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A universal description is presented for weak adsorption of flexible polyelectrolyte chains

onto oppositely charged planar and curved surfaces. It is based on the WKB

(Wentzel-Kramers-Brillouin) quantum mechanical method for the Green function equation in the

ground state dominance limit. The approach provides a unified picture for the scaling behavior of

the critical characteristics of polyelectrolyte adsorption and the thickness of the adsorbed polymer

layer formed adjacent to the interface. We find, particularly at low-salt conditions, that curved

convex surfaces necessitate much larger surface charge densities to trigger polyelectrolyte

adsorption, as compared to a planar interface in the same solution. In addition, we demonstrate

that the different surface geometries yield very distinct scaling laws for the critical surface charge

density required to initiate chain adsorption. Namely, in the low-salt limit, the surface charge

density scales cubical with the inverse Debye screening length for a plane, quadratic for an

adsorbing cylinder, and linear for a sphere. As the radius of surface curvature grows, the

parameter of critical chain adsorption onto a rod and a sphere turns asymptotically into that of a

planar interface. The transition occurs when the radius of surface curvature becomes comparable

to the Debye screening length. The general scaling trends derived appear to be consistent with the

complex-formation experiments of polyelectrolyte chains with oppositely charged spherical and

cylindrical micelles. Finally, the WKB results are compared with the existing theories of

polyelectrolyte adsorption and future perspectives are outlined.

I. Introduction

Adsorption of polyelectrolyte (PE) chains onto oppositely

charged surfaces has attracted considerable theoretical

attention over the last decades1,2 because of its importance

for many biological and technological applications. A number

of theoretical approaches have been utilized, in particular for

weak PE adsorption onto curved oppositely charged interfaces

immersed in electrolyte solutions. Here, the properties of the

adsorption process are basically dictated by a competition of

attractive electrostatic PE-surface interactions and a loss of

polymer conformational entropy upon adsorption,3,4 with the

key parameters being the PE charge density, its persistence

length, ionic strength of the solution, and PE-surface affinity.

The adsorption of PEs onto curved surfaces is generally not

amenable to exact solutions, in contrast to the planar case,5,6

and therefore a number of approximate approaches have been

suggested in the literature.7–11

In particular, for adsorption of long PE chains onto spherical

and cylindrical surfaces, the variational method based on trial

functions has been implemented in ref. 12. Also, the adsorption

of flexible PEs onto a spherical surface has been investigated in

ref. 13–15 by approximating the Debye–Hückel PE-sphere

attraction with the Hulthen potential that allows to determine

an exact analytical solution. These results unravelled the

scaling characteristics of PE adsorption, including the critical

conditions for the adsorption-desorption transition and the

thickness of the adsorbed PE layer. These two quantities are

also the main targets of the present work.

A number of computer simulation studies on complexation

of finite-length PE chains with oppositely charged spheres and

rods have been published in recent years as well.16–21 A terse

style of this paper does not allow us to discuss here the wealth

of data and trends uncovered in simulations. Experimentally,

the complex formation of various PE chains (both flexible and

semi-flexible) with oppositely charged particles (micelles,

dendrimers, and proteins) has been systematically investigated

by the P. Dubin group.22–27 These studies provide valuable

data for the onset on PE-particle complexation (detected via a

subsequent precipitation of complexes from the solution) that

can be associated with the conditions determined theoretically

for the critical PE-surface adsorption. Despite these active

theoretical and computational research activities, the universal

scaling behavior for the critical PE adsorption conditions is
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52425 Jülich, Germany

PCCP Dynamic Article Links

www.rsc.org/pccp PAPER

D
ow

nl
oa

de
d 

by
 F

or
sc

hu
ng

sz
en

tr
um

 J
ul

ic
h 

G
m

bh
 o

n 
08

/0
5/

20
13

 0
9:

27
:0

9.
 

Pu
bl

is
he

d 
on

 2
0 

M
ay

 2
01

1 
on

 h
ttp

://
pu

bs
.r

sc
.o

rg
 | 

do
i:1

0.
10

39
/C

1C
P2

07
49

K
View Article Online / Journal Homepage / Table of Contents for this issue

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Juelich Shared Electronic Resources

https://core.ac.uk/display/34896946?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1039/c1cp20749k
http://dx.doi.org/10.1039/c1cp20749k
http://dx.doi.org/10.1039/c1cp20749k
http://pubs.rsc.org/en/journals/journal/CP
http://pubs.rsc.org/en/journals/journal/CP?issueid=CP013024


This journal is c the Owner Societies 2011 Phys. Chem. Chem. Phys., 2011, 13, 11686–11693 11687

still under debate for curved surfaces, partly because of the

lack of a general methodology for different geometries.

