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Abstract 11 

1. As decomposers of vertebrate carcasses, carrion beetles (Coleoptera: Silphidae, Leiodidae: 12 

Cholevinae) play a significant role in the functioning of terrestrial ecosystems. Despite this, 13 

the ecology and phenology of this group is relatively understudied. This research determines 14 

carrion beetle assemblages in three macrohabitats - native broadleaf woodland, non-native 15 

coniferous plantations and unforested sites of grassland or heathland. Further, it explores 16 

phenological changes over the growing season.  17 

2. Each macrohabitat type was replicated in eight geographical clusters, giving a total of 24 18 

sites. Clusters were selected to give a wide geographical spread across Britain. Six pitfalls 19 

were set at each site, three baited with mice and three with cheese. Traps were set and 20 

collected fortnightly within every month from May to September 2016. 21 

3. The taxa differed in response to macrohabitat and growing season. Silphidae assemblages 22 

differed between forested and unforested habitats, whereas Leiodidae: Cholevinae were not 23 

distinguished by macrohabitat, although some specialists of forests were identified. 24 

4. Silphidae assemblages differed over the growing season, with May and June supporting a 25 

different suite of species to those in July - September.  In contrast, Leiodidae: Cholevinae 26 

assemblages changed very little over the growing season though some species did prefer 27 

particular time periods.  28 

5. This research presents the first large-scale study of the macrohabitat preference and 29 

phenology of carrion beetles in Western Europe, providing important ecological and 30 

phenological information which could aid in their conservation. 31 

 32 
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Introduction 37 

Carrion beetles play an important role in the functioning of terrestrial ecosystems as decomposers of 38 

vertebrate carcasses, a key element of the nutrient cycle (Kočárek, 2003). During this process, 39 

constituent components of carrion leach into the soil, facilitating nutrient release (Farwig et al, 40 

2014). For instance, the increased nitrogen released in the microhabitat around a decomposing 41 

carcass enhances soil fertility and stimulates biomass production (Towne ,2000). Through feeding 42 

and reproduction, carrion insects play a role in dispersing these nutrients (Barton et al., 2013). 43 

Together, these actions can directly affect decomposition rates (Pechal et al., 2014), and these can 44 

be altered by specific species of carrion beetle (Farwig et al., 2014). Therefore, knowledge of the 45 

ecology of this important group will provide a basis for the understanding of the role they play in 46 

ecosystem functioning. 47 

Carrion beetles have been relatively well-studied in some contexts. For instance, the Silphidae 48 

subfamily, Nicrophorinae, have been extensively researched as they exhibit bi-parental care, an 49 

unusual behaviour in the invertebrate world (Dekeirsschieter et al., 2011). Yet, despite their 50 

importance to ecosystem functioning, less research has explored the ecology of carrion beetles. 51 

Several studies in Europe have found species specialise between forested and unforested habitats 52 

(Kočárek, 2001, Růžička, 1994), high forest cover and forest clearings (Peschke et al., 1987) or moist 53 

and shaded habitats (Peck & Cook, 2002). These differences have been attributed to a variety of 54 

factors including differences in soil types, moisture and ground vegetation (Kočárek, 2001, Růžička, 55 

1994, Peck & Cook, 2002, Peschke et al., 1987) and being driven by presence of food resources or 56 

microclimate tolerances. Further, research has explored carrion beetle phenology, finding 57 

differences in carrion beetle activity across the growing season (Chandler & Peck, 1992; Peck & 58 

Anderson, 1985; Růžička, 1994). Seasonal preferences of species are linked to the number of broods 59 

produced per year and avoidance of competition between species (Růžička 1994; Kočárek, 2001). 60 

However, despite these handful of studies in North America and Eastern Europe, the ecology of 61 

many carrion beetles, particularly in western European temperate habitats, remains understudied.   62 

Carrion beetles are likely to be affected by key environmental changes which are impacting 63 

biodiversity across the globe.  Carrion is an ephemeral resource, and organisms which require it for 64 

feeding and reproduction are likely to be negatively affected by habitat loss and fragmentation, 65 

since they must travel greater distances to find it, putting them at increased risk of mortality (Gibbs 66 

& Stanton, 2001). Further, increasing intensity of land use and changing climate conditions (e.g. 67 

through higher ambient temperatures) has been shown to negatively affect carrion beetle 68 

abundance (von Hoermann et al., 2018). By directly altering beetle communities, these increasingly 69 

profound environmental changes may ultimately impact the role they play in the nutrient cycle. 70 

Therefore, a better understanding of carrion beetle ecology is crucial, in order to begin to 71 

understand how to maintain the ecosystem functions associated with carrion beetle decomposition. 72 

We aim to address this by providing the first large-scale study of carrion beetle macrohabitat 73 

preferences and phenology in western Europe. Specifically, it will determine how three common 74 

macrohabitat types (broadleaved woodland, conifer plantation forest and unforested open habitats) 75 

affect carrion beetle assemblages and it will identify how these assemblages change across the 76 

growing season. 77 

In this study we explored two beetle taxa, the Silphidae family (Silphids) and the Cholevinae tribe 78 

