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Abstract. The neutron-proton mass difference in (isospin asymmetric) nuclear matter and finite nuclei is stud-
ied in the framework of a medium-modified Skyrme model. The proposed effective Lagrangian incorporates both
the medium influence of the surrounding nuclear environmenton the single nucleon properties and an explicit
isospin-breaking effect in the mesonic sector. Energy-dependent charged and neutral pion optical potentials in
the s- and p-wave channels are included as well. The present approach predicts that the neutron-proton mass
difference is mainly dictated by its strong part and that it markedly decreases in neutron matter. Furthermore,
the possible interplay between the effective nucleon mass in finite nuclei and the Nolen-Schiffer anomaly is dis-
cussed. In particular, we find that a correct description of the properties of mirror nuclei leads to a stringent
restriction of possible modifications of the nucleon’s effective mass in nuclei.

1 Introduction

This presentation is about a calculation of the neutron-
proton mass difference in finite nuclei and in nuclear matter
in the framework of a medium-modified Skyrme model.

The nuclear-density dependence of isospin-breaking ef-
fects belongs to one of the fundamental questions in nu-
clear physics [1,2,3]. In particular, the effective neutron-
proton mass difference in finite nuclei and nuclear mat-
ter ∆m∗np, although it is of astrophysical relevance, of im-
portance for the description of mirror nuclei, the stabil-
ity of drip-line nuclei etc., is not very well under con-
trol. Rather, there exist very different theoretical predic-
tions of this quantity for isospin-asymmetric nuclear mater
[4,5,6,7,8,9,10,11,12,13,14,15,16,17] which predict both
qualitatively and quantitatively different results.

Most notably, the in-medium neutron-proton mass dif-
ference is relevant for the description of mirror nuclei and
the Nolen-Schiffer anomaly (NSA) [18,19]. Although there
are many theoretical approaches devoted to the explanation
of the NSA discrepancy [20,21,22,23,24,25,26,27,28,29,30,31]
this phenomenon is still not fully understood.

Skyrme-soliton models have the inherent advantage,
compared with other hadronic models, that they are based
on chiral input (chiral Lagrangians in the meson sector)
and that they treat thestructure, properties and interac-
tions of the investigated nucleons on an equal footing
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[32,33,34,35,36,37]. Moreover, Skyrme-soliton models al-
lows for an easy incorporation of the nuclear background
via local medium-dependent coefficients [38,39,40]. They
are therefore well suited to address the problem of the me-
dium-dependenceof the effective neutron-protonmass split-
ting and the Nolen-Schiffer anomaly. In Refs. [42,43] we
investigated∆m∗np in symmetric and asymmetric nuclear
matter, respectively. Here we rather focus on the results
of Ref. [44] which addresses the behavior of this quantity
in finite nuclei and the Nolen-Schiffer anomaly.

The presentation is organized as follows. In Sect. 2 we
review how the Skyrme model should be generalized in or-
der to include explicit isospin breaking and explicit chiral
breaking on the same footing. An unconventional break-
ing mechanism is introduced and the relevant quantization
procedure is discussed. Section 3 is dedicated to the intro-
duction of medium-modifications to the isospin-extended
Skyrme model. We review the construction of the medium-
modified Skyrme model based on the pion dispersion in a
nuclear background. Section 4 focusses on the static results
of the nucleon when the pertinent skyrmion is placed at the
center of spherical symmetric nuclear core. The construc-
tion of the electromagnetic part of the in-medium neutron-
proton mass splitting is indicated. Values for the effective
proton mass, the (total and electromagnetic contribution of
the) in-medium neutron-proton mass splitting, the proton
and neutron magnetic moments and the scalar and isovec-
tor rms-radii are reported. In Sect. 5 we discuss the in-
medium neutron-proton mass difference when the nucleon
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is located at a distanceR from the center. Corresponding
results in infinite nuclear matter can be found in Sect. 6. In
Sect. 7 tentative conclusions are given to the behavior of
the effective shift∆m∗np. The Nolen-Schiffer anomaly and
the prediction of the medium-modified generalized Skyrme
model are discussed in Sect. 8. We end the presentation
with final remarks in Sect. 9.