In this letter, we bridge this gap and propose an approximate

but reliable universal approach to treat PE adsorption onto

planar, cylindrical, and spherical oppositely charged interfaces.

The paper is organized as follows. In the next section, we review

the basic equations for the Green function and discuss a set of

approximations implemented in the description of confor-

mational properties of PE chains adsorbed on a surface. Then,

we summarize the general concepts of the WKB approach. In

the subsequent section, utilizing the WKB approximation, we

explore the physical properties of PE adsorption onto surfaces

of various geometries. We compare and contrast the WKB-

scaling results with previously derived theoretical predictions

for the thickness of the adsorbed PE layer and the critical

adsorption characteristics (surface charge density, temperature,

etc.). Interesting experimental observations on complexation of

PEs with oppositely charged spherical and cylindrical objects

are discussed at the end, in the light of scaling predictions and a

salt-dependent PE electrostatic persistence length.

II. Modelling PE adsorption: Green function and

approximations

The weakly charged flexible PE chain is described by a

continuous space curve with the linear charge density

r = e0/b0, where e0 is the elementary charge and b0 the

inter-charge separation. The intra-molecular self-interactions

(e.g. Coulomb repulsive and excluded-volume interactions) are

not taken into account explicitly in the model, but they are

rather accounted for via the value of the Kuhn segment length

of the chain b. This length sets the length-scale in the problem.

The excluded-volume effects are indeed important when

relatively dense PE profiles are formed near the interface.

For the critical adsorption conditions, when the PE chains

are only weakly perturbed by the adsorbing interface, these

effects are, however, expected to have a rather small impact,

see Discussion section. The PE chains are weakly charged,

below the Manning limit for counterion condensation.

The oppositely charged interface has a homogeneous

surface charge density s, being impenetrable to solvent

molecules and PE chains. The cylinder and sphere have the

radius a. The solvent is treated as a medium of constant

dielectric permittivity, e = 80. The counterions and salt ions

are taken into account on the level of the linearized

Poisson–Boltzmann equation. Its solution yields the PE-surface

interaction potential, i.e., the Debye–Hückel potential for the

corresponding geometry. The latter is derived assuming a

constant surface charge density.

The conformational properties of flexible Gaussian polymer

chains of length L (L-N) and the average spatial distribution

of its monomers follow from the probability density G(r,r0;L),

the Green function. Here r0 = r(0) and r = r(L) denote the

positions of the polymer end points. For a PE chain in the

electrostatic field of an attracting surface VDH(r) the Green

function obeys the equation

@

@L
� b

6
r2

r þ
VDHðrÞ
kBT

� �
Gðr; r0;LÞ ¼ dðr� r0ÞdðLÞ; ð1Þ

with kB the Boltzmann constant and T the temperature. The

Laplacian term r2
rG(r,r

0;L) describes the conformational

entropy of the chain. This equation has to be solved with

the boundary conditions G = 0 at the surface and far away

from it. The first condition is attributable to an entropic

repulsion of polymer chains from the immediate vicinity of

the adsorbing interface. The second one prescribes the vanishing

PE concentration in the bulk.

The standard procedure to find the solution of eqn (1) for

long enough polymers is the eigenfunction expansion,

Gðr; r0;LÞ ¼
X
n

c�nðr0ÞcnðrÞemnL: ð2Þ

In the ground state dominance approximation for a long chain

(a dozen of Kuhn lengths), the lowest eigenvalue mR m0 gives
the dominant contribution to the Green function (m 4 0 for

the adsorbed state). The following equation applies for the

eigenfunction in the ground state c R c0,

� b

6
r2

r þ
VDHðrÞ
kBT

� �
cðrÞ ¼ �mcðrÞ: ð3Þ

Below, the WKB method is employed to solve this eigenvalue

equation for the conditions of weak PE-surface adsorption.

The term ‘‘weak adsorption’’ here implies that the entropic

free energy of PE chains is comparable to their electrostatic

attraction energy to the interface. The chain is assumed to be

Gaussian and its conformations are only weakly perturbed by

interactions with the surface. This is the most severe approxi-

mation of the current model. It can be relaxed in several ways

that is, however, beyond the scope of this study. We also

assume that the PE profile is built up near the adsorbing

surface without disturbing the electrostatic potential and ionic

distribution near the interface prescribed by the Poisson–

Boltzmann theory. A more general self-consistent field theory,

with a coupling of PE and ionic distributions next to the

interface, has been presented in refs. 28 and 29. Certain

polymer stiffness effects for PE adsorption onto curved

surfaces due to a salt-dependent persistence length are discussed

in the last section.

