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Abstract

We calculate isospin breaking in pion—nucleon scattering in the threshold region in the framework
of covariant baryon chiral perturbation theory. All effects due to quark mass differences as well
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1 Introduction and summary

In the Standard Model isospin violation (IV) is driven by strong and electromagnetic interactions,
that is by the differences in the light quark masses mq — m, and charges Q, — Q4 = e,

_ - e, -
(au—dd), Lgp = 5 (adu — dAd) . (1.1)

£IV Mg — My
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Pion—nucleon scattering in the threshold region is particularly well-suited to test our understanding
of isospin violation because it can be analyzed within chiral perturbation theory (ChPT), which is
the effective field theory of the Standard Model, and in contrast to pion—pion interactions the quark
mass difference mgq — m, already contributes at leading order in the symmetry breaking [1]. This
problem was addressed in the framework of heavy-baryon chiral perturbation theory in a series of
papers about a decade ago [2-6]. In [7] we presented a novel analysis of all 7N scattering lengths
based on a covariant formulation of baryon chiral perturbation theory. In this work, the analysis of
isospin violation in the N system will be extended beyond threshold.

The size of the isospin-breaking effects extracted from low-energy data in early model-based anal-
yses [8,9] are in conflict with those found in heavy-baryon ChPT [6], while more recently the ChPT
picture seemed to be confirmed by a tree-level coupled-channel K-matrix approach [10]. The aim
of this work is to revisit isospin violation in w/N scattering in the framework of covariant baryon
ChPT [11], where the following differences to previous analyses within ChPT should be noted: in [6]
the full O(p3)-amplitude was fitted to data in order to determine the low-energy constants (LECs),
which are then used to switch off electromagnetic effects to isolate strong isospin breaking. This pro-
cedure is questionable in the sense that strong forth-order terms are known to be important [12,13],
such that electromagnetic LECs might get contaminated accounting for these contributions. For this
reason, we restrict ourselves to isospin-breaking shifts in the amplitude quantified in terms of the
so-called triangle relation. Hence, our results will comprise both strong and electromagnetic isospin-
violating effects. In addition, we include bremsstrahlung (in the soft-photon approximation), such that
finite terms neglected in [6] are taken into account consistently. Note that here we do not attempt to
determine the appearing LECs by a fit to the pertinent partial waves, but rather follow the path laid
out in [7] and collect these from other determinations, concentrating on the isospin-breaking shifts
induced in the various partial waves. Finally, we hope that the amplitude documented in the present
work will prove valuable for a consistent incorporation of isospin breaking in forthcoming analyses of
mN scattering based on Roy—Steiner equations.

The main findings and conclusions of the present investigation can be summarized as follows:

i) In this work, we have systematically analyzed isospin breaking in 7NN scattering in all mea-
sured channels (ﬂip — 7Ep, TTp — 7%n) and the energy dependence of the triangle relation
in S- and P-wave projections of the scattering amplitude in the framework of covariant baryon
chiral perturbation theory, accounting for all sources of isospin violation including virtual pho-
tons and bremsstrahlung. In all cases, we have provided a detailed estimate of the theoretical
uncertainties.

ii) Above threshold, isospin violation in terms of the triangle relation amounts to about (2.5 —
4.0) % between /s = (1.08 — 1.14) GeV in the S-wave, the bulk of which is due to virtual
photons, whereas isospin breaking in the P-waves is very small, at the order of 1% at most.
We have compared our work to former studies in heavy-baryon ChPT and analyses based on
phenomenological models.



Our work is organized as follows. Section [2] contains the calculation of the isospin-breaking correc-
tions to third order in the chiral expansion. After some preliminary chapters on the kinematics and
isospin structure of the scattering amplitude, we systematically display the calculation of the tree and
loop graphs, including the effects of virtual photons and soft bremsstrahlung. Many details of these
calculations are given in the various appendices. In Sect.[Blwe analyze isospin violation above threshold
by concentrating on the triangle relation in the S- and P-waves. It vanishes in the isospin limit and
is thus an excellent measure of the effects of isospin breaking. We give a thorough discussion of the
theoretical uncertainty of our calculations. We also compare to earlier work based on heavy-baryon
ChPT and more model-dependent analyses.

2 Scattering amplitude

2.1 Kinematics and isospin structure of 7N scattering

In this section, we consider various formal aspects of the reaction
N(p) +7"(q) = N(p') + 7*(¢). (2.1)

The masses of the initial (final) nucleon and pion are denoted by m; (m¢) and M; (M), respectively;
My, Mn, My and M o are the masses of proton, neutron, and charged and neutral pion, in order. We
define the isospin limit by the charged particle masses m, and M. The deviations can be expressed
in terms of

Ar = M2~ MZ%, Ax=my—my. (2.2)

Furthermore, we will use
S=pt+q=p+d, A=p-d=p—q A=p-p=d-q¢ Q=p+7, (2.3)
which are related to the usual Mandelstam variables by
=5 Al=u, AZ=t (2.4)

For convenience, we will often refer to these quantities in the center-of-mass system (CMS) defined by
Pp+a=p +q =0and p-p’' = |p||p|cosfcms = |p|[p’[2, such that
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where the Ké&llén function is given by
Ma,b,c) = a® + b? + ¢ — 2ab — 2bc — 2ac. (2.6)
u follows from the Mandelstam relation

s+t+u=m?+mi+ M+ M. (2.7)



Finally, we will need
5—u
V= ——. 2.8
2 (my + mg) (28)
Simplifications of the kinematics in loops will be addressed in Sect. 2.8 In particular, it is convenient
to introduce a generic nucleon mass m for the O(p*) contributions, which may be identified with m,
in the end (cf. Sect. 2.5]).

As pointed out in [13], the standard decomposition of the pion—nucleon scattering amplitude
1
Ten = U(p’){A(s,t) +5(+d) B(Sat)}U(p% a(pu(p) = 2ms,  alpu(p) =2m;,  (2.9)

is not the appropriate form for a low-energy expansion, since A(s,t) does not fulfil chiral power
counting due to a cancelation between the leading pieces of A(s,t) and B(s,t). Therefore, Ty is
parameterized in terms of the two amplitudes D(s,t) and B(s,t) according to

ToN = u(p'){D(s,t) - m[g', g]B(s,t)}u(p), D(s,t) = A(s,t) + vB(s, t). (2.10)

The low-energy expansion of D(s,t) and B(s,t) starts at O(p) and O(p~!) and is determined up to
O(p?) and O(p) by our leading-loop calculation, respectively.
In the isospin limit, Ty may be decomposed as

1
7% — X}v' <T+5ab + T_§[T“,Tb]> XN, (2.11)

where 7 are the Pauli-matrices and xn (xn7) is the isospinor for the incoming (outgoing) nucleon. In
the Condon-Shortley phase convention, the physical amplitudes are related to 7% by (we only display
the channels to be considered later)

Tﬂ*p = T7r*p—>7r*p =T+ +1,
T7r+p = T7r+p—>7r+p =Tt - T,

T = Trm o = —V2T7. (2.12)

2.2 Partial wave expansion of the amplitude

Above threshold, the partial wave decomposition of the 7N scattering amplitude takes the form [14]

Ton(s,) = VImiv2mi] Y { (14 DThi () + 1T () Pi(2)
=0

VR d . q

- (Tl =T o (@ x ) R . A = £RE. a= o (219)
where the T;4+ have definite orbital momentum [ and total angular momentum j = [ +1/2. In the
following, we consider the partial waves f;4+ defined by

T (S) _ 87‘('\/5 1 _ 877\/§fl:|:(3)
B il ot die — i v2miy/2mg

(2.14)



choosing the normalization such that foy corresponds to the S-wave scattering length. The alternative
representation of the scattering amplitude

Ton(s,t) =V2mi/2m NMXf {g s,t) + io - q X q) h(s,t)}xi,

N = ,/E tmi =,/ =TT '+mf (2.15)

is especially suitable for a calculation in heavy-baryon ChPT. In a non-relativistic expansion, h(s,t)
and g(s,t) can be interpreted as the spin-flip and spin-non-flip part of the amplitude, respectively.
The inversion of ([2I3]) and ([2.15]) reads

\/E —I—ml\/Er—l-mf

frels) = 1674/s

1
/dz {9(s,)Pi(2) + h(s, )|alld'| (Pe1(2) — 2Fi(2))},  (2.16)

which can be rewritten in terms of A(s,t) and B(s,t) as

) = T ) (5 - M)

+ vE _fg;\\//? — {—Alﬂ(S) + <\/g + w> Blil(s)} ’ 217

where we have defined the partial wave projections

1 1
- / A2 A(s,0)Pi(2), Bi(s) = / d2B(s, 1) Py(2). (2.18)
-1 —1

In the isospin limit, (2.I7) coincides with the expressions given in [15]. As pointed out in [5], it is
favorable not to work with the P-waves Pi(s) = fi—(s) and Ps(s) = fi+(s) directly, since in the
Pi-projection the isospin conserving amplitude itself becomes very small, such that the expected large
(relative) isospin breaking effect is experimentally not amenable. As we will see in Sect. B.2.3] the
results in this projection are very sensitive to the precise values of the LECs and therefore meaningful
quantitative statements cannot be made[#] Instead, we use G(s) and H(s) defined by

Ps(s) =G(s) +H(s), Pi(s)=G(s)—2H(s). (2.19)

Actually, these projections exactly correspond to the spin-flip and spin-non-flip amplitudes

1
G(s) = Ve +fg;\\//§p, - /dz g(s,t)Pi(2),
1
1
i) = IV [ | () — 2 () 220)

#1This is similar to isospin-breaking corrections to the 7°N scattering lengths and their normalization with respect to
the isoscalar scattering length a™, cf. [7].



2.3 Effective Lagrangian and chiral counting

The framework to systematically analyze isospin breaking in pion—nucleon scattering is baryon chiral
perturbation theory. In this section, we briefly lay out the framework. Our starting point is the chiral
effective Lagrangian,

L =LY+ L2 428 420 40 4. (2.21)

formulated in terms of the asymptotically observable pion and nucleon fields, and including also scalar
sources and virtual photons to incorporate the effects of strong and electromagnetic isospin breaking.
The superscript in (2:21]) denotes the chiral dimension, the ellipsis represents terms of higher order not
needed in our investigation. The couplings appearing in Lqg are called low-energy constants (LECs),
they encode information about the higher mass states of QCD that are not active degrees of freedom
of the effective field theory.

All monomials in the pertinent fields and sources that make up the terms of the effective Lagrangian
are constructed according to the following counting rules:

M, ~O(p), m~0OQ1), e~O0O(p), my,mgnr~ O(pz), t~ O(pz), s — st ~ O(p),  (2.22)

where p is a genuine small parameter and sy, denotes the threshold energy squared of the correspond-
ing channel. Note that pion four- and nucleon three-momenta are of O(p). In what follows, we work
to leading order in isospin breaking, collected in the small parameter 4,

6 = {mgq — my, e} . (2.23)

The precise form of the effective Lagrangian employed is given in App. [Al

Based on the effective Lagrangian, the pion—nucleon scattering amplitude acquires a chiral expan-
sion in terms of tree and loop graphs. In this paper, we work to third order in the chiral expansion.
All the various contributions will be developed in detail in the following sections, here we only make a
few general remarks. Tree diagrams start at O(p) (including one-photon-exchange graphs) and obtain
strong and electromagnetic corrections at orders O(p?) and O(p3). One-loop graphs that perturba-
tively restore unitarity start contributing at O(p3). Since we work in a covariant formulation of baryon
chiral perturbation theory, we utilize the infrared regularization method developed in [11] to deal with
the power counting violations generated by the nucleon mass, m ~ A, with A, = 47 F; ~ 1GeV the
scale of chiral symmetry breaking. This method allows for a consistent power counting by uniquely
separating the soft from the hard parts in any given one-loop diagram. In a nutshell, all one has to do
is a rearrangement of the Feynman parameter integration corresponding to the combination of light
and heavy degrees of freedom,

/Oldz(...)H/Owdz(...)—/lwdz(...):I+R, (2.24)

where the infrared singular part I contains the soft (chiral) physics and obeys power counting while
the regular part, generated from the loop momenta of the order of the nucleon mass, leads to power
counting violations. However, it can be shown that the contributions to R are polynomials in ex-
ternal momenta and the pion mass squared. They may therefore be absorbed in the low-energy
constants of the effective Lagrangian and need not to be considered explicitly. Moreover, the infrared-
regularization prescription amounts to resumming 1/m insertions in certain heavy-baryon diagrams.
As a consequence of these higher-order contributions, exact renormalization no longer works: a resid-
ual dependence on the renormalization scale u is generated. Finally, the central values of our results
will be given for a scale y = 1GeV, while the sensitivity to the variation of p can be regarded as
an indication how large the impact of higher orders will at least be. For more details on the various
formulations and facets of baryon chiral perturbation theory, we refer to the recent review [16].



Figure 1: Feynman diagrams for 7N scattering at O(p). Solid, dashed, and wiggly lines, denote
nucleons, pions, and photons, respectively.

2.4 Leading-order result (tree graphs)

In this work, we derive the full amplitude for the channels 7¥p — 7¥p and 7~p — 7n (referred

to as the charge exchange reaction Teex = T;Cj‘p), which are the only ones directly accessible in 7N
scattering experiments.

First of all, we write down the leading-order amplitudes, which will be needed for future reference.
For this purpose, all nucleon masses may be replaced by m. The diagrams contributing at O(p) are
depicted in Fig. [l and yield within the given simplification

1 2 s+3m?  2e? 1 2 u+3m? 22
B5p(s1) = 5~ 2??2 R A T 2517?2 w—m?
V2 V29 (54+3m?  u+3m?
“orz T e (s—m2 T me
2

m
DIO,(s,t) = T +vBLO,(s.1), DL, (s,

DEO(s,t) = vBLO(s,1),

cex cex

BMO(s,t) =

mg
t)= %z + vBL?,(5,1). (2.25)

In the context of bremsstrahlung and the cancelation of infrared divergences we will need the spin
averaged squared matrix element (Trxn = @ (p') Trnu(p))

Man|* = % > ITen]? = %Tr{(p +me) Trn (p+ mi) OTijyO} : (2.26)

spins

for which we find at leading order

|M7rip|2 (4m ) (Dwip) +2v tDwipBwip 12 {t - 4M2 +4dv 2} (Bwip) )
IMES? = (4m?* — 1) (DQC?() + 20t DXOBLO 1 {A (t, M2, M2%) + 4tv°} (BCLCEQ) . (2.27)

2.5 Tree diagrams beyond leading order

As depicted in Fig. 2] there are four types of tree diagrams involving vertices beyond leading order:
contact-term corrections to the Weinberg—Tomozawa (WT) term, to the 7NN coupling and the one
photon exchange, and mass insertions for the intermediate nucleon. The effect of the latter can be



Figure 2: Contact-term contributions. Heavy dots/squares refer to insertions suppressed by one/two
chiral orders, respectively.

accounted for by shifting the bare mass m in the Lagrangian according to

2F2
m — mp =m — 4de; M2, + 2Bcs (ma — my) — 5 (fi+ fa+ f3)
mg® 27 2 2 7 2 g9 3 3 4
=mp = o3z (2MzIr (m®) + Moo Too (m”)) = my, + B (2M; + M) + O(p*),
2 12
- e‘F
m — 1y =m — 4de; M2, — 2Bcs (ma — my) — 5 (fr—fa+ f3) (2.28)
—m _m_92(2M2I (m?) + M2y L0 (m?)) = mn + i (2M2 + M2,) + O(p")
=M T oy Wt w0 L =M T g \EHe T M P

for the proton and neutron, respectively, where I is defined in App. B2l Actually, we must carefully
distinguish between the bare mass m in the Lagrangian, which is nothing but the mass of the nucleon in
the chiral limit, and the masses of the proton and neutron entering the calculation by the requirement
that the external particles are on their physical mass shell. However, in loops we can still use m as
a generic nucleon mass to be identified with my, in the end, since the difference m, — m only starts
at second chiral order and is therefore beyond the accuracy we are working at. For the same reason,
we may replace m by m, directly in the case of the contact-term contributions. Nevertheless, once
the shift (Z228) in the mass parameters of the Lagrangian is performed, the error which is made when
identifying m — m,, is only of order O(p?).

