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Vector and tensor analyzing powers in deuteron-proton breakup at 130 MeV
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9Forschungszentrum Jülich, Institut für Kernphysik, Institute for Advanced Simulations, and
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High-precision data for vector and tensor analyzing powers for the 1H( �d,pp)n reaction at a 130-MeV deuteron
beam energy have been measured over a large part of the phase space. Theoretical predictions based on various
approaches to describe the three nucleon (3N ) system reproduce very well the vector analyzing power data
and no three-nucleon force effect is observed for these observables. Tensor analyzing powers are also very well
reproduced by calculations in almost the whole studied region, but locally certain discrepancies are observed. For
Axy such discrepancies usually appear, or are enhanced, when model 3N forces, TM99 or Urbana, are included.
Problems of all theoretical approaches with describing Axx and Ayy are limited to very small kinematical regions,
usually characterized by the lowest energy of the relative motion of the two protons.
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I. INTRODUCTION

The successes of meson-exchange theories in the
description of two-nucleon observables have been followed
in the past few years by intensive studies of three nucleon
(3N ) systems. Numerically exact predictions and precise
experimental data for such systems prepared the basis for
tracing inconsistencies between a theoretical description
limited to pairwise NN interactions only and the measured
data, which can be assigned to additional dynamics related to
the presence of the third nucleon, the so-called three-nucleon
force (3NF). A number of models and approaches to introduce
3NFs into calculations have emerged, seeking, for an even
larger data base for their tests and developments.

The importance of 3NF contributions for the proper
description of systems of more than two nucleons was first
established in few-nucleon bound states [1–4]. When exact
calculations including 3NF became available for observables
in the nucleon-deuteron elastic scattering, the present models
of 3NF turned out to be an efficient remedy for a long-
persisting problem of describing cross section for this process
[5–7]. Though at energies above 100 MeV some problems
with describing the data have been observed (cf. Ref. [8]
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and references therein), the improvement of the description
of the cross-section data due to the inclusion of 3NFs is
still considerable. On the other hand, precise experimental
data demonstrate both the successes and difficulties of the
current models in describing analyzing powers, spin trans-
fer and spin correlation coefficients [9–17]. This indicates
problems with the spin part of current models of the 3N

interaction.
In addition to the bound states and elastic scattering, the 3N

system can be studied via the deuteron-nucleon breakup reac-
tion, which is characterized by the very rich kinematics of the
final state. The complexity of this process poses a challenge for
both theoretical calculations and experimental investigations
but, on the other hand, it opens a way to study kinematical
dependencies of the 3NF effects, possibly giving insight into
the underlying dynamics. Due to the advances in experimental
techniques, like the availability of highly polarized beams in
a wide range of energies, construction of position-sensitive,
high-acceptance detectors, and the development of efficient
data-acquisition systems, data of high accuracy and covering
large kinematical regions can be collected. The database for
the breakup reaction in the region of intermediate energies
has grown, which is very encouraging, since until recently
cross sections and analyzing powers were only measured
at 65 MeV for a few isolated kinematical configurations
[18–21]. Comparison of those data and of the data taken for
a few configurations at 200 MeV [22] with the theoretical
predictions [23,24] shows a mixed picture, similar to the
one observed for elastic scattering. Sometimes the agreement
between experiment and theory is improved by including 3NF;
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in some cases the 3NF effects are negligible, and there are
also cases in which inclusion of 3NF drives the prediction off
the data.

Measurement of the 1H( �d,pp)n breakup reaction at the
beam energy of 130 MeV, performed at KVI Groningen, was
designed to provide accurate experimental data in a large
fraction of the phase space. Results obtained for cross sections
[25,26] allowed one to reliably test predictions of various
theoretical approaches. The cross-section data revealed both
3NF effects and influences of Coulomb interactions. This now
has to be further tested in the sector of polarization observables.
The 1H( �d,pp)n process with transversally polarized deuterons
gives access to two vector and three tensor analyzing powers,
some of which vanish in the case of the elastic scattering.
Simple analysis of breakup data [27] led to extracting one-
tensor analyzing power in a spherical representation, ReT20, for
which predicted effects of 3NF are generally small. This study
shows a good description of the data by the NN interaction
alone but reveals also certain regions where discrepancies
cannot be cured by the inclusion of any of the existing 3NF
models. It is important to mention here that very recently
the problems with describing polarization observables was
also demonstrated in the data measured for the p-d breakup
at 135 MeV [28] and 190 MeV [29], as well as in the case
of the d-p breakup data: at 270 MeV [30] and in several
configurations at 135 MeV/A [31].

This article presents a set of data for vector Ax and Ay and
tensor Axx , Axy and Ayy analyzing powers collected in the
large phase-space region of the 1H( �d,pp)n breakup reaction at
a beam energy of 130 MeV. Section II is devoted to definition of
the coordinate systems and studied observables. Experimental
details, with the focus on improvements with respect to
the first run of the read-out electronics and data-acquisition
system, are given in Sec. III. In Sec. IV the data-analysis
procedure is outlined and the experimental uncertainties
are discussed. Theoretical approaches providing predictions
which are compared with the data are recalled in Sec. V. The
results and their comparison with the theoretical calculations
are presented in Sec. VI, and the conclusions are given in
Sec. VII.

II. ANALYZING POWERS OF THE BREAKUP REACTION

The yield I (ξ ) of a reaction leading to a three-particle
final state, in the case of an unpolarized target and polarized
beam of spin 1 particles, can be expressed in the Cartesian
coordinate system by the reaction yield for an unpolarized
beam, Io(ξ ), vector analyzing powers Ax(ξ ), Ay(ξ ), and Az(ξ )
and tensor analyzing powers Axy(ξ ), Ayz(ξ ), Axz(ξ ), Axx(ξ ),
Ayy(ξ ), and Azz(ξ ). ξ represents a set of kinematical variables,
which for the deuteron-proton breakup can be chosen as
ξ = (θ1,θ2, ϕ12 = ϕ1 − ϕ2, S), i.e., the proton emission angles
(see Fig. 1) and the variable S, denoting the arc length along
the kinematical curve, with 0 set at the minimal energy E2

of the second proton. In our studies of the 1H( �d,pp)n reaction,
the deuteron beam is transversally polarized. In this case,
shown in Fig. 1, some terms of the general formula given
in Ref. [32] vanish, leading to a simpler dependence of I (ξ )

FIG. 1. (Color online) Definition of the coordinate systems for
the studied breakup reaction with transversally polarized deuterons:
The laboratory system (x ′, y ′, z′), with z′ along the beam momentum
direction (pd ) and y ′ vertically upward, is used to define the angular
configuration of the outgoing protons (with momenta p1 and p2). The
reaction coordinate system is defined according to Ref. [32], with z

along the beam momentum direction and x obtained by projection of
p1 onto the plane perpendicular to z. The angle φ is defined as the
angle between the y axis and the spin quantization axis s, which in
the studied case is vertical (parallel to y ′).

on the two vector and three tensor analyzing powers:

I (ξ, φ) = Io(ξ ) · {
1 + 3

2PZ[− sin φAx(ξ ) + cos φAy(ξ )]

+ 1
2PZZ[sin2 φAxx(ξ ) + cos2 φAyy(ξ )

− sin 2φAxy(ξ )]
}
, (1)

where PZ and PZZ denote, respectively, vector and tensor
polarization of the beam, both defined with respect to a
quantization’s axis s, and the angle φ is an angle between
the axis s and y axis of the reaction coordinate system (for
definition cf. Fig. 1).