We use the adsorption parameter d, as defined previously in

ref. 13, that couples the strength of electrostatic PE-surface

attraction, absolute temperature, polymer persistence length

b/2, and the surface radius a. It can be written via the

interaction parameter y = 4p|rs|/(ekBTk) as follows

d ¼ 6a3ky
b
¼ 24pa3jrsj

ekBTb
; ð4Þ

where k is related to the Debye screening length lD as lD= 1/k.
Strictly speaking, the conditions a c b and lD c b0 have

to be satisfied. For a fixed PE charge density and persistence

length, PE adsorption takes place when the adsorption

parameter becomes larger than some critical value, d 4 dc.
This corresponds to the formation of a first bound PE state

that takes place, e.g., when the surface charge density exceeds

some critical level, s 4 sc. Finding the dependence of sc on
environmental and model parameters such as k, T, a, b is the

basic goal of this study.

From eqn (4) we note right away that larger surface charge

densities sc are required to trigger the adsorption of stiffer
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polymers (larger b values). Also, it is physically clear that in

concentrated electrolyte solutions, where the PE-surface

attraction is well-screened by mobile ions, again, larger surface

charge densities and higher linear PE charge densities are

necessary to stimulate a PE deposition onto the interface.

III. WKB method: general procedure

To solve eqn (3), we employ the WKB approach used in

quantum mechanics to find approximate solutions of the

time-independent Schrödinger equation.30 The latter is equivalent

to the Edwards equation for the polymer probability density.

The WKB approach provides an approximate solution of the

one-dimensional eigenfunction equation

c(x)xx + Q2(x)c(x) = 0, (5)

on both sides of a simple-zero point x0 of the potential

Q2(x0) = 0. Here, cxx denotes the second derivative of c with

respect to x. The WKB method provides the solution of a

more general equation

c(x)xx + [Q2(x) � �y(x)]c(x) = 0, (6)

in the form

c(x) = S(x)[ax1/3J�1/3(x) + bx1/3J1/3(x)], (7)

where J�1/3 are the Bessel functions of fractional order31 and

the supplementary functions are given by �y(x) = S(x)xx/S(x)

and S(x) = Q�1/2(x)x1/6(x). Here, the variable x is defined as

xðxÞ ¼
Rx
x0

Qðx0Þdx0 for x 4 x0 in the region Q2 4 0, whereas

xðxÞ ¼
Rx0
x

jQðx0Þjdx0 for x o x0 in the region Q2 o 0. If the

condition |�y(x)| { |Q(x)| is satisfied, the general solution of

eqn (7) yields also an approximate solution of eqn (5).

The two eigenfunctions describe the oscillating (J�1/3) and

decaying (J1/3) branches of the solution. They can be

attributed in quantum-mechanical analogy to the wave function

of a quantum particle confined in a potential well or penetrating

into a potential barrier, respectively. Using the properties of

Bessel functions,32 c(x) can be expressed in terms of Airy

functions Ai of negative and positive arguments, respectively.

Namely, using the definition R(x) = �Q2(x), one arrives at the

uniformly valid Langer’s solution that at x 4 x0 has the form

cp(�R)�1/4x1/6Ai(�(3x/2)2/3), (8)

and converges at infinity, whereas for x o x0, with the

definition R(x) = Q2(x), the solution is given by

cpR�1/4x1/6Ai((3x/2)2/3). (9)

For large arguments, the corresponding Airy functions can

asymptotically be expanded in sinusoidal and exponentially-

decaying functions.

We confirmed that theWKB applicability condition |�y/Q|{ 1

is satisfied for all three geometries. It works particularly well

far from the adsorption-desorption transition, while it

naturally fails in the proximity of the zero-potential point x0 at

which Q(x0) = 0. Note that the WKB technique has been

applied to the analysis of weak PE-rod adsorption in ref. 10.