El(\lf), El(\? 3), as well as L'l(\?Qp ) (see App. [Al for precise definitions), yield corrections to the WT
vertex. We will always consider s and t as the independent kinematical variables and u to be fixed
by the Mandelstam relation (2.7)). Amplitudes originating from WT-type topologies and nucleon-pole
diagrams will be referred to as vector- and axial-type contributions, respectively. The full vector-type
tree level amplitudes DV (s,t) and BY(s,t) read

14 4M2061 62 2 9 9 63 9 62
D;*p(s’t) - 2F2 1:7’r2 + 8m129F2 (16mpy —t ) + 2 (2M7r - t) D) (4fl + f2)
2v(d; +d dsv SvM?,d
| vl 1 dy) = 2) (207 — 1) + gy (16m” — £2) + Tg” + 2% (g6 + gs)
p
vV 4M2()Cl Co 2 92 2 C3 2 62
rp(8:t) = Top2 ;2 8m2F? (16myr* — %) + 72 (2M7 —t) - o (41 + f2)
2v(dy +d d S8vM?,d
_ Zvidtda) ;;r 2) (207 1) — - 3;';2 (16m20? — t2) — Tg“’ 2620 (g5 + g5) ,
m
p
1 v csB(mq —my) € fa  v(di+d2) . o 9 myp + my
ﬁDe@x(s’t) BT 2 T T g (Mt My 1) Comy



_ 7{ (2(myp + ma)v — Ag)? = (¢ +m2 —m2)” } (2(myp + ma)v — Ay)

32m3 F2
ds 2 2 2\2
A D) Ag)? — (t— } 2 Ar
32m%F2{( (mp +ma)v + Ag)? — (= m2 +m2)* | (2my +ma)v + Ay)
wM?ds my +my gy
_ F72r pmp n S (2(mp +mn)v +m3 —m3)
1 2mpC4 4mpu (d14 d15) 1 1 (mp + mn)04
B;*p(sat) = 22 + 2 + 2 ) \/—B(\:fex( ) - _2F2 - 2 )
1 2m (&} dmpv (d14 — d15)

Corrections to the 7NN coupling are generated by El(\?g) and EI(\?QP ). They may be incorporated
replacing g by
G =g+2M? (2di6 — dis) + € F% (g1 + g2) (2.30)
Gp = g +2M2 (2d16 — dig) + €2 F? (g1 + g2 + g3 + ga) — 2B (mq — my) (2d17 — dis — 2d1)
Gn = g+ 2M?2 (2d1g — dig) + €2F? (g1 + g2 — g3) + 2B (mq — my) (2d17 — dis — 2d19)

for pn, pp and nn couplings, respectively. In terms of these quantities, we find for the full axial-type
tree level amplitudes A®(s,t) and B*(s,t):

~2 2 2 2
g s—mg  Amg® s—mg 9
A2 (s mp +m — s+ ms +2mpmy) ,
o(8) = 5 (M “)s—mg 2F? (5 —m2)> ( " )
~9 2 2
a gt stmp+ 2mpmy  Amg 5+ mpmy
Bﬂ_fp(S) = oF2 S—m% + 2 (mp+mn) (8_m2)27
n

?r+p( ) = Ai*p(u)a B;ﬂu(s?t) = _B?r*p(u%

Aa( ):_nyn 1 {(s—mﬁ)(mp+mn)+ﬁ(s+2mnmp+mﬁ)}

V2 e 4F% s —m?2 2
Am92{s—|—2mpmm—Hn?1 L Ay Ax my (3s +m2) +my (s + 3m? )}
4F2 S — m% 2 (3 m%)
99 1 Ay
4—Fp2u—m2{ (u—m2) (mp + my) — - (u+ 2mamy + m3) }
p
Amg? {u + 2mpmy +m2 Ayx myp (3u+m2) +my (u+3m3) }
4F? u—m2 2 (u—m2)
LB‘“ (5.8) = Gin 8 +m2 + 2mpmy B Amg? 5(3my + myp) + m2(3myp + my)
\/i cex 4F2 S—’I’fl,%1 4F2 (3—777%)2
GGp u+m2+2mymy  Amg? u(3mp 4+ my) +m?2(3my +my,)
AF? —m2 - 4AF? 2)2 ’ (2:31)
U (u —m3)
where
mg? = g° (2Mfr’ + Mi’o)

(2MZI: (m?) + M2 I (m?)) = — +0(p"), (2.32)

ATRZWL]D/H_TNRP/H: 2F2 291 F2

and g2, 99p, and ggn, are understood such that only terms linear in the LECs should be retained. We
have checked explicitly that the double poles in (Z31]) and the loop diagrams (s1), (s14), and (a1p),
indeed cancel, as required by the analytic properties of the S-matrix.
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Finally, £y 7, Ly '» Lz ’/, and L; 7, provide contact-term contributions to the one photon
exchange. The full tree amplitudes DP(s,t) and BP(s,t) turn out to be

2¢%vy  2e’v 40ety
Di*p(t) = _Diﬂn( ) = — 7 + Wlﬁ + 2%y (d6 + 2d7) — o (]{71 + ko + l5 — 2ho + h4) ,
2¢? 2¢? 40e*
P _ _ nRrb _ - -1, _ _
Bﬂ,p(t) = BwLp( ) = 7 (1+c6+cr)+ ja lg of (k1 + ko + 15 — 2hy + hy) . (2.33)

2.6 Renormalization of F and g

For the numerical evaluation, we aim to replace the pion decay constant F and the axial charge of
the nucleon g in the chiral limit by the physical values F; and ga, respectively. Since both obtain
corrections suppressed by two chiral orders, this affects only the leading-order diagrams. The explicit
expressions in the isospin limit read [17]

M2 1 M2 4
and [13,18]
AdE . M2 (292 + 1) M2 M2 92M2
=gel+ 1T ~log —F — = M?). 2.
gA g{ + g 1672 F2 og M2 16722 + O( 7r) ( 35)

Numerically, we use F; = (92.2 £ 0.2) MeV and |ga| = 1.2695 £ 0.0029 as quoted in [19]. We do not
consider isospin breaking in F; and ga However, to ensure consistency with the loop contributions,
the chirally expanded version (2.35]) is replaced by the corresponding expression calculated in infrared
regularization (I5 and I are defined in App.

2
ga = 9{1 + W <M7% (20m® — 13M72) IX(0) — 11M2I, (m?)

Adi M2 2M2 -,
_ I _
Ty 2 I () + e 1672F2

M2 M2
872 /‘2

™

log —-
112

2M2 9 2 _M2 M2 M2
g*My (2m” — My) n } (2.36)

Finally, we remark that the dependence on dig cancels between the renormalization of gao and the
corrections to the nucleon-pole diagrams.

2.7 Wave function renormalization

As a consequence of the LSZ reduction formula, the full 7V scattering amplitude depends on the wave
function renormalization of pion and nucleon fields according to

Ton = /2l Zi\/ 25\ (0 Eovu (p (2.37)

where Ty is the amputated amplitude, while Zi and Z1 (ZL and Zfr) denote the wave function
renormalization of the initial (final) nucleon and pion, respectively.

The Feynman diagrams contributing to the wave function renormalization of pion and nucleon are
shown in Figs. Bland @l The corresponding wave function renormalization factors can be deduced from
the self energy ¥ (p) via

dX
In=1+ ) fo, Zp=14—5F 4 (2.38)
dﬁ p=m dp p?=M3

#2In fact, radiative corrections are taken into account when extracting Fy and ga from experiment. Moreover, the
final accuracy of our results will be rather limited by unknown LECs than by the uncertainties in ga and F.
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Figure 4: Wave function renormalization of the nucleon.

where the ellipsis indicates higher orders. Note that the wave function renormalization factors depend
on the parametrization of the pion ﬁelds 1 In the o parametrization (A.H]) we obtal

2 2
e M=C 20
Zr=1—— (Lp+14+0C,;) — —ZL — 2 (k; + k

gz Ln t 14 Co) = g5 — g ¢ (it k),

MﬁoCﬂ-O 20 2 2
Zﬂo:1—m—§e (k1+]€2)—2€ (k4—2k3),

2
g 0
Zy=1+ m{2 (4m? — 2M2) M2I7(0) + (4m? — 2M2)) M2 17 (0) — 4M21, (m?)
M? M? e?
2 2 70
— 2M7r0]7'(0 (m ) - 8—71_7;C7|— — WC}O}, Zp == Zn . ) (Lﬂ- + 1 + Cﬂ-) . (239)

Thus, the wave function renormalization factors are UV and (in the case of the charged particles) IR
divergent and, with respect to the cancelation of divergences, constitute therefore an indispensable
part of the amplitude. Their contributions D¥(s,¢) and B¥!(s,t) due to §Z = Z — 1 expressed in
terms of the leading-order amplitudes (2.25]) read

DY (s,1) = (0Zx + 62,) DX2 (5,1), BYL (s.t) = (625 + 6Z,) B2 (s,1),

DY (s,t) = = (02 + 0Zp0 + 62y + 07y) DEQ (s, 1),

Bl (s,t) =

1
2
1
3 (6Zy + 0Z 0 + 6Zy + 6Zy) BEO (s, 1). (2.40)

2.8 Loop diagrams

At order O(p?) loop graphs solely contain vertices from the leading-order Lagrangians (A-2)). The list of
diagrams depicted in Figs. BHI4] comprises contributions from purely strong diagrams, virtual photon
corrections to vector-type and axial-type diagrams, and, for the elastic channels, loop corrections
to the one photon exchange. At the order we are working all nucleon masses may be replaced by
a generic nucleon mass m (cf. Sect. 2.5]), which simplifies the calculation tremendously. However,
counting e ~ O(p) the pion mass difference is of the same chiral order as the pion masses themselves
and therefore has to be kept. Apart from virtual photons, this is the second source through which
isospin violation manifests itself in the loop contributions.

#3 At O(pa), Zn is accidentally independent of the parametrization, since no vertices involving more than two pions
occur.
#4C,, Ly, and the loop functions I%, I, are defined in Apps. [B1 and [B:2] respectively.
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The evaluation of the diagrams proceeds as usual: at first, the Dirac structure is simplified by
application of the Dirac equation, such that the power of the loop momentum k* in the numerator
is reduced as far as possible. The remaining tensor integrals are reduced to scalar loop functions by
means of Lorentz invariance. As for the strong diagrams, we follow the conventions in [13] for the basis
vectors to facilitate the comparison to this work. The details of the tensor decomposition can be found
in App.[B.3] where in particular the question of how to properly incorporate the pion mass difference
is addressed. Since u(p')¢'u(p) = u(p')gu(p) up to higher orders, A(s,t) and B(s,t) as defined in (Z9)
can be simply read off as prefactors of 1 and ¢, respectively, and D(s,t) then follows from (ZI0).
The results for the individual diagrams are given in App.[Cl. To arrive at these expressions, we have
made use of the relations between the basis functions, which in some cases simplifies the formulae
considerably.

The results for the scalar loop functions calculated in infrared regularization are presented in
App.[B.2l As most of the work to arrive at these expressions is rather straightforward but tedious,
we will focus in the remaining part of this section on the issues which are more intricate, namely the
calculation of the so-called box graphs, the extraction of infrared divergences and the separation of
the Coulomb pole generated by virtual photons in a threshold expansion of the amplitude.

2.8.1 Box graphs

We will refer to any diagram whose loop contains four propagators as “box graph”. These topologies

lead to scalar loop integrals which are technically the most difficult ones we have to deal with, as

three Feynman parameters are needed to perform the momentum integration in the usual manner.

Having done the Feynman parameter integration corresponding to infrared regularization, we are still

left with two Feynman parameter integrals. The analytic properties of these integrals are far from

obvious, which in particular causes numerical integration to fail as soon as one goes above threshold.
Let us first consider the box diagram consisting of three nucleon and one meson propagator

d%k 1
R e e i (o i o s BN X

For simplicity, we will neglect the pion mass difference in this section (the general case is treated in
App. B2:5). Below threshold, the representation

1 1
co—l—zg 20 <0
Ilgst:/da:/dy arccos[—i]—l-— ,
0 167247 | o072 Voral 2
(1
2 4

0
A=(1-y)s+ym® —z(l —2)y’t —y(1 —y) M7,
M 1— s —m? M?
20 = + ( 2A)( )7 o = TW _ Zg, (2.42)

may be used. One way to obtain a representation valid above threshold is the application of dispersion
relations, since the regular part is numerically harmless. However, I13(s,t) is also needed with the pion
replaced by a photon, and the virtual photon leads to an IR divergence. The prescription how to deal
with the vanishing photon mass is to send m, — 0 at the very end of the calculation. Therefore, we
first have to analytically continue above threshold and thereafter put m., — 0, which cannot be done
on the basis of (242)). As shown explicitly in the appendix, dispersion relations are not appropriate
either, such that it is inevitable to improve (2.42]), i.e. the y integration should be performed. The
second term is a rational function in y and can be integrated by means of a partial fraction expansion.
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Figure 5: Strong one-loop diagrams for 7~ p — 7 p.
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Figure 6: Strong one-loop diagrams for 7+tp — 7t p.
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Figure 12: Electromagnetic axial-type diagrams for 77p — 7 tp.
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After an integration by parts

1 Co N Zo 2 4M7% {2y(y1 + y2) — 4y1y2 } arccos [ — \/cz(il-—zz:| 1
— 0
/dy 5 3/2 arccos [ — 2} = VYR = =
) 2A2¢ Vo + 28 (2)®2(y1 — 12)*V/ (1 — y)(y — 12) 0
1

4N / 2y(y1 + y2) — dy1y2 d [ 20 }
- [ dy — arccos — |, (2.43)

(c2)3/2 s (y1 —y2)2/ (1 —y)(y — y2) Vo + 28

where the notation of App. has been used, also the first term is reduced to an integral over a
rational function in y, since as far as square roots are concerned

i arccos |: — %0 :| ~ 1
Va+22l V-9 —u)

dy
The z integration turns out to be harmless, such that the continuation above threshold can be per-
formed and the IR divergence for m, — 0 extracted. The final results are again summarized in

App.[B.2.5l

(2.44)

2.8.2 Extraction of infrared divergences

The following scalar loop functions possess an IR divergence: I (¢) (cf. diagram (v3)), Vao(t) (v4),
Vii(s) (v), I)5(s,t) (a7), A2i(s,t) (asg), Ai2(s,t) (ag), and Pi1(s,t) (pg). Thereof, the first two
integrals do not induce any problems and I75(s,t) has already been treated in the previous section,
but unfortunately this procedure cannot be directly adopted to the remaining cases. Let us first
consider Vj1(s), which is the simplest remaining task, as Aoy (s,t), A12(s,t), as well as P1(s,t), are
box graphs. The following procedure is inspired by [20].

We extract the IR divergence from the loop integral calculated in ordinary dimensional regulariza-

tio

1 dxl dxg dajg (5(1 — X1 — X2 —xg)
lem . 2.45
(s) = 1672 / xym?2 + 23 M2 4 x3m? — zoxs (s — m? — M2) (245)
The substitution
Tro — (1 — xl)xg, xr3 — (1 — xl)a:g, (2.46)
implies
0(1l—a9—
01—z —20—23) = (1 —21)(1 —29 —23)) = (1_—23313) (2.47)
which leads to
) 1 1
dlm _ -y _ 2 2
Vit = T6.2 /dx/dyym2 — ) s(x) =am”+ (1 —z)Mz —z(1 —x)s. (2.48)
0 0

Performing the y integration, we finally arrive at

1 1
o 1 x dz log =2 s(@)
Vi (s) = ﬁp{_L/sx+/) } (2.49)

0 0

#5The regular part is finite in the limit of vanishing photon mass, such that m~ may be put equal to zero right from
the start.
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For the remaining box graphs, this approach has to be generalized, which we will illustrate for
Aia(s,t) (A21(s,t) and Pi1(s,t) are treated analogously). The starting point is again

; 1 dzy drodrsdry 6(1 — 21 — x9 — 23 —
Adim (g gy — = / z1degdrgdes 6(1 — 2z — 29 — 3 — 24) 5 (2.50)
T (a;lm?Y —x3 (s —m?) + (z2¢' + z3X + x4p)2)
Separating (and performing) the x; integration with the help of the substitution
0(1 —x9 — 3 —
x; — (1—mz)a;, i€{2,3,4}, (1 —o21— 20— 23— 14) — (L= 22— 23— 24) (2.51)

1—a1
yields

. 1 m3 — w3 (s —m?)

Adlm )= — dzo dza d g

12 (5:8) = 70 / T2 43 x4{{f($2,g;3,g;4) —x3 (s —m?)} s%(x2, 23, 4)

m?Y—l—xg(s—mQ) _ arctan m,2y+x3(s—m2)—2f(m2,x3,x4)

v —s2(z2,23,x4) V—52(22,73,24) >
(5(1 — X9 — I3 — LE4),

(—52(xg, x3,24))3/2
2
s (g, T3, T4) = mf; + 22 (s - m2) - Zm?Y {2f(:1:2,3:3,3:4) — T3 (s - m2)} ,

fw2, w3, 24) = (22" + 233 + 33411)2 . (2.52)

4m,2y <arctan
+

The structure of this formula suggests to repeat the same steps for x3

5(1 — T2 — :E4)

XT; — (1 — xg)xi, 1€ {2,4}, 5(1 — X9 — X3 — ZE4) — 1

(2.53)
In this way, the x3 integration factorizes and the d-function can be applied. The result of this manip-
ulation remarkably resembles (2.42]), and indeed the z3 integration can be treated in the same way as
the y integration in the previous section. Thereafter, the limit m, — 0 may finally be taken. In this
way, we find the IR divergence ~ logm., and the correct finite terms. As compared to (B.24)), putting
the photon mass to zero at the end simplifies the result considerably, while the derivation requires
about the same amount of work.

2.8.3 Coulomb pole

The N scattering amplitude at threshold contains Coulomb singularities once virtual photons are
included. In particular, the threshold expansion of loop diagrams which allow for an exchange of a
virtual photon corresponding to a static Coulomb potential involves a term o 1/|p|, where p is the
CMS momentum of the incoming particles. The coefficient of the Coulomb pole can be associated with
the N scattering amplitude itself. In this section, we gather the parts of the amplitude contributing
to the Coulomb pole in order to confirm this statement.

The diagrams which give rise to the Coulomb pole are (v1) and (as) for 77 p — 7~ p, (v1) and (ag)
for 7*p — 7 p, and (v1), (as), and (ag), for 7~p — 7n, respectively. Based on the representations
given in App. [B.2.9] and [B.2.11] one can show that for p — 0

Vals) = gy~ O (= m?) () = — e+ 0(1),
= %’iirb {Ip| (Va1 (s) + (u— m2) Ara(u,t))} =0. (2.54)
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For Ajs(u,t), this relies on the observation that

7.(.2

+
wpu70 _ ,Cex U,—AW — _ _|_
912 ( ) 912 ( ) (m+M7r) ‘p’

O(1). (2.55)

We denote the analogues of the tree amplitudes (2.25) with the one-photon-exchange contributions
o 1/t subtracted by DO (s,t) and B"C(s,t). The Coulomb pole in Vi;(s) may be written as

1 1
= = @ . 2.56
16AY/2 (s,m2, M2)  32(m+ M;) |p| +0O(pl) (2.56)

ole
VI5(s)

Expressing the pole in Ajs(u,t) by lel()lc(s) via (2.54]), we find that the Coulomb-pole contributions

to the full amplitude can be summarized in the simple form

BP(s,t) = —2(Qin + Qou)i € (s —m? — M2) VE'(s)BFO(s,1), i€ {n p,m"p,cex},

(2

DZPOIC(S, t) = —2(Qin + Qout )i e? (3 —m?— Mg) VﬁOlC(S)DLO(S’ t), (2.57)

(2

where Qi /ou; are given as the products of the charges of the particles emitting and absorbing the
photon in the initial and final state, respectively, such that

(Qin + Qout)n*p = _27 (Qin + Qout)n+p = 27 (Qin + Qout)cex = -1 (258)

It is obvious from the above that the perturbative treatment of photon exchange breaks down for
very small [p|. The Coulomb pole  1/|p| discussed above is the leading, O(e?) approximation to the
Gamow—Sommerfeld factor [21,22]

Qin/oute2 5 —m? — ME
4 ANY2(s,m?2, M2)’

21

G(U) = =1—-m+ 0(772)7 Min/out = (259)

op@mn) =1
which resums Coulomb photon exchange to all orders. Obviously, the one-photon approximation is
insufficient as soon as =~ 1. If one attempts to describe physical data also very close to threshold, one
has to multiply the amplitude with a factor of /G (7in)G(fout); in order to avoid double counting, we
have to remove the approximation to the Coulomb pole as contained in our one-loop representation.
In Sect. Bl we will discuss results for amplitudes purified of Coulomb photon effects in this sense.

