑ .

Let Pk be the kth crossing point of an orbit with the
section ϑ = 0 as schematically shown in Fig. 1. The mapping
Pk → Pk+1 relates the point Pk with the next crossing point
Pk+1. Suppose that (hk,tk) are the values of the Hamiltonian
h = H0(J ) and time t at the crossing point Pk of the orbit,

Pk Pk+1

J

ϑ ϑ=0

FIG. 1. Schematic view of the mapping, Pk → Pk+1.

respectively. Then for the small perturbation parameter ε � 1
the simplified form of the mapping Pk → Pk+1 reads

hk+1 = hk − ε
∂

∂tk
P (hk+1,tk + π/ω(hk)) ,

tk+1 = tk + π [1/ω(hk) + 1/ω(hk+1)]

+ ε
∂

∂hk+1
P (hk+1,tk + π/ω(hk)) , (9)

where the generalized Poincaré integral P (h,t) is taken along
the closed contour of the unperturbed orbit. It can be presented
in the form,

P (h,t) =
∫ 2π/ω

0
H1(h,t + t ′) dt ′

=
nmax∑

n=nmin

Rn(h) exp (int + iχn(t)) . (10)

Using the expression for the perturbation Hamiltonian (3) the
coefficients Rn(h) can be reduced to

Rn(h) = π

ω(h)

∑
s=±1

mmax∑
m=mmin

Hmn(J )
eix

(s)
mn − 1

ix
(s)
mn

, (11)

where x(s)
mn = (m − sn/ω)2π . Extending the sum in (11) from

mmin = 1 to mmax = ∞ the coefficients Rn(h) can be presented
as a sum of regular R

(reg)
n and oscillatory R(osc)

n parts:

Rn = R(reg)
n + R(osc)

n ,

R(reg)
n = (π/ω) Hn(n/ω), (12)

R(osc)
n =

(
cos2

(
πn

ω

)
− 1 + i

sin (2πn/ω)

2

)
R(reg)

n ,

where Hn(m) ≡ Hmn(J ) is a function defined by extending the
value of integer number m to the continuous ones. One should
note that at the resonant tori Jmn, mω(Jmn) = n, the oscillatory
part R(osc)

n = 0.
The finite correlation time τc of the phases χn are taken

into account by randomly changing them after the M mapping
steps equal to the integer part of the Kubo number K (i.e.,
M = [K]). However, the mapping cannot consider the Kubo
number less than one.

D. Model

For the numerical study of the transport we should specify
models for the unperturbed Hamiltonian system and the
turbulent field. Below we consider the models corresponding to
the particle dynamics in magnetically confined plasmas in the
presence of weak magnetic perturbations (see, e.g., Ref. [46]).

The unperturbed Hamiltonian is characterized by the
frequency of motion ω(J ). Furthermore, we will choose the
action variable J normalized to its maximal possible value, so
that it changes in the interval 0 < J < 1. We consider the two
cases of the dependence of the inverse frequency ω(J ) on J :

(i) the monotonic linear dependence 1/ω(J ) = q0 +
(qa − q0)J ;

(ii) the nonmonotonic dependence 1/ω(J ) = qm +
β(J − Jm)2 with the minimal value at off-axis value Jm.

Here, q0, qa , qm, and β are constant parameters.
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The amplitude of turbulent field mode is chosen as a
localized in J function in the form,

Hmn(J ) = cn

m
exp

[
− (mγ (J ) − n/ω(J ))2

4w2
n

]
, (13)

where wn describes the width of the mode, cn is the amplitude
of toroidal modes which we will choose in the power-law
form cn = n−α with a constant α. The function γ (J ) describes
a deviation of the location Jmax of the maximal value cn/m

of the amplitude Hmn(J ) from the corresponding resonant
tori Jmn, ω(Jmn) = n/m. If γ (J ) ≡ 1 the amplitude reaches
it maximum at the resonant tori. We choose the function γ (J )
as follows:

γ (J ) = γ0(1 + κ(J − Jc)2), (14)

where γ0, 0 < Jc < 1, κ > 0 are constant parameters.
According to Eq. (12) the function R

(reg)
n (h) for the

model (13) is reduced to

Rn(h) = cnω(J )

n
exp

[
−n2(γ (J ) − 1)2

4w2
nω

2(J )

]
. (15)

From (15) follows that for γ (J ) ≡ 1 the function R
(reg)
n (h), and

therefore the Poincaré integral P (h,t) does not depend on the
width wn of the perturbation amplitude.