IV. Basic equations and results

a Plane

The Edwards equation for the Green function describing the

probability density of a charged flexible polymer in the vicinity

of a planar interface is

� b

6
cðxÞxx � ye�kxcðxÞ ¼ �mcðxÞ: ð10Þ

It has already the form cxx � Rc= 0 with the WKB potential

RðxÞ ¼ 6

b
m� dbe�kx

6a3k

� �
:

This potential can be either positive or negative depending

upon the eigenvalue m, the strength of the PE-surface

adsorption d, the separation from the surface, and salt conditions.

The potential attains zero at kx0 = �ln(6a3km/(db)). For a

plane, any dependence on a vanishes because d p a3, but the

expressions below are presented in the form similar to the rod

and sphere situations.

For the oscillating solution, realized near the interface at

0 o x o x0, we have R o 0, xðxÞ ¼
Rx0
x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�Rðx0Þ

p
dx0, and the

PE density profile is expressed as

P(x) p c2
p {x1/6(�R)�1/4Ai(�(3x/2)2/3)}2. (11)

The existence of the PE bound state near the surface is dictated

by the properties of the attractive adsorption potential, mainly

by its strength and decay length. Namely, the PE profile

created close to the surface has to satisfy the condition

P(0) = 0 that involves the first zero of the Airy function,

ai1 E �2.338. Thus, the first maximum/peak of the oscillating

solution describes the adsorbed PE layer near the interface.

This condition yields x(0) = 2|ai1|
3/2/3 and the PE eigenvalue

dependence m(d) follows from

Zx0
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
de�kx0

6a3k
� m

b

r
dx0 ¼ C; ð12Þ

with the parameter C given by10

C � 2jai1j3=2=ð3
ffiffiffi
6
p
Þ � 0:973: ð13Þ

The critical adsorption parameter dc follows from eqn (12) for

m = 0 that, by definition, separates bound and unbound states

of the PE chain. This transition implies that the distribution of

adsorbed PEs near the interface becomes infinitely wide, and

the point where the oscillating and decaying solution match

moves to infinity, x0 - N. This yields the scaling law

dc ¼
6C2

4
ðkaÞ3 � 1:42ðkaÞ3; ð14Þ

which agrees within just 2% with the result of the exact

enumeration5 that gives dc ¼
j2
0;1

4
ðkaÞ3 � 1:446ðkaÞ3, see Fig. 1.

Here j0,1 E 2.405 is the first zero of the Bessel function J0.

Eqn (14) illustrates the simple physical fact that, upon

addition of salt, higher surface charge densities are required

to stimulate PE adsorption. Fig. 1 clearly shows that larger

critical adsorption parameters are necessary to trigger PE

adsorption onto curved convex surfaces of cylinders and
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spheres (see the next sections), as compared to the planar

situation. The effect is particular strong in the limit of low salt

or large surface curvature when ka { 1.

For the decaying solution, which is realized for x 4 x0, we

have R 4 0, xðxÞ ¼
Rx
x0

ffiffiffiffiffiffiffiffiffiffiffi
Rðx0Þ

p
dx0, and the monomer density

distribution P(x) is described by

P(x) p {x1/6R�1/4Ai((3x/2)2/3)}2, (15)

see Fig. 2. The decaying branch of the Ai function satisfies

automatically the condition of vanishing PE density far from

the adsorbing interface.

Normalized PE density profiles have been computed for

various adsorption strengths d. The width of the PE layer near

the surface w is evaluated at the half-height of P(x). We find

that far from the adsorption transition, at large adsorption

strengths, it scales as wpd�1/3, see Fig. 3. It is consistent with
the theoretical prediction from the mean-field theories of

PE adsorption.1 As one could expect, more concentrated

electrolyte solutions require larger d values for PE adsorption

to take place. Also, at the same d, the width of the PE

profile increases with increasing salt concentration, see

Fig. 3. The eigenvalues of the adsorbed PE chain m(d) also exhibit

a strong d-dependence, as shown in the inset of this figure.

The fact that the critical adsorption transition dc(ka) and the

width of the adsorbed PE layer w(d) for the planar interface is
correctly reproduced, makes us confident that the WKB

method can provide reliable predictions for these essential

adsorption characteristics also for curved surfaces, see below.

b Rod

The equation for the radial axially-symmetric component of

the Green function for PE-cylinder adsorption reads

� b

6
cðrÞrr þ

1

r
cðrÞr

� �
� y

K0ðkrÞ
K1ðkaÞ

cðrÞ ¼ �mcðrÞ: ð16Þ

Here K0,1 are modified Bessel functions that naturally arise

when solving the linear Poisson–Boltzmann equation for the

electrostatic potential near a uniformly charged rod of radius

a o r.33,34 After the substitution kr = u = eo, this equation

can be rewritten in a form required by the WKB method,

namely coo � Rc = 0, with

RðoÞ ¼ 6e2o

bk2
m� dbK0ðeoÞ

6a3kK1ðkaÞ

� �
:

The point r0 of zero potential is found via solving

K0ðkr0Þ ¼ 6a3kmK1ðkaÞ
db .

