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(Received 8 June 2009; published 1 February 2010)

We present a micromagnetic study on the current-induced domain-wall motion in cylindrical Permalloy

nanowires with diameters below 50 nm. The transverse domain walls forming in such thin, round wires are

found to differ significantly from those known from flat nanostrips. In particular, we show that these

domain walls are zero-mass micromagnetic objects. As a consequence, they display outstanding dynamic

properties, most importantly the absence of a breakdown velocity generally known as the Walker limit.

Our simulation data are confirmed by an analytic model which provides a detailed physical understanding.

We further predict that a particular effect of the current-induced dynamics of these domain walls could be

exploited to measure the nonadiabatic spin-transfer torque coefficient.
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The controlled displacement of magnetic domain walls
(DWs) along ferromagnetic nanostrips by means of elec-
trical currents [1,2] has recently advanced to one of the
most intensively studied topics in magnetism, both experi-
mentally [3–9] and theoretically [10–16]. Much of this
interest is aimed at the realization of a ‘‘race track mem-
ory’’ [3]—a promising concept for future magnetic data
storage devices based on the current-driven DW displace-
ment. In addition to this technological aspect, several
complex nanomagnetic features make DW dynamics in
thin strips attractive from a fundamental point of view.
One example for this is the Walker breakdown [7,8,17–
19], which occurs when DWs are driven strongly enough to
reach a critical velocity of typically around a few 100 m=s.
The DW structure then collapses and undergoes a series of
complex cyclic transformations. This process is connected
with a drastic reduction of the average DW speed. The
Walker limit is thus the maximum velocity at which DWs
can propagate in magnetic strips without changing their
structure. For technological purposes such a limit repre-
sents a major obstacle, and various efforts have been made
to overcome this limit [20,21].

In a broader physical context, the Walker limit is con-
nected to the mass of the moving DWs. The concept of
domain-wall mass was introduced in 1948 by Döring [22].
He discovered that the structure of a Bloch wall moving
with velocity v differs from that of a static one, and that its
energy increase is proportional to v2. This allows one to
formally define a kinetic energy and a mass. Moving DWs
in thin magnetic strips in fact display particlelike behavior,
including momentum and inertia [23]. Therefore the DW
mass is not merely a mathematical abstraction: it gives rise
to measurable effects, and, in particular, to the Walker
limit. The connection between DW mass and Walker limit
is given by the dynamic modification of the DW structure
during its motion and the resulting increase of the energy
density. The increase in energy continues until it reaches a
limit where the micromagnetic structure collapses. Such a
‘‘speed limit’’ is therefore related to the kinetic energy and

is inevitable for massive domain walls. The situation would
be different if a DW did not change its structure during its
motion. Such a DW would be massless and its kinetic
energy would be zero, resulting in the absence of a
Walker-type speed limit. In this Letter we show that such
massless DWs indeed exist, namely, transverse walls in
thin cylindrical soft-magnetic nanowires. Both, their mag-
netic structure and dynamic properties differ significantly
from those of the well-known transverse DWs in thin
strips. Contrary to their ‘‘flat’’ counterparts [24], we find
that these DWs only change their position and orientation
as they propagate, while their internal magnetic structure
remains unchanged. The vanishing DW mass leads to
astounding dynamic properties. Besides the absence of a
critical velocity, we predict that the critical current re-
quired to initiate their motion is zero. Since high values
of critical currents [3,10,11,13] also represent a major
difficulty in applications, massless DWs in circular wires
appear to be ideal candidates for devices based on DW
propagation.
We investigate the dynamic properties of such DWs with

micromagnetic simulations as well as analytically. The
simulation studies are performed with our finite element
algorithm which was extended [25] to consider also the
current-induced magnetization dynamics as described by
the Gilbert equation with additional spin-transfer torque
terms [12,13]:

d ~M

dt
¼ � ~Heff � ~Mþ �

Ms

�
~M� d ~M

dt

�
� ð ~u � ~rÞ ~M

þ �

Ms

~M� ½ð ~u � ~rÞ ~M�; (1)

where ~M is the local magnetization, Ms ¼ j ~Mj the satura-
tion magnetization, � the gyromagnetic ratio, ~Heff the
effective field, � the Gilbert damping factor, and � the
nonadiabatic spin-transfer parameter [12,13]. The vector ~u
is defined as
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~u ¼ �g�BP

2eMs

~j; (2)

where ~j is the current density, g is the Landé factor,�B the
Bohr magneton, e the electron charge and P the polariza-
tion rate of the current. We consider Permalloy (Py) wires
with material parameters �0Ms ¼ 1 T, zero anisotropy,
exchange constant A ¼ 1:3� 10�11 J=m, and P ¼ 0:7.
Figure 1 shows the simulated configuration of a transverse
wall in a 4 �m cylindrical wire with 10 nm diameter. The
wire volume is discretized into 259 200 tetrahedrons with
cell size of about 1:25 nm� 1:25 nm� 5 nm. Because of
the axial symmetry, the structure of the wall and its energy
are invariant with respect to rotations of the magnetization
in the xy plane.