(Cholevids) from the Leiodidae family. Silphids are medium to large (9-30mm) beetles, frequently 79 
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found on small mammal or bird carcasses, and include the burying beetle subfamily Nicrophorinae. 80 

They find carrion using sensitive chemosensors (Scott, 1998), often flying several kilometres to find 81 

the carcass (Kalinová et al., 2009). Cholevids are small to minute beetles (1-7mm), and are generalist 82 

detritivores, consuming decomposing leaf litter, carrion & fungi (Tizado & Salgado, 2000). They are 83 

attracted to any size of decomposing carrion, feeding in-situ, and very little is known about how they 84 

find this decaying material. By studying these two very different carrion beetle groups, which have 85 

contrasting ecological requirements, we will gain a broader understanding of carrion beetle ecology, 86 

aiding in the conservation of these beetles. 87 

 88 

Materials and Methods 89 

Study Sites –  90 

Three habitats were selected for study to represent major macrohabitat types, these were broadleaf 91 

woodland, conifer plantation and unforested habitats of grassland or heathland (Table 1). These 92 

were selected since they differ significantly in microclimate, soil and litter, and ground vegetation, 93 

factors known to affect carrion beetle communities (Kočárek, 2001, Růžička, 1994, Peck & Cook, 94 

2002 Peschke et al., 1987). Broadleaf woodlands were defined as a continuously wooded area since 95 

1900 from historical online maps (https://www.old-maps.co.uk/#/) and dominated by native 96 

broadleaf species such as Oak (Quercus sp.) & Alder (Alnus sp.). Conifer plantations were 97 

commercially mature Norway spruce (Picea abies, L. Karst), Sitka spruce (Picea sitchensis, Bong, 98 

Carr), Corsican pine (Pinus nigra, Laricio) or Scots pine (Pinus sylvestris, Linnaeus). The conifer sites 99 

were planted between 1961 to 1975. Unforested macrohabitats were chosen to be in close vicinity 100 

to the forested sites and which were semi-natural in management approach rather than intensive 101 

agriculture.  These included upland acid grassland, lowland pasture, lowland heathland and 102 

recovering heathland according to Hawley et al., (2008). Forest of Dean contains recovering 103 

heathland, this was previously a coniferous forest that was cleared in 1981 and allowed to return to 104 

heathland.  105 

Each macrohabitat type was replicated in eight geographical clusters, giving a total of 24 sites. 106 

Clusters were selected to give a countrywide spread across England and into Wales (Figure 1). To 107 

ensure that sites within a cluster had access to the same regional species pool they were always 108 

within 12 km of each other (mean distance 4km ±3 SD). Sites within a cluster were matched for 109 

elevation and soil type where possible. Mean variation in elevation within a cluster was 39m ±30 SD. 110 

However, at Grizedale the broadleaf woodland plot was at 67m and the conifer woodland plot at 111 

208m. Furthermore, at Grizedale, the conifer and unforested sites were on peat while the broadleaf 112 

woodland was loam, and in Gisburn the unforested site was peat while the others were on loam.  113 

 114 

115 
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Table 1 Description and location of sites used in study 116 

 117 

Beetle Sampling–  118 

At each site, a sampling plot was established at least 50m away from the edge of the site and in an 119 

area typical of the habitat, avoiding disturbance such as paths. In the plot six baited pitfalls traps 120 

were set in a line, with traps arranged 2m apart.  Pitfall traps were used to sample carrion beetles. 121 

These were 11cm deep and 8cm in diameter, with 50% propylene glycol solution added to a depth of 122 

2cm. Two different baits were used - decomposing mouse carcass, which is an efficient attractant of 123 

a range of carrion beetles (Rintoul et al., 2005), and, decomposing cheese. Decomposing cheese is a 124 

Site Macrohabitat 
type 

Habitat details Elevation 
(m) 

Lat/Long Soil 
Type 

Pembroke Broadleaf Oak 49 49° 89'-7° 50 Loam 

Conifer Norway Spruce 95 49°89′-7° 45 Loam 

Unforested Lowland Pasture 105 49°87′-7° 43 Loam 

Forest of 
Dean 

Broadleaf Oak 96 49°84′-6° 70 Loam 

Conifer Sitka Spruce 140 49°84′-6°71 Loam 

Unforested Recovering Lowland 
Heathland (Hawley et al., 
2008) 