The parity conservation of the strong interaction re-
quires that the analyzing powers from Eq. (1) fulfill the
relation:

Ai(ξ̃ , ϕ12) = (−1)lAi(ξ̃ ,−ϕ12), (2)

where ξ̃ denotes all kinematical variables but the rela-
tive azimuthal angle between the proton momenta ϕ12,
while l = 0 for Ay , Axx , and Ayy and l = 1 for Ax and Axy .
The observables that are odd with respect to ϕ12, Ax and Axy ,
have to vanish for coplanar configurations. This is also true for
the elastic-scattering process in particular.
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Formula (1) can be written in an equivalent way in spherical
coordinates [32]:

I (ξ, φ) = I0(ξ ) · {
1 +

√
3PZ[sin φImiT11(ξ )

+ cos φReiT11(ξ )] − 1
4PZZ[

√
2ReT20(ξ )

+ 2
√

3 cos 2φReT22(ξ ) + 2
√

3 sin 2φImT22(ξ )]
}
.

(3)

The terms coming with sin φ and sin 2φ vanish for coplanar
configurations of the outgoing particles, therefore, especially,
for elastic scattering. In this work, we will use the Cartesian
representation for breakup observables but the spherical one
for elastic-scattering observables.

III. EXPERIMENTAL SETUP

The experiment was carried out at Kernfysish Versneller
Instituut (KVI) in Groningen, The Netherlands, with the use
of the vector- and tensor-polarized deuteron beam accelerated
to the energy of 130 MeV.

A. Production of polarized deuteron beam

A beam of deuterons, vector and tensor polarized in the
transversal direction, was produced in an atomic beam–type
polarized ion source POLIS [33]. The following magnetic
fields can be used individually or in various combinations
to induce various polarization states of the deuteron beam:
SF1 (strong field 1), SF2 (strong field 2), MF (medium
field), and WF (weak field). In the experiment described
here seven combinations of different magnetic fields (causing
different hyperfine transitions) were used, delivering various
polarization states described by vector PZ and tensor PZZ

polarizations. The combinations of fields and the maximal
values of polarization, corresponding to 100% efficient
transitions between the states of atomic deuterium, are listed
in Table I. The polarization states were changed sequentially
in a programed cycle. Each state was set for 5 min, while
switching between subsequent states took a few seconds.
Information about the polarization state was coded as a bit
pattern and sent into the data stream.

A beam of polarized deuterons was injected from POLIS to
the superconducting cyclotron AGOR and accelerated to the
required energy of 130 MeV. The beam was guided through
the beam line to the experimental setup and focused on the
liquid hydrogen target [34]. Further it was transported to
the Faraday cup, where the beam current was measured. In
the 1H( �d,pp)n breakup measurement very low current of about
50 pA was used.

B. SALAD detection system

The polarized deuteron beam was impinging onto the liquid
hydrogen target (LH2) placed in vacuum, approximately in
the center of the scattering chamber. The charged reaction
products: two outgoing protons from the breakup process or
proton and deuteron from the elastic scattering, were detected
in the Small Angle Large Acceptance Detector [35] (SALAD),
shown schematically in Fig. 2. The SALAD detection system
allowed us to register particles for the polar angles θ between

TABLE I. Set of the polarization states used in the 1H( �d,pp)n
breakup experiment. The maximum polarizations PZ , PZZ (for
100% efficiency of transitions in the ion source) and corresponding
combinations of the magnetic fields are shown. The x indicates that
the magnetic field is switched on, whereas the—indicates that the
magnetic field is switched off. If denotes the full beam intensity. In
the case of transitions with medium field on, the beam intensity is
reduced to 2/3 of If in the case of 100% efficient transitions.

Polarization
states

Magnetic fields Beam

PZ PZZ

SF1 SF2 MF WF
intensity

0 0 – – – – If

+ 1
3 +1 x – – – If

+ 1
3 −1 – x – – If

0 +1 x – x – 2
3 If

0 −2 – x x – 2
3 If

+ 2
3 0 x x – – If

− 2
3 0 – – – x If

10◦ and 35◦ and for the full range of the azimuthal angles ϕ,
from 0◦ to 360◦. The implementation of this detector to the
breakup experiment is described in Ref. [25]; here we present
only briefly its main features.

The charged particles emitted from the target, after leaving
the vacuum chamber through a thin exit window, were passing
the MultiWire Proportional Chamber (MWPC), transmission
�E detectors and were stopped in the E detectors. The MWPC
detector was used for reconstruction of the charged particle
emission angles angles with the overall accuracy of 0.3◦ for
the polar angle and between 0.6◦ and 3.0◦ for the azimuthal
angle. The E slabs were arranged vertically and �E strips
were oriented horizontally; in this way a two-dimensional
array of 140 �E-E telescopes was created. It allowed to

FIG. 2. Schematic view of the experimental setup. The beam
direction, the position of the target in the scattering chamber, the
MultiWire Proportional Chamber (MWPC) and the �E and E

detectors are shown.
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FIG. 3. A schematic diagram of the electronics circuit.

identify particles, to define trigger conditions, and to determine
energies of the particles. The energy resolution of the E

counters was about 5%.
As compared to the first run, of which results were

published in Refs. [25,26], a few changes were introduced
in the experimental setup. Among them, the distance between
the �E-E wall and the target was increased by about 15%
in order to use the �E-E wall in full, while in the first
run it was slightly in the shadow of the MWPC frame. The
most important changes were done, however, in the domain of
the read-out and data-acquisition system, as described in the
following subsection.

C. Electronics, read-out, and data acquisition

The layout of the electronic circuit is presented in Fig. 3.
All parts of the trigger electronics and signal processing up
to read-out were very similar to the ones used in the first
experimental run. Triggers were constructed in the SALAD
Trigger Module (STM) [36] and downscaled in the Trigger
Box (TB) module. In this way contribution of coincidences
was enhanced (in the sense of the trigger rate) with respect to
single events. Detailed description of this part of the electronics
can be found in Ref. [25].

A new, important feature of the system, which lead to
a substantially improved data throughput, about 6 times as
compared to the first run, was decoupling of the read-out
process, when the data were written to one of the two High
Speed Memories (HSM), and the processor-controlled transfer
of the data from memory to tape. The control over read-out
was performed by the FERA System Manager (FSM), which
(if not busy with a previous trigger) distributed the trigger
signal as a gate to the Proportional Chamber Operating System
(PCOSIII), as gates for signal integration in a set of ADC’s and
as common stop signals for a set of TDC’s. The details on the
FERA system with distributed gates, realized with the use of
the Tagger and Extender modules, can be found in Ref. [37].