2 Isospin-modified Skyrme model

2.1 Generalized symmetry breaking

The standard Skyrme model [32,33,34,35,36,37] consists
of the non-linearσ-model Lagrangian, which is of sec-
ond order in the derivatives, and a fourth order soliton-
stabilizing term:

L =
F2
π

16
Tr

(

∂µU∂
µU†

)

+
1

32e2
Tr[U†∂µU,U†∂νU]2, (1)

where

U(x) = exp

(

2i
3∑

a=1

τaπa(x)/Fπ

)

= 1+ i
2τ · π

Fπ

+ · · · (2)

is the usual chiral SU(2) matrix formulated in terms of
the pion fieldπa. The pion-decay constantFπ (its physical
value would have been 186 MeV) and the stabilizing pa-
rametere are normally – and also here – adjusted in such
a way, that, after rigid-rotator quantization in the (baryon
number)B=1 soliton sector, the empirical isospin-averaged
nucleon and delta masses are fitted. Note that the usual
Skyrme model preserves isospin symmetry. This holds even
if there is a chiral symmetry breaking term

LSB =
F2
πm2

π

16
Tr

(

U + U† − 2
)

(3)

present, which induces the pion-mass term in the (B=0)
meson-sector of the model, see especially [33,35,36,37].
In order to incorporate explicit chiral symmetry breaking
and isospin-breaking on equal footing as it is the case for
the free pion Lagrangian

Lmes= ∂µπ
+∂µπ− − m2

π±π
+π− + 1

2

(

∂µπ
0∂µπ0 − m2

π0π
0π0

)

,

π± = 1√
2
(π1 ∓ iπ2) , π0 = π3 ,

the original Skyrme model has to be modified. Following
Rathske [41] we therefore add to the ordinary Skyrme La-
grangian (1) the following generalized symmetry breaking
term

LgχSB = −
F2
π

16

{

Tr
[

(U − 1)M
2
(U† − 1)

]

−Tr
[

(U − 1)τ3M2
∆(U† − 1)τ3

]}

, (4)

which explicitly breaks chiral symmetry and isospin sym-
metry. Here the following definitions have been applied:

M
2
≡ 1

2(m2
π± + m2

π0) , M2
∆
≡ 1

2(m2
π± − m2

π0) (5)

with mπ± ≡ mstrong
π± denoting the strong-interaction part of

the mass of the charged pions. Note that the electromag-
netic contribution to the latter mass is beyond the frame-
work of the present model and will not be considered here.

2.2 Quantization

Following Refs. [42,43,44], we quantized the isospin-modified
Skyrme model with the help of one constrained (ϕc

3(t)) and
three unconstrained time-dependent collective coordinates
(ϕ1(t), ϕ2(t), ϕ3(t))

U → AUA† with A→ A(t) = exp
(

i τ · ϕ/2
)

(6)

where

ϕ̇1 = ω1, ϕ̇2 = ω2, ϕ̇3 = ω3 + ϕ̇
c
3 ≡ ω3 + ac (7)

are the pertinent angular velocities. Under the spherical
hedgehog ansatzU(r) = exp(iτ · r̂F(r)), there exist also
collective coordinates linked to static rotations of the skyr-
mion in coordinate space, whereΩ1, Ω2, Ω3 are the relevant
angular velocities. In terms of both classes of angular ve-
locities the spatially integrated Skyrme Lagrangian (1) in-
cluding the generalized symmetry breaking term (4) turns
into

L ≡
∫

d3r
{

L2 +L4 +LgχSB

}

= −MNP −M∆Λ2

+ 1
2(

Λ
︷   ︸︸   ︷

Λ2 + Λ4)
[

(ω1−Ω1)2 + (ω2−Ω)2 + (ω3−Ω3+ac)2
]

= −MNP +
1
2Λ

∑3
i=1 (ωi − Ωi)2 + Λ (ω3 − Ω3) ac, (8)

whereMNP is the static soliton mass when it is non-perturbed
(NP) by isospin-breaking. It is the hedgehog mass in case
the above-mentioned hedgehog ansatz is inserted for the
time-independent chiral matrix.Λ2 andΛ4 are the moments
of inertia of the non-linearσ model LagrangianL2 and the
fourth-order stabilizing termL4, respectively. In the last
line of Eq. (8), we employed the constraint