For the oscillating solution at a o r o r0, we get

xðrÞ ¼ 1
k

Rkr0
kr

du
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dK0ðuÞ

a3kK1ðkaÞ
� 6m

b

q
that defines the m(d) dependence

via 1
k

Rkr0
ka

du
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

dK0ðuÞ
6a3kK1ðkaÞ

� m
b

q
¼ C, with C given in eqn (13). The

critical adsorption condition at m = 0 then follows from

numerical integration of the equationffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dc

a3k3K1ðkaÞ

s Z1
ka

du
ffiffiffiffiffiffiffiffiffiffiffiffi
K0ðuÞ

p
¼ C

ffiffiffi
6
p

: ð17Þ

It reveals a transition from planar-like dc p (ka)3 scaling at

large ka values to the scaling law dc p (ka)2 for ka { 1, see

Fig. 1. The latter scaling behavior can be obtained analytically

Fig. 1 Critical adsorption parameter dc obtained from the WKB

approach. Scaling asymptotes (eqn (14) for the plane, eqn (18) and (22)

for rod and sphere, respectively, in the limit ka { 1) are shown as

dotted lines.

Fig. 2 Normalized PE density distributions near an adsorbing plane

for d = 0.002, 0.01, 0.1, 1 (for the curves from right to left). For each

curve, the solid and dotted parts represent the oscillating and decaying

branch of the solution, respectively. Close to the adsorption-

desorption coexistence line, the polymer profile becomes wide, whereas

far from this transition in a strong-adsorption regime the PE adsorbed

layer is strongly confined near the interface. Parameters: b = 30 Å,

1/k = 10 Å.

Fig. 3 PE layer thickness near the adsorbing plane at varying amount

of added salt. The scaling relation w p d�1/3 is shown as the black

dotted line. The width diverges as d - dc and for higher salinitiy this

transition takes place at larger adsorption parameters. The inset shows

the eigenvalues of adsorbed PEs. Parameters: b = 30 Å, 1/k = 100 Å

for dashed curves, 1/k = 10 Å for solid curves, and 1/k = 1 Å for

dot-dashed curves.

D
ow

nl
oa

de
d 

by
 F

or
sc

hu
ng

sz
en

tr
um

 J
ul

ic
h 

G
m

bh
 o

n 
08

/0
5/

20
13

 0
9:

27
:0

9.
 

Pu
bl

is
he

d 
on

 2
0 

M
ay

 2
01

1 
on

 h
ttp

://
pu

bs
.r

sc
.o

rg
 | 

do
i:1

0.
10

39
/C

1C
P2

07
49

K

View Article Online

http://dx.doi.org/10.1039/c1cp20749k


11690 Phys. Chem. Chem. Phys., 2011, 13, 11686–11693 This journal is c the Owner Societies 2011

from eqn (17) using the expansions of Bessel functions for

small and large arguments (for K0(ka) and K1(kr), respec-

tively). It yields the following asymptotic behavior in terms of

the gamma function G

dc �
6C2ðkaÞ2

½ðp=2Þ1=4Gð3=4Þ23=4�2
� 1:067ðkaÞ2: ð18Þ

The probability distribution function of PE monomers is

(see Fig. 4)

P(r) p 2pr{x1/6(�R)�1/4Ai(�(3x/2)2/3)}2.

For the decaying solution at r 4 r0, we define

xðrÞ ¼ 1
k

Rkr
kr0

du
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� dK0ðuÞ

a3kK1ðkaÞ
þ 6m

b

q
. Far from the point r0 of zero

potential, the expansion of the Airy function yields a simple

form for the PE profile

cðrÞ / ð6m=bÞ�1=4r�1=2e�r
ffiffiffiffiffiffiffi
6m=b
p

: ð19Þ

We emphasize a strong dependence of the decay length of this

function on the PE energy level m, see also Discussion. The PE

density profile is described by

P(r) p 2pr{x1/6R�1/4Ai(3x/2)2/3}2.