191 49°92′-6°69 Loam 

Alice Holt Broadleaf Oak 82 50°17′-6°46 Loam 

Conifer Corsican Pine 106 50°18′-6°46 Loam 

Unforested Lowland Heathland 66 50°18′-6°40 Sand 

Thetford Broadleaf Oak 69 50°42′-7°59 Loam 

Conifer Scots Pine 39 50°60′-6°33 Sand 

Unforested Lowland Heathland 45 50°59′-6°35 Sand 

Sherwood Broadleaf Oak 76 50°41′-6°75 Sand 

Conifer Corsican Pine 83 50°41′-6°78 Sand 

Unforested Lowland Heathland 59 50°42′-6°76 Sand 

Cannock Broadleaf Oak 138 50°00′-6°20 Sand 

Conifer Corsican Pine 179 49°99′-6°19 Sand 

Unforested Lowland Heathland 143 49°99′-6°22 Sand 

Grizedale Broadleaf Oak 67 50°31′-6°57 Loam 

Conifer Norway Spruce 208 50°33′-6°56 Peat 

Unforested Upland Acid Grassland 186 50°31′-6°57 Peat 

Gisburn Broadleaf Alder 211 50°59′-7°17 Loam 

Conifer Norway Spruce 270 50°65′-7°17 Loam 

Unforested Upland Acid Grassland 225 50°64′-7°21 Peat 
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commonly used bait for Cholevids (Růžička, 1994), likely attracting them through sulphur-containing 125 

volatile organic compounds (Kalinová et al., 2009). Three pitfalls were baited with a whole mouse 126 

carcass and three with a cube of cheese, with baits alternated along the line of six traps.  Baits were 127 

aged for one week prior to deployment.  128 

 129 

 130 

Fig. 1 Map of site clusters across the UK. Each cluster contains one deciduous woodland, one conifer 131 

forest and one unforested 132 

 133 

Each bait was wrapped in mosquito netting as a fly deterrent and with some copper tape wrapped 134 

around to deter slugs (Supplementary Material 1). Baits were hung over the trap, and the whole 135 

construction was covered with a metal cage (mesh size 2.5x2.5cm) to deter mammals and birds from 136 

disturbing the bait. Traps were set and collected fortnightly within every month from May until 137 

September 2016, giving 70 trapping days across the main activity period (Růžička, 1994). March and 138 

April trapping periods were included in the original sampling design, but the catch was zero and so 139 
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these months have been excluded from the analyses. Silphids were identified to species using 140 

Wright (2009) and Cholevids were identified to species using Duff (2012). The conservation status of 141 

species captured was checked on the UK’s Natural History Museum website (Natural History 142 

Museum, 1999) which contains the most up to date species status information for Coleoptera. 143 

Data Analysis –  144 

For all analyses, data were pooled by each bait type (e.g. 3 traps per type) and each beetle family 145 

were analysed separately. The Sherwood unforested site and Forest of Dean conifer site lost one set 146 

of fortnightly samples, giving a total of 56 trapping days. The Alice Holt unforested site had 147 

significant losses giving a total of 28 trapping days. Across sites the data was standardised by dividing 148 

the number of individuals in each species by the number of trapping days at that site and multiplying 149 

it by the maximum number of trapping days (70) across all sites, following Lyons et al. (2017). All 150 

analyses were carried out using the statistical programme R (version 3.2.0) (R Development Core 151 

Team, 2016). 152 

To determine whether carrion beetle diversity differed by macrohabitat type data were pooled 153 

across the growing season. To determine if species richness and number of individuals captured in 154 

the sample (hereafter termed abundance) differed by macrohabitat Generalised linear mixed 155 

modelling (GLMM) was performed. GLMMs assumed a poisson distribution (for count data), with 156 

macrohabitat type as the fixed factor and geographic cluster as the random factor. This was carried 157 

out using the ‘glmer’ function of the lme4 package (Bates et al., 2015). Significance was tested using 158 

the ‘Anova’ function of the carr package (Fox & Weisburg, 2011), and when significant, Tukey post 159 

hoc tests were carried out using the Holm method using the ‘glht’ function of the multcomp package 160 

(Hothorn et al., 2008).  161 

Carrion beetle assemblages among macrohabitats were analysed using Redundancy Analysis (RDA), 162 

performed with the ‘rda’ function in the vegan package (Oksanen et al., 2016). The data were 163 

Hellinger transformed prior to analysis. Cluster was included as a conditional variable, however, a 164 

fixed factor was not specified in the model, and so the resulting ‘RDA’ can be interpreted as an 165 

unconstrained Principal Component Analysis in which the variation attributed to geographical 166 

location was removed. From the RDA, groups were distinguished, and Indicator Species Analysis was 167 

carried out on these to determine significant macrohabitat associations of carrion beetles. This 168 

analysis used the ‘indval’ function of the labdsv package (Roberts, 2015). Indicator Species Analyses 169 

provides a value between 1 and 0, with a value of 1 allocated to a species with high relative 170 

abundance and frequency in that a-priori group relative to the others. This value is tested for 171 

significance with Monte Carlo permutations. 172 

To determine whether carrion beetle diversity differed by growing season, data were pooled across 173 

the macrohabitats. To determine if species richness and abundance differed across the growing 174 

season, GLMMs were performed as previously described, with month as the fixed factor and 175 

geographic cluster as the random factor. Change in carrion beetle assemblages across growing 176 

season were analysed using Principal Component Analyses carried out on Hellinger transformed 177 

assemblage data with cluster as a conditional variable as previously described. Finally, phenological 178 

trends in the abundance of the most common species were explored graphically. Common species 179 

were defined as those with over 100 individuals collected, as this gives a random chance of each of 180 

the five months supporting 20 individuals. This was considered a robust number on which to draw 181 

conclusions on phenological trends. 182 
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Results 183 