In the read-out process, the control over the FERA bus was
consecutively overtaken by all the modules in the “readout-
enable/pass” chain, which subsequently sent their conversions
to one of the HSM modules. The handshaking was done by the
strobe/acknowledge mechanism between the module currently
controlling the FERA bus and the HSM (via the FERA Driver),

without any control from the side of the front-end processor.
With the FERA (ADC and TDC) transmission completed, the
PCOS data were sent to the same memory via the PCOS ECL
bus. Switching between the two data busses, the FERA Data
Bus and the bus of PCOS, was done in the Data Selector
Module, steered with the PCOS Busy signal. After all the data
were sent to the memory, the FERA digitizing modules and
the PCOS latching modules were cleared and the system was
ready for acquiring a new event. Up to that moment it was
blocked against new triggers and the corresponding dead time
(the ratio of numbers of lost and all events) was monitored in
scalers.

The front-end processor, RIO2 with LynxOS real time
operating system, controlled the data acquisition with the
use of the Multi-Branch System (MBS) [38]. The processor
was hosted in a VME Crate, together with the HSM modules
and the so-called Trigger module. When the currently active
HSM was almost filled, it generated an overflow signal which
caused a processor interrupt. As a reaction to that interrupt
the processor took care to disable (after completed full event
read out) the active HSM module and enable the other one.
For the time of switching the memories, the dead-time signal
was sent to the TB module to block it against producing the
triggers. In order to determine the corresponding dead time,
the output of pulser producing signals with a frequency of
1 kHz was also sent to scalers via TB. When the new memory
had become enabled, the triggers were released and, with the
data accumulation active, the processor read the filled memory
content, directing the data to the DLT tape and sending its
fraction to the on-line analysis for monitoring purposes.

IV. DATA ANALYSIS

A. Event selection and energy calibration

The events of interest were coincidences of two charged
particles, i.e., proton-proton pairs from the breakup process
or, necessary for determination of the beam polarization,
deuteron-proton pairs from the elastic scattering. Events with
only one charged particle, proton or deuteron, registered in
SALAD (single events) were also recorded with a strongly
suppressed rate. Particle identification was based on the �E-E
technique, providing for all telescopes and in the whole energy
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range an excellent separation between protons and deuterons.
In addition to the particle identification cuts set on the �E-E
spectra, the limits were also set on the time spectra of all
�E and E detectors, with the aim to reduce contribution of
accidental coincidences: only events registered in a 20-ns-wide
time window were accepted.

In order to obtain the number of events from the breakup
reaction as a function of proton energy or, equivalently, as a
function of the arc length S along the kinematical curve, energy
calibration is required. For that purpose elastic-scattering
events, measured during special calibration runs with energy
degraders positioned in front of the scintillation hodoscope,
were used. The positions of the peaks corresponding to protons
from the elastic scattering which traversed the degraders were
compared with the results of simulations taking into account
all energy losses of protons. In the first step a linear function
was fitted to the relation of the deposited energy versus pulse
height. Afterward also a small correction for nonlinearity
in this relation was introduced. Such nonlinearity is caused
by light quenching in the scintillating material and can be
described by Birks formula [39] or by its version enclosing
higher-order effects, introduced by Chou [40]. However, it
has been found that the effects of nonlinearity are small: the
linear channel-energy relation had to be modified only below
30 MeV. Since the departure from linearity reached at most
1.5 MeV, the correction was introduced by only a slight change
of the slope of the linear dependence below 30 MeV. In the last
step of calibration, the relation between the energy deposited
by protons in the E counter and their energy at the moment of
reaction was found by Monte Carlo simulation of the energy
losses. More details concerning procedures of event selection
and energy calibration can be found in Refs. [25] and [41].

B. Determination of the beam polarization

Values of vector and tensor polarization of the deuteron
beam were determined from analysis of the elastic-scattering
events. For θ c.m.

d � 119◦ the values of the analyzing powers
of the elastic scattering were determined in a dedicated
experiment at RIKEN [16], using absolute calibration of the
beam polarization via 12C( �d,α)10B∗[2+] reaction [42]. The
angular region covered by that experiment overlaps with the
acceptance of the SALAD detector for d-p coincidences at
exactly one point. The procedure of the polarization determi-
nation based on analysis of elastic scattering at only one angle
is described in Ref. [17]. However, thanks to very good particle
identification, also single deuterons registered in SALAD can
be used for determining the rates for elastic scattering. This
opens a way for using the whole experimentally measured
distributions from both experiments and for reducing the
uncertainty of the resulting beam polarizations.

With the purpose to determine beam polarization, elastic-
scattering events collected for the selected polarization state
P ≡ (PZ, PZZ) were sorted into bins of 1◦ in the laboratory
polar angle: proton angle θp in the case of d-p coincidences,
or deuteron angle θd in the case of single deuterons. They
were sorted also with respect to the angle φ (cf. Fig. 1) with
the binning of 10◦. The obtained numbers of events have been
normalized to the beam current collected in the Faraday cup

and corrected for the dead-time losses. After normalization and
transformation of polar angles to the center-of-mass system,
the rates of the elastically scattered events N

θ c.m.
d

P (φ) for the
selected polarization state P were obtained. On the basis of
these numbers the ratio:

f
θ c.m.
d

P (φ) = N
θ c.m.
d

P (φ) − N
θ c.m.
d

0 (φ)

N
θ c.m.
d

0 (φ)
(4)

was constructed. N
θ c.m.
d

0 (φ) denotes the analogously obtained
rate of events for an unpolarized beam. All factors constant in
time, as, e.g., target thickness or detection efficiency, cancel
in the ratio, and thus do not have to be included in the
normalization procedure.

The evaluated numbers of events are directly proportional
to the corresponding reaction yields. Using Eq. (3) limited to
terms nonvanishing in the case of elastic scattering, the formula
for Nθdc.m.

P can be expressed by:

N
θ c.m.
d

P (φ) = N
θ c.m.
d

0 · κ

[
1 + iT el

11

(
θ c.m.
d

)√
3PZ cos φ

− T el
22

(
θ c.m.
d

)√
3

2
PZZ cos 2φ

− T el
20

(
θ c.m.
d

)√
2

4
PZZ

]
, (5)

where κ denotes the ratio of normalization factors for the
two states, which should be equal to 1 in the case of perfect
normalization, and iT el

11, T el
22, T el

20 are spherical vector- and
tensor analyzing powers of elastic scattering. Substituting
formula (5) into equation (4) results in the final expression
for the ratio of rates:

f
θ c.m.
d

P (φ) = κ

[
1 + iT el

11

(
θ c.m.
d

)√
3PZ cos φ

− T el
22

(
θ c.m.
d

)√
3

2
PZZ cos 2φ

− T el
20

(
θ c.m.
d

)√
2

4
PZZ

]
− 1. (6)

This is a function of the type:

f
θ c.m.
d

P (φ) = a · cos(φ) + b · cos(2φ) + c, (7)

which can therefore be fitted to the ratio of the experimental
rates. Using the fit results for angle θ c.m.

d = 119◦ and experi-
mental values of the analyzing powers for elastic scattering,
iT el

11, T el
22, and T el

20, at this angle, the values of PZ , PZZ , and κ

can be determined. The refined version of this procedure takes
into account the whole measured angular distributions and,
therefore, leads to a reduction of the statistical uncertainties,
while simultaneously also the consistency of both measure-
ments is checked. Details concerning the way of comparing
distributions measured at RIKEN and in this experiment can
be found in Ref. [41]. The results obtained in this way for
various polarization states and their statistical uncertainties are
given in Table II. Systematic errors of the polarization values
are mainly due to systematic uncertainties of the reference
analyzing powers [16] and are estimated to be around 3%.
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TABLE II. Beam polarization values and their statistical uncer-
tainties obtained for various states; for more details see text.