The model (13) for the amplitude Hmn(J ) allows one
to obtain the closed analytical formula for the perturbation
functions Hn(ϑ,J ) in the perturbation Hamiltonian (4). Using
the Poisson summation rule the sum over m in Eq. (4) can be
reduced to

Hn(ϑ,J ) = cn

∞∑
p=−∞

∫ mmax

mmin

m−1 exp

[
− (mγ − n/ω(J ))2

4w2
n

]

× cos(mϑ) cos(2πmp)dm. (16)

Replacing m by m = nω(J )/γ (J ) in the pre-exponent of the
integral in Eq. (16), and taking mmin = 0 and mmax → ∞, the
function Hn(ϑ,J ) can be approximated by

Hn(ϑ,J ) ≈ 2
√

aπcn

∞∑
p=−∞

f (a,b,ϑ − 2πp), (17)

where

f (a,b,ϑ) = e−aϑ2
cos(bϑ),

(18)
a = w2

n/γ
2, b = n/(γω(J )).

This analytical formula would accelerate a numerical calcula-
tion of the symplectic integrator (7). In practical calculations
it is sufficient to take only a few terms p = 0, ± 1 in the sum
over p (17). However, one should note that such a presentation
of Hn(ϑ,J ) is valid only for the large number modes n � 10.

E. Comparison of mapping with small-step integration

For the model described above we compared the results of
calculations of the second moment of displacements of the
action J ,

σ 2
0 (t) = 〈(J (t) − J (0))2〉 = 1

Nt

Nt∑
i=1

(Ji(t) − J (0))2, (19)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  100  200  300  400  500  600

σ2 0(
t)

t

1

2

x10-6

J=0.52
J=0.48

FIG. 2. Dependencies of σ 2
0 (t) on t for the model (13) obtained

using the symplectic integrator (7) with the time step �t = 2π/128
(solid curves 1 and 2) and the fast mapping (9) ( circles and squares).
Solid curve 1 and circles correspond to the tori J0 = 0.52, and solid
curve 2 and squares correspond to the tori J0 = 0.48. The param-
eters of the model are q0 = 0.8, qa = 5, 20 � n � 50, γ (J ) ≡ 1,
and ε = 10−4.

obtained by the fast mapping (9) and the symplectic integra-
tor (7). Here 〈(· · · )〉 stands for averaging over the initial phases
χn(0), nmin � n � nmax, randomly chosen in the interval
[0,2π ], Ji(t) is the orbit corresponding to the ith trial, and
Nt is a total number of trials.

The calculations are carried out for the radial profile (i)
of 1/ω(J ), and the values of parameters are chosen q0 = 0.8,
qa = 5, in Eq. (13) the function γ (J ) ≡ 1 and wn = ∞, the
exponent α = 5/6, 20 � n � 50, and the turbulence level ε =
10−4. For the given parameters the relative accuracy 10−4 of
σ 2

0 (t) calculated by the symplectic integrator (7) is reached
with the time step �t = 2π/128.

Figure 2 shows the comparison σ 2
0 (t) calculated by the

fast mapping (9) (circles and squares) and the symplectic
integrator (7) (solid curves 1 and 2) with the time step
�t = 2π/128 at the two positions of tori J0: solid curve 1
and circles correspond J0 ≡ J (0) = 0.52, solid curve 2 and
open squares correspond to J0 = 0.48. As seen from Fig. 2
the fast mapping quite accurately reproduces the results of the
small time-step symplectic integration for the two different
types of motion corresponding to the diffusive and regular
regimes (see Secs. III and V).

However, the small time-step symplectic integration takes
almost three or four orders longer computation time than the
fast mapping. It would require several weeks of calculations
in the standard PCs to obtain a radial dependence of diffusion
coefficients for the model with the modest number of modes.
It becomes practically impossible to use the symplectic
integration in the case with a large number of modes extending
up to several thousands. Furthermore, we will use the fast
mapping to study our problem.

III. ANALYSIS OF CHAOTIC AND FLUCTUATING
TRANSPORT REGIMES

The transport of across tori, that is, along the J axis, is
caused by the following: (i) the chaotic motion due to the
interactions of neighboring islands created by the nonlinear
resonance of particle motion with the corresponding (m,n)
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mode of the turbulent field; and (ii) the turbulent fluctuations
due to a finite correlation time τc. In this section we analyze
the interplay between two of the transport mechanisms.