2.9 Bremsstrahlung

The appearance of infrared divergences in T,y renders the amplitude ill-defined if the photon mass is
sent to zero. The solution to this problem is well known [23-25]: it is inconsistent to merely account
for virtual photons, since real photons can be emitted with arbitrarily low energies in the final state
as soon as charged particles are involved, which inevitably requires the inclusion of bremsstrahlung.
One can never specify the number of escaped photons exactly, but has to decoherently sum over all
processes integrating the photon energies up to some typical detector resolution Fiax (and over the
phase space available). The integration over propagators from which a photon is radiated generates
another infrared divergence which cancels the singularities caused by virtual photons. In this way, the
inclusive cross section becomes infrared finite.

To the order we are working, it suffices to consider the emission of a single photon to achieve this
cancelation of infrared divergences in the total cross section

Jtot(37 ta Emax) = UWN(Sa t) + 0-’*/(87 t» Emax) (260)
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Figure 15: Bremsstrahlung diagrams for 7=p — 77 p.

Denoting the photon momentum by k£ = (E,,k) and the amplitude for bremsstrahlung by

T, = a(p')e, (k) T4 (0,0’ ¢, 4 k)u(p), (2.61)

the cross section for the pure scattering process o,n(s,t) and for the bremsstrahlung correction
0+(5,t, Fax) can be obtained from the spin and polarization averaged squared matrix elements

1
M, = 5 Y ILP M= Z Ten)?, (2.62)
spins,pol. spms
via
oo (s, 1) /d@wm (2m) 6@ (p+ g — 1 — ¢,
dgod’k 20 \45(4
0+(5,t; Bmax) = f / 32E M, [7(2m) ot )(p—i—q —p' =4 — k), (2.63)
E’Y<Emax

where the flux factor F and the two-body phase space d¢s are given by

d3 ! d3 !
F=4V(p-q? —m?q®, dop = b a_ (2.64)

(2m)32E,, (27)32E,

Since the flux is determined solely by the incoming particles, F is the same for both processes. The
Feynman diagrams for bremsstrahlung are depicted in Figs. I5HIT

2.9.1 Soft-photon approximation

It is clear from the previous discussion that in general the infrared divergences only cancel at the level
of cross sections. In particular, one has to perform the phase space integration of the amplitude, which
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is a considerable task if analytical expressions are aimed for. The amount of work can be reduced
significantly be means of the so-called soft-photon approximation, in which already the sum of the
squared amplitudes is infrared finite. It neglects terms of order O(FEpax), but reproduces singular
structures and constant terms correctly.

The crucial approximation is to drop the photon momentum in the delta function. In principle,
this amounts to reducing the three-body phase space integration to a two-body one by setting k£ = 0.
In fact, every term in | M., |2, which is not of order O(k~2) may be neglected, such that effectively only

expressions of the form
1

(2p1 - k£ m?Y) (2p2 - k £ m?y)

(2.65)

need to be integrated over the photon momentum. That the error is indeed of order O(FEyax) follows
from dimensional analysis

d*k 1 &k Ermax
~ -3~ 2.
/ (27T)32E,\/ 2p1 -k 2p2 -k / k3 0g < m, > ) ( 66)

E»y <Fmax E’y <FEmax

/ Bk 1 / @ .
(2m)32E., 2p - k k2 e

E»y <Fmax E'y<Emax

In particular, it is clear that terms of order O(1) can only originate from the phase space integration
of (2.65). Moreover, the m2 terms in the denominator of ([2.65) may be omitted, while the full energy-
momentum relation E,% =K%+ mgy is necessary to arrive at the correct constant terms. Neglecting m.,
therein merely reproduces the infrared divergence. This result can be understood from the observation
that k enters the energy-momentum relation quadratically, such that both terms are of the same size
in the integration region where |k| ~ m., while the m,2y terms in (2.65]) are still suppressed by one
order of m~ in this domain and therefore constitute a higher-order effect. For p; = ps = p = (E,, p),
we obtain

S ! m B Ey+lp
T log =5—+ —tlog =—— 0 + O 2.67
/ (2m)32E, (2p - k)2 327T2p2{ Bl ¢ p } +O(m,), (2.67)

max
Ey<FEmax

while the formula for the general case reads

/ Bk 1 _ 1 / /de,; E; + |p| L O(m.)
(2m)32E, 2p1 -k 2py -k 3272 4E§m 2 1Bl Ey— [pl b

E’y <FEmax

p=ap1+ (1 —xz)p2 = (Ez D). (2.68)

Finally, the soft-photon approximation allows for the application of the usual expressions for the
Mandelstam variables, since the difference (p’ +¢')?> —s = (p+q — k)? —s = —2k - (p +q) + m —
—2k - (p+ q) yields only contributions of order O(Eyayx) even when multiplied by O(k~?2) terms, Wthh
is beyond the accuracy of this approximation.

#6 A comparison of the soft-photon approximation and the exact result in the context of radiative corrections to kaon
decays can be found in [26].
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2.9.2 Bremsstrahlung amplitude

The contributions from the individual diagrams are given in App. Their sum can be brought into
the following form

Ti, = gy +alg o+ abg +aslg — " et baf, TR, =T (o —d),

Tl = bigy"d" + bad' gy + b5’ + bary",
e 1 4m?g? e 1 4m?g?
“1:——2/—{1—92— 3 2}+ 3 {1—92—W’
2F22p - k (p+q?2—m 2F%22p -k P +q¢)—m

e 4m?2g? 2q' + k)H 2q¢'*
a‘z‘:ﬁ{l—gz— 29 2}{( ; ) + = },
(p+4q)?—m 2¢ -k 20k

" e 2 4m?g? (2 — k)" 2¢"
ay = =551 —9" — — N2 _ 2 ; T35 ’
2F P +q)?—m 2q - k 20 -k

meg® [ 1 1 e(l1-¢*)[2p-q+¢* 20 -q +q"
aqs = — ar = — —
TR 2wk kP 2F2 ok w-k [
o - meg® [ (2¢' + k)" (29 k)" 2(g—¢)"
6 F? 2q - k 2q -k 2k
b V2meg?
1= ’
F2((p —q)* —m?)((p — ¢')* — m?)
B \/§€ 1 ) 2m292 2m292
2Torrop k| Y T WrdR-m2 W —qr-m2)’
w_ V2e (2q — k)* 2 2m2g? B 2m?g?
2F% 2q-k P +d)2-m> (p—q)*—m?[
V2e 1 2m2g2
b __ v/ - 1_ 2 2 o] 12 _—2 A 269
1= ey (L@ ) - s d (2.69)

where terms generated by the one-photon-exchange diagrams are omitted. On the level of the soft-
photon approximation they can be restored by the replacement

4e? F?
1—g2—>1—gz— et (2.70)
in a1, ay, af and as. As a check on (2.69), we have verified explicitly that the Ward identity
k‘qur‘,p = k“T7’rL+p =k, Tt =0 (2.71)

is fulfilled. Besides m,2y terms in the denominators, (2.69)) is still exact. The soft-photon approximation
implies that all £’s in the numerators may be dropped and the usual definitions for the Mandelstam
variables applied, since we are only interested in O(k~?) terms in |./\/l,y|2 in the end. In particular, this
means that b; does not contribute. In view of this procedure, one might worry what happens to gauge
invariance. Indeed, within the above approximation ([Z71]) is only valid up to terms of order O(k), as
the terms omitted in T/ are by construction of order O(1). However, using the photon polarization
sum in the form [27]

kK o, 1

> ek, Nev(k A) = =g + kucy + kuey, €= e o

A==%1

(2.72)
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it is clear that in

1 *
M, |? = 5 D ek, Ney (k, )T ((pf + m)T(p + m)y*(T%)14°) (2.73)
A=+1
the additional terms due to k,T* are at least of order O(k™!), which goes beyond the soft-photon
approximation. In this sense, gauge invariance is only maintained up to the order one is working at.

Nevertheless, it follows from (2.72]) and (2.73]) that the squared matrix element for the bremsstrahlung
process is still given by

M, |? = —%Tr (¢ +m)TH(p+ m)y"T}°) . (2.74)

The evaluation of the traces in (2.74]) is now straightforward, but tedious. Since we are eventually
interested in

I L SYR (2.75)
) (@er)d2E, " T '
the spin- and polarization-averaged squared matrix element integrated over the photon energies, all
that remains to be done is the k integration, which may be performed on the basis of (Z68]). The final
result can be expressed as a correction factor to the leading-order formula for 7N scattering (2:27])

2
— e
‘M’YF = @‘M%?/PC (37t7 Emax) 5 (276)
where
m?2 om2 —t oM? —t
_ Y
oy (5.t Bnw) = o {4 = 2L ) - 222 0.0

s —m?2— M? 2 _ M2

+ 2T7rgll (s,m, M) — QTWQM (u,m, My) }

+2mgpp(s) + 2M72 ggq(s) — 2(s —m® — M7)gpq(s)
- (2m2 — ) gppr (s,1) — (2M7% —1)gqq (s:1) — 2(u — m? — M2)gpq’(5’ t),

m2 2m? —t M2 —t
C t,E =1 T4 t,m) — == f(t, M,
o (ot ) = log {4 22 pa.m) - e = e
s —m? — M2 u—m?— M?
- 2T911 (37m7 Mﬂ) + 2T911 (uama Mw) }

+2m° gy (s) + 2M72 ggq(s) + 2(s — m® — M7)gpq(s)
- (2m2 — ) gppr (8,1) — (2M7% —1)gqq (s:1) +2(u — m? — Mz)gpq’(s’ t),

m? s —m? — M?
Ocex (SatyEmax) = IOg 4E2’Y {2 + Tﬂgll (s7m?Mﬂ') }

max

+ ngpp(s) + Mﬁgqq(s) —(s— m® — Mz)gpq(s)- (2.77)

f(t,m) and g11 (s, m, M) are defined in App. [B.I while the remaining functions are relegated to
App. B4l Note that the pion mass difference does not play a role for either of the three channels. For
the charge exchange reaction this is true, as ¢’ does not enter. Furthermore, Ceex (8, ¢, Emax) is in fact
independent of t. Therefore threshold kinematics are given by sy, = (m + Mw)z, Uthy = (M — ]\LT)2
and t = 0, since s is the only Mandelstam variable needed for the charge exchange reaction. Using

m m
f(oam) = f(oaMW) =1, gll(sthr) = _ﬁﬂ’ gu(uthr) = E, (2.78)
2 2 2
gpp(Sthr) = gpp’(sthra 0) = W’ gqq(Sthr) = gqql(sthr’o) = ME’ gpq(sthr) = QPQ'(Sthrv 0) - mM,’
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one can easily show that C(s¢py, 0, Emax) vanishes as it should, since at threshold there is no phase
space available for the emission of bremsstrahlung any more.

2.10 Total amplitude

Eventually, we now have everything at hand to write down the full amplitude and show how the
cancelation of UV and IR divergences works. First, the results of Sects. 2.5l 2.7 and 28] are combined
to

Bi(s,t) = By"**(s,t) + B (s,t) + B (s,t), i€ {n p,m p,cex},
Dy(s,t) = D (s, 1) + DY (s,t) + DI (s, 1),
B"(s,t) = B} (s,t) + B}(s,t) + B (s,) = B;°(s,1) + O(1),
D™**(s,t) = D} (s, t) + Di (s,1) + D (s,t) = D[(s,t) + O(p"). (2.79)

Second, the generalization of (227 beyond leading order reads
Mz, |> = (4m? —t) Dfﬁﬁ;D + vt {D;rf[;B + Dﬂithree} L an? v a?) BUge 71:?
+2(4m2 )DLO (Dloop+D > +2yt{D (Bloop+Bwf ) JrBLo (Dloop+Dwf >}
- {t — a2+ 47} B, (Ber + By ).
N

< A AW DtreeBLO DLOBtree}

2 cex cex cex - cex

Mo ? = ((mp +ma)® —t) D DS +
1
- 4{/\ (, M2, M2) + 412 + (2M2 + 2M2, — t) A% — dvAxA, }ngnggOEQ
2 (4m? — t) D (D5 + Dik ) + 20t { DS (Bl + Bk ) + BL (Dies? + Dk ) |

- %{/\ (t, M2, M2) + 4t} BS (Bg;gp +BuL). (2.80)
To arrive at these expressions, we have used the following: the amplitude has been determined up to
O(p?). Hence, the resulting squared amplitude can be described consistently up to O(p*) only, since,
by interference with the leading order, O(p?) terms of the amplitude start contributing at O(p®).
Therefore, terms of the form B°°P B etc., are of higher order in the chiral expansion. For the same
reason, the imaginary parts of D and B were omitted. Strictly speaking, the squared amplitude looks
like
IM|? = (4m? — t)|D|* + vt (BD* + B*D) — 2 {t —4M?2 + 4%} |BP,

but the chiral order of the terms involving imaginary parts is at least O(p°).

2.10.1 Cancelation of ultraviolet divergences

We can only expect the UV divergences to cancel at O(p?), higher-order singularities as introduced by
infrared regularization have to be removed by hand. Collecting the prefactors of the UV poles of B(s, t)
and D(s, t in BA(s,t) and D*(s, t), the cancelation should work up to O(p) and O(p?), respectively.
The chiral expansion is performed in terms of the rules given in (2.22]) and Mgo = M2 —2e2F%Z. In
this way, we have checked explicitly that indeed

A O@p?), DN~ O@Y). (2.81)

#"Note that we cannot use A(s,t) for this purpose, as it does not fulfil chiral power counting.
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2.10.2 Cancelation of infrared divergences

In contrast to the UV divergences, the IR singularities vanish exactly once bremsstrahlung is included.
Inserting the IR divergent parts of Z},, Z., and the pertinent loop functions, into ([Z80), we obtail@

Mol = g M0 g T L 2 gy 2
+ 28_775&—2_]\47%911 (s,m, M) — 2#911 (u, m, M) } +e
Ml = g M8, o T L 2y - P
_ Qﬂgn (s,m, M) + 2%2_]\47%911 (u, m, My) } e
m m
Mao? =~ g i hog T L4 2= M ot L (282

which actually cancels the log m., terms in (Z76). Thus, we have shown explicitly that
(Man[? + M, (2:83)

is infrared finite.

2.10.3 Checks on the amplitude

First of all, the presence of UV and IR divergences in the theory provides a powerful consistency
check on the amplitude: in the final result both types of singularities must cancel. Beyond that, we
have shown that the coefficient of the Coulomb pole is indeed related to the 7V scattering amplitude
(Sect. 2.8.3) and that at threshold the IR divergences cancel among themselves, while bremsstrahlung
is absent (Sects. and 2.10.2]).

In order to check the representations of the scalar loop functions based on Feynman parameter
integrals we have also invoked dispersion relations (cf. Apps. Bl and [B.2)). If the dispersive represen-
tation does not converge due to an IR divergence, we have at least checked numerically that dispersion
relations for finite m., reproduce the Feynman representation with explicitly separated IR divergence
when the photon mass is made sufficiently small.

Finally, we have verified that in the isospin limit the result quoted in [13] is reproduced.

3 Isospin violation above threshold

First of all, one should note that the concept of a partial wave expansion becomes doubtful once
electromagnetic interactions are included, since a partial wave projection of the 1/t terms generated by
the one-photon-exchange topologies is not feasible. However, as isospin violation due to static Coulomb
interaction is in principle well understood, we will focus on the real part of the scattering amplitude
with the one-photon-exchange contributions amputated and the Coulomb pole as separated in (2.57])
subtracted This procedure ensures that T is finite at threshold and guarantees consistency with
the treatment of the scattering lengths in [7].

#8The ellipsis denotes terms finite in the limit m~ — 0. Note that due to (Z78) the coefficients of logm., vanish at
threshold.
#9To avoid an unnecessarily clumsy notation, the resulting amplitude is again denoted by Ty .
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3.1 Triangle relation above threshold

We will quantify isospin violation above threshold in terms of the triangle relation

Rl — Qfl’;ip(S) — f7 () ~ VR FEEN(s) a.1)
f;;: P(s) - fll P(s) + \/iflcix(s)
However, this expression involves several problems: first, the IR divergences due to virtual photons
no longer cancel among themselves, such that the inclusion of bremsstrahlung is inevitable. Never-
theless, even in the soft-photon approximation this is in principle only possible at the level of squared
amplitudes. Second, elastic and inelastic channels have a different threshold behavior in the P-wave
projections, which renders (3.I]) useless near threshold.
To remedy the bremsstrahlung problem, one might try to define an analogous triangle relation for
the squared amplitudes, which may be regarded as infrared safe objects. Obviously, there is no way
to combine

TR =TT =T, TP = T TP, and [T =27 P (3.2)

in a non-trivial way such that they cancel in the isospin limit In [6], the infrared divergences are
removed at the amplitude level just replacing m., by the detector resolution Fy.x. As we have seen
in Sects. and 2.10.2] this admittedly catches the leading effect, but neglects finite terms, which
e.g. affect the logarithm such that effectively m,, is replaced by 2E,,.x. Hence, the full outcome of the
soft-photon approximation should somehow be accounted for. For that reason, we define the partial
waves in (2.I3]) not for the pure scattering process Ty, but include bremsstrahlung via

2
(&
TT('N - T7rN+7rN'y = T7rN + T#]E[)WO('S’ t, Emax)v (33)

where TLQ is determined by (2.10) and ([2.25]) and C(s,t, Eyax) is defined in (Z77). The corresponding
triangle relation is infrared finite, coincides with [7] at threshold and involves amplitudes satisfying

1 —
’MNN-HrN’Y’z = 5 Z ‘TWN-HTN’y‘2 = ‘Mﬂ'N‘2 + ‘M'yyz + O(p5), (3'4)

spins

such that the required decoherent summation of the pure process and bremsstrahlung is maintained
up to higher orders.

The problem we encounter for the P-wave projections is due to the threshold behavior of the
partial wave amplitudes 7;: for elastic scattering, their real part can be generically written as

ReT; = [p|* (@ + bilp|* + ), (3.5)

but once inelasticities arise, the prefactor has to be modified according to |p|? — |p|'|p’|'. While the
S-wave is obviously not affected, the threshold behavior of the P-waves differs between the elastic
channels and the charge exchange: whereas the former vanish ~ A (s, m%, ME), the latter behaves as
AL/2 (s,m2, M2) AL/2 (s,m2, M?2). Hence, R will be totally dominated by f{$*(s) for s — (my+M;)%.
Even more, if we take the denominator in the isospin limit, R will diverge as a square root at threshold.