P PZ �PZ PZZ �PZZ κ �κ

(+ 1
3 , −1) 0.256 0.002 −0.757 0.005 1.00 0.01

(+ 2
3 , 0) 0.449 0.003 −0.118 0.005 1.00 0.01

(− 2
3 , 0) −0.444 0.003 0.050 0.005 0.99 0.01

(0, +1) −0.068 0.003 0.556 0.005 1.06 0.01

( 0, −2) 0.021 0.002 −1.340 0.005 1.06 0.01

(+ 1
3 , +1) 0.198 0.003 0.672 0.006 0.99 0.01

It is necessary to point out that, with a correct relative
normalization between beam polarization states, one should
obtain κ value which is statistically consistent with 1. As is
shown in Table II, this was not always true. The reason for
small departures from 1 can be attributed to the systematic error
in measurements of a very low beam current. This problem is
discussed in more detail in subsection IV D1.

C. Evaluation of the vector and tensor analyzing powers
for the breakup reaction

The data were analyzed for a set of kinematical configura-
tions of the two outgoing protons spanned on a grid of polar
angles θ1, θ2 between 15◦ and 30◦ in steps of 5◦. The absolute
values of relative azimuthal angles ϕ12 were varied between
0◦ (for θ1 �= θ2) or 20◦ (for θ1 = θ2) and 180◦ with the step
of 20◦. For each configuration with ϕ12 from 20◦ to 160◦ its
“mirror configuration” with negative ϕ12, has been analyzed.

In the first step, for each combination of angles θ1, θ2, ϕ12

and for each polarization state the kinematical spectra E2

versus E1 were built (see example in Fig. 4). The angular
ranges of event integration were chosen to be �θ1 = �θ2 = 4◦
and �ϕ12 = 20◦. This corresponds to 8 times larger solid angle
as compared to the cross-section analysis [25] and allows
to achieve good statistical accuracy of individual data points
without smearing out details of the angular distributions. Then,
events on the kinematical curve were divided into bins in S

with the width of 8 MeV (shaded area in Fig. 4).
The procedure for subtracting the (low) background under-

lying the data is described in detail in Ref. [25]. The obtained
number of events have been normalized to the beam current
collected in the Faraday cup and corrected for dead-time losses.
After normalization, the rates of events N

ξ

P for the selected
polarization state P and kinematical point ξ = (θ1, θ2, ϕ12, S)
were obtained and the ratio

f
ξ

P (φ) = N
ξ

P (φ) − N
ξ

0 (φ)

N
ξ

0 (φ)
(8)

was constructed. Nξ

0 denotes the rate for the unpolarized beam.
Applying the Eq. (1), f

ξ

P can be written as

f
ξ

P (φ) = κ
[
1 − 3

2 sin φPZAx(ξ ) + 3
2 cos φPZAy(ξ )

+ 1
2 sin2 φPZZAxx(ξ ) + 1

2 cos2 φPZZAyy(ξ )

− 1
2 sin 2φPZZAxy(ξ )

] − 1. (9)

FIG. 4. An example of the E2 versus E1 energy spectrum for
selected angular configuration of the breakup process (θ1 = 20◦, θ2 =
15◦, ϕ12 = 90◦). A sample �S bin is marked as a shaded area.

The polarizations PZ and PZZ , as well as κ values are
known from the analysis of elastic scattering (cf. Table II).
Vector and tensor analyzing powers were extracted from the fit
of the function (9) to the experimental distributions of f

ξ

P (φ).
Examples of such distributions with the fitted curves, obtained
for two mirror configurations, are shown in the two upper
panels of Fig. 5. In certain configurations characterized by low
cross sections, the statistical uncertainties of f

ξ

P (φ) were large.
The points with uncertainty exceeding 0.5 were rejected from
the analysis, since they do not set any significant constraints on
asymmetry values. On the other hand, in geometries with low
ϕ12 values, acceptance losses can occur due to registering both
protons in the same detector segment. For these two reasons,
the number of points for the fit of f

ξ

P (φ) was not always equal.
For the purpose of keeping the number of degrees of freedom
at a reasonable level, the fit was performed provided at least
12 data points were available.

In order to decrease statistical errors of the results, the
analyzing power values obtained from the fits of Eq. (9) for the
kinematical configurations with ±ϕ12 were combined together
according to the parity rules [see Eq. (2)]:

Ai(ξ ) = 1
2 [Ai(ξ̃ , ϕ12) + (−1)kAi(ξ̃ ,−ϕ12)], (10)

where k = 0, 1 for the even and odd observables, respectively.
For the purpose of testing the data consistency, the observables
can be combined also in the following way:

Oi(ξ ) = Ai(ξ̃ , ϕ12) − (−1)kAi(ξ̃ ,−ϕ12). (11)

Such combinations, in turn, should be consistent with 0 within
their statistical errors. Obviously, both ways of combining
analyzing powers do not apply to the coplanar configurations of
the outgoing protons, which transform onto themselves when
reversing the sign of ϕ12.

In the approach described above, which will be further
called “free fit,” the constraints set by parity conservation
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FIG. 5. Examples of asymmetry distributions obtained for pure
tensor polarization state P = (0, −2), for two (mirror) kinematical
configurations with θ1 = 25◦, θ2 = 20◦, ϕ12 = ±140◦, and S =
100 MeV. In the two top panels asymmetries f

ξ

P (φ) for these
configurations are presented, and in the two bottom panels their linear
combinations, g

ξ

P (φ) and h
ξ

P (φ) (see text), are shown. The error bars
represent statistical uncertainties. The lines result from the fit of the
corresponding functions, as described in the text.

are used only in the very last step of the analysis, when
the analyzing powers obtained for mirror configurations are
combined according to Eq. (10). Alternatively, the parity
conservation rules had been applied in an earlier stage,
before the fit was performed. The following combinations of
asymmetries for mirror configurations (ξ̃ , ϕ12) and (ξ̃ ,−ϕ12)
were obtained:

g
ξ

P (φ) = f
ξ̃,ϕ12
P (φ) + f

ξ̃,−ϕ12
P (φ)

2
(12)

and

h
ξ

P (φ) = f
ξ̃,ϕ12
P (φ) − f

ξ̃,−ϕ12
P (φ)

2
. (13)

Using Eqs. (9) and (2), such linear combinations can be
expressed as

g
ξ

P (φ) = κ
[
1 + 3

2 cos φPZAy(ξ ) + 1
2 sin2 φPZZAxx(ξ )

+ 1
2 cos2 φPZZAyy(ξ )

] − 1 (14)

and

h
ξ

P (φ) = κ
[− 3

2 sin φPZAx(ξ ) − 1
2 sin 2φPZZAxy(ξ )

]
.