An electrical current along þz displaces the DW to-
wards the �z direction, i.e., in the electron flow direction.
In addition to this linear motion the DW rotates about the
axis of the wire, as illustrated schematically in Fig. 2. A
similar type of spiralling DW motion in cylindrical wires
has been reported for the field-driven case in Ref. [26]. The
characteristics of this angular motion in the current-driven
case will be discussed in more detail later. In the simula-
tions, � is set to 0.02 while the value of � varies from 0 to
0.1. The DW velocity as a function of the current density j
is shown in Fig. 3(a) for the case of a 10 nm diameter
cylindrical wire and different values of �. The inset a2 of
Fig. 3 displays the lower range of current densities, as
typically used in experiments. The results show that the
velocity depends linearly on j and is independent of �. For
comparison, we simulated the DW motion in a thin strip
using the same parameters (inset a1 of Fig. 3). The cylin-
drical wire displays several fundamental differences. First,
there is no intrinsic pinning in the case when � ¼ 0, while
in the case of the strip a minimum (critical) current density

must be injected to drive the DW. Second, we observe that
the DWs in the round wire behave like massless structures;
i.e., their profile does not change during the motion [27].
Correspondingly, there is no Walker breakdown in the case
of the cylindrical wire [28]. In the strip, however, a Walker
limit occurs above a critical current density when �> �,

FIG. 1 (color online). A transverse DW formed in a 10 nm
diameter cylindrical Py wire compared to a transverse wall in a
100 nm wide strip of 10 nm thickness (up-right). The Cartesian
coordinate system and the spherical coordinate system used for
the analytic study are shown on the lower left.

FIG. 2 (color online). Schematic illustration of the current-
driven DW motion. The cross sections indicate the position of
the wall plane at successive moments in time, while the arrows
represent the orientation of the transverse magnetization. The
gray spiral illustrates the precessional motion of the wall.

FIG. 3 (color online). (a) Simulated DW velocity as a function
of the current density j for four different values of � in the case
of a 10 nm round Py wire (� ¼ 0:02). Inset (a1): Simulated DW
dynamics in a 100 nm wide and 10 nm thick strip. (b) DW
displacement as a function of time for three different values of j.
(c) Comparison of the DW speed between the 10 and the 40 nm
wire. The lines in (a), (a2) and (c) are analytical values of u
according to Eq. (2), while the lines in the inset (a1) are guides to
the eye. Excellent agreement with the analytic model is obtained,
especially for lower values of the current density as shown in
inset (a2).
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causing a significant drop of the propagation speed as
indicated by the arrows in the inset a1 of Fig. 3.

Third, the DW velocity does not depend on the value of
� in the cylindrical wire, in striking contrast to the case of
flat strips. In the round wire, the DW reaches a constant
velocity immediately after the application of the current
and stops at the moment the current is switched off. This
behavior is consistent with the absence of mass and inertia
of the wall. The resulting smooth DW motion is displayed
in Fig. 3(b), which shows the DW displacement as a
function of time for three values of j. A comparison of
the DW speed in cylindrical thin wires of different diam-
eters (10 and 40 nm) is shown in Fig. 3(c), indicating a very
weak dependence on the wire thickness [29]. The charac-
teristics of the angular dynamics are summarized in Fig. 4.
Similar to the linear motion, the angular velocity shows a
linear dependence on j. However, it also depends on �.
More precisely, we find that this velocity is proportional to
(�� �). The sense of rotation changes at � ¼ �, where
the DW ideally does not rotate. Minor deviations from this
ideal behavior observed in the simulations are due to finite-
size effects [30].

To obtain a deeper physical understanding of the simu-
lated data, we adopt an analytical model developed in
Ref. [16]. A spherical coordinate system is used as shown
in Fig. 1. The angular velocities of the magnetization can
be related to the torques � acting on the wall [16]:

_� ¼ d�

dt
¼ � �

Ms

��; (3a)

_� ¼ d�

dt
¼ � �

Ms

��: (3b)

The expression for the total torque acting on the DW is
given in Eq. 10 of Ref. [16], which takes into account a

static magnetic field H applied along the z direction, the
demagnetizing field, an equivalent damping field, and an
electric current flowing in z direction. Using the cylindrical
symmetry of the wire and considering only the center (� ¼
�=2) of the DW like in Ref. [16], all terms pertaining to the
demagnetizing field can be dropped. This leads to

�� ¼ �Ms

�
_�þMsu

�

@�

@z

��������wc
; (4a)