The width of the adsorbed PE layer follows, again far from the

adsorption transition, a w p d�1/3 scaling law, as shown in

Fig. 5. We emphasize here that this scaling law is to be taken

with caution for all three adsorbing geometries because it is

approached for very large adsorption strengths only. At such

conditions, the spatial extension of very dense PE adsorbed

layers can be influences by the presence of additional specific

intra-chain interactions neglected in the current model.

c Sphere

The radial centrally-symmetric component of the Green func-

tion for PE-sphere electrostatic adsorption in the Debye–

Hückel potential satisfies the equation

� b

6
cðrÞrr þ

2

r
cðrÞr

� �

� ya2k
eka

1þ ka
e�kr

r
cðrÞ ¼ �mcðrÞ:

ð20Þ

In terms of a new function j = rc and new variable u = kr,
one gets jrr � R(kr)j = 0 with the potential

RðuÞ ¼ 6m
b
� dk

a

eka

1þ ka
e�u

u
:

The point of zero potential r0 is defined by e�kr0
r0
¼ 6mað1þkaÞ

bdeka .

For the oscillating solution at a o r o r0, we have xðrÞ ¼
1
k

Rkr0
kr

du
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�RðuÞ

p
and 1

k

Rkr0
ka

du
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�RðuÞ=6

p
¼ C that prescribes the

m(d) dependence. The latter defines the critical adsorption

condition (at m = 0 and r0 - N) as

dc ¼
6kað1þ kaÞC2

2pekaErfc2
ffiffiffiffiffiffiffiffiffiffi
ka=2

p� � : ð21Þ

Here Erfc(y) = 1 � Erf(y) is the complementary error

function. Using its expansions for small and large arguments,

respectively, we find for ka { 1 the scaling relation

dc �
6C2

2p
ka � 0:904ðkaÞ1; ð22Þ

and the dc � 6C2

4 ðkaÞ
3 scaling for ka c 1. The first relation is

quite close to the dcE ka scaling predicted from the approximate

analytical solution of the PE-sphere adsorption problem derived

in the Hulthen PE-sphere attractive potential,13 rather than in the

Fig. 4 Normalized PE density profiles for PE-rod adsorption.

The parameters are d = 30, 100, 300, 1000, 3000 (from right to left),

a = 10 Å, b = 30 Å, and 1/k = 10 Å.

Fig. 5 Thickness w of the PE layer near a planar (red), cylindrical

(blue), and spherical (green) adsorbing interface. The scaling relation

w p d�1/3 is indicated by the black dotted line. Parameters: b = 30 Å,

1/k = 10 Å, and a = 1 Å for the dashed, and a = 10 Å for the solid

curves (for the rod and sphere cases).

Fig. 6 PE density profiles near the oppositely charged sphere,

presented for the same d, k, b, and a values as for PE-rod adsorption

in Fig. 4.
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Yukawa-like e�kr/r-potential. The second limit is the

WKB result for the plane, eqn (14). The PE density profile is

P(r) p 4pr2{r�1x1/6(�R)�1/4Ai(�(3x/2)2/3)}2, see Fig. 6. For

the decaying solution, beyond the turning point r 4 r0, we

have xðrÞ ¼ 1
k

Rkr
kr0

du
ffiffiffiffiffiffiffiffiffiffi
RðuÞ

p
and P(r) p 4pr2{r�1x1/6R�1/4

Ai((3x/2)2/3)}2.
Similarly to the planar and cylindrical surfaces, the width of the

tightly-adsorbed PE layer near a sphere follows the lawwp d�1/3,
see Fig. 5, in good agreement with the approximate prediction of

w p d�3/8 from ref. 14 and w p d�2/5 obtained in ref. 15.

V. Discussion and conclusions

a Main effects

Within a simple model, we determined the distinct scaling

behavior for the critical surface charge density required to

trigger adsorption of flexible PE chains for three fundamental

geometries as a function of the Debye screening length 1/k. The
main conclusion is that the critical adsorption parameter scales

as dc p|rsc|pk3 for a planar interface, whereas for cylindrical

and spherical surfaces in the large-curvature or low-salt limit we

find the relations dc p (ka)2 and dc p (ka)1, correspondingly,
see Fig. 7. Generally, as the radius of surface curvature

increases and the parameter ka grows, a transition takes place

from the large curvature limits to the planar limit. Both, for the

adsorbing cylinder and sphere, this change in scaling laws takes

place at ka B 1, i.e., when the radius of surface curvature

becomes comparable to the Debye screening length, see Fig. 1.