(15)

Fit of the function (14) to the experimentally determined
distribution g

ξ

P (φ) leads to determination of the even analyzing

powers, while the odd ones are obtained from the fit of the
function (15) to h

ξ

P (φ). Examples of fits of these functions
to the data are shown in the two lower panels of Fig. 5.
The procedure based on the fit of such linear combinations
of asymmetries will be further called “parity-constrained fit.”

Results of both methods, free fit and parity-constrained
fit, should lead to results consistent with each other. This
has been proven to be true within statistical uncertainties.
The parity-constrained method of analysis, which avoids
superfluous fit parameters, leads to χ2 distributions which can
be interpreted in terms of statistical properties. Therefore the
results presented in this article are obtained by that method,
since this provides more trustful uncertainties of the fitted
parameters. The other method was applied only to check the
data consistency.

After the fits were performed, consistency of the results
obtained for the individual states was checked, as discussed
in the following section, and the weighted averages of the
analyzing powers extracted for various polarization states were
calculated.

D. Experimental uncertainties

The experimental uncertainties vary strongly in the pre-
sented set of analyzing power data, but still the statistical un-
certainties dominate. In this section statistical errors together
with possible sources of systematic uncertainties and their
estimated magnitudes are discussed.

1. Statistical errors

The statistical uncertainties of the analyzing powers com-
prise the errors from the fit procedure, which are the main
contributions, and the statistical errors of the beam polariza-
tions PZ and PZZ and of the normalization factor κ (Table II),
following from the fit to elastic-scattering distributions. The
resulting statistical uncertainties vary between 0.01 and 0.1.

2. Systematic effects and data consistency checks

The data analysis presented in this article relies on deter-
mining ratios of rates measured with polarized and unpolarized
beams. It is therefore independent of many experimental
factors, like, e.g., detection efficiency of the particles in the
MWPC and in the scintillator hodoscope, losses due to particle
identification cuts in the �E-E spectra, uncertainties in
determination of the solid angles, and so on. The other potential
systematic effects, which do not cancel in the ratio, are
discussed below. In most cases, analysis of events originating
from the elastic-scattering process is an important tool for
reducing and controlling the magnitude of these uncertainties.

One of the main contributions to the systematic uncertainty
originates from a systematic uncertainty of the polarization
values. Following discussion from subsection IV B, we can
attribute a relative error of about 3% to that effect. This
influences only the common scaling factors of the distributions.

In spite of a very careful relative normalization of the rates
for the polarized and unpolarized beam, the analysis of the
elastic scattering reveals some remnant factor κ . It has been
checked that its values are stable in time and do not depend
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on the downscaling factors applied to the triggers. Statistically
significant departure of κ from 1, which reflects a systematic
error of the normalization procedure, is observed in two pure
tensor polarization states. This effect can be attributed to a
small current offset, which is difficult to avoid in measuring
very low beam currents. For these two states the medium field
was switched on, which reduces the average beam current
(cf. Table I) and in this way changes the relative contribution
of the instrumental offset as compared to the case of the
unpolarized state, characterized by the full beam intensity.
As a consequence, the ratio (8) is affected. However, since κ is
a purely luminosity factor, it is independent from the studied
process and its values, determined in the fits of distributions
of the elastic scattering, are directly applicable for the breakup
reaction. Therefore the normalization to luminosity is not
expected to cause any systematic uncertainty on the breakup
analyzing power results.

The uncertainty in reconstructing the polar and azimuthal
angles originates from the resolution given by the distances
between the wires of the MWPC and from possible imper-
fections in the geometry of the setup. The latter source for
systematic effects can be controlled very well on the basis of
elastic-scattering kinematics [25]. It has been shown that there
was no, at the level below 0.3◦, shift of the polar angles.
Taking into account the ranges of angles accepted for the
analysis of the kinematical configurations and the angular
resolution, the systematic effects related to the determination
of the particle emission angles are negligible. The accuracy
of the determination of the azimuthal angle ϕ is, however, not
only important for the proper selection of events belonging to a
particular kinematical configuration. It is directly related to the
accuracy of the angle φ (cf. Fig. 1) and, in turn, the uncertainty
in determining zero of φ would produce an additional phase δ

in Eq. (9) and affect the fitted analyzing powers. The possible
magnitude of δ can be studied via the elastic-scattering process,
for which the terms with odd observables vanish, so the
additional phase in functions cos(φ + δ) and cos(2φ + 2δ)
produces forbidden dependency of the f θ

P (φ) function [cf.
Eq. (6)] on sin(φ) and sin(2φ). The same holds for coplanar
configurations of the breakup process, but in the case of the
elastic scattering the statistical errors of the data points are
much smaller and the influence of the possible nonzero δ phase
can be studied with much higher sensitivity. We transform
Eq. (6) to

f θ
P (φ) = κ

{
1 + iT el

11(θ )
√

3PZ cos(φ + δ)

− T el
22(θ )

√
3

2
PZZ cos[2(φ + δ)]

− T el
20(θ )

√
2

4
PZZ

}
− 1 (16)

and treat δ as an additional free parameter of the fit. The
values of δ resulting from the fit to the data are consistent with
0 for all the polarization states, with the weighted average δ =
0.36◦ ± 0.29◦. The admixture of “wrong” analyzing powers is
suppressed by a factor of the order of δ in radians, so even for

FIG. 6. (Color online) An example of the distribution of Axy

versus S for one geometry of the outgoing protons, specified in the
panel. The results obtained for all beam states with nonzero tensor
polarization (characterized with values of PZ and PZZ in the legend)
are shown together with their weighted average. For clarity, the data
points corresponding to individual states have been slightly shifted
in S.

the largest analyzing power values, their distorting contribution
cannot exceed 0.01.

The events accepted within the gates on the time spectra are
true+random coincidences. On the basis of the neighboring
peaks in the time spectra it was possible to determine
contribution of purely random events which was very small,
below 0.3%. When the amounts of random events were
subtracted from the numbers of the true+random ones, the
numbers of the true events were obtained. However, the ratios
f

ξ

P obtained for the true coincidences and for the true+random
ones are almost identical, the observed differences between
them are by at least one order of magnitude smaller than their
statistical errors. Therefore the uncertainty of the procedure of
subtracting accidental events can be neglected.

The overall data consistency can be controlled by checking
if the parity rules are fulfilled. This subject is discussed in more
detail in Sec. VI. Moreover, consistency of results obtained
for individual polarization states has been confirmed; see the
example in Fig. 6.