In order to circumvent this problem, we remove the known kinematical threshold behavior, i.e.
instead of f14(s) we consider the triangle relation for

FIEP(s)
Ip|?

#10 As discussed in Sect. 210}, we can even replace the amplitudes by their real part up to higher orders.

fi(s)

and *———~
pllp’|’

(3.6)
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respectively. In this way, the quantity of interest for the P-wave projections becomes

fli (5) = fI"(s) = V2 (B} f5(s)
Rit(s) = +p
. TE(s) — F1L7(s) + V2 B feen(s)

which is not only regular at threshold but reduces just to a triangle relation for the P-wave
scattering lengths, completely analogous to the S-wave projection. If we incorporate bremsstrahlung
according to (B3]), B.I) (for [ = 0) and (B.7)) should therefore yield a consistent framework to study
isospin violation above threshold.

(3.7)

3.2 Numerical results
3.2.1 Low-energy constants

In this section, we specify the required low-energy constants not yet collected in [7]. In the strong
sector, these are c4, dj(n) + d5(1), di(p), and dig(p). The d; are often given in terms of the scale-
independent quantities d;, which are related to d%(u) by

- 3 M, , . Iy
F2d5(p) = F2d; + b log —=, for i€ {1,2,3}, F2dig(u)= F2ds+ M. (3.8)
1672 0 2
¢4 will be taken from [28], where various previous analyses are briefly reviewed yielding
ey = 3.5705 GeV L, (3.9)
dig is determined by the Goldberger-Treiman discrepancy
2M2d:
Agp=1- w9r _ 208 (3.10)
FT('gT('NN gA

There are many values for Agr available in the literature [13,29-32], ranging from (1.4 £ 0.9)% up to
a few percent. However, small values of Agr seem to be favored: first, the expemmental value of ga
has increased over the years, whereas F; decreased due to radiative correctlons Both effects tend
to reduce Agr. Second, it is shown in [29] that only rather small values of Agp are consistent with
the standard picture of chiral symmetry breaking. We conclude that values of Agt much larger than
about 2% seem very unlikely. Consequently, we will use [31]

Agr = (1.4£0.9)% (3.11)
in the numerical work, which corresponds to (u = 1GeV)
F2dig = (—2.1+£2.6)-1073, (3.12)

The remaining d} are fixed based on 7N threshold parameters (for details of this method we refer

o [33]): as far as LECs are concerned, the isovector S-wave scattering length a~, the isovector P-
wave scattering lengths a;, and the isovector S-wave effective range by, , depend at O(p 3) only on
¢4, di + do, ds, and ds. Inverting this linear system yields e.g.

_ gadis 3+21g3 +2¢98 g3 B+243) Mr i (4m + 4mp M, + 3M7)
2 115272F2 1927 F2(my + My) 32m2 M2
2my + My nF?
* 32mp My (myp + My)  mpM,

(mpai_ + 2mpai, + 3Mzai, ). (3.13)

#111n the actual evaluation, isospin violation in R will be restricted to first order in §, such that the correction factor
in the denominator disappears.
#12Recently, F, has further decreased from 92.4 MeV to 92.2 MeV, which is not included in the quoted literature.
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For a~ and a7, we use the same values as in [7]. Together with by, = (8 £8)-1073M? this leads to

F2(dy 4 d5) = (38 +8) - 1073,  F2dy = (—38+10)-1073, F2df = (-2.4+3.0)-1073,
ey = (34+0.3)CGeV L (3.14)

Note that (3.9) is reproduced quite well, while this value for df is at least compatible with [7] within
the errors. For consistency reasons the new value for dy is used in order to treat all d; in question in
the same manner. Note that the errors of the d; obtained in this way are strongly correlated.

In general, the remaining electromagnetic LECs are treated as in [7]. However, there is one linear
combination of LECs, for which this method fails, since the G-function vanishes:

*F7 (295 + gi) — AB(ma — my)(2di; — dig — 2diy). (3.15)

As except for djg none of these LECs is known, the central value of the whole combination is set to
zero in the numerical analysis. One possible way to estimate the uncertainty might be based on the
observation that this combination of LECs is nothing but g, — gn (cf. (Z30))). In view of the finding
for Agt, we regard 0.5% as a reasonable upper limit for the contribution of ([B.I3]) to isospin breaking
in ga. The same effect would be generated by a (-function of the magnitude

2

16
0.5-10"2gp —.
e

~11. (3.16)

On the other hand, the vanishing of the G-function means that this combination is particularly stable
against variation of the renormalization scale, which hints at a value of the total counterterm not
being exceptionally large. This is the reason why in [34] in such cases the S-function is set to 1, which
just reproduces the naive order-of-magnitude estimate 1/1672. Since the 3-function of both 295 + g3
and 2d}; — djg — 2djy vanishes, one could also argue that these two combinations should be treated
separately. Counting e2F2 ~ B(mgq —my) and adding the errors linearly, this would correspond to an
“effective” (-function of ~ 5. All in all, we conclude that it is very difficult to obtain a reliable error
for (B15). What we will eventually use is

5e2

¢ F (295 + g5) — AB(ma —ma)(2di7 — dis — 2i0)| ~ 1o

~3-1073, (3.17)
which should give a reasonable estimate, though not the most conservative possible. Note that this
value is somewhat smaller than the estimate given in [35] in the context of the two-nucleon system

3.2.2 Threshold divergences

In the numerical analysis, there are several obstacles to be overcome, which are related to the behavior
of the amplitude at threshold. First of all, the basis functions of the tensor decomposition associated
with I (s) (cf. diagram (sg)), 15 (s) (a3), Vi1(s) (v1), and A11(s) (ag), and the box-graph topologies
Iis(s,t) (s2), I]5(s,t) (a7), A12(s,t) (ag), and A9 (s,t) (as), involve prefactors of the typd?14

1 1

__ d 3.18
A (s,m?, M2) an A (s,m2, M2) + st’ (3.18)

#13The low-energy constants used in [35] can be most easily compared to the present framework by matching to the
charge-symmetry breaking corrections to the pion-nucleon coupling constant given in [36].

#14For the sake of simplicity, the following discussion refers to the isospin limit. However, we have checked that the
conclusions persist if Ax # 0 is taken into account.
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respectively, which suggest threshold divergences even worse than the Coulomb pole. In fact, these
singularities are canceled by the numerators, such that the loop functions are actually finite at thresh-
old once the Coulomb pole is subtracted. To avoid any complications inherent to this (numerical)
cancelation we start the analysis not directly at threshold sy, = (mp + M;)? ~ 1.162 GeV? but at
s = 1.17GeV2. As the final results are smooth for s — s, this implies no severe limitation. In ad-
dition, the tensor decomposition of the box graphs causes difficulties also above threshold: it follows
from (ZF) that A(s,m?, M2) + st = 0 for z = —1 independent of the actual value of s, which induces
numerical problems in the partial wave projection of the corresponding amplitudes. Fortunately, it
turns out that the z-dependence of these loop functions is very weak, and, moreover, can be well ap-
proximated by a straight line. For that reason, we replace the full z dependence by the interpolation
between z; = 0.8 and z9 = 0.9. The precise choice of these points is of course rather arbitrary, but
accounts for the fact that difficulties arise near z = —1.

Especially for the P-wave projections, another difficulty concerns the consistent treatment of the
kinematics. Let us rewrite the relevant part of the numerator of (8.7 as

(B +mp){ AT 7(s) = AT P(s) = V2 Coay () A5
+ (V5 —mp) (BT (s) = BT "(s) = V2 Cia(s)BE™) }
+ (B = mp){ = ATLH(5) + AT (5) + V2 Ca () A5,
+ (V3 +mp) (BILE(s) = BILI(s) ~ V2Cr-(5)Bi%S ) }, (3.19)

where we have defined the correction factors

(V3£ mn)® — M2 | A(s,m2,M2)
(V5 £mp)? = M2\ A(s,mi, M2)’

. B (Vs £mn) — M?, AN A (s, m3, M)
BTN (e emg? a2 T 2 Emy) [ X (smd D2

Cax(s) =

(3.20)

To avoid artificial threshold divergences, it is important to treat these correction factors in the same
way as the corresponding part of the amplitude they are multiplied with. Therefore, we adopt the
following conventions: for tree contributions (including the wave function renormalization) the full
kinematics with Ayx # 0 and A, # 0 are used. In particular, the nucleon masses in the axial parts of
A0 and B0 in [@40) are restored according to (Z31I) with Am = 0. Consequently, (3.20) is applied
as it stands. The sole exception is made for the counterterms involving e2k; or e?g;, for which the
correction factors ([B.20) are set to 1, since the effects of the mass differences are anyway outweighed
by the uncertainty in these LECs. In contrast, we have neglected the nucleon mass difference as far as
loops and bremsstrahlung are concerned. Thus, for these contributions m, should be replaced by m,
in (320). Note that to ensure consistency A is kept in the electromagnetic loops, although this is
formally an O(e?*) effect. We conclude that the consistent treatment of the mass differences is crucial
to prevent remnants of the different threshold behavior of the elastic channels and the charge exchange
reaction as described in Sect. [3.1] from spoiling the threshold properties of Ri4.

3.2.3 Triangle relation

The results for the triangle relation above threshold in the S-wave (R), the P;- and Ps-waves (Rj_
and Rj4), and the G- and H-projections (Rg and Ry ), are depicted in Figs. [8H221 The central values
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correspond to the LECs compiled in Sect. B.2.1] a renormalization scale p© = 1GeV and a detector
resolution Ep.x = 10 MeV. The scale is varied between the mass of the p meson M, = 775.49 MeV
and the A resonance ma = 1.232 GeV, the detector resolution between 5MeV and 20 MeV. The
errors induced by the LECs are calculated via Gaussian error propagation, where the errors of the d;
are directly traced back to those of the corresponding threshold parameters. This ensures that the
uncertainties in the different LECs are essentially uncorrelated. Finally, all three contributions are
added in quadrature. We display the individual contributions to the triangle relation by tree graphs,
strong loops, virtual photons, and bremsstrahlung, as well as the individual contributions to the final
uncertainty. Due to the IR divergences, the separation of virtual photons and bremsstrahlung is scale
dependent: by changing the scale pr in logm./ur, contributions can be shifted between virtual
photons and bremsstrahlung. We choose g = mp, which emerges naturally in the calculation.

Let us first consider the S-wave. At threshold, the triangle relation is violated by about 2.5 %,
which is significantly larger than the 1.5 % at threshold obtained in [7] (but within the uncertainty
given there). The reason is that both tree and loop contributions have not been chirally expanded;
in particular, the diagrams which at threshold only start at O(p*) are included. In this way, the
difference between both values may be taken as an estimate of the potential impact of higher chiral
orders. From this point of view, the error bands in Fig. I8 dominated by the uncertainty in the
LECs would therefore not be modified substantially if the uncertainty due to higher orders were
included. Remarkably, the residual dependence on the renormalization scale as well as on the detector
resolution turns out to be negligible in comparison. The net effect of tree graphs and strong loops
is rather small and practically independent of /s. In contrast, virtual photons yield the dominant
contribution, which grows significantly with increasing energy. For higher energies, bremsstrahlung
becomes quite important: it counteracts the rise induced by virtual photons. The size of the finite
pieces of bremsstrahlung apart from the leading terms o log mf, JAE2 .. amounts to about 20 % of the
total bremsstrahlung contribution.

For the P;-wave, we observe the same problem as in [5]: the denominator itself becomes very small,
such that especially at threshold R;_ is very sensitive to the precise values of the LECs. We conclude
that for this projection no meaningful statement can be made. In the other P-waves isospin breaking
is very small; the triangle relation is violated by 1% at most. The observation that the variation of
Fax yields a shift comparable to the uncertainty due to the LECs could be taken as a hint that the
total error might be underestimated. Higher chiral orders and the A resonance might lead to larger
shifts than indicated by the error bands in Figs. 19, 20, and In particular the A resonance, which
is only parametrized in the LECs of the theory and not included as explicit degree of freedom in the
present work, could become important in the P-wave. Similarly to the S-wave we find that virtual
photons and bremsstrahlung tend to evolve in the opposite direction for increasing energy, but at
least for Ry and Rj4 these contributions no longer outweigh tree graphs and strong loops. Since the
P-wave projections themselves vanish at threshold, bremsstrahlung can generate finite contributions
in the full energy range, which is indeed observed in the case of Rg and Rqy.

3.3 Comparison to earlier work

Isospin violation above threshold has been the subject of earlier studies in the framework of heavy-
baryon ChPT [5,6]. The findings in [5] differ quite substantially from our results: in the S-wave, the
triangle relation is found to be violated by about —2.5 % instead of +2.5 % and also for the P-waves
(especially for the H-projection) significantly larger negative values for R are obtained. However, this

#15Note that the scattering lengths given in the same paper yield R ~ 1%, cf. [3,7]. The discrepancy is related to the
question which threshold energies are inserted and again illustrates nicely that the final result for R is quite sensitive to
mass differences.
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Figure 18: Triangle relation in the S-wave. Upper panel: central result (solid line) with uncertainties
(dashed). Middle panel: individual contributions to the central result. Lower panel: individual
contributions to the uncertainty.
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analysis is incomplete in the sense that virtual photons were neglected. Indeed, we observe that in
all cases their contributions shift the curves upwards, which partly explains the discrepancy. Further
differences concern the definition of the isospin limit, the values of the LECs (the ¢; and d; are taken
from [37]), and the treatment of higher chiral orders. The philosophy in [5] is to expand the amplitude
strictly at O(p?) and only to include some higher-order terms whenever necessary to ensure the correct
threshold behavior. As we have seen in the previous section, such higher-order effects can indeed lead
to differences of ~ 1%. Moreover, the denominator is not reduced to its isospin limit, which would
generate in our work a dependence on some new combinations of electromagnetic LECs, involving
e.g. k1 and ko. As for the Pj-wave, the problem of the small denominator manifests itself in [5] in a
different way: the curve is regular at threshold but diverges around /s = 1.115GeV. Since we can
reproduce a similar picture by varying the LECs in a broader range than described in Sect. [3.2.1] this
does not point to a fundamental difference, but rather to the difficulties in the P;-wave. Finally, we
remark that our results agree with [5] in the qualitative energy dependence of the triangle relation in
so far as R is found to be a monotonically increasing function of /s.

In [6] virtual photons are taken into account, but this work eventually focuses on strong isospin
breaking, such that in particular electromagnetic contributions to the mass differences are switched
off. A consequence of this point of view is that the mass of the 7%n state is larger than of 7~ p, since all
pion masses may be identified with the mass of the neutral pion once the tiny strong contribution to A,
is neglected. Therefore, the three amplitudes entering the triangle relation no longer possess the same
threshold. Nevertheless, we observe a similar discrepancy as in the case of [5]: the values for the triangle
relation in the S-wave (about —0.7 %), and in the G- and especially H-projection, lie significantly lower
than the present results. However, virtual photons (and higher-order contributions) again tend to shift
the curves into the right direction. Although no reliable error bands are provided we therefore
consider the origin of the deviations from former studies in ChPT to be essentially understood.

It is very difficult to compare our results to phenomenological models [8, 9], since in contrast to
the analyses in ChPT an unambiguous separation of the different sources of isospin breaking cannot
be achieved. In [8], a coupled-channel potential model [38] is used to remove Coulomb interactions
and hadronic mass differences from the data. The triangle relation is found to be violated by about
—7% in the S-wave at /s = 1.10 GeV. This value is practically independent of /s (cf. Fig. 1 in [8]),
such that a similar number could be deduced for the threshold extrapolation of the amplitude. In the
‘H-projection no isospin violation is found, whereas Rg displays an effect comparable to the S—Wave

The investigation in [9] is based on a tree-level meson-exchange model [39]; electromagnetic effects
and hadronic mass differences are separated relying on the NORDITA method [40-42]. In the S-wave,
R is found to be nearly independent of /s in the energy range /s = (1.10 — 1.14) GeV. However, the
final value R = (—6.4 + 1.4) % differs from the triangle relation for the scattering lengths obtained
by extrapolating the amplitudes to threshold, which is violated by about —3.5%. The central values
for Rg and Ry can be extracted from Fig. 5 in [9] and amount to (3 —4) % and —(5 — 6) % in the
considered energy range, respectively. However, the quoted uncertainties are quite large, such that at
least in the H-projection the results are compatible with isospin symmetry.

A similar analysis is performed in [10]. The corrections due to hadronic mass differences are
calculated within the K-matrix formalism and found to be in reasonable agreement with the NORDITA
results, while the electromagnetic effects are taken from NORDITA directly. For the S-wave, isospin
violation is found to be smaller than 1% in magnitude. The discrepancy to [9] is traced back to
the fact that a coupled-channel approach was chosen, arguing that elastic 7~ p scattering and the

#161n [5] only shifts due to the ignorance of fi and f2 are considered, whereas the error bands displayed in [6] refer to
the outcome of the MINUIT minimization routine of the CERN library, which, as pointed out by the authors, by no
means reflect the total uncertainty.

#17 About —7 % at /s = 1.10 GeV. However, the situation is less clear at higher energies, cf. Fig. 2 in [8].
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charge exchange are coupled channels even if isospin is not conserved, whereas in [9] each reaction was
analyzed separately. Isospin violation in the P-waves is not considered.

We conclude that the phenomenological models do not provide a consistent picture. Moreover, the
systematic uncertainties are very difficult to assess. As already remarked in [5], in principle a mean-
ingful comparison between the model calculations and ChPT would require a detailed confrontation
of the NORDITA method with our treatment of isospin-violating effects, such that the outcome of
both methods cannot be naively compared. However, we have seen in the course of the numerical
evaluation of the triangle relation that the final result (and especially the threshold behavior) is quite
sensitive to the correct incorporation of mass differences and can in principle generate large effects.
Certainly, these fine effects are not sufficiently well under control in the model calculations because
they do not provide a systematic and consistent framework to analyze isospin breaking.
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A Effective Lagrangians

Our investigation of isospin-breaking effects relies on the effective Lagrangian for nucleons, pions, and
virtual photons, as constructed in [20]

Log = L) + £ 1 £0Y 4 £ 4 £® 4 o0 4 204 20 | L0y p (A1)
Apart from the leading piece

F? 1 1
LY 4L 4, = (U + XU+ UTY) + ZFHQUQUY) — L Fu FH — 5(aMA“)Q,

- (. 1
o) = \I’{ZIZ) —m+ 59%75}‘% (A.2)

we actually need the following terms:

£w) = %(d“UTdux +d"xTd,U) + 15(FRIUFL U + l%(]—“{{”duUd,,UT + F¥a,Uta,U),
£ = F2{<d“UTdMU> (k1(Q2) + ko (QUQUT))

+ ks ((@"UTQU)(d, UTQU) + (U QU)(d, U QU")) + ka(d"U" QU>(duUQUT>},

2 - c c 1 N
El(\:? ) _ 1’{61(X+> _ 4—rr2L2<u“u”> (DMDY +h.c.) + Eg’(uuu“) + an“"[uu,uy] +esX+
Ce Ccr
+ —SmUMVF:; + %UMV<F;I/>}\P’

£ = PU{f1(Q% — Q) + fo(@4)Q+ + f5(QF + Q1) } v,
3 - d d
£ = ¥{ — I (Do w0 ) — 2 ([ (D% ] 1DF + hc)
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ds
T om3

- ©opt v v m v
+da2m([D ,Er D h.c.)—l—d72m([D AF5)DY —h.c.)