A. Quasilinear approximation for chaotic transport

At the large Kubo numbers K � 1 when the correlation
time τc is much longer than the oscillation period T = 2π/ω

(i.e., τc � T ), the chaotic motion mainly contributes to the
radial transport. The latter starts from the certain value of
the turbulence level ε which depends on the spectrum of
the turbulent field. The critical level of the turbulence εc

can be qualitatively described by the overlapping (Chirikov)
criteria, σChir ≈ 1, where σChir is the parameter characterizing
the degree of overlapping of neighboring islands, that is,

σChir = �Jmn + �Jm′n′

2|Jmn − Jm′n′ | ,

(20)

�Jmn = 4

∣∣∣∣εHmn(Jmn)

ω′(Jmn)

∣∣∣∣
1/2

,

where �Jmn is the width of the (m,n) island, Jmn are the
resonance values of the action J , ω(Jmn) = n/m, and (m,n)
and (m′,n′) are neighboring islands, ω′(J ) ≡ dω/dJ .

The transport along J can be characterized by the dif-
fusion coefficient D(J ) = σ 2

0 (J )/2t . For the large Kubo
numbers K � 1 and σChir � 1, the diffusion coeffi-
cient can be described by the following quasilinear
formula:

D(J ) = πε2

2ω

∑
m,n

m2 |Hmn(J )|2 δ (mω − n)

= ε2

8πω

∑
n

n2
∣∣R(reg)

n (J )
∣∣2

, (21)

where the second line is obtained using the relations in Eq. (12).
The numerical calculations of diffusion coefficients D(J )

are carried out by fitting the calculated second moment
of radial displacements σ 2

0 (t) as a function of t with the
linear function 2D(J )t at the times t > tK , where tK is the
decorrelation time of phases φn = nt . The phase decorrelation
time tK is equal to the e-folding time of the phase correla-
tion function Cn(t) = 〈ei[φn(t)−φn(0)]〉. The procedures of the
determination of the diffusion coefficients and tK are shown in
Fig. 3.

Figures 4(a) and 4(b) show the profiles of the Chirikov
parameter σChir and diffusion coefficients D(J ) along the
action J at the turbulence level ε = 10−3, respectively. The
diffusion coefficients are calculated using the mapping (9)
with the two choices of the Poincaré integrals: curve 2 (red)
corresponds to the case with Rn = R

(reg)
n , that is, when the

oscillatory part, R(osc)
n , is neglected, curve 3 (blue) corresponds

to the case when R(osc)
n is included (i.e., Rn = R

(reg)
n + R(osc)

n ).
The quasilinear values are plotted by curve 1 (solid line). The
right-hand axis shows the profile of 1/ω(J ).

As seen from Fig. 4(b) the radial profiles of D(J )
along J are described by the fractal-like, irregularly curves
which closely follow the quasilinear formula (21) in the
regions of J where the Chirikov parameter takes large values
σChir > 1. However, in the narrow regions located near the

 0
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 0  200  400  600  800  1000 1200 1400 1600 1800

 0.2

 0.4

 0.6
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 1

σ2 0(
t)

C
n(

t)

t

1

2

3

x10-6

FIG. 3. Determination of the diffusion coefficient D(J ). Curve 1
(thick solid line) corresponds to the calculated σ 2

0 (t) (left–hand axis);
curve 2 corresponds the correlation function of phases Cn(t) for n =
20 (right–hand axis); curve 3 (thin solid line) corresponds to the linear
function 2D(J )t obtained by fitting of σ 2

0 (t) in the interval 600 � t �
1800. The other parameters are the same as in Fig. 2 and J0 = 0.5.

low-order rational tori Jmn, 1/ω(Jmn) = m/n with the values
1,3/2,2,5/2 the diffusion coefficients become very small or
almost negligible, thereby forming the transport barriers. The
Chirikov parameter also drops near these rational tori (see

(a)
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σ C
hi

r

J

ε=10−3

(b)
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FIG. 4. (Color online) (a) Profile of the Chirikov parameter
σChir along the action variable J . (b) Radial profiles of diffusion
coefficients, D(J ) (left-hand axis) for the model (13), (14). The
values of the model parameters are q0 = 0.8, qa = 3, γ0 = 1, κ = 0.2,
Jc = 0.2, α = 5/6, wn = 6, ε = 10−3, the modes 20 � n � 50, and
the Kubo number K = 100. The number of trials Nt = 2 × 103.
Curve 1 (black solid) describes the quasilinear approximation (21);
curves 2 [red (circle) ] and 3 (blue open square) correspond to the fast
mapping (9) with Rn = R

(reg)
n and Rn = R

(reg)
n + R(osc)

n , respectively;
curve 4 describes the profile of 1/ω(J ) (right-hand axis). The vertical
thin lines show the locations of main rational resonances, Jmn,
[1/ω(Jmn) = m/n = 1,3/2,2,5/2].
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Fig. 4). We will analyze the nature of these transport barriers
in the next sections.