This is another physical message of this study. For PE-rod

adsorption, the transition to planar limit occurs at somewhat

smaller ka values than for the PE-sphere situation.

The main advantage of the WKB method proposed is a

unified approach for rationalizing the properties of PE

adsorption onto oppositely charged interfaces of all three

basic geometries on the same level of approximations. From

the calculated relations dc(ka), the corresponding critical

surface charge density, critical adsorption temperature, and

critical curvature radius of the surface (for rod and sphere

cases) can be determined, see ref. 15.

For a fixed ka value, the critical surface charge density

required to initiate PE-sphere adsorption is always larger than

that for PE-rod adsorption. Physically, as one moves from a

plane to a rod and to a sphere, the entropic penalty of PE

confinement near the surface is likely to grow. The correspond-

ing d values and surface charge densities to initiate the PE

adsorption increase as well, see Fig. 1. Another, energy-based

explanation is that a spherical surface offers less contact area35

and thus larger surface charge densities are necessary for PE

adsorption, as compared to PE-rod and PE-plane complexation.

In the limit of ka { 1, the reduction in the number of

translational degrees of freedom for adsorbed PE chains

appears to be coupled to the power of dc p (ka)p+1. Namely,

p= 2 for PEs on a plane with possible chain translations in 2D,

p = 1 for PEs adsorbed on a rod with possible translations

along the cylinder axis, while p = 0 for the PE-sphere adsorp-

tion, with no chain translational freedom at all. In the opposite

limit of ka c 1, the scaling relations for PE-rod and PE-sphere

adsorption turn into the known asymptotic behavior for a

planar surface, well reproduced by the WKB analysis, see Fig. 1.

It is also interesting to note that such a regular decrease in

the power of k resembles the change in the laws of electrostatic

repulsion between the particles of corresponding geometry in

simple-salt solutions. Namely, at large inter-particle separations

kR c 1, two uniformly charged planes, rods, and spheres

repel each other following respectively the dependences

p e�kR, p e�kR (kR)�1/2, and p e�kR (kR)�1.36

b Comparison with other theories and experimental data

Let us now compare our findings with the results of existing

theories of weak PE adsorption onto curved surfaces.

One well-established seminal study is the investigation of

M. Muthukumar12 that employs a specific set of trial functions

to mimic the peak of adsorbed PEs near the interface. For

PE-rod adsorption, this method yields very good quantitative

agreement with the WKB result for the critical adsorption

condition dc. For PE-sphere adsorption, in contrast, its

outcomes disagree with the scaling predictions from the

WKB model presented above as well as from the approximate

solution of PE-sphere adsorption problem in the Hulthen

potential derived in ref. 13. Namely, in the limit of small ka,
Muthukumar’s model predicts a dc p (ka)2 dependence, both
for the rod and sphere situations. Note that this variational

technique employs a specific dependence of trial functions on

the PE eigenvalues.

The salt effects on PE complexation with oppositely charged

objects have been examined in a number of excellent

experimental studies, see Introduction. In particular, the

complexation behavior of various PEs with oppositely charged

cylindrical and spherical DMDAO micelles have been studied

extensively in the group of P. Dubin, see Introduction and also

the overview in Sec. 3c of ref. 14. The micelle surface charge

density was controlled in experiments via a pH-dependent

protonation of surface charges. The critical charge density

sc, sufficient to trigger the PE-micelle adsorption and

subsequent precipitation of PE-micelle complexes from

solution, has been extracted from the measurements. The

results at varying solution salinity exhibit a scaling law sc p
kn1 with n1 = 0.9–1.4 for spherical micelles and sc p kn2 with
n2 = 1.8–2.5 for the micelles of elongated, rod-like shape.37

This, by about k1, stronger dependence of sc on salt

concentration for cylindrical particles is consistent with our
Fig. 7 A pictorial representation of WKB results for critical adsorp-

tion conditions in the low-salt limit.
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general analytical predictions in the limit ka { 1, see Fig. 1.