([tye, [Dy, un]|(D*D” D* 4 sym) + h.c.) + d5—([x ,u,)D* —h.c.)

/i v Z v
+ dMR(J” (uy[Dyx,u,))D* —hoc.) + dmR(o—” (uu[Dy, up])D* —hc.)

+ Y s () up + v s (xrup) + dis 57“75 [Dy,x-]+ dei’Y”’YS [Dys (x->]}\II,

2 2
LE" =F 2@{ﬂ<Q2+ - Q2_>’Y“75uu + @(QHQW%W + %37“75(Q+><Q+uu>
+ 4 5 Ly 75Q+<Q+uu> +965 (<Q+><Q u,) D" —h.c.) + 97%(Q—<Q+UM>D“ —h.c)
+ 955 (@+(Q-w) D hc»}w, (A3)

where (A) denotes the trace of a matrix A, A = A—(A)/2 its traceless part, ¥(O+h.c.)¥ = $OV¥+h.c.
for an operator O and

d,U =0,U—1iA,[Q, U], x =2Bdiag(my,mq), U= u?,
e ..
Fu = 0uAy — 0,4, Q= 2 diag(2, 1), Fry =Fp, = QF,
Q = ediag(1,0), ij, =Fu <uTQu + uQuT>,
1 ) .
Du=0u+ Ty Tu= 5 (0 = QAU+ u(d, —iQA,)u'),
i = ulyu! £ uxtu, Uy = i(uT(au — QA )u — u(0y — Z'QAu)uT),
1
Q:I: = §(UQUT + UTQU)7 [D/u uu] = 8uuu + [Fuy uu]' (A4)

¥ = (p, n)T contains the nucleon fields and the pion matrix U in the o representation reads

70 Va2t
Jir 0 ) . (A.5)

The renormalization of the LECs proceeds along the following pattern (the (-functions are given
in [20])

Um) = \[1- 5 + i, r-n=<

0 N S S S

SAF (), 9= A g (A6)
Note that the choice of operator basis in e R corresponds to [17]. As discussed in detail in [20],
changing this Lagrangian to the version used in [43] results in a redefinition of several LECs and their
B-functions. In particular, some d; are replaced by d; according to

B5(n) = () + N () = dig(n) — S, () = o) + gl (AT)

Counting e ~ O(p), the full calculation at order O(p3) involves terms of order O(etp1), which are
numerically tiny and were therefore dropped in [20]. Although we neglect these effects in the numerical
analysis too, which reduces the number of LECs considerably, the amplitude shall be given in its full
generality for the following reason: the cancelation of UV and IR divergences serves as a powerful
check on the calculation, and the consistent treatment of O(e?) terms ensures that this cancelation
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works for all contributions at order O(p3). However, for this purpose, there are further contributions

to the effective Lagrangian to be taken into account: first, a Lagrangian of the type .C7(Te4) should be
added to ([A.T]), and second we need some terms which do not contain pion fields (“contact terms”), but
are indispensable in the context of the renormalization of the one photon exchange. Both pieces can
be taken from [44], since there the same basis for cSr” s used, such that the additional Lagrangians
are consistent with [20]. Eventually, it turns out that we only need the counterterms encoded in

E;ontact — —h2<f{{1j-7:;5/ + fffyfi‘y> + h4<Q2>FHVF'uV. (AS)

The first part is already given in [17], whereas the second one is specific to the inclusion of photons,
since the electromagnetic field strength tensor appears separately. As in [44] no counterterm is specified
to absorb the pertinent UV divergence as occurring in the renormalization of the generating functional,
we extend the operator list of terms without pion fields as set up in [17] by a forth term o hy. The
corresponding [-functions read

1 1

hi = 6;\ + hi(,u), Oy = ﬁ, 04 = % (Ag)

B Loop functions

B.1 Definitions

In this chapter, we will give explicit expressions for the loop functions originating from the integration
of scalar propagators and for the basis functions of the tensor decomposition. Working in d < 4
dimensions, the UV divergences are captured in the pole term

d—4 1 1
:—?67r2 {—d_4—§(log47r—’y}3+1)}, (B.1)

where (4 is the renormalization scale and yg = —I"(1) = 0.5772156649 . . . denotes the Euler-Mascheroni
constant. To ease notation, also the variants

1 1 m?

C:2md_4{——— log 41 — vg + 1 }:32712)\—1-10,?;—, B.2
1 1 M?

Ci = 2Mid_4 {m — 5 (10g4ﬂ' —YE + 1)} = 327'('2)\ +10g qul s 'l € {’7'(',7'('0}7

are used. In contrast, IR divergences are regularized by a finite photon mass m. and expressed by

m3 3 m* 0
Lzlogm, L,:logW:L—l—logW, ZE{?T,T(' } (B3)

Our results may be compared to calculations taming both UV and IR divergences in dimensional
regularization by the replacement

1

R B
d—4

Cir = omd—4 {
IR 2

(log4m — v + 1)} — —L—1. (B.4)

The propagators are implicitly understood to carry a small imaginary part according to

2

m?—p? —>m?—p®> —ie, €— 0. (B.5)
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We will make use of the so-called dilogarithm or Spence’s function

T

log(1 —t

Lis(z) = — / dt%, (B.6)
0

in terms of which some integrals involving virtual photons can be done semi-analytically. Furthermore,

the Feynman parameter integrals

1
d 4m? e
f(t,m):/ a — = n arsinh —, (B.7)
/ 1—x(1—x)m —t(4m? —t) 2m
3 log (1 —z(l— x)ﬁ;)
h(t.m, M) = hii(t) = [ d i
(7m7 ) 1() / x 1_3:(1_3:)”7%
0
; d
T
f11 (s,m, M;) =/ e
9 v+ (1-2)% —2(l-1)—%

2
2_pf241/2 2 a2
m? ) o (s-i—m MZ+A/2(s,m 7M1)> if A (S,m2, Mi2) > 0,

)\1/2(s,m2,Mi2 2m./s
- - 3 27M'2
——2m?  arctan (S—mzl) otherwise
_)\(S7m2’M_2) S+m2_Mi )
i d
T
g11 (s,m, M;) = / Ve -
9 r+(1-2) % —z(l—-2)>>

2
Cm2_M2_)\1/2 2 pf2
log s—m l2mMi(S’m ) 1)> if A (s,mz,Mf) > 07

m2
AL/2 (s,mz,MiQ)
2

= ,/—)\(s,m2,M.2) .
m (arctan WE—; + 70 (S —m?— Mf)) otherwise,

appear in several loop functions Some of the loop integrals involving virtual photons can be
obtained from integrals which are already present in the isospin limit by sending the appropriate
meson mass to zero. Therefore, i and j run over {m, 7%~} in Sect. (with M, — m.).

Whenever possible, i.e. if no infrared divergences prevent the dispersion integral from converging
in the limit of vanishing photon mass, we give the loop functions both in terms of Feynman parameter
integrals and based on dispersion relations. For this purpose, we also need the imaginary parts of the
t-channel diagrams, which only emerge for positive ¢, while the formulae for the real part in Feynman
parameter representation are only valid in the given form for physical values ¢ < 0. The dispersion
integrals in some cases require one subtraction, which is specified by the subtraction point sg. In
general, the expressions for u-channel diagrams follow by substituting s <> u and % < A, such that
they are given explicitly only if modifications are necessary.

As far as the charge exchange reaction is concerned, A, can appear both via pion propagators and
via the external kinematics. To obtain representations valid for all channels in question, we will make
use of

A = { A, for 77 p — 70,

] Meox = /M2 — Agex. (B.8)
0  otherwise,

s

#18The imaginary parts are not shown, since they are treated separately in the following sections.
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As remarked in B.2.2] we will also take care of A, in scalar loop functions involving photons, though
this is an O(e?*) effect.

B.2 Scalar loop functions

We adopt the following notation: the infrared (regular) part of any integral over m meson and n baryon
propagators is in general denoted by I, (R ), the finite pieces as Ly = Imn|a—o0 (Rmn = Rmnlx—0)-
B.2.1 Meson integrals

The result for the tadpole reads

-1 [ d% 1 M?
A =1)=~ = . B.
1075 /I (2m)d M2 — k2 167" (B-9)

For the integral over two meson propagators we find (J;;(t) = I;%(t))

1 [ adk | t—ty [ dt'ImJy(t)
ni0 =7 [ R
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B.2.2 1 meson, 1 nucleon
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+—————arcsin T\/; otherwise,
s +m? Vs
R%$:“§P;@‘“‘16% o8 (B-11)

B.2.3 2 mesons, 1 nucleon

I;’l (t) is symmetric in ¢ and j. The regular part will be denoted by R;jl (t).

. Ak 1

ij

La() = /1 (@m)® (a2 — k2) (M2 = (k= A)2) (m2 = (p— K)?)
0 sk s (0 420).
T80) = gy (G 1) fl0m) +

Ly(t) =

(CZ‘ + Cj +2) f(t, m) +

1 [
39722 (h(t,m, M;) + h5 (1)),

<C+1og—+1> f(t,m) +
()—m(l—x)t
/dsg 1-a 1—x)L2 +( =), Mje)=aM+ (1 -2)Mj,

2m? Cft—/—t(4m2 —t |t —t(4m2 —t
e = —t(4m2—t){L12< 277(@2 )>_L12<+ 277(@2 )> }

— M2 (z)+2x(1—2)t
2m? — M?(x) ) arccos M)t
< ( )> 2\/(m2_m(1_;p)t)(ij(m)_m(1_;p)t)

1
hy (t) = 2/d:13 :
) )¢

(R () + 13" (1)),

1
32712m 397m2m2

(1-z(1-2)t M7 (x) <4m2 ij(:n)) —4dm?z(1 — z)t
m i —M?+2z(1—2)t
1 (ﬁ - é\fﬁ) arccos <
iy v 24/ (m2—z(1—2)t)(M? —z(1—2)t
g(t)zz/dx V/(m2—a(1—a)t) (M2 —a( ))7
2
0 (1—x(1—x)#)\/1—%— z(1 - )t
1 m arccos —Y —20-o)t
m%):z/dn Vel e
(1-2z(1-2)L)/-z(I-2)t
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2 _ 2 2
0 (t — (M; + Mj)z) 4 (4m2 - t) arctan \/(4m B <MZ M; ’t)

Im I3 (t) =
8/ (4m? — 1)t Vi (t — M2 Mf)

ooy V(3 35) o (07

+ log 7
— 2
87\ /E(t — Am?) 2\/m2)\ (M2, 012,2) + 203

0 (t — 4M2) 0 (4m? — 1) \/(4m?2 — t) (t — 40?)

Im I% (t) = arctan
51(t) 87/ (Am2 — 1)1 t —2M7
0 (t — 4m?) o207 4 (e dm?) (1 - 401P)
87/t (t — 4m?) 2/m? (t — AM?) + M}
0(t)6 (4m? — ¢ Am? 0 (t — 4m? t
Im I3} (t) = (1)0 (4m ) arctan |/ —— — 1+ ( ) arcosh —,
8my/(Am?2 — )1 t 87/t (t — 4m?) 2m
y L[ drmIL) ij C+1 hy ()
B = f T REW, RAO = g gl
(Mi+Mj)2

2m2—MZ-2j (z)

P PO vl ) e = S
0 (1—z(l-2)1) \/ij(w) <4m2 — ij(ac)) —4dm?z(1 — x)t

1 (ﬁ ~ My grepos —2TME
hii(t) =2 / Ay " N
M?
) (a2l - 2)L) \/1_4”;2%(1_@1‘;2
1 M arccos \/ﬁ
h(t) = 2/dw i . (B.12)
) (1-2(1—2)t) /-2 — )t
B.2.4 1 meson, 2 nucleons
The scalar loop integral over 1 meson and 2 nucleon propagators in its general form reads
.1 [ d% 1
Iz — —,/ . B13
L= @ (=) (= (1= 0P) (7 — (2 — ) R

However, we will only consider two special cases relevant for our calculation, in which either both p;

and py are on-shell or at least one of them. Inspired by [13], we write I13 = 14 for p% = p% = m?

)

(p1 — p2)? =t and 12 = I for e.g. p? = s, p3 = m?, (p1 — p2)? = M2. In the first case, we find

; 1 [ d% 1
5O = | o T G
I40) = st (Gt 1) F(Lm) + rgiegi(t), (1) = 25 (O L+ 1),
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— ]\4Z

2«/m2—m(1 x)t
0 (I—z(l-=z)k) \/1 42— (1l —x)ty

arccos

9

. 0 (t — 4m?) t—4m? + M? ][dt’ImIA( N
Im I, () = lo Lo — AV RL(}),
a(t) o /E (D) g i W(t) = - T a(t)
4m
0 (t — 4m? — 4m?
Im I}(t) = (t — 4m?) <logt dm —L>,
167/t (t — 4m?2) m
Ri(t) = — (€ + 1) f(tm) + —— (Bt m,m) — Mige)
AT 39022 1 32712m?2 T mgz ’
2
I arccos <1—m)
9i(t) = / da : (B.14)
o (1-=( )iz
The definition
y 1 [ d% 1
(s =—./ : B.15
50 =7 | B G2 1) (2~ (o1 — D) (% — (2~ %) (B.15)

for the second case needs some comment: the momenta are assumed to fulfil the on-shell conditions
p? = m? and p3 = s (or p3 = u for the u-channel). Apart from M; the masses of the external pions,
which may enter through the kinematics, can contribute to isospin breaking. To account for this effect,
we introduce a pion mass M; that always corresponds to M; for the elastic channels, but has to be
modified for the charge exchange reaction according to

M, ifp; =
M; = I = >} (B.16)
Mo ifp; =
for s-channel diagrams and
M, ifpy=9p
M; = e p2=A, (B.17)
Mo ifpi=p

for the u-channel case. M; enters by
(p2 —p1)* = M;. (B.18)

The result for Ifgj(s) reads

I(s) = 25 (G + 1) fra(s,m, M;) + =2 55 (5),

327w2m? 3272m2 Y\
Nj 1 s —m2\’ 1
IY(s) = BT C + log — fu(s,m, M;) + mg,m( s),
S dag (s, z) if A (s,m2, M2) <0,
9i5(5) = 1 1) 26 1 (2) -
fxij(s) dzg;;’ (s,z) + [y dzg;;’ (s,x) otherwise,
B
2 2
m? (M? + (1 — z) (s — m?)) arccos —MP— (1) (s—m?)
(1) ( ! ( ) ( )) 2Mi\/(1—m)s+x(m2—(1—x)M]2)
9ij (3733) = ,

{(1 —z)s+x <m2 -(1- :E)Mf)} —s7;(x)
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9ij

; m?lo
9ri(s) = /dﬂ?

Im I} (s) =

(s,2)

Szzj(l")

' (s)

I3 (s)

x log

R (s)

hij(s) = hy;(s) = /dw

iy

i

Gij(s)

(s,2) =

(s,2) =

M?—l—(l—x)(s—mz)— s?j (z)

2M;\/(1—2)s+a(m2—(1-2)M?)
{(1 —r)s+x <m2 —(1- x)Mf)} s?j(az)

= (1) (s = m?) = M?)" — M2 (1 — 2(1 — 2)M?)
= (s m2)21_ 4M2M2{ (3 - m2)2 _ ]wi2 (3 —m?4 2M]2)
L]

2m? (M} + (1 — z) (s — m?)) log

- 2Mi\/m2 (s —m?2)? — M7 M? <s +3m2 — M? — M]2> },

(1—x)s+x(m2—(l—x)MJ2)
g m2(1—z)2

; (1—x)s+w(m2—(l—w)Mj2)’

ii ii s — 80 yi ds'Im 1 (") ii
= Tjo0) + Rjo) + 2 SIS Ry,
(m+M;)?

9 (s — (m+ M,-)2)

16mAL/2 (S,mz,sz)

{(s —m?+ Mf) <s +m? — Mj2> —2sM? + AL/2 (s,m2,Ml-2) A1/2 (S,mz,Mj2>}2

45 {m2 (s = m?)” = MEM? (s +3m2 - MZ — M?) |

_ 9(3_(m+Mi)2> 1 s(s—m2—2Mi2)
16mAL/2 (s,m2, M?) 8 nzs — (m? — M2)’

0 (s —m?) S+m2—Mj2+)\1/2 (s,mz,Mf)
= log ’
8mAL/2 (s, m2, MJ?) 9mn/s
1 1 )
= Sz (O TV fualem, My) + goar (hij(s) = Gis(s))
M?
1 m?log <1 —z(1-— :E)m_%)

9 (1-—z)s+=z (m2 —(1- x)Mj?) ,
B { Jo dwgy (s, ) if A (s,m2, M2) <0,

f;g(s) dxgg)(s,x) + foxg(s) dxgg)(s,w) otherwise,
m2(1+x)+(1—x)(s—2xMJ2)—Mi2

2y/((1—a)s+a(m2—(1-2)M3) ) (m2 —a(1—2)M?)
{(1 —z)s+x <m2 —(1- x)Mf)} —s57:(x)

m2(1+z 1—z)(s—2xM2)—M? 1/8,2- x
2m? (M} + (1 — z) (s — m?)) log (ra)+a)( J) M)
2\/((1—x)s+m(m2—(1—m)MJZ))(mz—m(l—x)M]?)