One should note that the approximations of the Poincaré
integrals Rn by Rn = R

(reg)
n and Rn = R

(reg)
n + R(osc)

n , given by
curves 2 and 3, respectively, give qualitatively close results
for the diffusion coefficients. It is related to the fact that
for the large Kubo numbers K � 1 the quasilinear diffusion
coefficients (21) are determined only by the regular part of
the Poincaré integral R

(reg)
n . Therefore, in these cases one can

neglect the oscillatory part R(osc)
n of Rn.

B. Transition from the fluctuating to the chaotic regime

For the small Kubo number K the transport is mainly
caused by the fluctuating in the time turbulent field. For the
Kubo number K = 1 the diffusion coefficients can be obtained
from the mapping (9). Using the expansion (10) and the first
equation in Eq. (9) the change of the variable h in one mapping
turn �t = 2π/ω(J ) can be presented as

�hk = hk+1 − hk = ε
∑

n

n|Rn| cos �n,

(22)
�n = ntk + π/ω(hk) + χn,

where χn are random phases uniformly distributed in the
interval [0,2π ]. The averaged values of �hk over phases χn

are zero, 〈�hk〉 = 0. The second moment of �hk is equal to

σ 2
h = 〈(�hk)2〉 = ε2

2

∑
n

n2|Rn|2. (23)

Using the relations between the variables h and J , that is,
�h = (dh/dJ )�J = ω�J , and the corresponding diffusion
coefficients D(J ) and D(h) = σ 2

h /2�t , we arrive at

D(J ) = ε2

8πω

∑
n

n2|Rn|2. (24)

This formula for D(J ) similar to Eq. (21) in which the
integral R

(reg)
n is replaced by Rn. The numerical calculation

D(J ) for the Kubo number K = 1 is indeed agreed with the
formula (24).

One expects that by increasing the Kubo number K the
chaotic transport caused by the interaction of resonances
starts to contribute to the transport if the turbulence level ε

exceeds the critical level εc qualitatively determined by the
criteria σChir(εc) ≈ 1. In order to explore this we consider the
dependence of the diffusion coefficient on the Kubo number
for the three different values of the turbulence level ε: (1)
ε = 10−5; (2) ε = 10−4; (3) ε = 10−3 at which the Chirikov
parameter σChir is (1) less than unity σChir � 1; (2) slightly
greater than 1 σChir � 1; and (2) much larger than 1 σChir � 1.
Figure 5 shows the dependencies of the diffusion coefficients
D(J ) on the Kubo number at the fixed tori J0 = 0.2 for these
values of ε: Curve 1 corresponds to ε = 10−5, curve 2 to
ε = 10−4, curve 3 to ε = 10−3, and curve 4 (a straight dotted
line) corresponds to the quasilinear estimation of D(J ) (21).
Since the diffusion coefficient D is proportional to ε2 for the
convenience of comparison it is normalized to ε2.

For the small level of turbulence which does not produce the
chaotic transport, as in the case ε = 10−5 with σChir ≈ 0.55 the
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FIG. 5. Dependence of the diffusion coefficients D(J ) normal-
ized to ε2 on the Kubo number K at the given value J = 0.2 for
three different values of the turbulence level ε. Curve 1 (up-triangle)
corresponds to ε = 10−5, curve 2 (square) corresponds to ε = 10−4,
curve 3 (circle) corresponds to ε = 10−3, and curve 4 (a straight
dotted line) corresponds to the quasilinear estimation of D(J ) for the
large Kubo number K � 1.

diffusion coefficient D(J ) grows with K as D(J ) ∼ K ∼ τc

in the interval 1 � K � 5, and it reaches the maximum at
K ≈ 10 to 30 then it decays for K > 40. For the moderate
and large turbulence levels, ε = 10−4, (σChir ≈ 1.33) and ε =
10−3, (σChir ≈ 5.5), which may lead to the chaotic transport,
the diffusion coefficient reaches its “stationary” level given
by the quasilinear value (21) at the the Kubo numbers K

exceeding 5 to 6.

IV. DENSITY OF RATIONAL TORI

As we have shown above at the large Kubo numbers K � 1
the transport of particles across tori is mainly caused due
to their interactions of nonlinear resonances formed at the
resonant tori J = Jmn. The strength of the interaction depends
not only on the level of turbulence ε, but also on the density
of rational tori. In other words, the chaotic transport rate,
a diffusion coefficient, depends on how the resonant tori
J = Jmn are dense along the axis J . Below we calculate the
density of rational tori and study its property.