In the experimentally-relevant range of parameters, at

ka = 1–10, the WKB scaling law for a cylinder is still

noticeably different from that for a sphere. The absolute

values of the exponents in this range approach, however, the

planar limit dc p (ka)3. This discrepancy with experimental

values can be resolved when using the concept of salt-

dependent electrostatic persistence length. The latter is often

approximated for flexible PEs by bel p k�1.38,39 As a rough

estimate, the scaling exponent for the critical value of |rsc| as
function of k is then reduced by about 1 that brings the value

in the experimental range of n1,2. Some additional effects of

chain persistence length on the n value might also arise from a

preferential PE adsorption along the rod axis.

c Possible extensions and perspectives

We hope that the current investigation will improve the under-

standing of fundamental properties of PE electrostatically-

driven adsorption onto curved interfaces, and will stimulate

new experimental studies. Several directions for future

extensions of the model are apparent. One of them is the

consideration of finite-length chains,40,41 instead of infinitely

long PEs, to be able to directly compare the theoretical results

with the outcomes of experiments and computer simulations,42–44

see also refs. 45 and 46. In this case, the calculations become

however more cumbersome, because for shorter polymers the

eigenvalues for the excited states start to make a progressively

larger contribution to the eigenfunction expansion.

We expect that our theoretical results for critical adsorption

can be directly compared with coarse-grained computer

simulations, which exploit the Debye–Hückel PE-surface

potential (the electrostatic energy of the monomer-surface

attraction is o kBT). In the weak adsorption limit, when the

conformational properties of polymers are only slightly

perturbed, we expect the actual PE statistical properties

(affected by, e.g., excluded volume interactions) to have a

rather small affect on the critical adsorption behavior. This is

confirmed in ref. 13, by the agreement between the critical

PE-sphere adsorption radius obtained from simulations and

predicted by theory. However, for PE chains strongly

adsorbed on surfaces, far from the adsorption-desorption

transition, the self-interactions within the PE chain as well

as the counterion release accompanied by a corresponding

entropy gain, are likely to contribute significantly to the

adsorption properties.

Another ingredient for a more realistic description of

PE adsorption is polymer persistence, beyond the limit of

Gaussian chains. Upon adsorption onto curved surfaces such

as the sphere, the polymers unavoidably bend that has a strong

effect on the adsorption characteristics. It is particularly

important when the polymer segment length b value becomes

comparable to the surface radius of curvature (larger sc are

necessary for adsorption of stiffer chains). This limit requires a

self-consistent theory of equilibrium adsorption of semiflexible

PEs from solution onto an attractive sphere. A simpler

situation of irreversible strong PE-sphere adsorption for highly

charged PEs have been thoroughly analyzed in a number of

theoretical studies.14,47–49

We want to mention that in the limit of weak adsorption,

the radial distribution function P(r) does not provide any

information about the polymer ordering near the adsorbing

rod or sphere. The situation changes in the strong adsorption

limit, when the chain fluctuations can be neglected and a static

pattern of ordered PEs emerges on the rod/sphere surface. For

strong PE-rod adsorption, a polymer ordering and helical-like

wrapping have been quantified in a number of theoretical

studies.50–52 These results might find their applications in the

cutting edge area of DNA interactions with carbon nano-

tubes. For the latter, a helical wrapping of flexible single-

stranded DNA chains around single-wall carbon nano-tubes

with a well-defined helical pitch has recently been systemati-

cally examined in experiments,53–55 quantified by theoretical

modeling,56–58 and mimicked by computer simulations.59–61

In addition, PE chains weakly adsorbed at a charged inter-

face might encounter other electrostatic effects neglected in this

study. One of them is a patchiness of charges on the surface62–65

and non-uniform charge distributions on PE chains66,67 that

both can affect the adsorption-desorption equilibrium. Another

feature is the electrostatic image force68–71 encountered by

charges on PE chains deposited next to a low-dielectric inter-

face. This generates a short-range PE-surface repulsion (for a

plane, e.g., the image forces have half as short screening length

compared to direct Debye–Hückel PE-surface attraction).

The adsorbed PEs are thus effectively ‘‘pushed aside’’ from

the surface72 and generally larger surface charge densities

are required for PE-surface adsorption.73 One biological

application of such image-force effects is the complexation of

flexible single-stranded nucleic acid chains on the interior of

capsid shells of many single-stranded RNA/DNA viruses,74,75

both of spherical and filamentous appearance. Within the

WKB approach, the image forces can be included in the

analysis via a straightforward modification of the potential

function R.

The WKB method can also provide a rational description of

PE adsorption in the presence of some non-electrostatic

short-range PE-surface attraction76 that could be modelled

as an additional square-well potential near the surface.77,78 All

these interesting and motivating features are, however, beyond

the scope of this study. Their potential impact on the scaling

characteristics of the PE critical adsorption transition and the

thickness of the PE adsorbed layers in the three fundamental

adsorption geometries is yet to be quantified in future theoretical

studies.
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