In total 12,539 individuals were collected during the study with 6578 Silphids from eight species and 184 

5961 Cholevids from 17 species (Table 2). The Silphid catch was dominated by Nicrophorus 185 

vespilloides with 4750 individuals (72% of the catch). Six specimens of Nicrophorus interruptus were 186 

captured. This species is designated Nationally Scarce in the UK, having been recorded in only 30-100 187 

10km squares). N. interruptus specimens were found in three sites, with 4 out of 6 specimens 188 

coming from the broadleaf woodland in Thetford, the other two from the broadleaf woodland and 189 

the unforested habitat at Alice Holt. The Cholevid catch was dominated by Sciodrepoides watsoni 190 

with 2016 individuals (34%) and Catops morio with 1794 (30%). 43 specimens of Catops longulus 191 

were captured. This species is designated Nationally Scarce in the UK, having been recorded in only 192 

16 - 100 10km squares. It was found in all site clusters in small numbers, however most frequently in 193 

forested macrohabitats (35 specimens). It was most abundant in the broadleaf woodland in Cannock 194 

with 6 specimens.  195 

Table 2 Number of individuals captured (catch) and the percentage they contributed to the total 196 

captures, for each beetle family 197 

Family/Species Catch Percentage catch 

Silphidae   

Nicrophorus vespilloides (Herbst, 1783) * 4750 72.2% 
Nicrophorus vespillo (Linnaeus, 1758) * 416 6.3% 

Nicrophorus humator (Gleditsch, 1767) * 128 1.9% 
Nicrophorus investigator (Zetterstedt, 1824) * 192 2.9% 

Nicrophorus interruptus (Stephens, 1830) 6 0.1% 
Phosphuga atrata (Linnaeus, 1758) 83 1.3% 
Thanatophilus sinuatus (Fabricius, 1775) * 569 8.7% 
Thanatophilus rugosus (Linnaeus, 1758) * 219 3.3% 

Oiceoptoma thoracicum (Linnaeus, 1758) * 215 3.3% 
Total 6578  

Leiodidae    

Sciodrepoides watsoni (Spence, 1813) * 2016 33.8% 

Sciodrepoides fumatus (Spence, 1813) * 671 11.3% 

Catops morio (Fabricius, 1787) * 1794 30.1% 

Catops grandicollis (Erichson, 1837) 84 1.4% 

Catops fuscus (Panzer, 1794) * 350 5.9% 

Catops coracinus (Kellner, 1846) * 308 5.2% 

Catops kirbii (Spence, 1813) 73 1.2% 

Catops tristis (Panzer, 1793) * 371 6.2% 

Catops longulus (Kellner, 1846) 43 0.7% 

Catops nigrita (Erichson, 1837) 18 0.3% 

Catops chrysomeloides (Panzer, 1798) 9 0.2% 

Catops fulginosus (Erichson, 1837) 34 0.6% 

Nargus velox (Spence, 1813) 59 1.0% 

Choleva lederiana (Reitter, 1902) 52 0.9% 

Choleva agilis (Illiger, 1798) 78 1.3% 

Choleva glauca (Britten, 1918) 1 <0.1 

Total 5961  

*Abundance species included in individual analyses 198 

 199 
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Carrion beetle macrohabitat associations - 200 

Silphidae species richness was similar among macrohabitats (X2
df=2 = 0.89, p= 0.20) (Figure 2). In 201 

contrast, for Cholevids it differed significantly (X2
df=2= 6.37, p= <0.001), where both forested 202 

macrohabitats had significantly more species than unforested (Figure 2). Silphidae abundance 203 

differed among habitats (X2
df=2 = 162.46 p=<0.0001) with unforested habitats supporting greater 204 

abundance than forested habitats (Figure 2). In contrast, Cholevid abundance was greater in 205 

forested habitats compared to unforested habitats (X2
df=2 = 400.55, p=<0.0001) (Figure 2). There was 206 

no difference between broadleaf and conifer forests for either carrion beetle group. 207 

  

  

Figure 2 Species richness (a, b) and abundance (c, d) of Silphidae and Leiodidae among the 208 

macrohabitats 209 

The RDA of assemblages for Silphids represented 73% of variation in the data, with 14% accounted 210 

for by the conditional variable, cluster location. Overall, there was a separation of assemblages 211 

between forested and unforested macrohabitats for Silphidae beetles (Figure 3a). However, the 212 

plantation and woodland forested habitats did not support distinct assemblages and two of the 213 

unforested sites (Gisburn and Grizedale) were similar to the forested sites in assemblage structure 214 