Let Jmn be resonant values of tori, q = 1/ω(Jmn) = m/n,
corresponding to the mode numbers (m,n). Assume that the
interval of the n modes are M ≡ nmin � n � N ≡ nmax. Let
�W be a number of rational tori Jmn in the interval J,J +
�J . Then the density ρ(J,M,N ) of rational tori is defined as
ρ(J,M,N ) = �W/�J . One can also introduce the density of
rational numbers q = m/n, with n in the interval M � n �
N , and m that are coprime to n, that is, having no common
positive factors other than 1. It is defined as ρ(q,M,N ) =
�W/�J . The relation between ρ(J,M,N ) and ρ(q,M,N ) is
given by

ρ(J,M,N ) = ρ(q,M,N )
dq

dJ
. (25)

As seen from Eq. (25) that the density of rational tori
ρ(J,M,N ) along the action variable J depends on the shear
dq/dJ = −(1/ω2)dω/dJ of the inverse frequency of motion
ω(J ) as well as on the density of rational numbers q =
m/n with M � n � N . The former is prescribed by the
unperturbed system H0(J ) while the latter is determined by the
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FIG. 6. (Color online) (a) Density distribution function ρ(q,N )
of rational numbers q = m/n (1 � n � N ) for the two different
numbers N near the q = 1. The blue (square) corresponds to N = 400
and the red (circle) corresponds to N = 800. The rescaling parameter
λ = N/400. (b) Gap widths w(N)

mn in ρ(q,N ) near the rational numbers
1/n, n = 1,2, . . . ,7. Curve 1 corresponds to N = 100; curve 2 −
N = 1000.

minimal nmin and maximal nmax mode numbers of a turbulence
field.

In order to study the property of the density function
ρ(q,M,N ) it is sufficient to calculate it for the rational numbers
in the interval 0 � q � 1. We have numerically calculated the
density function ρ(q,M = 1,N ) for the different values N .
The numerical calculations show that there are gaps in the
density distribution function ρ(q,M,N ) near the low-order
rational numbers m/n: 1/1, 1/2, 1/3, and so on. As an example
the gap near q = 1 is shown in Fig. 6(a): The square (blue)
corresponds to N = 400 and the circle (red) corresponds to
N = 800. The rescaling parameter λ = N/400. The widths
of gaps �w(N)

mn near rational numbers q = m/n decrease with
increasing n as shown in Fig. 6(b) for the two different numbers
N : curve 1 corresponds to N = 100 and curve 2 corresponds
to N = 1000.

Moreover, it was found that the function ρ(q,M,N ) has
a self-similar behavior near the low-order rational numbers
qmn = 1,1/2,1/3, and so on. The self-similarity of ρ(q,N ) ≡
ρ(q,M = 1,N ) is manifested by the rescaling law,

ρ(q − qm,n,N ) ≈ ρ

(
q − qm,n

λ
,λN

)
, (26)
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FIG. 7. (Color online) Radial profile of diffusion coefficient for
the Kubo number K = 100. Curve 1 corresponds to the quasilinear
values, curve 2 displays the numerical results, curve 3 corresponds to
the period of motion T (J ) (right-hand axis). The positions of the low-
order rational tori Jmn, (ω(Jmn) = n/m), are shown by vertical straight
lines. The averaging is done over 2 × 103 orbits. The normalization
constant D0 = 10−9.

where λ is a constant. The rescaling law (26) for the density
distribution function ρ(q,N ) near the low-order rational
number q = 1 is shown in Fig. 6(a) for the two values of
N : N = 400 [blue (square)] and N = 800 [red (circle)]. The
rescaling parameter in this case is λ = N/400.1

As we will show in the next section for the large Kubo
numbers K � 1 the gaps in the density of rational tori strongly
affect the chaotic transport near the low-order rational tori, thus
forming the transport barriers.

V. FORMATION OF TRANSPORT BARRIERS

We study the transport barrier formation near the low-order
rational tori for the two kinds of profiles of ω(J ) described
in Sec. II D: (i) the monotonic dependence of 1/ω(J ) on J ,
and (ii) the nonmonotonic dependence of 1/ω(J ) on J with a
minimum at J = Jm located away from the center J = 0 and
the edge J = 1.

A. Monotonic profile

The profile of D along the variable J is shown in Fig. 7
in the whole region 0 < J < 1 for the large Kubo number
K = 100 (a) and in the region 0.5 < J < 0.55 located near
the rational tori ω = 1/3 for the several values of K = 1,2,5,
and 100 (b). The values for the other parameters are chosen:
q0 = 0.8, qa = 5, γ ≡ 1, 20 � n � 50, and α = 5/6, which
corresponds to the power spectrum |Hmn|2 ∼ n−5/3, and the