{(1 —z)s+x (m2 —(1- x)Mf)} s?j(az)

2m? (M? + (1 — z) (s — m?)) arccos

)

)
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(1—x)s+m(m2—(1—m)MJ2)

1 2
m* log mz—:c(l—ac)Mj2

Gyi(s) = [ dz . (B.19)
g (l—az)s+a (m2 - (1—w)M]2)
B.2.5 1 meson, 3 nucleons
The so-called box graph leads to the scalar integral
Ak 1
I t . B.20
w00 =5 | G G e O
At least the imaginary part can be given in a rather compact form
| 9 (s — (m+ Mi)2>
Im I{5(s,t) =
o) = —mes
QCI(S) —tA (37 m27 MZZ) + Acox<2(s) + \/_t/\ (87 m27 Mz2) C3(s)
% log )
2\/<I(S)|Mﬂ—>Mcch1(s)
. 0 (s —(m+ Ml)2> \/—t)\ (s,m?, M?)
Im I75(s,t) = arsinh ,
Boex=0 " Y./ —t\/4C1(s) —tA (s,m?, M?) 2y/Cu(s)
Gi(s) = m? (s —m?)® = M2M2 (s + 3m® — M? — M?),
Co(s) = M (s + 3m? — M? — 2M?2),
A2
C3(s) = 4¢(s) — tA (s, m2, Mf) + 2AcexC2(s) + MZ-2 (4m2 — Mf) ;ex,
6 (s —m? V-
Im I}5(s,t) = (s —m’) arsinh—t. (B.21)
47t (s — m?) /—t (4m? —t) 2m

After performing the integration corresponding to the extraction of the infrared part, we are left with
an integral over two ordinary Feynman parameters. However, the representation

1
Iis(s,t) = /d:ﬂ/dy162f13stazy)
0

M?+ (1 —y) (s —m?)
87:13(87t7$ay) {4Mi28§3(87t7x>y) - (Mzz + (1 - y) (S - m2))2}
—M7P—(1—y)(s—m?)

4 M2 arccos .
+ 2Mi\/3213(87t7x7y)
3/2°

{4Mi28’i3(s,t,aj,y) —(M?+(1—y)(s— mz))Q}
sta(s, t,x,y) = (1 —y)s +ym? —z(1 —2)y*t —y(1 —y) (M2 — (1 — 2)Acex) (B.22)

f{:3(37taxay) =
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is numerically only viable below threshold. One possibility to obtain a representation valid above
threshold is to employ dispersion relations

0o 1 1
; 1 ds'Tm I 4(s', t) ; ; (T
Rs(s,t) = — ]Z — s 13(s,1),  Ris(s,t) Z/dﬂf/dyw?flg(&t%y),
(m+M;)? 0 0

2333(s,t,m,y)—Miz—(l—y)(s—mQ)
2\/833(s,t,:v,y)—(l—y)(s—mQ)\/sﬁg(s,t,m,y)

{a0r2siy (s tiay) — (L= 1) (s = m?) + 2%}
(1—y)? (s — m2)2 + M2(1 —y) (s — mz) — 2M?2st (s, t,2,9)

sta(o,,9) {855, t,,9) = (L=9) (s = m?)}
1

X - s
AM2sio(s,t, ) — (1 —y) (s — m?) + M2)®

4Mi2 arccos

ff?,(s»tv:ﬂay) = -

_|_

(B.23)

where we have discarded the t-channel cut, which lies outside the low-energy region. The regular part
Ri5(s,t) is numerically uncritical. Unfortunately, (B.23) does not apply to I{5(s, t), since Im I75(s, t)
1/ (S — m2), such that there is a non-integrable singularity at s’ = m?. However, this divergence
should be captured by a finite m., leading to a term proportional to L. Thus, the dispersion integral
is certainly not suited to extract the infrared divergence. As described in Sect.[2.81] a representation
appropriate for this purpose can be found by performing the y integration in (B.22]). Below threshold,
the result is given by

1
Iis(s,t) = /da:glgstzn
0
1

2
i — 1-— A A </
913(s,t, @) = S lo v (1 =) _ A1t tods arctan Ve
C1C2 | Y2 — 1 —y2(y1 —1) \/C3 s — 1Yo
A 1 (1—yo)®+c3 Br—Agya, 1—ys By—Agyr, y1—1
5 108 2 - log + lo
2 Yy + c3 Y2 — Y1 —Y2 Y2 — Y1 Y1
8M} Y1+ Y2 — 2192 —M;
+ 372 5 arccos
Cy (yl - y2) \/(yl - 1) (1 - y2) 2\/a (1 o y0)2 T cs
m2 2
—5— M;
—92./=
/—¥y1y2 arccos —————=> CIYAVE }
AM? 1- A A C1+/C
REEYD : 2d, sty lo 2 y2) + 8+ o arctan SVES
Cz/ (y1 — y2)2 Vd3 Yy1—=92 —y2 (y1 — 1) Ve3 s — c1Yo
A 1—yo)? B A -1 B A, 11—
+—410g( 21/0) +63+ 2t W 4logy1 b2ty 410g Yo 7
2 Yy +c3 Y2 — Y1 Y1 Y2 — Y1 —Y2

2

Aq(s, t,x) = _a ]‘1\’73/0{ (s — m2) (03 + yg — ylyz) + (s —m?+ Miz) (y1 + y2 — 2y0) },
1

As(s,t,x) = N{ (s =m?) (es +13) (1 +v2) — 2 (s — m?) yovrye

_ (3 —m? —i—Miz) (63 —i—y% _y1y2) },
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Az(s,t,x) = —3{d1< (c3+10%)" (g1 +y2) + (c3 + 42) 112 <y1 +ys — 4yo>>

+ d2< es+93) (2vo (v1 +v2) — ¥ — ¥3) + dyoyiye (y1 + y2 — 2y0) — 2@/%@/3) },
Ay(s,t,x) { ( €3+ yo (y12 + y22) + 2y1y2 (Y192 — Yo (y1 + yz)))

—I—d2< es+y3) (y1 +y2) + viy2 (v —|—y2—4y0)>}

By (s, t,x) = { (s —m® 4+ M?) 1y (y1 + y2 — 2y0) + (s — m?) ((03 +y02)2

N
+ (es+3) (vi +y1ye +v3) — 2 (es +u3) yo (y1 + v2) — 2y0y12 (Y1 + Y2 — 2y0) > }7
Ba(s,t,z) = —%{dl( (cs+ yg)z (y1 +y2) + (c3+93) (y1 + yo)® —2 (cs+ud) o (y1 + ya)?
— (es+95) (y1 + y2) v1y2 + 2y1y2 (1y2 — Yo (1 + y2)) (y1 + y2 — 2y0)>
+ day1y2 (2 (e3+43) +yi+y5 —2y0 (1 +y2) > },
N(s,t,z) = (03 + (yo — y1)2> (63 + (yo — yz)z) :

d1(87t7aj) = M7,2 + (8 - m2) (1 - y0)7 d2(s7t7$) = (S - m2) c3 — y(]db
d3(s,t,x) = (s — m2)2 —4AMPey,

(S y x) _ C4j:\/0421_c2)‘ (37m27Mi2) (S + x) o 5_m2+M7%_(1_x)ACCX
yija(sit z) = & LR TR =)t = (1 - 0)Aw)’

s
c(t,x) = Mg —z(1—2)t — (1 —2)Acex, c3(s,t,x) = a — yg,

co(s t,x) = (s — m2)2 —AMZM? + 4x(1 — 2) M2t 4+ AMZ (1 — ) Acex,
ca(s,t,z) = (s —m?) (s —m? — M?) — 2M7? M2 + 2M7 (1 — 2)Acex, (B.24)
where, for convenience, we have omitted the arguments on the right hand side of the equations and

suppressed the index 7 in the case of the auxiliary functions. Note that below threshold, the kinematical
region where

7f_Acex 2 7f_Acex 2
A\ 1Y T Sy

has to be be paid attention to, since ca(s,t, ) can become negative and y; 5(s,t, z) complex. However,
the representation (B.24]) can still be used in this range if the analytic continuation is done properly,
which can be achieved by evaluating the amplitude at s — s + ie. As we are mainly interested
in the continuation above threshold, we will not pursue this any further. While ys(s,t,2) < 0 for
A (s,mz, Mf) < 0, we have 0 < ya(s,t,z) < 1 for A (s,mz, Mf) >0 (and y1(s,t,2) > 1 in both cases).
Taking this into account, the continuation of (B.24]) above threshold reads

Ii5(s,t) = /dwgig(s,t,x), (B.26)
. 1 _ 2 1— A 4
fhalst7) =~ ST pog LU 0a) AT W0l gy, AVEL
cc |y2—vy1  y2(y1 — 1) NG s — 1o
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Ay (1—yo)*+c3  Bi— Asys

1— B — A
og y2+ 1 2Y1

1 y1—1
5 08 2 1 lo
2 Yy +c3 Y2 — Y1 Y2 Y2 — Y1 (7
8M7 Y1+ Y2 — 2192 —M;

+ 3/2 2 arccos

Cy (yl - y2) \/(yl - 1) (1 - y2) 2\/a (1 o y0)2 +c3

2
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+ y1y2 log
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+ 4Mi2 2dq Y1ty log yi(l=y2) , As+yods arctan c1y/es

02/2 (y1 —y2)° Vs vi—y2 o y2(y1—1) NG s — 1%

A 1—yp)? B A -1 B A 1-—
Jr_410g( 2yo) +03+ 2t 410gy1 _ b2ty 410 Y2 |

2 Yyt s Y2 — Y1 Y1 Y2 — Y1 Y2

Based on (B.26)), it is now straightforward to perform the limit m., — 0

s /1
arsinh ST

2
my/s I~ (s,t)
L+1o <7> + 2 ,
812 (s —m?2) \/—t (4dm? — 1) { E\s—m2 } 1672

Il(s,t) =

~

(5.9 /1d (s +m? — M2+ (1 - x)Acex) arctan S+m2_M2i1(31_x)A
s,t) = x z <
! J (s —m?) (m? — (1 — 2)t) /5]
sly =4s (Mg —z(l—a)t — (1 —2)Acex) — (s — m? 4+ M? — (1 — m)ACCX)2 .
B.2.6 1 meson, 1 photon
_— 1/ 4’k 1 G-
O @nd(m2 - k) (M2 (¢—k)2) 1672
B.2.7 2 mesons, 1 photon
Vaolt) — 1 / A% 1 | ;O d#'Tm Voo (t')
20(t) = ~ = — —
R R I P R IR R S
L’TI' h (t7 MT('?MT(')
- _327T2M7%f (t, Mr) + 32m2M2
0 (t —4M?2) ( t—4M?2 >
Im Voo(t) = i lo T —L.]).
0(0) = {6z a2 \ ° M2

93

(B.27)
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B.2.8 1 meson, 2 photons

1 [ d% 1 ,
Pult) = | G e G s )
1 / d’k 1 - l]o[o dt'Tm Pro(t')
i) (2m)d (m?y —(q— k)z) (m?y — (¢ — k)2) (M2 — k2) N 7T0 v —t
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©32m2M2 ° M2 1672 M2
1

dxlog x
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g10() /1_:,;(1—:@#’
0 Ky

B M2 " (t— /—t (4D12 —t)> i <t+ —t (AM2 —t)) }
; ,

o /t(dMZ —¢ 2M?2 2M7
1
v 2r ) (MZ—a(l—a))=2(—a)i  16y/~L(AMZ 1)
O(t)0 (4M? —t 4 M2 O (t—4aM? t
Im Pyo(t) = ()6 (4M; — 1) arctan T -1+ ( ) arcosh )
8my/(4M2 —t)t t 8/t (t —4M?2) 2Mx

Pyp(t) is merely needed in the tensor decomposition of Py (s,t).

B.2.9 1 meson, 1 nucleon, 1 photon

1 [ d% 1 / /
Vll(s) - ;/[(271')5[ (m%—]@) (m2_(p_k)2)(M7%_(q+k)2) :(q—>q7 p_>p)
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m2
m? 25 — 57, s 1 25 — 57,
hi1(s) = 2Li L) —2Lip (22 ) + Slog? ——1
1(s) A/2 (s, m2, M2) 2 <2s - 31_1> 2 <31_1 Toloe 25 — sy
1 (

- A (s,m?, M?
——log28—1_1+10g ( 5 ) lo
2 511 m#s

11} if s < (m— M;)?,

272m?2 m?

=N (s,m?, 0E2) N (s,

hll(s)

23—SI:1> + 2Ly <3_3_r1> . 2_772

1, ,2s—sf; 1 A (s,m?, M2) log (2s — s17) sty }

3
o
S
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[\
£
o
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+
S
+ —log 1L 4 “log? 2L 4 log =
2 2s —sy; 2 ST m2s (23 — 311) st

if s> (m+ M;)?, st(s) =s—m?+ M2+ \/? (s,m?, M2),
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S11 (S,ZB)+£E)\1/2 (S,m2,M72r)
; 811(37 x) log 2m\/(1—x)m2+xs—x(1_x)M2
k11(s) = /dx : M2
N2 (5,m2, M2) (1= 2+ 2y — 2(1 — 2) 2 )

s11(s, ) arccos P~ )slgf’””) e
m —X)m rS—x —T
k‘n /dl’ z

V=X (s, m2, M2) (1—3:—1—:13% —:E(l—:n)%—f)
s11(s, ) = 2m> —|—w(s—m — M2),

if A (s,m*, M2) >0,

if A (s,m*, M2) <0,

s — S0 7 ds'Im Vi1(s)
Via(s) = Vi -
11(8) = Vi1(s0) + Ri1(so0) + - ][ 5 —5)(5 —s0) Ri1(s),
(m+Mq)?

0 <3 — (m+ Mw)2) A (s,m?, M2)
Im Vi (s) = log 22w )
16/ A (s,m2, M2) 2

m?s

For s > (m + M;)?, Vi1(s) contributes to the Coulomb pole at threshold. The divergence is contained
in h11(s) and solely due to the term o 272, while the remaining bracket is regular at threshold. Besides
V11(s), which emerges from vector-type diagrams, there is a second kind of loop integrals including
one meson, nucleon, and photon propagator, arising from axial-type topologies

(B.31)

d?k 1 ,
A“@:*/@ﬂﬂmﬁ4ﬁ< T E-GE—(q—Ry) 47D

C + 1 1 ax ax
32 ) 2f11 (s,m, M) + 1672m2 (911 (s) + hiY(s))
logm
911 (s /dﬂj M2
r+(1—-2)2 —o(l-2)-%
m? L s —m?+ M2 — \/? (8,m2,M7%)
T2 (s,m?, M2) 2 2s

) 2 1/2 2 A g2
_le <S m +M7r +22 (37m 7M7T)> } lfA(S7m2,M7%) 2 O7

ax —T r—1)x 2 S S,T
T (s) {(1 _ x)s + (1 4 w)m2 o acMg} log +(1 )( )i@ DaMZF llax( )

N 20 M/ (1-z)s+am2—z(1—z) M2
1i(s) = dz s M2 v 2

) <l’—|—(1—l’)m —x(l—ﬂf)m> 511 ax (8, @)

—(1—2z)(s—m?)—(2z—1)zM?
1 {(1 — .Z')S + (1 + w)m2 - IL'M%} arccos 2xMﬂ\/(1(—x)S+)mm2—m(1_x)M2
+ / dx s M2 — ’
r+(1—2)%—2(l—2)=3 Sllax(sax)
#5(s) " "

ax() s —m? if s = m2
i (s) = if s =2 m?,
1 s—m?+ M2+ 2mM;, <

Stax(8,7) = (L —2)? (s — m2)2 + 22 My —2zM?2 (1 — 2)s + (32 — 1)m?) ,

ax s — 5o T ds'Tm Aq1(s") ax
An () = Aus0) + Rif(so) + " SR Rigs),
m2
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9(8—m2) s —m? 4 M2 + \/? (s,m2,M7%)

ImA
mAn(s) = 8TAY2 (s,m2, M2) 8 2M /5 ’
ax C + 1 1 ax
1(s) = 30022 fll (s,m, Mz) — 1622m2 11(s), (B.32)
3% (s 1—2)s+(14+x)m2 —x M2 ++/52 ax (8T
7 ax o {(1 B 33')3 + (1 + ZL')mZ N $M7%} log ( 2Zn\/((1—zﬂ))s+:vm2—w(1—r1)1M72§ :
1i(s) = / dz IYe
9 <w+(1 —x)% —w(l—w)m—g) s%lax(s,x)
—XT)S xr m2—x 2
N /1 dx{(l —z)s+ (1 +z)m? — ;EME} arccos 2m$(1—)m;(+1:m)2_x(1£§m
(w +(1—2)25 —2z(1— w)%f’) —5% 0k (5, )
33 (s) m m

B.2.10 2 mesons, 1 nucleon, 1 photon

d% 1
An(s,t) = !/@ﬂ C(m2 — k%) (m? — (X —k)?) (M2 — (¢ — k)?) (M2 — (¢ — k)?)

= f (¢, My) m? 1\ g21(t)
3202 M2 (s —m?) {L *loe (Tﬁ) } T Tom (s -y T8

\/4m2 (M2—z(1—z)t)— M2
M2

1
g21(t) = O/dw (1 (- M2> VAm?2 (M2 — z(1 — z)t) — M

arctan

(1—y)s+(1+y)m2 —yM?
2m\/s§1(s,t,x,y)

(s2,(s,t,2,9)) "

{ 4m? arccos

s t = s t .
+ S% (S tx y)s21(s t :E,y) }’ 321(5> 7$ay) 313(5> 7$’y)|Accx—07
2
s%l(s7t7$ay) = 4y m (Mz - 33‘(1 - ﬂj‘)t) - ((1 - y) (S - m2) - Z/ME) )
6 (s —m? V—t
Im Ay (s,t) = (s —m?) arsinh . (B.33)
A (s —m?2)\/—t (4M2 —t) 2M~

We cannot write down the usual dispersive representation due to the non-integrable singularity at
s = m? of the imaginary part, which, once regularized by a finite photon mass, generates the term
proportional to L.