�� ¼ �MsH� �Ms

�
_�� �Msu

�

@�

@z

��������wc
; (4b)

where the subscript wc denotes the DW center. Limiting
the analysis to the DW center is justified a posteriori by our
simulations, which show that the DW profile remains un-
changed during the motion, thereby making it sufficient to
describe only the position and the orientation of the DW.
For simplicity, we first consider the field-driven motion
with a static field applied along the z direction. From
Eq. (4) with u ¼ 0 and Eq. (3) one obtains

_� ¼ �� _� and _� ¼ �H

1þ �2
: (5)

In a static magnetic field the DW hence precesses with the
Larmor frequency and moves along the wire as a result of
the damping. In terms of propagation velocity, the field-
drivenmotion of these DWs is not attractive because of the
small prefactor �. This is consistent with previous micro-
magnetic simulations of cylindrical Ni wires [26]. Let us
now consider the current-driven case. Equation (4) with
H ¼ 0 combined with Eq. (3) yields

_� ¼ �ð1þ ��Þu
1þ �2

@�

@z

��������wc
; (6a)

_� ¼ ð�� �Þu
1þ �2

@�

@z

��������wc
: (6b)

These equations show how the adiabatic term influences
the linear motion of the DW while the difference between
the nonadiabatic parameter � and the damping coefficient
� affects the rotational motion. In contrast to this, in the
case of Bloch DWs or transverse DWs in strips, the damp-
ing and/or nonadiabatic terms lead to the distortion of the
DW, i.e., to a nonvanishing mass and thereby to various
undesirable effects such as the intrinsic pinning and the
Walker limit. The critical current or field at the onset of the
Walker breakdown is usually defined by the rotation of the
central part of the DW out of the plane in which it origi-

nally lies, _� � 0 [13,16,17]. In our case however, given the
symmetry of the wire, the DW is free to rotate without any
deformation. The main features of our simulation results
(summarized in Figs. 3 and 4) can be understood from
Eqs. (6a) and (6b), which show that the linear velocity is
independent of � and that the angular velocity depends on
(�� �). This simple analytical model describes accu-
rately the DW dynamics over a wide range of current
densities. The predicted DW velocity is well reproduced

FIG. 4 (color online). Simulated angular DW velocity as a
function of j for � ¼ 0:02 and three values of � in a round
10 nm Py wire. The lines represent analytic values (see text).
Inset: Comparison between the angular DW velocity in the 10
and the 40 nm wire. The lines are guides to the eye.
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up to very large values of about 1013 A=m2 [cf. Fig. 3(a)],
above which minor deviations occur, indicating the onset
of nonlinear dynamic effects. It is noteworthy that both _�

and _� are proportional to @�=@zjwc, which is related to the
DW width. For the linear velocity, the DW width is not
important, since v ¼ _�@z=@�. The linear velocity is there-
fore basically equal to u [plotted as a line in Fig. 3(a)]. This
explains why the linear speed is independent on the thick-
ness of the wire as shown in Fig. 3(c), although the DW
width is larger in the thicker wire. The angular velocity
however shows a dependence on the DW width and there-
fore also on the wire thickness. This is consistent with the
simulation results shown in the inset of Fig. 4, which show
that the DW in the thicker wire has a lower angular
velocity. The lines in Fig. 4 represent analytic values of
the angular velocity for different �, obtained from Eq. (6b)
by using a value of @�=@zjwc extracted from the simulated
DW profile. According to this equation, the angular veloc-
ity should be identical if (�� �) has the same absolute
value but opposite sign; a dependence that is almost per-
fectly confirmed by our simulations. A slight asymmetry
observed in the simulations between �ð�� �Þ is due to
magnetostatic finite-size effects [30].

The dependence of the frequency of the DW rotation on
the difference between � and � opens an interesting pos-
sibility for the measurement of the nonadiabatic spin-
transfer torque parameter �, which is generally difficult
to determine [31]. The characteristics of the field- and the
current-induced DW dynamics in circular wires should
allow for a precise extraction of this information. Firstly,
according to Eq. (5), the value of � can be derived from the
field-induced DW velocity. Then the value of � can be
obtained from the frequency of the current-induced dipolar
oscillations predicted by Eq. (6b) [32]. Also, the polariza-
tion rate P can be determined from the current-driven DW
velocity, which in this case is almost exactly equal to u
[cf. Figs. 3(a) and 3(c)].

In conclusion, the current-induced motion of transverse
DWs in cylindrical nanowires is fundamentally different
from that in magnetic strips. The DW velocity simply
depends linearly on the current density j. Two important
features usually limiting the dynamics of DWs, namely, the
intrinsic pinning and the Walker limit, do not exist for this
type of DW. This is attributed to a vanishing DW mass.
Such inertia-free DWs show particular dynamic properties
which should allow one to precisely and efficiently control
their position with electric currents and to extract impor-
tant physical parameters. The dynamics of these DWs thus
deserves experimental investigation for both fundamental
physical studies and applications.
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