1The existence of gaps in the density of rational tori has been pointed
out already in many above-mentioned works [15–25], however, no
quantitative estimations have been presented. Moreover, I could not
find the results obtained here in existing literature, although one could
expect that this problem has been treated already in number theory or
in other fields of physics. One expects that these results can also be
obtained using the continued fraction expansions of rational numbers
or the Euler’s totient function [52].
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FIG. 8. Expanded view of rectangular area in Fig. 7 near the
resonant tori ω = 1:3. Curve 1 (solid) corresponds to the quasilinear
prediction, curve 2 (open circles) correspond to the Kubo numbers
K = 100, curves 3 (solid circles), 4 (open squares), and 5 (solid
squares) correspond to the Kubo numbers K = 100, 5, 2, and 1,
respectively. Dashed curve 6 corresponds to the period of motion
T (J ) (right-hand axis).

turbulence level ε = 10−4. At the chosen turbulence level ε

the radial transport is mainly caused by the chaotic diffusion.
As seen from Fig. 7 the diffusion coefficient D (curve 2)

has a fractal-like dependence which on average follows the
quasilinear diffusion coefficient D(J ) (21) (curve 1). One
can see that the diffusion coefficients drop almost to zero at
the radial positions J = Jmn corresponding to the low-order
rational tori ω(Jmn) = n/m. Near these resonant tori the
second moment σ 2

0 (t) does not grow with t or grow very slow
similar to the one shown in Fig. 2 (curve 1).

It is clear that for the large Kubo numbers K � 1 the
absence of chaotic transport near the low-order rational tori
is related to the gaps in the density of rational tori there
(see Sec. IV). However, by decreasing the Kubo number
the turbulence fluctuations start to cause the transport across
low-order rational tori.

The latter is illustrated in Fig. 8 by the expanded view of the
profiles of D(J ) in the region 0.5 � J � 0.55 located near the
rational tori J = Jmn, (m,n) = (3,1), for the different Kubo
numbers K . It shows how the transport barrier is changed
with the Kubo number K . The maximal depth of the barrier is
achieved for the large Kubo number K as shown by curve 2
(open circles) for K = 100. A decrease of the Kubo number
K leads to the shrink of the barrier depth without a significant
change of its width [see curves 3 (solid circles)], 4 (open
squares), and 5 (solid squares) corresponding to the Kubo
numbers K = 5, 2, and 1, respectively. One can expect that
the transport barrier disappears for the values of the Kubo
number K < 1. The transport barriers do not disappear with
increasing the maximal mode number nmax and decreasing nmin

up to 1. These changes only affect the depth and the width of
transport barriers.

The transport barrier also does not disappear by increasing
the exponent α in the power-law spectrum cn = n−α . However,
because of a fast decay of the amplitudes of higher modes n

with increasing α the critical turbulence level ε for the chaotic
transport also grows. The example of this is shown Fig. 9
for the value α = 2 and the turbulence level ε = 10−2. From
the comparison with Fig. 7(b) it follows that the magnitude
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FIG. 9. Profile of the diffusion coefficients near the resonant tori
q = 3:1 for the exponent α = 2 and the turbulence level ε = 10−2.
Curve corresponds to the quasilinear value, curves 2 (circles) and
3 (squares), correspond to the Kubo numbers K = 5 and 100,
respectively (left-hand axis); curve 4 describes 1/ω(J ) (right-hand
axis). The averaging is done over 104 orbits. The normalization
constant D0 = 10−9.

of the diffusion rate for α = 5/6 and ε = 10−4 is reached at
the larger value of α = 2 with the two-order-higher level of
turbulence ε.

B. Nonmonotonic profile

From Eq. (25) it follows that the width of transport barriers
also depends on the shear dω(J )/dJ . The most pronounced
transport barrier appears in the case of the nonmonotonic
profile of 1/ω(J ) near the shearless tori J = Jm where 1/ω(J )
reaches its minimal value (i.e., dω/dJ = 0). According to
(25) the density distribution ρ(J,N ) near this tori is also low.
The formation of the turbulent transport barrier in this case
is illustrated in Fig. 10 when the minimal value Jm coincides
with the (m = 3,n = 2) resonant tori ω(Jmn) = 2/3 for the
large, K = 100 (curve 2) and small K = 1 (curve 3) values of
the Kubo number. The parameters of the model are qm = 1.5,
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FIG. 10. The same as in Fig. 7 but for the nonmonotonic profile
of 1/ω(J ) = qm + β(J − Jm)2. (a) The turbulence level ε = 10−4,
the interval of modes 10 � n � 100. Curve 1 corresponds to the
quasilinear formula (21), curves 2 (circles) and 3 (squares) correspond
to the numerical calculations with the Kubo numbers K = 100 and
K = 1, respectively; curve 4 describes 1/ω(J ) (right-hand axis). The
normalization constant D0 = 10−9.
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curve 1 corresponds to J0 = 0.3; curve 2 − J0 = 0.32, and curve
3 − J0 = 0.3516 (left-hand axis); curve 4 (dotted) corresponds to
the phase correlation function Cn(t) at n = 10 (right-hand axis). The
toroidal modes 10 � n � 100, the turbulence level ε = 10−4.