V. THEORETICAL FORMALISM

The experimentally determined observables are compared
to results of calculations performed with three ways modeling
of the interactions in the system of three nucleons. Below the
three approaches to treat the 3N dynamics are briefly outlined.

A. Realistic NN potentials and 3NF models

Modern NN forces, so-called realistic potentials, like
charge-dependent (CD) Bonn [43], AV18 [44], Nijm I, and
Nijm II [45], describe a long-range interaction according to the
meson-exchange picture, while the implemented short-range
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part is phenomenological. These potentials can be combined
with the models of 3NF, which are refined versions of the
force proposed by Fujita and Miyazawa [46]. They considered
a process where a pion is exchanged between two nucleons,
leading to an excitation of a � isobar, which subsequently
decays, exchanging a pion with the third nucleon. The 2π -
exchange TM 3NF model [47] contains one cut-off parameter,
�TM, expressed in units of the pion mass mπ . The value of
�TM is adjusted for each combination of the NN potential
and the TM 3NF to reproduce the value of the 3H binding
energy [48]. The current version of this model, TM99, is
consistent with chiral symmetry [49]. When the 3N system
is studied with the AV18 NN potential, it is also combined
with the Urbana IX 3NF [50]. This force contains the two-pion
exchange contribution due to intermediate � excitation and a
phenomenological shorter-range part. The general overviews
of the Faddeev formulation of the 3N system with the realistic
potentials and 3NF included are presented in Refs. [51,52].

Recently, studies of relativistic effects in the breakup
process including such features as relativistic kinematics and
boost potential effects has been presented in Ref. [53]. As
dynamical input the CD Bonn potential was taken, thus the
calculations neglect any additional 3N dynamics, going be-
yond this pure NN interaction. At energy studied in this article
the predicted relativistic effects are moderate in cross sections
and practically negligible in analyzing powers, therefore no
comparison of the data with such calculations will be shown.

The Coulomb interaction was for the first time included
into the calculation of breakup observables in the approach
with two-baryon coupled-channels potential, described briefly
in subsection V C. Very recently, this method, with screening
and renormalization, has also been applied to purely nucleonic
NN and 3N force models, AV18+Urbana IX 3NF [54], but
those results are not shown in the present article.

B. Chiral perturbation theory (ChPT)

Chiral perturbation theory (ChPT) is based on the most
general Lagrangian for Goldstone bosons (pions) and matter
fields (nucleons) consistent with the (broken) chiral symmetry
of the QCD [55,56]. In the framework of ChPT two types of
interaction emerge: long-range pion exchanges, with crucial
constraints of chiral symmetry, and contact interactions, with
the associated low-energy constants (LEC). Due to chiral
symmetry a power counting can be devised that enables one
to estimate the importance of individual graphs to the NN

interaction. For the NN system, due to its nonperturbative
character, the problem becomes involved since in principle an
infinite number of diagrams contributes at a given order. It
was Weinberg [57] who recognized that ChPT can be used to
define a nuclear potential, which is then summed to all orders
using numerical techniques. In this way, only a finite number of
diagrams contributes at a given order and the nonperturbativity
of nuclear systems is taken into account. The nuclear potential
is expanded in this way in terms of (Q/�χ )ν , where Q refers to
a typical momentum of the nucleons or the pion mass and �χ

represents the chiral symmetry-breaking scale of ≈1 GeV. The
LEC’s at leading-order (LO) and next-to-leading order (NLO)
are obtained by fitting the ChPT NN potential predictions to

the NN data and three LEC’s of the next-to-next-to-leading
order (N2LO) potential can be determined from the πN -
scattering data [58]. In next-to-next-to-next-to-leading order
(N3LO), there are new short-distance LEC’s that need to be
fitted to NN data. We here apply the realization of Ref. [59].

When ChPT is applied to a system of three nucleons, graphs
corresponding to 3NFs appear naturally, in a way fully consis-
tent with the chiral NN interactions. The first-order, including
a nonvanishing 3NF term is N2LO. Until now full calculations,
including all graphs of the given order, exist only at N2LO,
while at N3LO graphs corresponding to 3NF have not been
incorporated yet. For more details about construction of the
NN potential within ChPT approach at N2LO see Ref. [56].

The method has an exceptional advantage as compared
to other approaches: a possibility to estimate uncertainties
of the obtained predictions. The calculations are performed
with a few combinations of the two cut-off parameters, [�,�̃],
relevant for regularization of the obtained potential. The range
of predictions corresponding to a reasonable choice of the
variation intervals of both cutoffs gives an estimation of
uncertainty of the theoretical observable. For details on ChPT
and the ranges of the regularization cutoffs see Refs. [58,59]
and references therein.

C. Coupled-channels potential with �-isobar excitation

The two-baryon coupled-channels potential (CCP) CD
Bonn+�, described in Ref. [60], is based on the realistic CD
Bonn potential, but in addition includes excitation of a single
nucleon to a � isobar, which is considered an active degree
of freedom and treated on the same footing as nucleons. In
the energy range below the pion-production threshold, where
the �-isobar excitation is virtual, it is assumed to be a stable
baryon with a real mass of 1232 MeV. In addition to the purely
nucleonic NN component, CCP has a transition component
coupling NN and N� states as well as diagonal component
between N� states with direct and exchange parts. CCP has
contributions from exchanges of π , ρ, ω, and σ mesons.

Virtual excitation of the � isobar in the 3N system yields an
effective 3NF but also the so-called two-nucleon dispersion.
These two contributions usually compete, therefore the net
effects of including the � isobar in the potential are smaller
than for approaches with the model 3NFs.

The calculations with this force model are performed
by the Lisbon-Hannover group. The Coulomb interaction
between protons is included using the method of screening
and renormalization in the framework of momentum-space
integral equations [61]. At 130 MeV the predicted effects
for the breakup reaction are sizable for cross sections in
some regions of the phase space [26,61], although much less
prominent for the analyzing powers, as it has been already
demonstrated for T20 [27].

D. Averaging of the theoretical predictions over
the experimental acceptance

The angular ranges around central pointlike geometry,
applied in the data analysis, are wide enough to observe effects
of averaging of the analyzing powers within these limits.
Therefore, similarly as was done for T20(ξ ) in Ref. [27], in

014003-9



E. STEPHAN et al. PHYSICAL REVIEW C 82, 014003 (2010)

order to compare the data with the theoretical predictions, the
same averaging has to be applied to the calculated values of
the observables. For that purpose, for each geometry defined
by the central values of angles θc

1 , θc
2 , ϕc

12, the analyzing
powers and cross-section σ0 values have been calculated
for all 27 combinations of angles θc

1 ± 1
2�θ1, θc

2 ± 1
2�θ2,

and ϕc
12 ± 1

2�ϕ12 and the central values with the step of
1 MeV in variable S. It is important to remember that S is
defined individually for each kinematical curve, therefore the
same values of S for two different geometries (combination
of angles) correspond usually to two different pairs of
proton energies (E1, E2). Therefore, further analysis of results
obtained at various angular combinations should be carried
out on the (E1, E2) plane rather than using the variable S.
Analyzing power values obtained for the given geometry and
S were weighted with a product of σ0 and the solid angle
factor and placed on the E2 versus E1 plane. Then, the data
obtained in this way were projected onto the curve correspond-
ing to the relativistic kinematics, calculated for the central
geometry (θc

1 , θc
2 , ϕc

12).
This approach is very similar to the analysis of the

experimental data (projection of data points on the kinematical
curve), therefore it assures that averaging of the theoretically
calculated analyzing powers is equivalent to event integration
within the ranges set in defining the kinematical configu-
rations. The applied procedure also projects the results of
nonrelativistic calculations onto the relativistic kinematics. In
this way they can be directly compared to the S distributions
of the data, without the necessity to correct for difference
of arc lengths calculated along relativistic and nonrelativistic
kinematic curves. It has been checked that, due to rather slow
variations of the analyzing powers with polar and azimuthal
angles, employing a more dense grid of angles for averaging
has no influence on the result.