(Figure 3a). In general, the unforested habitats had greater variation in assemblages, in comparison 215 

with the forested sites. The RDA analyses of assemblages for Cholevids represented 47% of variation 216 

in the data, with 15% accounted for by cluster location. There was no distinction of assemblages by 217 

habitat type (Figure 3b), with all displaying similar levels of spread across the ordination space.  218 



Macrohab Assoc & Phen of Carrion Beetles 

9 
 

 219 

 

Figure 3 Redundancy analysis (conditional on cluster location) of Silphidae (A) and Leiodidae (B) 220 

assemblages among the macrohabitat types (A, PC1 = 73%, PC2 = 13%; B, PC1 = 47%, PC2 = 15%)  221 

 222 

As the PCA of Silphids indicated a major distinction of assemblages between forested and unforested 223 

habitats, these were used as ecologically meaningful a priori groupings in the Indicator Species 224 

Analysis (Table 3). For consistency, the same was done for Cholevids (Table 3). This analysis revealed 225 

that N. vespilloides & Phosphuga atrata are significantly associated with forested habitats and 226 

Thanatophilus rugosus, Thanatophilus sinuatus & Nicrophorus vespillo are significantly associated 227 

with unforested habitats. For Cholevids there are nine species strongly associated with forested 228 

habitats while none are associated specifically with unforested habitats. 229 

230 
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Table 3 Species of Silphidae and Leiodidae: Cholevinae with significant indicator values for either 231 

forested or unforested macrohabitats 232 

Species Macrohabitat Indicator value Probability 

Silphidae 
Phosphuga atrata Forested 0.6867 0.026 
Nicrophorus vespilloides Forested 0.6859 0.02 
Thanatophilus rugosus Unforested 0.863 0.004 
Nicrophorus vespillo Unforested 0.7356 0.019 
Thanatophilus sinuatus Unforested 0.625 0.035 

Leiodidae 
Sciodrepoides fumatus Forested 0.9821 0.001 
Catops tristis Forested 0.9784 0.002 
Catops coracinus Forested 0.9578 0.001 
Catops fuscus Forested 0.9543 0.001 
Catops morio Forested 0.8881 0.003 
Catops nigrita Forested 0.8750 0.002 
Nargus velox Forested 0.8750 0.001 
Catops grandicollis Forested 0.7500 0.031 
Catops longulus Forested 0.7122 0.031 

 233 

Carrion beetle phenological trends across the growing season - 234 

Both Silphid and Cholevid species richness was similar across the growing season (X2
df=4= 0.93, p= 235 

0.23 and X2 
df =4 = 1.50, p= 0.37 respectively) (Figure 4). Similarly, Silphid and Cholevid abundance did 236 

not change across the growing season (X2
df=4 =102.55 p=0.26 and X2

df=4 = 26.25, p=0.66 respectively) 237 

(Figure 4). 238 

Overall, there was some separation of assemblage between month across the growing season for 239 

Silphids (Figure 5A). May and June are distinguished from the other months, variation between 240 

month accounted for 70% of the variation with cluster accounting for 30%. In contrast, Cholevid 241 

beetle assemblages show no distinct patterns by sampling period (Figure 5B) with month accounting 242 

for 8% of the variation and cluster 92%.  243 

Of the common Silphids, N. vespilloides & N. vespillo are both active throughout the growing season 244 

(Figure 6 A, B). Nicrophorus investigator is active late in the growing season with few to no 245 

specimens collected in May and June respectively (Figure 6C) while Nicrophorus humator is active 246 

early and late in the growing season (Figure 6D). Both T. sinuatus and T. rugosus are most active 247 

midway through the growing season, in July and August (Figure 6E, F). Finally, Oiceoptoma 248 

thoracicum has a bimodal distribution, with one peak in May and the other in August (Figure 6G). 249 

Of the common Cholevids, S. watsoni has lowest activity in June and September (Figure 7A). While C. 250 

morio has a peak of activity in June (Figure 7C). Catops coracinus peaks in activity in May (Figure 7D). 251 

Figure 7B & 7F show Catops tristis and Sciodrepoides fumatus have highest activity in May and June 252 

whereas Catops fuscus prefers mid-summer from June to August (Figure 7E). 253 

 254 
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 255 

Figure 4 Species richness (a, b) and abundance (c, d) of Silphidae and Leiodidae across the growing 256 

season 257 

258 
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 259 

 260 

Figure 5 Ordination of Silphidae (a) (PC1=70%, PC2=30%) and Leiodidae: Cholevinae (b) (PC1=8%, 261 

PC2=92%) across the growing season 262 

263 
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 264 

  

  

 
 

 

 

Figure 6 Abundance of the commonest Silphidae species over the growing season: a Nicrophorus 265 

vespilloides, b Nicrophorus vespillo, c Nicrophorus investigator, d Nicrophorus humator, e 266 

Thanatophilus sinuatus, f Thanatophilus rugosus, g Oiceoptoma thoracicum 267 

268 
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 270 

Figure 7 Abundance of the commonest Leiodidae species over the growing season: a Sciodrepoides 271 

watsoni, b Sciodrepoides fumatus, c Catops morio, d Catops coracinus, e Catops fuscus, f Catops tristis 272 