Jm = 0.3516, β = 4.045, the interval of modes 10 � n � 100,
the perturbation level is ε = 10−4, and the values of the other
parameters are the same as in Fig. 7.

The typical dependencies of the second moment of dis-
placements σ 2

0 (t) on t at the three positions located near this
transport barrier is shown in Fig. 11: Curve 1 corresponds to
J = 0.3 located just outside the barrier, curve 2 corresponds
to J = 0.32 located inside the barrier and close to the barrier
border, and curve 3 corresponds to the resonance value Jmn =
0.3516, (m = 3,n = 2); curve 4 describes the correlation
function of phase Cn(t) for the minimal mode number n = 10.
As seen from this figure the motion near the low-order resonant
tori is not diffusive, but rather regular. In the transport barrier
regions the second moment of displacement, σ 2

0 (J ), do not
linearly depend on time t . It grows at the initial stage t < tK ,
and tends to the constant value at the large t > tK (curve 4).
The correlation time tK in the transport barrier region is much
larger than those in the diffusive regions.

The radial transport barrier in a small-scale turbulent field
appears for any turbulence level (but still small) exceeding a
certain critical value at which the overlapping of resonances
occurs. Only the depth and width of the transport barrier
depend on the mode content of the turbulent field. Particularly,
the increase of the maximal mode number nmax as well as
the increase of the turbulence level ε lead to the growth of
diffusion rate at all radial positions due to an increase of the
density of rational tori, but it does not eliminate the transport
barrier. This is illustrated in Figs. 12 and 13(a). Particularly,
Fig. 12 shows the profiles of diffusion coefficients for the three
different values of nmax: nmax = 25 (curve 1), nmax = 50 (curve
2), and nmax = 100 (curve 3) at the fixed lowest mode number
nmin = 1 and the Kubo number K = 100. The turbulence
level is taken ε = 10−3 which is one order higher than in
Fig. 10.

From the comparison of Figs. 12 and 10 it is seen that
the transport barriers near the shearless tori (m,n) = (3,2) and
the resonant tori (m,n) = (2,1) and (5,2) became wider by
increasing the turbulence level ε and the inclusion of low-order
modes nmin < 10. At the same time due to a large turbulence
level the diffusion inside the barrier does not disappear unlike
the case with small ε as in Fig. 10. Widening the transport
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FIG. 12. The same as in Fig. 10 but for the turbulence level
ε = 10−3: curve 1 (circles) corresponds to the interval of modes
1 � n � 25, curve 2 (squares) to 1 � n � 50, curve 3 (up-triangle)
to 1 � n � 100, and curve 4 (dashed) and curve 5 (solid) describe
1/ω(J ) and the inverse of the effective winding number, 1/ωeff (J ),
(27) (right-hand axis). The normalization constant D0 = 10−7 and
the Kubo number K = 100.

barriers near the resonant tori (m,n) = (2,1) and (5,2) are due
to the presence of low-order modes n. These modes alone
modify the winding number ω(J ) near the low-order rational
tori because of the trapping of particles into the corresponding
resonances. The motion there can be characterized by the
effective winding number ωeff(J ),

1

ωeff
= 1

N

N∑
k=0

tk+1 − tk

2π
, N � 1, (27)

where tk (k = 0,1,2, . . . ,N) is a sequence of times in the
mapping (9), and the averaging is done over a large number
of mapping iterations N , N � 1. The profile of ωeff(J ) is
flattened in the region Jmn − �Jmn/2 < J < Jmn + �Jmn/2
near the resonant tori Jmn, where �Jmn is the resonance width
(20). This is shown by curve 5 in Fig. 12 calculated for
the Hamiltonian system (1)–(3) with only the three lowest
modes n = 1,2,3. According to (25), such a profile of ωeff

leads to widening of the gap in the density of rational tori,
and thus reduces the chaotic transport like near the shearless
tori.