M∆Λ2 =
1
2Λa2

c , (9)

whose role is to balance the isospin-breaking terms, such
that the hedgehog ansatz of the usual Skyrme model can
still be applied. In terms of the canonical conjugate mo-
mentum operatorŝTi ≡ ∂L/∂ωi (and Ĵi ≡ ∂L/∂Ωi = −T̂i)
corresponding to isospin (and spin), the pertinent Hamilto-
nian becomes

H = MNP +
1
2Λa2

c +
T̂2

2Λ − acT̂3 ,

while the baryon states are|T, T3, J = T, J3 = −T3〉. When
the Hamiltonian is sandwiched by these states, the energy
of a nucleon of isospin component± 1

2 is determined as

mp/n ≡ Ep/n = MNP +
1
2Λa2

c +
3

8Λ ∓ ac
1
2 . (10)
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The latter equation allows to isolate the strong part of the
neutron-proton mass difference as∆mstrong

np = ac with

ac =

√

2M∆

Λ
≈ (1.291+ 0.686) MeV. (11)

For consistency, the empirical electromagnetic contribu-
tion−0.686 MeV to the in-vacuum value 1.291MeV of the
neutron-proton mass difference had to be subtracted.

3 Medium-modifications

The explicit isospin-breaking term is only one part con-
tributing to the neutron-proton mass difference in a nu-
cleus or nuclear matter. The other part comes from the
isospin asymmetry of the nuclear background. In order to
include this asymmetry into the nuclear-background pa-
rameters of a medium-modified Skyrme model, used in
Refs. [38,39,40], we start out by introducing medium-modi-
fications to the free pion Lagrangian (4).

Note that throughout this presentation we will denote
medium-modified Langrange terms, energies, masses, mo-
ments of inertia, form factors, etc. with an explicit asterix.

3.1 Pion dispersion in a nuclear background

The pertinent medium-modified Lagrangian of the pion field
can be formulated in terms of the self-energies (i.e. energy-
dependent optical potentials) of the charged pions as fol-
lows:

L∗mes=
∑

λ=±,0

{

1
2∂µπ

λ†∂µπλ − 1
2π

λ†
(

m2
πλ
+ Π̂λ(ω, r)

)

πλ
}

= Lmes− 1
2

{

πa
Π̂−+Π̂+

2 πa + i εab3 πa
Π̂−−Π̂+

2 πb

}

. (12)

In the local density approximation thes-wave self-energies
become

Π̂±s (ω, r) = −4π
(

beff
0 (ω) ρ(r) ∓ b1(ω)δρ(r)

)

η (13)

with the total and isosvector density

ρ(r) = ρn(r) + ρp(r) , δρ(r) = ρn(r) − ρp(r) (14)

andη ≡ 1+ mπ/mN in terms of the isospin-averaged pion
and nucleon masses. The effective isoscalar and isovector
pion-nucleon scattering lengths can be expressed as

beff
0 (ω) ≈ b0(ω) − 3kF

2π

[

b2
0(ω) + 2b2

1(ω)
]

, (15)

b0(ω) ≈ −b̃0

(

1− m−2
π ω

2
)

/(4πη) , (16)

b1(ω) ≈ b̃1

(

m−1
π ω + 0.143m−3

π ω
3
)

/(4πη) (17)

in terms of the total Fermi momentumkF and the parame-
tersb̃0 = −1.206m−1

π , b̃1 = −1.115m−1
π . The corresponding

p-wave self-energies read in the local density approxima-
tion

Π̂±p (ω, r) = ∇ 4πc±(ω, r)
1+ 4πg′c±(ω, r)

· ∇

− 4πω
2mN

(

∇2c±(ω, r)
)

(18)

with g′ = 0.47 and

c±(ω, r) ≡
(

c0(ω) ρ(r) ∓ c1(ω) δρ(r)
)

/η (19)

in terms of the isoscalar and isovector pion-nucleon scat-
tering volumesc0 = 0.21m −3

π andc1 = 0.165m−3
π , respec-

tively; see Refs. [43,44] for more details on the parameters
and references.