VI. EXPERIMENTAL RESULTS

Distributions of the vector and tensor analyzing powers as a
function of S (MeV) were obtained for 82 geometrical configu-
rations (grid described in subsection IV C), altogether for about
800 kinematical points for each observable. Since the number
of observables and configurations makes the presentation of all
the results difficult, only examples of distributions compared to
various theoretical predictions will be shown in the following.
The full set of results obtained by the free fit method can be
found in Ref. [41]. Examples presented here have been chosen
to illustrate the most important findings, with the emphasis put
on problems in describing the data and differences between the
predictions. The whole set of experimental results is, however,
compared to the theoretical predictions described in Sec. V
and the overall quality of reproducing the data is presented.
For that purpose a variable defined in analogy to χ2 per
degree of freedom is calculated globally, individually for the
kinematical configurations and, in addition, for the data sorted
according to the energy Erel of the relative motion of the two
protons. The last way of presenting the results is motivated
by the earlier studies of cross sections [25,26], showing the
importance of that kinematical variable for understanding of
the system dynamics.

The above-mentioned χ2/DOF is defined as a sum of
squares of differences between the experimental results and
the theoretically calculated values (averaged according to the
description in subsection V D), divided by a sum of squares
of statistical uncertainties and by a number of kinematical
points in the data set under consideration. In this approach
systematical uncertainties of the data and any uncertainty
of the theoretical predictions are neglected. The theoretical
calculations using realistic potentials (later called 2N ) provide
very similar results and are treated as a group: they are
presented in figures as bands and, in calculations of χ2/DOF,
an average value of all predictions is taken (corresponding
to the middle of the band). Calculations using those NN

potentials combined with TM99 3NF (2N+TM99) are treated
in an analogous way. Predictions obtained within ChPT have
well-defined uncertainties, which in some particular regions
are quite significant. They are, however, also neglected in this
approach and the mean value of the range of the calculated
values is taken in χ2 comparisons. Actually, such mean values
can correspond, at various kinematical points, to various
combinations of the cut-off parameters. Taking into account
all the simplifications, the value of the “so-called χ2/DOF”
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FIG. 7. (Color online) The global χ 2/DOF results presented as
histograms and grouped with respect to the type of observable. Results
of the free fit method are shown together with consistency check in
the upper panel: χ 2/DOF calculated for Oi with respect to 0. In the
lower panel the results of the parity-constrained fit are presented.
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has no precise statistical meaning. However, it can still be
used for relative comparison between descriptions provided
by different models and, when its value reaches roughly 2 or
more, it can be treated as a signal of inconsistency between
the model predictions and measured data.

According to the discussion in subsection IV C, the an-
alyzing powers were obtained by the parity-constrained fit,
i.e., in the procedure of fitting parity-constrained functions
to the linear combinations of asymmetries. For the purpose
of a consistency check one exception from this rule took
place: the global χ2/DOF values obtained in both the free
fit method and parity-constrained fit are shown in Fig. 7.
The histograms obtained with the free fit method are sup-
plemented with additional bins, corresponding to parity-
forbidden combinations of observables, defined in Eq. (11).
Such combinations, Ox,Oy,Oxx,Oxy , and Oyy , were treated
similarly to the analyzing power data: their S dependence was
obtained for each configuration and χ2 with respect to 0 was
calculated. The global χ2/DOF values show that all Oi are
well consistent with 0. Differences between the results for
analyzing powers obtained in the two methods of analysis
are small. Generally better agreement between the data and
theories (lower χ2/DOF) is reached within the framework
of the parity-constrained fit. In the case of Oxx and Oyy

the χ2/DOF reaches about 1.25 and the difference between
the results for Axx and Ayy , obtained in the two methods of
analysis, is the largest, though also not very significant.

On the basis of global χ2/DOF values it is difficult to point
out the theoretical approach leading to the best description

of the analyzing power data. All of them seem to be quite
successful in reproducing the data, in particular for the vector
analyzing powers Ax and Ay , for which all the values of
χ2/DOF are similar and close to 1. There are, however,
certain hints of problems in the sector of tensor analyzing
powers. The values of χ2/DOF obtained in the case of Axx

are slightly elevated, almost independently of the theoretical
approach applied. The predictions of 2N+TM99 provide
the least adequate description of the Axy data among all
the approaches, but problems are observed also in the case
of AV18+Urbana calculations. ChPT calculations at N2LO
provide a similar quality of description of this observable as
AV18+Urbana; reproducing the data is improved at N3LO.
One should remember, however, that here and in what follows,
N3LO refers to the calculations based on the N3LO two-
nucleon forces of Ref. [59] without taking into account the
corresponding 3NFs.

Judgment on significance of the effects observed in global
χ2 analysis is difficult, therefore the χ2 values have to be
examined more locally. On the maps of χ2/DOF spanned by
the studied geometries of the outgoing protons, presented in
Fig. 8, one can trace regions of very good data description
and regions where departure from that perfect picture occur.
White squares represent configurations, for which the partic-
ular (parity odd) observable vanishes or for which angular
acceptance and collected statistics were too low to perform
the fit. Generally, the data description of vector analyzing
powers is very good and almost model independent, though
one could consider the coupled-channels calculations as the
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FIG. 8. (Color online) Set of maps of the χ 2/DOF for all studied configurations; columns correspond to the five studied analyzing powers
and rows to various theoretical calculations; see labels in the figure. Individual maps are shown for angular configurations defined by the relative
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configurations for which the particular observable could not be extracted.
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FIG. 10. (Color online) The same data as in Fig. 9 but compared
to calculations with realistic potentials without (cyan, light gray)
and with (magenta, dark gray) TM99 3N force. The results of the
coupled-channels calculations with the explicit � excitation, with
and without Coulomb interaction, are shown as solid and dashed
lines, respectively.