Figure 13(a) shows the dependence of diffusion coefficients
on nmax at the two different radial locations, at the fixed Kubo
number K = 100. As seen from Fig. 13(a) the difference
of diffusion coefficients at the two positions located just
outside the transport barrier (J = 0.25, curve 1) and just
inside the transport barrier (J = 0.31, curve 2) remains almost
constant with increasing nmax up to 3200. From Fig. 13
also follows that the diffusion inside the transport barrier
appears when nmax exceeds a certain critical number larger than
n(crit)

max ≈ 15.
The transport barrier near the shearless tori disappears for

the small Kubo number K . This is shown in Fig. 13(b) where
the dependencies of diffusion coefficients on K at the two
radial positions located just outside the transport barrier (J =
0.25, curve 1) and just inside the transport barrier (J = 0.31,
curve 2) are plotted for the turbulent level ε = 10−3 and the
modes 1 � n � 50. As seen from Fig. 13(b) at these conditions
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FIG. 13. (a) Dependence of diffusion coefficients on the maximal
mode number nmax at the fixed Kubo number K = 100 at the two
radial positions near the transport barrier border shown in Fig. 10(b).
Curve 1 corresponds to J0 = 0.25 and curve 2 − to J0 = 0.31.
(b) Dependence of diffusion coefficients on the Kubo number K

at the fixed mode interval 1 � n � 50 at the same radial positions
as in (a).

the transport barrier appears for the Kubo number K > 6. For
the value K = 1 the transport barrier near the shearless tori
ω = 2/3 completely disappears (see also curve 3 in Fig. 10).

VI. CONCLUSIONS

We have studied the chaotic transport in a Hamiltonian
system perturbed by a weak turbulent field with a spectrum
of modes which contains up to thousands of small-scale wave
modes. The numerical calculations of diffusion coefficients
are carried out using a fast running mapping technique which
overcomes the difficulties of the symplectic integrator with
small time steps related to huge computational times. The
profiles of diffusion coefficients D(J ) across tori J are
calculated for the different mode contents and the Kubo
numbers. It is found that for the large Kubo numbers the
dependence of D(J ) on J has an irregular, fractal-like behavior
with the reduced and zero diffusivity near the low-order
rational tori thereby forming the transport barriers for the
chaotic motion. For the small Kubo numbers the irregular
behavior of D(J ) is replaced by the more smooth profiles,
and particularly, the transport barriers may be disappeared or
weakened. The dependence of the width and depth of transport
barriers on the mode spectra Hmn, mode ranges in n, and the
Kubo number K are investigated.

The appearance of transport barriers is related to the gaps
of density of rational tori near the low-order rational tori.

The latter is determined by the shear of the unperturbed
Hamiltonian system and the density of rational numbers,
m/n, with n in nmin � n � nmax, where nmin and nmax are the
minimal and maximal mode numbers of the turbulent field. By
the numerical calculations of the density of rational numbers
we have studied the dependence of the gaps on the maximal
mode number. Particularly, the self-similar behavior of the
density near the low-order rational numbers has been found.

The transport barriers may not be formed at the large level
of turbulent field. As the thorough analytical and numerical
analyses of the particle transport in a prescribed broad wave
field with random phases made in Ref. [47] (and references
therein) shows that the transport has a diffusive nature and
the diffusion coefficients take a quasilinear value at small and
large turbulence levels.

The fractal behavior of the diffusion coefficients also
has been observed in dynamical systems described by one-
dimensional, piecewise linear, chaotic mappings [48,49]. In
these systems the diffusion coefficients have a fractal structure
as a function of the mapping parameter.

One should note some differences in the transport barrier
formation in the considered Hamiltonian system with the
large Kubo number (K � 1) from the ones with a small
number of perturbation modes, for example, the standard
map (see, e.g., [39]). In the former the transport barriers are
formed near the low-order rational tori, while in the latter
the main obstacle to the global chaotic transport is due to
the existence of robust Kolmogorov-Arnold-Moser (KAM)
tori corresponding to the most irrational winding numbers
ω(Jmn), with the notable golden KAM tori g∗ = (

√
5 − 1)/2

[50]. On the other hand, in Hamiltonian systems subjected
to the nonsmooth perturbations the chaotic transport occurs
at any small magnitude of perturbation. The perturbation
Hamiltonian of such systems contains an infinite number
of modes with the regular phases χmn and the amplitudes
Hmn ∼ |m|−α , (α � 2) [51] (see also [40]).

The transport barrier formation near the low-order rational
tori found numerically in Hamiltonian systems perturbed by a
weak turbulent field at the large Kubo numbers, probably, may
have some sort of relation to the transport barriers in fusion
experiments (see, e.g., a review [4]). As was mentioned above
there is a possible relation between the density of rational
magnetic surfaces (or tori) and the transport of particles
and energy, particularly, the transport barrier formation in
fusion experiments, which has been already discussed in a
number of papers [12–25]. Unlike qualitative arguments given
in those works we have explicitly shown the formation of
transport barriers in Hamiltonian systems by direct numerical
calculations and explored the conditions at which such barriers
are created. However, our test particle approach is not able
to self-consistently tackle this complex nonlinear problem.
Therefore, our mechanism cannot be considered as a sole
responsible mechanism for the formation of transport barriers
in fusion plasmas.
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