3.2 Medium-modified generalized Skyrme model

Marrying the generalized isospin-modified Skyrme model
of Rathske [41] with the in-medium modified Skyrme mo-
del of Refs. [38,39,40] (which is characterized by den-
sity dependent coefficients of the second order symmetry-
conserving and breaking Lagrangian terms) and extend-
ing it to asymmetric nuclear background as in Eq. (12),
one arrives at the following isospin- and medium-modified
Skyrme Lagrangian [42,43,44]:

L∗ = L∗2 +L4 +L∗χSB + ∆Lmes+ ∆L∗env , (20)

L∗2 =
F2
π

16

{(

1+
χ02

s

m2
π

)

Tr
(

∂0U∂0U†
)

−
(

1− χ0
p

)

Tr(∇U · ∇U†)

}

,

L4 =
1

32e2
Tr [U†∂µU,U†∂νU]2 ,

L∗χSB = −
F2
πm2

π

16

(

1+ m−2
π χ

00
s

)

Tr
[

(U − 1)(U† − 1)
]

,

∆Lmes= −
F2
π

16

2∑

a=1

m2
π± − m2

π0

2
Tr(τaU)Tr(τaU†),

∆L∗env = −
F2
π

16

2∑

a,b=1

εab3
∆χs + ∆χp

2mπ

Tr(τaU)Tr(τb∂0U†) .

HereLmes is the explicitly isospin-breaking Lagrangian,
while ∆L∗env summarizes theenviroment-induced isospin-
breaking contribution. The second-order LagrangiansL∗2
andLχSB∗ are isospin-symmetric, but explicitly medium-
dependent, whereasL4 is neither isospin-breaking nor me-
dium-dependent. We preserve the original term for stabi-
lizing skyrmions and do not modify it by,e.g. higher-order
derivative terms or vector-meson contributions, since it is
on the one hand generic for our purposes and on the other
hand still simple to handle.

The medium functionals appearing inL∗2 andL∗χSB are
constructed by the rulêΠ(ω) → Π̂(i∂0) from the input of
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Sect. 3.1 and take the form:

χ00
s =

(

b̃0 +
3kF

8π2(1+ mπ/mN)
b̃2

0

)

ρ , (21)

χ02
s =

(

b̃0 +
3kF

4π2(1+ mπ/mN)

(

b̃2
0 − b̃2

1

)
)

ρ, (22)

χ0
p =

2πc+

1+ 4πg′c+
+

2πc−

1+ 4πg′c−
(23)

with

c± ≡ c0ρ ∓ c1δρ

1+ mπ/mN
, (24)

∆χs = b̃1δρ , ∆χp = −
2πmπ

mπ + mN
c1

(

∇2δρ
)

. (25)

Note the explicit occurrence of gradient density terms in
the last expression which especially operate at the surface
of finite nuclei and vanish in homogenous nuclear matter;
compare Ref. [44] with [43].

3.3 Quantization of the in-medium Skyrme model

By essentially copying the steps of Sect. 2.2, one can find
the following expression for the spatially integrated medium-
dependent Lagrangian (20), see Refs. [43,44] for more de-
tails:
∫

d3rL∗ = −M∗NP −M2
∆Λmes+

ω2
1 + ω

2
2

2
Λ∗ωω,12

− (ω1Ω1 + ω2Ω2)Λ∗ωΩ,12+
Ω2

1 + Ω
2
2

2
Λ∗ΩΩ,12

+
(ω3 − Ω3 + a∗)2

2
Λ∗ωΩ,33 + (ω3 − Ω3 + a∗)Λ∗env .

Hereωi andΩi are the angular velocities in isotopic and co-
ordinate space, respectively, whileΛ∗ωω,i j, Λ

∗
ωΩ,i j andΛ∗

ΩΩ,i j
are the pertinent medium-dependent moments-of-inertia.
Finally,Λ∗env is the medium-dependentcoefficient of the an-
gular velocity sum (ω3−Ω3+a∗) generated by the environ-
ment-induced isospin breaking term∆L∗env.