273 
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Discussion 274 

Overall, the two beetle taxa differed in their response to macrohabitat and growing season. For 275 

Silphids, there was a clear distinction of assemblages between forested and unforested habitats and 276 

between early and late seasons, despite similar numbers of species and individuals. In contrast, the 277 

Cholevids were not as well distinguished by habitat or season, though some specialists of forested 278 

macrohabitats were identified, and, fewer species and individuals were found in the unforested 279 

macrohabitats overall. These contrasting results highlight the importance of including more than one 280 

beetle taxon, with contrasting feeding and behavioural strategies, in studies of carrion beetle 281 

ecology. 282 

Macrohabitat associations of carrion beetles 283 

The Silphid beetle assemblages were distinguished between forested and unforested macrohabitats, 284 

despite overall similar numbers of species and individuals, indicating that they have a similar 285 

capacity to support diverse, but different, communities. Forested and unforested habitats 286 

fundamentally differ in ground-level microclimate conditions and soil characteristics (Smith & Heese, 287 

1995; Jakubec & Růžička, 2015). These are important determinants of Silphid habitat preference, 288 

linked to their ability to utilise carrion and reproduce in favourable conditions (Jakubec & Růžička, 289 

2015, Wilhelm et al., 2001).   290 

Most (83%) of our collected Silphids were burying beetles in the subfamily, Nicrophorinae. Soil type, 291 

depth, consistency and moisture is particularly important for this group, directly affecting their 292 

ability to bury carcasses (Wilhelm et al., 2001) and altering the stability of the microclimate (Jakubec 293 

& Růžička, 2015). Together, these are key to determining local Nicrophorinae abundance and 294 

diversity (Jakubec & Růžička, 2015, Wilhelm et al., 2001, Martín-Vega & Baz, 2012). Indeed, 295 

Nicrophorus vespilloides constituted 89% of the Silphid catch from the forested sites compared to 296 

52% in unforested sites. This agrees with previous research, indicating that this relatively small 297 

species (10-18 mm) prefers the softer, damp soils often in forests for carcass burying (Wilhelm et al., 298 

2001, Scott, 1998, Beninger & Peck 1992). Further, we found N. vespilloides dominating in two 299 

unforested sites (Grizedale – 98% and Gisburn - 96% of the catch). These were the only two 300 

unforested sites with peaty soils, suggesting this soil type represents favourable conditions for this 301 

species.  302 

We found Thanatophilus rugosus, Thanatophilus sinuatus and Nicrophorus vespillo were associated 303 

with the unforested macrohabitat, agreeing with previous research (Kočárek, 2001, Dekeirsschieter 304 

et al., 2011, Martín-Vega & Baz, 2012). For Thanatophilus sp., Kočárek, 2001 attribute the 305 

association with unforested macrohabitats to competition avoidance with Oiceoptoma thoracicum. 306 

This species similar reproductive behaviours but prefers the forested habitats. However, we sampled 307 

O. thoracicum but did not find it associated with either macrohabitat.  This could be because of one 308 

unforested site providing an unusually high 30 specimens compared to the rest of the sites 309 

combined total of 3. Unforested habitats have higher ground temperatures in the summer, a 310 

possible requirement of larger species to become active (Kočárek, 2001). These conditions may also 311 

increase larvae development rates (Wilhem et al., 2001). Indeed, Smith & Heese (1995) suggested 312 

that the large species, N. investigator (12-22mm) preferred sunny areas due to the warmer soil 313 

temperatures. However, whilst we found N. vespillo was associated with unforested macrohabitats, 314 

N. investigator, and another large species, Nicrophorus humator (18 -26mm), were not associated 315 
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with either macrohabitat. This agrees with Scott (1998) who found that N. investigator was 316 

ubiquitous across forest and field habitats. Further, Kočárek (2001) suggests that N. investigator, as 317 

one of the few Nicrophorus species to be exclusively active during late afternoon and dusk, can avoid 318 

competition with other species which are nocturnal or diurnal. This may mean it can inhabit a range 319 

of macrohabitats. Further, Smith & Heese (1995) found that another burying beetle, Nicrophorus 320 

defodiens (Mannerheim, 1846), avoids competition with N. investigator by inhabiting shaded 321 

macrohabitats. Together, these studies suggest that competitive interactions between species may 322 

also play an important role in determining Silphid habitat associations.  323 

Across the unforested macrohabitat sites the Silphid assemblages were more varied than in forests. 324 

The unforested macrohabitats had greater variability in local soil conditions, as well as vegetation 325 

cover and type, as they ranged from lowland heathland to lowland pasture and upland acid 326 

grassland. This variety of heath and grassland, land-uses and site histories may combine to drive 327 

differences in assemblage structure. This suggests that the resources and conditions in forested 328 

macrohabitats result in a more consistent suite of species, across a large scale and among 329 

contrasting forest types (e.g. deciduous woodland and conifer forest), than among unforested 330 

grassland and heathland macrohabitats across the same spatial scale. This indicates more research is 331 

needed to get a clear understanding of Silphid ecology in a variety of unforested macrohabitats.  332 