B.2.11 1 meson, 2 nucleons, 1 photon

A1a(s,t) possesses both s- and u-channel cuts, is infrared divergent and contributes to the Coulomb
pole at threshold. Note that we still consider s and t as independent variables and u to be fixed by
the Mandelstam relation s + ¢ + u = 2m? + 2M2 — Acer. The s-channel integrals

d%k 1
Anls.f) = / (2m)? (m2 — k2) (m2 — (p — k)2) (m2 — (X — k)2) (M2 — (¢ — k)?)
:_/d% 1 (B.34)
i Ju @m) (m2 = k2) (m2 = (/= k)?) (m2 — (8 — k)?) (M2 — (g — k)2)
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as well as

dk 1
A= [ @n) (m2 — 1) (2 — (7 — B2 (m? — (A~ BB (M2 — (g + hp) D)

are only relevant for the elastic channels, while

d? 1
At =5 [ o R Ny oy ey s 1 Ve Py s S

does contribute to the charge exchange reaction. We will give explicit expressions for the s-channel
case, where A e is incorporated such that (B.36]) is reproduced correctly when deducing the u-channel
via § «» u. The result for the imaginary part reads

Im Aq5(s,t) = Im Af5(s,t) + Im AY5 (s, 1),
(s—m?) 6 u— (m+ My)? 2 A2
Im Afy(s,t) = ( ) arccos -~ 2im 7Y t My —u

8 (s —m2) \/—A (u,m?, M2) 2mMy

9<(m—|—Mw)2—u> m2+ M2 —qy
arcosh —>——

87 (s — m?) /A (u,m?2, M2) 2mM,
H(U_(m+Mw)2) L (m —s) A2 (um M2) I
167 (m2 — $) A2 (u,m2, M2) | ° m2 (A (u, m2, M2) — M2 o) (5, 1)

Acc:x=0 0 (u - (m + M7r)2> ){log (m2 — 3)2 A (u,m27M7%) B L},

+

Im A}y (s, ) =

167 (m?2 — 8) AY/2 (u,m?2, M2 m2&(s,t)
E(s,t) = 2M2 (M2 — AZ) — M2 (M2 = Acex) (3m? + 4 3Dcex) +m? (u — m?)’
Bex0 o8 — M2 (3m? +u) +m? (u—m?). (B.37)

Again, Im A3,(s,t) < 1/(s — m?) prevents the direct application of dispersion relations. The real part
is found to be

2
Apa(s,t) = —2 (. m, Mr) ){L+ log (%) } + L IGL Ria(s,1),

32m2m2 (s — m? 3272 (s — m?)

1 23}2M2 — §12(:E y)
Ris(s,t) = [ dz [ dy T ’ _
) / ””/ 16w2{s12<x y) (m? — (1 — ) (M2 — Acex) + 22M2 — B13(x, 1))

2( —y(l y)(M2 Accx)) §12(£B,y)
2¢/m2—y(1—y) (M2 —=Acex)\/m? —y(1—y) (M2 —Acex) +2 M2 =512 (x vy)}

(3%2 (1‘, y)) 502
8%2(87t7$ay) = 43:2M7% (m2 - y(l - y) (Mz - ACCX)) - 5%2(:177:'4)7
Sia(s,t,myy) = (x—y) (s—m? —aMZ2) + (1 —y) (t — M? + Acex) + 2> M2

2512(x, y) arccos
+
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For u < (m + My)?, g12(s,t) is given by

(5.0 fol dajgg)(s t, ) if s > stn
87 = T 5(s xT S
912 fo 12(8:0) d:nggz)(s t,x —I—f 12( D d:ng(2)(s,t,$) —I—fm11+2(s " da:gg)(s,t,az) otherwise,

srlrém _ Z—T;{Mz (4m + ACCX) - Mﬁ + 2m?2 (m2 i Acex)

- Mw\/(Mg - ACex) (4771,2 - Mg + ACOX) (4m2 - M2)} ACCZXZO m2 - ta

4mn/€(s, 1) F 2 (2m? — M2) Acex F A2,

|
xfz(s,t) =_ 4 ,
8 (m2u — (m2 — M32) ) — 8Acex (M2 — M2) — 2A2

cex

—u( ) S,t,T
2((1—x) (2m? + Acex) + (22 — 1) M2) arctan m

+ m —x)(2m T
9%2)(5 t,x) = (1—z)(2m2+Acex)+(2z—1) M2
(o2 + (1= 2)m? = o1 — 2)uby/—ul) (s, t,2)
2
) o {uememt aw) vzee 4l |
(2)( t,x) ((1 o) (2m " ACCX) + (2 - 1)M7r) log dm2 (zM2+(1—z)m2—z(1—x)u)
S xr) =

912 N
{xM% + (1 —z)m? —z(1 — az)u} u§2)(8,t,3:)

Y

uglz)(s, t,x) = 4m?*z(1l — ) (u —m? —2M? + ACCX) - (4m2 - Mﬁ) M2(1 — 2x)*
+20cex (2m* — M2) (1 — 2)(1 — 22) + (1 — 2)*AZ,,. (B.38)

Above the u-channel threshold, we perform an integration by parts to improve the numerical properties
of g12(s,t). In particular, the contribution to the Coulomb pole is separated into the boundary terms.
It is solely given by the term proportional to 72/+/\ (u, m?, M2). Suppressing the dependence on s
and ¢ of the auxiliary functions on the right hand side of the equations, we arrive at

Zi 1 mglz) m1+2

gia(s,1) = / degd () + / degd (z) + / dag? (z) + / dwg? (z)
0 oF o )
12 12 12

e
- / da (k5 @)if3 (@) = k3 @)13 (@)) - el 572) s (2%2)}

12

Z12
+
1 _ 2 u
243 (s,1) 2( 12"‘%)7 2 (5,1) = 2( E"‘%)’
up(s,t) =u+m —M2:|:/\1/2(u,m M7) 1_2<2—1u2<$<3:f2,

—2)(2m2+Acex T 213 fu D (g
2 ((1— 2) (2m + Do) + (22 — 1)M2) log L0242 )2;(35 Dty @

uy/uld @) ’

o8

WY (s, t,2) =



1—2) (2m? + Acex 2r — 1) M2

uy/ufy ()

(1) dhiy (x) 4m?uf3) () log ( )2m e V iz
112 (S, t, x) == =
dx ) 3/2
u (Ulz (95)>
(1 B .Z') (2m2 + ACex) + (2$ — 1)M7%

m? — M —2z)u (1)
u{ajMﬁ + (1 — :L')m2 _ ZL'(l . ZL')U} u(l)(gj) (( ]\47T + (1 2 ) )

uyy () + u%) (33)>,
12

2 2

1(2)(8 t,z) = dhgz) (z) _ 2m2u§2) (z)

12 Yy - - 3/27

dz (1)
U <u12 (513))
2xu—u+2 2

k‘(l)(s " .%') _ ulog (2xu—u%2> dkg)(x) _ u
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k) (s,t,2) = -

= log? u_zr?_m — log? Uy _
A/2 (u,m2, M2) 2u

1 Uiy — 22U
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2u :”> Tos
2 2)\1/2 2 2
+ —27; + Liy ( (v, 247)

Uy — 27U

2xu — u;.
L 12 £ 12
M (2/\1/2 (u m%ME)) } PSS 0
+ - 2
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bz (5,1 2) /\1/2(u,m2,M3){2 > <2u x) 28 <$ 2u> 2
1 A2 (u7m27M7%) 1 ufy — 2zu Li ufy — 2zu
0 —Li
s 220U — Uy 2\ 22172 (u,m?, M2)
2xu — Ui U uy;
Li 12 i Y2 Uig
k2 <2/\1/2 (u,m2,Mg)>} Tou ST
+ - +
(2) U 2 Uy 2 U L. o 22U — Uy
t,x) = 1 ——=] =1 it LA |
ki (5,1,2) /\1/2(u,m2,M7%){ * <$ 2u> % <$ 2u> 2 8
72

2AY/2 (u,m?2, M2)

+ 1/2 2 772 +
L ufy — 2ru (22 (uym?, M) _
g Lz (2/\1/2 (u,m2,M7%)> Lz ( i >
(2)

Ui
22U — ug, u’
ujy (s, t,z) = dam? M2 — M7(1+ 2z) — (2(1 — z)m® — M2) (u — m?)

(B.39)
B.2.12 1 meson, 1 nucleon, 2 photons

7

1 [ d% 1
Pll(S,t) = —/
I

(2m)d (m2 — k2) (m2 — (k — A)2) (M2 — (q+ k)2) (m2 — (p — k)?)
1 [ d% 1
K] /1 (

2m)1 (m2 — (k- )?) (m2 — (k= ¢)?) (M2 = k) (m? = (T — k)?)
= " TonZm% <1°g . L) g1 (5,m, Mz) = R} (s,1),
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1 1 Am?2 511(5,y)
/dx/ 1 _ y{ - m~ arccos 2m /7311)1(3,1‘/,:2,@/)
{=2X (

Y
162 s,m2, M2) — da(1 — z)(1 — y)2m2t}/?

+ 311(37y)
sti(s, b, y) {=y?A (s,m?, M2) — (1 — z)(1 — y)?m?t} [’

sti(s,t,z,y) =s—(1—vy) (s —m?+ Mﬁ) +(1- y)2 (Mﬁ —z(1-— :L')t) ,
ds'Tm Py (s, t)

P t) =P P s— 50 ][ _ pp
11(8,8) = Pra(s0,t) + By (s0,t) + —— (5 — (5 —50) Ry, (s, 1),
(m+M;)?
0 (S — (m + MT()2) —t
Im P t) = — log— —L|. B.4
m 11(37 ) 87Tt)\1/2 (S,mZ,M%) <Og m2 ) ( 0)

B.3 Tensor decomposition

B.3.1 Meson integrals

d Iz
N /dk k _o,

(2m)d M2 — k2
T — d% k!
it = ; (2m)d (a2 _ g2 2 2
1 (M7 — k2) (M2 = (k - A))
AH AH AH
= 5 —J;; ( )—I-E((Mz sz) Jij(t)—i-Ai—Aj), J;;(t)ZTJu(t),
d W1V
gy = [ 4k Wk = (ArAY — gy IO (1) + ARAT I (1),
K i J1 (2m) (a2 12 2 (1 A2 Y "
I (M2 —k2) (M? — (k- A)
(M2, M2t
1 10700 Az —A;
N A(M,?,Mf,t)J Ao A ) SMEASME -t
= o B ¢ )+ S () |
1
Ji(il)(t) = m{2Ai — (4]\422 - t) Jn’(t)}

1 6M2 —t
ON; — (AM? —t) Jy(t) p — —2——,
12 { (405 — t) Jia( )} 28872t

A, (t+M§—Mj2)2 (t+M§—Mj2)

@y 3 A
Ty (8) = =57 + yve Jij(t) + YT (Ai —4Aj),

@ A 1o

T = =55+ (o). (B.41)

B.3.2 1 meson, 1 nucleon

1 d% kH B (1)
B =35 /I e - = —hy )
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1Y) = % (Ai+ (s —m® + M2) Ii(s)), I}V (s) = L(s). (B.42)

(2

B.3.3 2 mesons, 1 nucleon

R 1 d'k il
Ia"(t) =7 /1(27T)d (M2 — k2) (Mf — (k- A)2) (m? — (p — k)?)

i1 N p y
= QUIFV (W) + I (1) + {1 (m?) — I (m?) + (MP = M) I (1)}
i i Al
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:J@Wﬁﬂmﬂ+( i a0 -0 5400

8
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+

)
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)
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A(MZ, M2t
1 Ly ij
= m{ﬂ (m?) +1; (m?) =2 (1 (m?) + 11" (m?) ) + #Iﬁ (®)
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6 (0174 07 - 0) B0 + S (1 ()~ 1 ) |
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)
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1 )
= @{ —2I; (m2) +2 (Ii(l) (mz) i Ij(l) (m2)) 19 (MZQ n Mj? ) 12]1(1)@

t+ M2 — M? -
+ 3% (I (m2) — I; (m?)) + % {3\ (M2, M2, 1) + StM?) I;”l(t)}

21+ f(t,m)) (mz/\ (ME,MJ?,t) + thMf) _ (4m2 _ t) (MZ2 _ Mf)z
1287m2m?2 (4m? — t) t2 )

B0 = ﬁ{ = 2(d =3I (m*) +2(d =25 (m) +2 (207 — 1) ;" (1)

~(am? - o
(

= %{ — 2, (m?) + 41 (m?) + 2 (2M2 — t) T8V (£) — (4M? — 3t) Jgg(t)}
1+ f(t,m)) (M} — m*(4M,
L 64732)77(12 (4m? — Ss) t ~9) ’ (B.43)

ij 1
50 = 5 (17 (m) = 1 (m?)) +

~ | =

Note that I;{(l)(t), I;{(2) (t) and I;{(g) (t) are symmetric in 7 and j, but that 13]1‘(4) (t) and I;{(s) (t) are
not.
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B.3.4 1 meson, 2 nucleons

ipn 1 [ A% K i)
”W*GKQW%WLWMW—@—WMW—W—M> QAT
1

L) = oy (0 () + MELL()

1 UV _ ddk ]{;Nk;’/
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)

64m2m?2 (4m2 — t)t ’

oM =00 = 0% =% @) =o. (B.44)
i 1 A% kH =0 g X o 7id
%W$:TA@ﬂdwg—Wﬂmlﬁm—M%mﬂ—@—M%:Q”;W@+A”;%$

QH=pl+3r, AF=3H_pt Q~2:2m2+23—Mj2, 52:Mj2, Q-A=s—m?

! s—m2— M2 T (m2) — (s — m?2 2 7 (4
2/\<3,m2,Mj2){( M) () = ( + M) Ii(s)

+ ((s — m2)2 — M? (s—m*+ 2MZ-2)) Ig(s)},

15(s) =

J

Ig(z)(s) = 2/\ <S ;2 M?) { (3s+m® — M?) Ii(s) — (s + 3m*> — M7) I; (m?)
— (s =m?) (s +3m?* — 27 —MJQ) Ig(s)}. (B.45)

For the definition of p1, p2, and M;, see Sect. In these conventions (in particular for M), the
u-channel case follows by ¥ — A, s — w.
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B.3.5 1 meson, 3 nucleons
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m{t (4m2 a t) Iz(t) —t (2 (S +m? — Mz) + Acex) Ign(s)

+t (s —m?) (4m* —t) I]5(s,t) + 2075(s) ((s +m* — M2) t — Acex (2m* — t)) }

Acex=0, 813=0 (4m? —t) (I3(t) + (s — m?) I]5(s,t)) — 2 (s + m? — M2) I} (s)
N 4 (X(s,m2, M2) + st) ’

{ (2 (s+m® — M2) + Acex) IF (5) — (4m® — t) T'y(t)

2
If?E )(s,t) =—

1(3) o Acex
3™ () = N 6D
t

(Mm”—)(—-2)—M?@—u+ﬂﬁnﬁxaw}

533 s,t)

oD {
— Avex ( (s M2) 4 Do) } Acex=0, 8{5=0 0,
{

4M2 —t— 2ACCX) —(s— u)2

Iiy( Acex

3 8= NG (s+m? = M2) + Acex) I} (5) — (4m® — ) T} (t)

64



— (4m? = 1) (s —m?) y(s.0)} + 533(3’”){ (4m? — 1) (4DM2 — £ — 2000,)

AN13(s, 1)
— (s — u)2 _ ACCX (2 (S —|— m2 _ Mﬁ) + ACCX) } Acex:0:7 (5’1\/3:0 0,

Nig(s,t) =t (A (s,m? MZ2) + st) + tAcex (s + m* — MZ) + m*AZ

cex?

1 i _ qin® - 0
53(8) _ 2 (IB (s) Iy (8)) form™p — 7'n, (B.46)
0 otherwise.
The corresponding decomposition for the u-channel reads
. d w
Iiz’)f(u,t):l/ dkd 2 ‘
i Ji 2m) (MP = k2) (m? — (p = k)?) (m? — (A = k)?) (m? — (p/ — k)?)
= Q"I (u,t) — (A +20)" L (u, 1) — AL (u, 1), (B.47)

where the basis functions as defined in (B.46) may be used. The minus in front of I{g) (u,t) is
due to the replacement ¢ <+ —¢’ to arrive at the u-channel, whereas the second minus is caused by
our parametrization of the pion mass difference occurring in the kinematics of the charge exchange
reaction: contracting (B.46) with Q,, (A + 2q),, and A, yields

@ Q@A+ 0\ (LY
Q- (A+29) (A+29)? —Aeex | | I (s,1)
0 —Acex t 1Y (s, 1)
I (s) — 6i3(s) + M2I{5(s,t)
= | I4(t) + (s = m?) I}z (s,t) =I5 (s) + &i3(s) | , (B.48)
—513(3)

where we have used that M; = My for p; = p in the s-channel. Supposing that the sign of Ifé?’) (u,t)

is not changed as compared to I ig’)(s, t), we obtain

Q? ~Q-(A+29) 0\ (18 (w1)
—Q - (A+29)  (A+29? A | | IP(w,t)
0 Acex t ) \Iy ()
' I (u) — i:y(“) + MEI{:g(U,t) '
= Iz(t) + (u — m2) Ls(u,t) — IF (u) + di3(u) (B.49)
§3(u)

Changing the sign of I fé?’) (u,t) and multiplying the third equation by (—1) ensures that both systems
of equations are identical up to s < u.

B.3.6 1 meson, 1 photon

1 d%k A A
o=~ oy oy Ax B
V1o /1 Cm) (2 — ) (ME— (k3 00 0 T T (B.50)
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B.3.7 2 mesons, 1 photon

Vo =5 | A% il — (A1 20"V (t)
OV @2m) (m2 — k2) (M2 — (g — k)2) (M2 — (¢ — k)?) 20
@) V1o — Jrr(t)
B.3.8 1 meson, 1 nucleon, 1 photon
1 [ d% K+ (1) 2)
- — Sy, Ve
i o (2 ) (2~ (p WD (M2 — (g v Ry = &) PA(s),
1 [ d% kM ) @)
- — DY @ (g,
e T R A A
1 [ d% kM ) @
- = AHV. Vs
i o (2 B (2 = (= D (2 — (g — k) () P V().
1 [ d% Kt ) @)
z = A"V /“V
i o (2 ) (2 = (7 — ) (A — (g =R () PV ()
V(l)(s) B (s —m?— ME) Vio — (s +m? — Mﬁ) I:(s)
1 o A(s,m?, M2) ’
@, 28lx(s) = (s —m® + MZ) Vig
Vll (S) - )\ (8,m2,M7%) ) (B52)
1 [ d% 1 (1) 2)
hl —YHA "A
i o (2 B (2 = (B = ) (O — (g =) > (&) F P A
1 [ d% 1 (1) (2)
- =YHA " A
i o (2 ) (m? — (E — B (V2 — (g — k) > A (8) + PP (s),
1 [ d% 1 ) @)
il = A*A "A
) G e R - A At
1 [ d% 1 (1) @)
n =A*A 2y
i o (2 1) (m? — (A k2 M2 — (g + ) - A () AL ),
A(l) B (s —m?— Mg) (V10 + (8 — mz) Au(s)) — (s +m? — Mg) L,(s) + 2m2I, (mz)
ne) = X (s, 312) ’
s—m?+ M2) (Vio+ (s — m?) A11(s)) + (s + m? — M2) L. (m?) — 2sL,(s)
AR (s) = — ( ) ( ( )A § m2) Mg) ) Ir (m?) 15 g s3)

B.3.9 2 mesons, 1 nucleon, 1 photon

1 [ d% Kt
6.0 =7 | @m) (m2 —12) (m? — (2 — k)?) (M2 — (g — %) M2 — (7 — k)
— Q"AS) (s, 1) + (A + 290" A (s, 1),

1 [ d% K+
A (1) = 5 /I (2m)* (m2 — k?2) (m? — (A = k)?) (M2 — (¢ + k)?) (M2 — (¢’ + k)?)
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— QAN (u, 1) — (A + 29" A (u, 1),

(1) _ 1
Azt (,1) = 4 (X (s,m?2, M2) + st)

— (42 = 1) (5 = 02) An5,0) + Vao(0) },
1
4 (X (s,m2, M2) + st)

+ (s —u) (s —m?) Agi (s,t) + Vao (1)) } (B.54)

{2 (s —m?+ M2) A1 (s) — (s — u) I3 (t)

AP (s,1) =

{ (4m2 —t) 57 (t) —2 (s + m? — Mﬁ) A11(s)

B.3.10 1 meson, 2 nucleons, 1 photon

The tensor decomposition for the s-channel may be chosen as

1 / d%k kH
i J1(2m)® (m2 — k%) (m? — (p — k)?) (m? — (X — k)?) (M2 — (¢’ — k)?)
= QAR (s,1) + (A +2)" A (s,1) + AAT) (s,1),

1 [ d% Kt
i /1 (2m)d (m2 — k2) (m? — (p' — k)?) (m? — (£ — k)?) (M2 — (¢ — k)?)