Constructing the pertinent Hamiltonian by standard means
and sandwiching it between the usual isospin-spin states,
one can determined the energy of a nucleon (or delta) state
classified by the total isospin T and third componentT3 as

E = M∗NP +M2
∆Λmes+

Λ∗2env

2Λ∗
ωΩ,33

+
Λ∗
ΩΩ,12+ Λ

∗
ωω,12 − 2Λ∗

ωΩ,12

2(Λ∗
ωω,12Λ

∗
ΩΩ,12 − Λ∗2ωΩ,12)

(

T (T + 1)− T 2
3

)

+
T 2

3

2Λ∗
ωΩ,33

−


a
∗
c +

Λ∗env

Λ∗
ωΩ,33



 T3 . (26)

Consequently, the strong part of the neutron-proton mass
difference in the interior of a nucleus can be isolated from
the last term of Eq. (26) and takes the form

∆m∗(strong)
np = a∗c +

Λ∗env

Λ∗
ωΩ,33

(27)

with a∗c =
√

2M2
∆
Λmes/Λ

∗
ωΩ,33.

4 Skyrmion at the center of a nucleus

The knowledge of Eqs. (26) and (27) allows to construct
the total mass of a proton (neutron) and the strong contri-
bution to neutron-proton mass difference when the nucleon
is located at the core of a nucleus.

In order to determined the total in-medium neutron-
proton mass splitting, the electric (E) and magnetic (M)
form factors of the nucleons must be utilized in addition:

G∗E(q2) = 1
2

∫

d3r eiq·r j0(r) ,

G∗M(q2) =
mN

2

∫

d3r eiq·r[r × j(r)] ,

whereq is the transferred momentum. Furthermore,j0 and
j correspond to the time and space components of the prop-
erly normalized sum of the density-dependentbaryonic cur-
rentB∗µ and the third component of the isovector currentV∗µ
of the Skyrme model; for more details see Refs. [43,44].

The electromagnetic part of the neutron-proton mass
difference is then calculated in terms of the scalar (S) and
isovector (V) electric (E) and magnetic (M) form factors
according to the formula

∆m∗(EM)
np = −4α

π

∞∫

0

dq
{

GS∗
E (q 2)GV∗

E (q 2)

− q 2

2m2
N

GS∗
M (q 2)GV∗

M (q 2)
}

(28)

of Ref. [45], whereα is the electric fine structure constant.
Explicit expressions of the pertinent scalar and isovec-

tor charge densities (ρS,V
E ) and magnetic densities (ρS ,V

M )
can be found in Ref. [44]. The rms radii〈r2〉∗1/2E,S and〈r2〉∗1/2E,V
are calculated from the charge densities in the standard
way, whereas the in-medium magnetic moments of the pro-
ton and neutron follow from calculating the sum and differ-
ence of the integrated scalar and isovector magnetic den-
sities, respectively. Explicit expressions for the in-medium
skyrmion massM∗NP and the moments-of-inertia appearing
in Eqs. (26) and (27) can be found in Refs. [44] as well.

In summary, the (in-medium) mass of the proton, the
total and electromagnetic contribution of the (in-medium)
neutron-proton mass splitting, the (in-medium) magnetic
moments of the proton and neutron and the isocalar and
isovector (in-medium) rms radii are listed in Table 1 for
the following situation: either a skyrmion in free space or
located at the center of a finite nucleus core (e.g. 14N, 16O,
38N, 40Ca) is quantized as a proton (or neutron). In the case
that it is quantized as a proton, the resulting total nuclei
will be 15O , 17F, 39Ca, 41Sc, respectively; in the case of
a neutron, the resulting nuclei are15N, 17O, 39N, 41Ca in-
stead.