20 40 60 80 100
-0.6

-0.4

-0.2

0

0.2

A
xx

20 40 60 80

-1

-0.8

-0.6

-0.4

-0.2

A
xx

20 40 60 80
-0.8

-0.6

-0.4

-0.2

0

A
xx

20 40 60 80

S (MeV)

0.4

0.6

0.8

1

A
yy

ϕ12 = 0ο
θ1′ θ2 = 25ο, 15ο

ϕ12 = 0ο

ϕ12 = 0οϕ12 = 40ο

θ1′ θ2 = 30ο, 20ο

θ1′ θ2 = 30ο, 20οθ1′ θ2 = 25ο, 25ο

FIG. 12. (Color online) The same data as in Fig. 11 but compared
to calculations with the realistic potentials. Meaning of lines and
bands as in Fig. 10.
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FIG. 13. (Color online) Examples of tensor analyzing power results obtained for configurations in which significant effects of the TM99
3NF are predicted. Meaning of lines and bands as in Fig. 10.

most successful in this case. There are certain places at which
a slight difference between the results of ChPT at N2LO
and N3LO exist. Examples of distributions in function of
S obtained for such geometries are shown in Fig. 9. Since
calculations with the realistic potentials (with and without
3NF) agree with ChPT predictions at N3LO (cf. Fig. 10),
it can be concluded that at N2LO convergence is not reached
yet. ChPT calculations at N3LO, though not complete, provide
also narrower uncertainty bands than at N2LO.

The analysis of the χ2/DOF map for tensor analyzing
powers leads to the identification of the regions, which
are responsible for the earlier discussed increase of global
χ2/DOF value. Problems with the description of Axx and
Ayy occur mostly at the lowest ϕ12 angles. Examples of such
distributions of the data along S curve are shown in Figs. 11
and 12 and compared to various theoretical predictions. The
systematic discrepancy between data points and calculated
observables is not large but significant: roughly of about 0.1.
It occurs at the same kinematical region, where the simplified
analysis lead to identifying problems with the description of
ReT20 [27]. This is not a surprise, since these observables are
connected by a simple relation: Re(T20) = − 1√

2
(Axx + Ayy).

In the right columns of Figs. 11 and 12, Axx and Ayy for the
same angular configuration are shown, which can be combined
together to form ReT20 distribution.

In two of the examples presented in Fig. 12 certain sensi-
tivity of the theoretical predictions to the Coulomb interaction
can be observed; however, the description of the data becomes
even worse when this important part of interaction is added. In
order to compensate for that departure a substantial (and acting
in the correct direction) effect of 3NF would be required.

The maps obtained for Axy confirm the strongest sensitivity
of this observable to differences in assumed dynamics. Two

types of calculations with the realistic potentials combined
with model 3NF, i.e., 2N+TM99 and AV18+Urbana, show
similar pattern of inconsistencies with the data, though the
effect is much stronger in the case of 2N+TM99. We present
in Fig. 13 a set of distributions of the tensor analyzing powers,

FIG. 14. Quality of description of vector analyzing powers given
by various models, presented as χ 2 per degree of freedom in function
of the relative energy of the two breakup protons.

014003-13



E. STEPHAN et al. PHYSICAL REVIEW C 82, 014003 (2010)

FIG. 15. The same as in Fig. 14 but for tensor analyzing powers.

where the TM99 3NF effect is significant. Among them
there are configurations in which inclusion of the TM99 3NF
improves the description. Alas, in several other configurations
the calculations including the 3NF contributions lead to a
worse agreement with the experimental data. Coulomb effects
predicted for Axy are rather small, but in some regions their
magnitude is non-negligible and they can be comparable to
the effects of the TM99 3NF (e.g., for configuration θ1 = 30◦,
θ2 = 25◦, ϕ12 = 100◦, as shown in Fig. 13).

The energy of the relative motion of the two outgoing
protons is an important kinematical variable in pointing
out various effects in the cross sections, as presented in
Refs. [25,26]. Therefore dependence of χ2/DOF on Erel has
also been studied for the analyzing powers. Figure 14 presents
such dependencies obtained for vector analyzing powers. No
particular tendency can be observed and a good description
of the data by all theories is confirmed. The influences of
3NFs and Coulomb interactions on vector analyzing powers
are practically negligible in the whole studied region. A similar
χ2 analysis for the tensor analyzing powers is shown in
Fig. 15. Axy is well described by purely NN interactions, while
inclusion of TM99 3NF worsens the agreement, practically in
the whole range of relative energies with exception of the
highest one. In the case of Axx and Ayy the largest discrepancy

between the data and all calculations is present for the lowest
Erel. The problem with description of Axx at low energies is
even increased when Coulomb interactions are included in the
calculations.

VII. SUMMARY AND OUTLOOK

Vector and tensor analyzing powers have been obtained
for 82 kinematical configurations of the 1H( �d,pp)n breakup
reaction, covering a significant part of the phase space.
The experimental results have been compared to various
theoretical calculations. They comprise predictions based on
the realistic NN (CD Bonn, AV18, Nijm I, and Nijm II)
potentials alone and combined with the TM99 and Urbana
3NF models. Moreover, the data are confronted with the results
of the coupled-channels approach based on the CD-Bonn+�

potential, with or without Coulomb interactions included.
Finally, the results are compared to the observables obtained
within the ChPT framework at N2LO including full dynamics
and, currently not complete, calculations at N3LO.

In the majority of the studied configurations and observ-
ables all the theoretical predictions agree with each other and
describe the data very well. In particular this is true for vector
analyzing powers in the whole studied region of the breakup
phase space. The situation is more complicated for the tensor
analyzing powers, for which, in spite of a general success of the
theoretical description, certain discrepancies are observed. For
Axy such discrepancies usually appear or are enhanced when
the 3N forces, TM99 or Urbana, are included. On the other
hand, problems with describing Axx and Ayy are limited to
the lowest relative energies and are present for all theoretical
approaches. Effects of Coulomb interactions are small and
distributed rather chaotic in the studied part of the phase space.

Description of the data within the ChPT framework is of
very similar quality to that of the other approaches. There
are, however, hints that calculations at N3LO are necessary
to obtain precise results at this energy, therefore complete
calculations (including 3NF contributions) at that order would
be of high importance. One can also expect an improvement
of data description when calculations with explicit � degrees
of freedom in ChPT [62] become available for the breakup
reaction. This approach to ChPT leads to a better convergence
of the results and to a reduction of the theoretical uncertainties.

Generally, tensor analyzing powers are more sensitive
to details of dynamics, like effects of 3NF or Coulomb
interaction, than vector analyzing powers, what coincides with
the observations inferred from the elastic scattering at the
same energy [17]. In contrast to the data presented here, the
measurements of the breakup reaction at higher energies also
hint at problems with a proper description of the vector ana-
lyzing powers [28–31]. The observed discrepancies seem to be
stronger in proton analyzing powers than in the deuteron ones.

The overall picture drawn here shows that even though
in general all presented analyzing powers are quite well
reproduced by modern theoretical approaches, there remain
regions of unexplained discrepancies, pointing at still persist-
ing flaws in the 3NF models, in particular in their spin structure.
This conclusion is supported by data for various polarization
observables at higher energies [28–31].
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[47] S. A. Coon and W. Glöckle, Phys. Rev. C 23, 1790 (1981).
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