™

= QAR (5,1) + (A + 290" AT (s,1) — AP AT (5,1), (B.55)

which for the u-channel becomes

1 / d%k k-
i J1 2m)d (m2 —k2) (m? — (p — k)?) (m? — (A — k)?) (M2 — (¢ + k)?)
= QAR (u,t) — (A +29)" AT (u, t) + A*AT) (u, 1),

1 / A%k ot

i Ji 2m)* (m2 — k2) (m? — (p/ — k)?) (m? — (A = k)2) (M2 — (¢’ + k)?)

= QAT (u,t) — (A +29)P AT (u, 1) — AP AL (u, 1), (B.56)
Since only the first version of contributes to the charge exchange reaction, Acex is incorporated

according to the prescription in Sect.[B.2.11l The pion mass which has to be inserted into the definition

of Igj (s) is M; = /M2 — Acex. In the present context, we thus deviate from the original definition
in Sect. [B.2.4]

A%)(s,t) = m{ (t (u— m? + M,%) + Acex (s — m? — Mg)) Igj(u)
+ (t (s — m? + Mg) + Acex (u— m? — Mg)) Igj(s)
— (t (s —m® + M2) + Acex (s — m* — M2)) Ay (s)
— (t (u —m?+ Mz) + Acex (u —m? - Mﬁ)) ((S - m2) Aqa(s,t) + Vn(u)) }
Acex=0 1
4 (XN (s,m2, M2) + st)

— (s =m? 4+ M2) A11(s) — (u —m? + M2) ((s — m?) Ara(s, t) + Vi1 (u)) },

{ (u— m? + Mg) IET (u) + (s — m? + M,%) I (s)

Agzz)((s’t) = m{ (t (u + m? — ME) + Acex (t _ 2m2)) Igj(u)
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— (t(s+m? = M2) + Acex (t —2m%)) IF (s) + (t (s + m* — M2) + 2m*Acex) A11(s)
— (t (u+m? — M2) + 2m*Acex) ((5 — m?) Ara(s, t) + Vi1 (u)) }

cex— 1 T s
P 04()\(3 m2 M2)+St){(u+m2_Mz)[B (u)—(s—l—mz—Mg)Ig (s)

+ (s+ m? — Mﬁ) A (s) — (u+ m? — Mz) ((s— m2) Aqa(s,t) + Vi1 () },

1 T i ACex
AR (s,8) = =515 () = 1 (5) = Aua(9) + (s = m?) Ava(s,t) + Via(w) p = == AF) (s,1)
0 1 -
S0 I () — 7 (5) = Aua(s) + (s = m?) Aus(s.8) + Vir(w)
Nia(s,t) =t (A (s,m* M2) + st) + Acex ((s + m® — M2) t + m*Acex) - (B.57)

B.3.11 1 meson, 1 nucleon, 2 photons

dk ke
Ph(et) = / @) (m2 — k2) (m2 — (k— A)2) (M2 — (g + k)) (m2 — (p— k)?)
= —¢"Pyy(s,t) + Q"PV (s,1) + (A + 2¢)* PP (s, 1),

dlk k“
Pt = | (2 = k2) (2 = (b = 8)2) (M2 = (¢’ = )?) (m? = (p = F)?)
= ¢"Pu(u,t) + Q"Pyy (u,t) - (A+%W ()
Pl(ll)(sﬂt) = _4()\($,m2,1M2)—|—st){(S_u)I (t) (4M7%_t) Plo(t)

— (S —m?+ Mﬁ) (tPy1(s,t) + 2V (s }

PQ@ﬁ:}h$ﬂ+ @@m;M%+m{wﬁ D137 () + (s — u)Pro(t)
= (s m? = M2) (P (s,6) + 2Vin (s)) |- (B.58)

B.4 Bremsstrahlung
The following representation of the integrals appearing in ([2.77) is valid for s > (m + M, )?:

de Es . E;+|p| . -
Ipip2 = / ) |p| IOg — |f)|7 D =xp1 + (1 - -Z')pQ = (Eﬁ7p)7

(s) = 2 s—l—mz—Mﬁ s+m? — M2+ \Y2(s,m?, M2)
9pp\S) = ZN/2(s,m?, M2) o8 2m./s ’
2 s —m? + M? s—m2+ME+)\1/2(s,m2,ME)

9a (%) = —7% AL/2 (s,'mQ7 M%) ©8 2M\/s ’

1

dx s+ (2¢ — 1)(m?* — M2)

Ipq(s) = 2/3 @) 5

§ o (s 20— 1) (m2 = M2))? — dssp(a)

+ (22 — 1)(m2 — Mﬁ) + \/(s + (22 — 1)(m2 — ]\47%))2 — 488pq(s)

x log )
2¢/55pq()
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Spg() = 2(1 — 2)s + (2z — 1) (am? — (1 — ) M2)
—z(1—z)(u+t) +am?+ (1 —z)M2,

1
(5.1 2/ dx s —m? 4 M? s —m?®+ M3 S?Jq(x)
Jaa ME—w(l-a)t [ () 2/5y/M2 — z(1 — x)

s2, = 82 = A(s, m? M2) + 4stz(l — x),
dz s+ (2z — 1)(m?* — M2)
qul(x + (22 — 1)(m? — Mﬁ))2 — 4s5pq ()

5

CIJ

00-

l\')
O\H

+ (22 — 1)(m - M2)+ \/(s + (22 — 1)(m? — ]\47%))2 — 488py ()

x log )
2./88pq ()
Spy () = —z(1 — 2)u + zm? + (1 — ) M2
=2(l—2)(s +1) + 22 — 1) (zm? — (1 — 2)M?). (B.59)

C Contributions of individual diagrams

C.1 Strong diagrams

(s1)
AL (s) = 4022 22 Ii(s) — (3s +m2) 1 (s),
i 82+ 108m2 +5mt s? + 6sm? + m* (1)
le (S) - (S _ m2)2 Mz IZ(S) - s — m2 Iz (8)7 (C 1)
4
T p mg s 0 T p _ g s 70
AT P(s) = o (247, () + 45 () . BT "(s) =~ (2BL.(5) + B (9))
4
™ m ™ 7TO s g ™ 7'(')
AL (s ) = T (2A (w)+ AT (), BIP(s,t) = S (287 (w) + B ().
cex \/_mg m 7TO ™ 7T)
A (s,8) = Yo (247, () + AT, (u) — 247, () = AT (5) ).
cex \/_g m 7T) ™ 7TO
B (s.1) = o (2BL, () + BY () + 2B, (5) + B, (s) ).
(s2)

A9 (s,t) =4 (s+m?) Li(s) — (3s+m?) I 1(3 +4m2I()( %)
£ 8m? 20215 (s) — 4 (s + m?) 130(s) 2 (s — m?) 152)(s)
(

— M2Ii(t) + 4m2T' D () — (s — u) I'P (¢t )} +32m* (s — m?) I (s, 1),
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B (s,t) =

AL, P(s 1) =

Tt
AL P(sit) =

A5 (s,1) =

Bg (s,t) =

(s +3m?) I(s) + 4m> 1" (m?) — (s +m?) IV (s
+ 4m? [M,.QIA(t) —2IA( )(t) +2Mi2IiBj(3) 2(S+3m )Ijgj(l)(s)
(s -

—2(s— m2) Iij@)(s)] — 16m* <M2113(s t) —

?54 AL (o,t) + AT ), BT (ost) = B (s,t) - 4‘(;43”( 1),
454 AT (s, t) + ;n—}iA;r;”(u,t), BT P(s,t) = 4?;143”(3 t) - 89—;3” ™ (u,t),
gﬁf (A7 (s,t) + AT (s,)) = % (47,7 (u, 1) + AL (w,1))
*;;f’: (B (s,0) + BL™ (s,)) + *;;f’: (B, t) + BL™ (1))

A?S (s) = (s — m2) I-(l)(s) —2A; — 8m? (Mizfg(s) — (s — m2) Ig@)(s)) ,

(2

B (s) = =M} Ii(s) + (s — m?) <Ii(1)(3) — 4m21g'(1)(s)>

4m2 37 i
+— G (8 + (s+3m?) (MPI(s) = (s—m?) 1D(s)) ).
4
T mg O T g O
A33 p(S) 4F4 A ( )7 BS3 p(s) = 4F4 B33 (8)7
4
7T+ mg 7r ™ 7T+ 7r ™
A53 p(37 ) 4F4A ( )7 Bs3 p(s,t):—4F4B ( )7
cex \/_mg 7T7r0 7T07T T
A (s,8) = =2 (2477 (5) + AL () — AL ()
\/§mg4 om0 20 7070
+ 16F4 <2A33 (u) + A33 (u) - A33 (u)> ’
wox(5,1) = ~ Y200 (2B77°(s) + BL(s) — B(5)
\/_g 7T7r 7T07r 7TO7TO
S (2857 () + BL(w) — BL T (w).

Al (s) = —2M2L(s) + (s — m?) Igl)(s),

Bi,(s) = — (s +m?) IV (s) +

4576 = s (AT () + AT (5)) . B P(s) = S0 (BLs) + BL(5)

+
s
AZ,

AT (s01) =

(2
s+ 3m?
M T,

mg 2

2F4
2

Ps.t) = 0 (45,0 + AT W) . BE.0) =~ (B + B W)

2F4
V2mg?
SF4

<3A7T (s) + AT, (s)) + \/g;jig (3A§4 (u) + Agj(@) ,
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V2 g? V2 g2

B (s, 1) = = (3BL,(s) + BI (9)) — 5 (3BT.(w) + BI () - (C.4)

mgzMZ-2
4
— + 0 — 0 + 0
A, P =A5 P = AL + A, By P(s)=DBg(s) + Bg (s), BgP(s,t)=—Bg(u) — B (u),
V2

cex cex ™ ’TI'O ™ ’TI'O
A =0, BE(s.1) = == (3BI,(s) + BI () + 3BT, (u) + B (u)) (C:5)

g>M? s + Tm?

A= Tt ()

Ii (mz) s B;5 (S) =

(s6)

Ag(s) = (s - m2) <—2Ii(s) + Ii(l)(s) + 8m2lg(1)(s)) ,
Bi(s) = —M?I; (m?) — 2A; — 8m>MZI}(s)
+2 (s —m?) ([}1)(3) — Ii(s) + 4m? (Ig(”(s) + zg@)(s))) ,

2 2
T mg s T T 9 O T
AT () = S0 (AT () + AT (), B, P(s,t) = o (B () - BIT (W),
2 2
’7T+ mg T 7'('071' 7T+ g T 7'('071'
AT (5.8) = 220 (ATT(s) + ALT(W)) . BEP(s,1) (B2 (s) = B (W),

= 1
cex \/img2 7T7I'O 7I'O7I'O 7I'7TO 7TO7I'O
A (s,8) = o (< AT () + AL (9) + AT () — AL ()

cex \/592 7T7TO 7TO7TO 7T7TO 7TO7TO
B (s.t) = 12 (=BT () + BL ™ (5) = BI (w) + BL™ (u)) - (C.6)

(s.1) = gz (A = am? (17 (m?) £ 2215(0) — 217 1) ).
(5,) = —AT P(s,1) = AT, (s,1) — 24T (s,1),
BT ?(s,t) = — BT, P(s,t) = BT (s,t) — 2BL (s, 1),
Ag‘;"(s,t) = \@Agf(s,t), B (s,t) = \@B;f(s,t). (C.7)

- +
TTp _ ATYp _ pcex __
AL P =AY =AT =0,

t

™ t ™ cex ﬁt
BLP() = 7 /R0, BLP() =~ /R0, BN = —5r Jh(t). (C8)
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1 i 1 1
Al (s) = %[( () Bly(s) = Tz <—4MZ~2I,~(3) — A4 (s —m?) 1(s)).
A% p(,t)z ()+A’T()+A§9(U)7 Bg, p(s t) = 2B7(s) + BT, (s) — BT, (u),
JP(s,t) = AT, (s) + 247, (u) + AT, (u),  BLP(s,t) = BE,(s) — 2BL (u) — B, (u),
ACC"(S, t) = —v2 (AL, (s) — AL, (v)) BS‘;"(SJ) f( 5 (8) + Bl (u)) . (C.9)
(s10)
TTp _ AT mg cex i 9> . s+3m?
ASlO ASlO = =1 An, Aslo =0, leo( )_ SF4 ‘ s—m?2’
B;rlop( ) = _4B;T10( )7 B;rlop(s t) = 4B;r10( )
Bex(s,t) = V2 (B, (s) + BI, (s) + B, (u) + BI, (u)) (C.10)
(s11)
2 2
™ 7r+ mg MT(' cex
Asllp A811 - 4 ™ (777,2) ’ A811 =0,
2 2 2
T mtp g Mn cex \/ig
BYP = —Bl\" =-S5t (m?), B =~ (ML (m) + Mo Lo (m?)) . (C.11)
(s12)
2
T T mg (3
ATP(s,1) = _W (t = M2) {am 157 O 0) = Tono (D)} + S { £ 8m? (s —w) 157 (1)
— (t+ 4 (M2 = M) (42T e - Jm(t)) + 2021, (m?) },
BEP(0) = ~BEr(®) =~ {00 +4am* IO () (©12)
512 512 4 21 ’ .
cex 4\/_ m3 0 cex \/_ .g T
Ax(s,t) = 0 (s =) 157 V), B = S {0 - am? T P o).
(513)
T p mtp cex T p mtp 4A7T + AWO cex \/5(3A7r + 2A7r0)
As13 = As13 A813 =0, B513 = _B813 = SF4 s B513 = — QA . (C.13)
(s14)
™ 7'('+ cex ™ 7'('+ cex
AS14p = AS14 = A, = BS14p = BS14 = By, =0. (C.14)
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C.2
(v1)

(v3)

C.3
(a1)

Vector-type electromagnetic diagrams

T ot cex
Avl ;D(S) = Av1 ;D(S) = _\/§Av1 (3) =

2me?
F2

(s=m?) {vi (9 + VP (9},

T ot cex
Bj, P(s) = By, P(s) = —V2B{™(s)

- 2F?

AT P(s,t) = ATP(s,t) = AT P(u), BT, P(s,t) = BL P(s,t) = —BT, ?(u),

{_

1) 4 (s = m? = M2) Vig(s) + 4 (s — m?) Vl(ll)(s)}'

cex __ pcex __
A = BEX = 0,

AT P = AL = A = Bi* =0, B P(t) = =B, "(t) = —— (2m” — 1) I}(0).

- +
TP _ AT'P __ ACEX _ pecex __
Ay, P =A0, P = A =B, =0,

T ot
By, P(t) = =B, P(t) =

F?

e?

{ a2 =) (Vao() =285 ) + Vi) = Vio .

- + - +
Tp _ Amtp _ pcex _ pmTp _ pwtp _ pcex _
Avs - Avs - Avs - Bvs - Bvs - BUS =0.

AT P = AT'P = ASX = BT P = _BT'P=_2\/2B% =

e2
_ﬁ

Axial-type electromagnetic diagrams

- + - +
TP __ ATTD __ ACEX __ PT P _ DT p __ pcex __
AT P = AT'P = ASX = BT P = BT'P = B =),

- +
T p _ ATp _
AL, P=A0 =

BT P(s) =

az

Ba(s,t) =

_ e2g? s+ 3m?
F?2 s—m?2

V2

4

2me?g?
-5

<2V10 - V1(01)> ;A =0,
<2V10 — Vl(ol)> ; Bg;p(s,t) = —Bj, P(u),

(B2, 7(s) + BL, ().
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(C.15)

(C.16)

(C.17)

(C.18)

(C.19)

(C.20)

(C.21)

(C.22)



; me?g? ;
Al (s) = — Ff {(d —9) (17(3) - I,§1>(s)) +2(d —4) (s —m? — M2) IV (s)
. me2ag? .
— ((d—4) (s — m?) + 4M?) I;_zg(s)} - —F—f{g (LY(S) - 1§1>(s)) - 4Mj21gﬂ(s)}
me2g? (s — m2)2 me2g2Mj2 (s —m?) (8 +m? — M]2 — 2sf11 (s, m, MJ))
- 32m2 F2s? - 8m2F2s)\ (s m2 M-2) 7
M M ]
Bi, () = =5 { (= 2) L, (s) — 4m* I (5) — 4m?(d = )1V (s) |
26292

= _T{Iﬁ,(s) - 2m2];§j(s)}
N e2g? (s — m2) <s —m?— Mf) (S +m? — 1\4]2 —2sfn (3,m>Mj))

1672 F2s)\ (s, m2, Mf)

9
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C.5 Bremsstrahlung

Apart from m,2y terms in the denominators, the following expressions for the bremsstrahlung diagrams
are still exact. T* is defined according to (2Z.61). The amplitude for 7*p — 7 p follows from

77 (pa.pd k) =T P (0, —q k) . (C.48)
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C.5.2 Axial-type
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C.5.3 Photon exchange
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