In accordance with previous calculations for infinite
nuclear matter in the isospin-symmetric case [42], the sec-
ond and third columns of Table 1 show that the total and
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Table 1. Static properties of a nucleon when the pertinent skyrmion is either in free space of added to the center of a finite nucleus
core, namely14N, 16O, 38K, and40Ca, respectively, such that a proton or the total nucleus15O, 17F, 39Ca, and41Sc results. Herem∗p is the

in-medium proton mass,∆m∗np is the in-medium neutron-proton mass difference and∆m∗(EM)
np is its electromagnetic part. Furthermore,µ∗p

andµ∗n are the in-medium proton and neutron magnetic moments in units of the free-space Bohr magnetons (n.m.). Finally,〈r2〉∗1/2E,S and

〈r2〉∗1/2E,V are the in-medium isoscalar (S) and isovector (V) charge radii of the nucleon inside a nucleus. For more details see Ref. [44].

Core→Elem. m∗p ∆m∗np ∆m∗(EM)
np µ∗p µ∗n 〈r2〉∗1/2E,S 〈r2〉∗1/2E,V

[MeV] [MeV] [MeV] [n.m.] [n.m.] [fm] [fm]

Vac.→p 938.268 1.291 -0.686 1.963 -1.236 0.481 0.739

14N→ 15O 593.285 1.668 -0.526 2.355 -1.276 0.656 0.850
16O→ 17F 585.487 1.697 -0.517 2.393 -1.297 0.667 0.863
38K → 39Ca 558.088 1.804 -0.480 2.584 -1.422 0.722 0.942
40Ca→41Sc 557.621 1.804 -0.478 2.569 -1.428 0.724 0.947

electromagnetic part, respectively, of the neutron-proton
mass difference are slightly increased in finite nuclei rel-
ative to the vacuum case. Furthermore, the present model
predicts (see the first column of Table 1) that the effective
nucleon mass is strongly reduced at the center of the nu-
cleus. We will return to this point later on when we discuss
the Nolen-Schiffer anomaly in Sect. 8.

Finally, the increase in the tabulated in-medium val-
ues of the magnetic moments and rms charge radii is com-
patible with the hypothesis of the nucleon-swelling in a
nuclear background which was already confirmed by the
isospin-symmetric calculations of Refs. [38,39,40] for the
medium-modified Skyrme model; see also the static in-me-
dium results of Refs. [42,43].

5 Skyrmion off-centered in a nucleus

Whereas the results of the last section hold for the case
that the skyrmion is at the center of a symmetrical core
of a nucleus, the results of this section apply for the more
general situation that the skyrmion is located at a distance
R from the center of a finite nucleus, as specified in Fig. 1.
Note that in this case the spherical symmetric hedgehog
ansatz cannot be used anymore, since the background – as
viewed from the center of theskyrmion – is not spherically
symmetric. Thus there exists further deformations in the
isotopic and in the coordinate space [38,39]. In this case a
variational ansatz can still be used which allows for more
freedom in the radial and especially in the angular coordi-
nates than the hedgehog form would do, but is still com-
patible with the quantization procedure. See Ref. [44] for
more details on this variational parameterization. In this
reference, it was also checked that the results of the vari-
ational computation merge with the ones of the hedgehog
computation when the skyrmion is moved back to the cen-
ter of the nucleus.

5.1 Effective proton mass m∗p inside a nucleus

First, we will show in Fig. 2 the results of Ref. [44] for
the effective proton massm∗p as function of the distances

Fig. 1. A sketch of a skyrmion located inside a finite nucleus with
R = |R| the separation between the geometrical center (O’) of the
skyrmion and the center (O) of the nucleus. The vectors (angles)
r (θ) andr′ (θ′) refer to the body-fixed coordinates of the nucleus
and skyrmion, respectively. Since the nucleus is spherically sym-
metric, both coordinate systems can be orientated in such a way
that theirz-axes coincide.

between the geometrical center of the pertinent skyrmion
and the center of the core-nucleus,i.e. 14N, 16O, 38K, and
40Ca. When the skyrmion is quantized as a proton, the re-
sulting nuclei are15O, 17F, 39Ca, and41Sc, respectively.
Note that the in-medium mass of the protonm∗p starts with
the value listed in Table 1 when its is near the center of the
nucleus – in agreement with the statements at the end of
the last section. With increasing distance from the center
of the nucleus the value of the effective mass monotoni-
cally increases, until it smoothly approaches the free space
valuemp at the border of the nucleus.