In contrast to Silphids, Cholevid assemblages did not differ by macrohabitat type, however, there 333 

were significantly more species and numbers of individuals Cholevid in forested compared to 334 

unforested macrohabitats. This may be related to a preference for damper soil conditions in forests 335 

since previous research found the higher the soil moisture content, the more species of Cholevids 336 

(Tizado & Salgado, 2000), although they did note some specialists prefer drier areas. Cholevids are 337 

detritivores as well as carrion feeders; in forested habitats there is likely more fungi and decaying 338 

organic matter than in unforested habitats (Kočárek, 2002), providing them with a greater diversity 339 

in food resources and potentially leading to greater niche availability. Further, we did not find any 340 

species associated with unforested macrohabitats, whereas ten (of the total 17) were associated 341 

with the forested macrohabitats. Seven of these were from the Catops genus, which are known to 342 

prefer forested environments (Kočárek, 2002). However, as we found no overall assemblage 343 

differences, our study suggested that unforested macrohabitats may provide, in patches, the 344 

resources required to support a range of species, but not in the same high numbers as forested 345 

areas. 346 

Finally, the deciduous woodlands and conifer plantations were contrasting forest macrohabitats, 347 

differing in light availability, forest structure, litter type and ground vegetation as well as site history 348 

(e.g. forestry disturbance, longevity of the forest). Despite this, neither Silphids nor Cholevids had 349 

different assemblages between the forest types indicating that these parameters are not important 350 

determinants of habitat preference for the carrion beetle families we studied. Instead, other factors 351 

already discussed, such as soil conditions and availability of carrion or other decaying matter may 352 

play a more important role in determining differences between forest types. For instance, Růžička 353 

(1994) found Nicrophorus humator and Nicrophorus interruptus preferred dry and wet coniferous 354 

forests respectively. In our study, we sought to control for the influence of soil type and moisture 355 

within each site-cluster, in order to minimise these effects, instead seeking to determine the role of 356 

macrohabitat parameters.  Carrion availability may also be driving differences in Silphid 357 

assemblages. For example, the American burying beetle, Nicrophorus americanus (Olivier, 1790) 358 
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prefers areas with high small mammal abundance rather than a specific habitat type (Holloway & 359 

Schnell, 1997). Therefore, factors driving distribution of small mammals within and between 360 

macrohabitats may be more important for determining assemblage structure than habitat type per 361 

se.  362 

Seasonal Distribution of carrion beetles 363 

Competition for small mammal carcasses is high; it is a useful but scarce resource that is hard to 364 

predict, and so seasonal trends in Silphid activity reflect competition avoidance strategies with other 365 

species of Silphids or insect groups (Martín-Vega & Baz, 2012). Indeed, Kočárek, (2001) observed 366 

that species of Nicrophorinae have a large fundamental niche in several dimensions and that 367 

competition with other carrion invertebrates can restrict that niche. Whilst we found species 368 

richness and abundance were similar for both taxa across the growing season, we did find that 369 

Silphid assemblages were primarily distinguished between those active in the early growing season 370 

(May - June) and those active in later (July – September). 371 

 We found N. investigator is active from July to September and rarely found in May or June, agreeing 372 

with national records (NBN Atlas, 2017). This species overwinters as a pre-pupae and when they 373 

have eaten all of the buried carcass, they enter underground chambers and hibernate for up to 11 374 

months before emerging in late June or July the following year (Smith, 2002). We found that T. 375 

rugosus and T. sinuatus are not particularly active in May or June, with T. rugosus being prominent in 376 

July and T. sinuatus being in August. This does not agree with current UK phenological records which 377 

show that T.rugosus is more active in April and May and T.sinuatus being more active in May and 378 

June (NBN Atlas, 2017). However, these national records are based from 689 records for T.rugosus 379 

and 423 for T.sinuatus. Our study adds a further 219 and 569 entries respectively, and, suggests that 380 

more data is required before the phenology of the less common species is understood. In the UK T. 381 

rugosus is widespread, whereas T. sinuatus more common in the South. However, where these 382 

species are found at the same site differences in peak month activity potentially provides a 383 

mechanism for niche separation (Kočárek, 2001).  384 

Despite assemblage differences between early and late season and corresponding differences in 385 

phenological distribution amongst several species, we found no difference overall in species richness 386 

and abundance across the growing season. This is likely due to several common species like N. 387 

vespilloides and N. vespillo being active all growing season. Indeed, this agrees with current records 388 

(NBN Atlas, 2017) and may be associated with breeding behaviour. N. vespilloides is multivoltine, 389 

reproducing up to three times a year (Kočárek, 2001) and can overwinter as both a juvenile and an 390 

adult (Meierhofer et al., 1999). Further, we found N. humator has a bimodal activity pattern with 391 

peaks of activity in May & September. This strategy could be to avoid competition with flies, which 392 

have their highest activity in summer (Scott, 1998), June-August in our study. Silphid beetles have 393 

been known to abandon a carcass that has been infested with fly larvae (Scott, 1998). In warm 394 

weather flies can find a carcass quickly (within 1 hour) and fly infestation can quickly drive the 395 

carcass beyond the ideal stage of decomposition for Silphids (Martín-Vega & Baz, 2012; Trumbo, 396 