We will come back to the effective nucleon mass when
we discuss the Nolen-Schiffer anomaly in Sect. 8. In the
following we will concentrate on the effective in-medium
neutron-proton massdifference.
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Fig. 2. The dependence of the effective mass of the protonm∗p
on the distanceR between the center of the skyrmion and the
center of the nucleus. The solid curve represents the case that a
skyrmion – quantized as a proton – is added to a14N nucleus,
giving 15O in total. The dot-dashed curve refers to the case of a
16O nucleus→ 17F in total. The dashed curve stands for the case
of 38K→ 39Ca and the dotted curve represents the case of40Ca→
41Sc. The horizontal line marks the free space value of the proton
mass. Figure from Ref. [44].
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5.2 Effective neutron-proton mass difference

In Fig. 3 the behavior of the strong part of the in-medium
neutron-proton mass difference can be found for the same
notations and input as in Fig. 2.

Fig. 3. The dependence of∆m∗(strong)
np on the distanceR between

the center of the skyrmion and the center of the nucleus. The
notations and input are the same as in Fig. 2, with the exception
that the horizontal line marks the free space value∆m(strong)

np =

2.0 MeV. Figure from Ref. [44].
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Note that the strong part of the in-medium mass dif-
ference has a non-monotonic behavior. This follows from
the fact that the density is a local quantity and that addi-
tional isospin-breaking contributions arise due to the den-
sity gradients resulting from thep-wave pion-nucleus scat-
tering, see Eq. (25). Especially, it can be observed that in
the surface region of each nucleus, where the density gra-
dients are large and the local isospin asymmetry in the nu-

clear background is high, the value of∆m∗(strong)
np is at an

extremum.
In Fig. 4 the electromagnetic part of the in-medium

neutron-proton mass difference is shown for the same nu-
clei as before. It can be seen that the variations in the elec-
tromagnetic part of the effective neutron-proton mass dif-
ferences are small as compared with their strong counter
parts. Furthermore,∆m∗(EM)

np nearly monotonically decreases
with increasing distance from the center. Note that the val-
ues atR = 0 agree of course with the values listed in Ta-
ble 1.

Fig. 4. The dependence of∆m∗(EM)
np on the distanceR between

the center of the skyrmion and the center of the nucleus. The
notations and input are the same as in Fig. 2, with the excep-
tion that the horizontal line marks the free space value∆m(EM)

np =

−0.69 MeV. Figure from Ref. [44].
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Finally, for completeness, in Fig. 5 the dependence of
the total effective neutron-proton mass difference∆m∗np on
the distanceR is shown for the same nuclei as specified
above. Again, the values atR = 0 agree with the values
listed in Table 1.

Fig. 5. The dependence of the total in-medium neutron-proton
mass difference∆m∗np on the distanceR between the center of the
skyrmion and the center of the nucleus. The notations and input
are the same as in Fig. 2, with the exception that the horizontal
line marks the free space value∆mnp = 1.3 MeV. Figure from
Ref. [44].
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6 Neutron-proton mass difference in
nuclear matter

The densities of the finite nuclei discussed here and in
Ref. [44] correspond closely to the isosymmetric nuclear
matter case studied in Refs. [42,43], where a moderate in-
crease of the effective neutron-proton difference, compati-
ble with Fig. 3 or Fig. 5, can be observed. In neutron mat-
ter, however, as Ref. [43] shows, there is a pronounced de-
crease of the in-medium neutron-proton mass difference
with increasing density.

Therefore, instead of discussing the density-variations
of all the static quantities in an infinite nuclear matter back-
ground as in Ref. [43], we report here only about the ef-
fective neutron-proton mass differences in nuclear matter
studied in Ref. [43].