1990). However, this does not agree with current UK phenological records which show that while 397 

N.humator is active in May but less so in September, though there is a smaller peak in August (NBN 398 

Atlas, 2017). This could be due to recorder effort with a third of records coming from four counties. 399 

In this study, we omitted the March and April collections from this study as no specimens of Silphids 400 

were sampled, likely reflecting the colder conditions and lack of carrion resources. In the early 401 
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season, temperatures are not only colder but also subject to greater fluctuations. At colder 402 

temperatures reduced beetle abundance on carcasses has been found (Farwig et al., 2014). Cooler 403 

temperatures likely reduce beetle activity but also prevent the beetles from finding the carcass, as 404 

less volatiles, that attract them to the carrion, are released (Matuszewski & Szafałowicz, 2013). 405 

Further, carrion availability may be lower, due to the lower activity of mammals in winter (Ikeda et 406 

al., 2016). 407 

Overall, the Cholevids we sampled did not differ across the growing season by richness, abundance 408 

or assemblage structure. This is in contrast with Kočárek, (2002), who was able to distinguish four 409 

distinct groups of Cholevids; species active all growing season, species that have a peak of activity in 410 

spring, species that have a peak of activity in autumn and species that are bimodal, with peaks of 411 

activity in spring and autumn. Despite this, we did find several of the common species conforming to 412 

Kočárek’s model. Catops tristis & Sciodrepoides fumatus were found to have a peak of activity in the 413 

early growing season. This disagrees with UK phenological records for Catops tristis, that has a 414 

bimodal distribution and Sciodrepoides fumatus, that has a peak of activity in June (NBN Atlas, 415 

2017). However, national records for Catops tristis are based on a relatively low number of records – 416 

601, with this study adding a further 371. Sciodrepoides fumatus are also based on a relatively low 417 

number of records - 236, whereas our study provides a further 671. We also found that these 418 

species both favour the forest macrohabitat, and Kočárek, 2002 has suggested that litter cover, 419 

which is higher in forests, may mitigate the influence of extremes in temperature. We found Catops 420 

morio is active throughout the growing season but with a peak in June. This agrees with UK 421 

phenological records (NBN Atlas, 2017) in terms of activity throughout the growing season, except 422 

for peaking in June. In contrast, we found that Sciodrepoides watsoni appears to show peaks of 423 

activity in spring (May) and late summer (August). This disagrees with UK phenological records that 424 

shows activity throughout the summer (NBN Atlas, 2017). However, whilst these national records 425 

are based on a larger number of entries - 781, our study provides a further 2016. There is no species 426 

in this study that is highly active in the early autumn (September). This may be due to competition 427 

between Silphids and Cholevids for carrion, with the larger Silphids, at this stage of the growing 428 

season are feeding, getting ready to overwinter (Kočárek, 2002).  429 

Conclusions 430 

Knowledge of macrohabitat and phenological preferences of insects is important if we are to 431 

understand how they might respond to climate and land use change. Yet, to the authors knowledge, 432 

this is the first large scale study of the macrohabitat preference and phenology of Silphids & 433 

Cholevids in Western Europe.  We revealed that Silphid assemblages differ depending on 434 

macrohabitat conditions. In the context of carrion insects, their level of habitat specificity coupled 435 

with their known response to habitat loss and fragmentation (Martín-Vega & Baz, 2012) makes them 436 

possible indicators of changing environments. Cholevid assemblages were not determined by 437 

macrohabitat conditions, though common species do exhibit a preference for forested habitats, 438 

likely related to soil parameters. However, further investigation is needed to determine the 439 

microhabitat factors like soil moisture content, soil temperature and organic matter content which 440 

are important for this family (Tizado & Salgado, 2000).  441 

Number of broods per year and how the beetle overwinters may drive phenological trends in Silphid 442 

activity over the growing season. Intraspecific competition is also likely be important. For Cholevids 443 

this is less clear, several common species were more active earlier in the growing season potentially 444 



Macrohab Assoc & Phen of Carrion Beetles 

19 
 

because of competition with other carrion invertebrates. However, for both groups, exploration of 445 

their activity across a full annual cycle will provide useful phenological information, particularly for 446 

Cholevids. Indeed, this study has provided a significant number of new records, which in some cases 447 

shed new light on our understanding of phenological trends. 448 

Finally, as the first study of British Silphids and Cholevids across multiple geographical locations, time 449 

points and macrohabitats we add to the knowledge of their habitat associations and phenology, 450 

including for two species of conservation importance - Nicrophorus interruptus (Stephens, 1830) and 451 

Catops longulus (Kellner, 1846) - an important step in their conservation.  452 
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