In Fig. 6 the strong part of the in-medium neutron-
proton mass splitting in nuclear matter,∆m∗np, is shown for
isospin-symmetric nuclear matter (solid curve), neutron-
rich matter (dashed curve), pure neutron matter (dotted cur-
ve), and proton-rich matter (dot-dashed curve). Especially,
when the isospin symmetry of nuclear matter is broken,
∆m∗(strong)

np strongly varies (see the dashed and dot-dashed
curves in Fig. 6). In pure neutron matter the change be-
comes very drastic (see the dotted curve in Fig. 6), and
∆m∗(strong)

np decreases very rapidly with increasing density.

Fig. 6. Density dependence of the strong part∆m∗(strong)
np of the

neutron-proton mass difference in nuclear matter. The abscissa
represents the densityρ normalized to the saturation density of
ordinary nuclear matterρ0 = 0.5m3

π, while the ordinate shows the
mass difference in units of MeV. The result in isospin-symmetric
matter is plotted as a solid curve, the result of neutron-rich matter
with δρ/ρ = 0.2 as dashed curve, the dotted curve represents pure
neutron matter (δρ/ρ = 1) and the dot-dashed curve proton-rich
matter withδρ/ρ = −0.2. Figure from Ref. [43].
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In contrast to the strong part, the electromagnetic part
of the neutron-proton mass difference in nuclear matter
varies only by a very small amount when the isospin-asym-
metry parameterδρ/ρ is increased (see Fig. 7).

Again, for completeness, the total neutron-proton mass
difference in nuclear matter is presented in Fig. 8. The dif-
ference to the purely strong case, shown in Fig. 6, is hardly
visible.

Fig. 7. Density dependence of the electromagnetic part∆m∗(EM)
np

of the neutron-proton mass difference in nuclear matter. The axes
and curves are defined as in Fig. 6. Figure from Ref. [43].
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Fig. 8. Density dependence of the total neutron-proton mass dif-
ference∆m∗np in nuclear matter. The axes and curves are defined
as in Fig. 6. Figure from Ref. [43].
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7 Tentative Conclusions

In summary, we have studied the effective neutron-proton
mass difference∆m∗np in finite nuclei in the framework of
an isospin- and medium-modified Skyrme model.

The in-medium mass of the proton starts near the cen-
ter of the nucleus with a strongly reduced value and in-
creases monotonically with increasing distance from the
center. The strong part of the effective neutron-proton mass
difference has a non-monotonic behavior because of the
additional isospin-breaking contributions due to the gradi-
ents arising from thep-wave pion-nucleus scattering. There
is an extremum of∆∗ strong

np at the surface of the nucleus be-
cause there the gradients are large and the isospin asym-
metry in the nuclear background is high. The electromag-
netic part of the effective neutron-proton mass difference
is negative and increases monotonically in magnitude with
increasing distance from the center. In magnitude its value
is small as compared with its strong counter part. The other
static quantities (in-medium magnetic moments, rms charge
radii etc.) behave according to the nucleon-swelling hy-
pothesis for a nucleon embedded in the medium.

While in isosymmetric backgrounds the effective neu-
tron-proton mass difference moderately increases, in asym-
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metric nuclear matter the strong part of this quantity can
vary markedly (upwards in proton-rich matter and down-
wards in neutron-rich matter), whereas the electromagnetic
contribution is always small and subleading. Especially in
neutron matter, there is a strong decrease of the (strong and
also the total) neutron-proton mass difference with increas-
ing density.

8 Nolen-Schiffer anomaly

A long standing problem in nuclear physics is the Nolen-
Schiffer anomaly observed in mirror nuclei [18,19]. Here
we will show how the Nolen-Schiffer anomaly can be treated
in the framework of an isospin- and medium modified gen-
eralized Skyrme model.

The mass difference between mirror nuclei

∆M ≡ A
Z+1MN − A

Z MN+1 (29)

which differ by one unit in their charges,∆Z = 1, can very
precisely be measured and is usually split into two terms

∆M = ∆EEM − ∆mnp −
(

∆m∗np − ∆mnp

)

. (30)

The first contribution is the Coulomb energy difference
∆EEM computed relatively to the free neutron-proton mass
difference, whereas the second is the in-medium neutron-
proton mass difference subtracted from the free one and
therefore the net in-medium change of this quantity. The
Coulomb energy difference includes various corrections,
e.g., by exchange terms, the center-of-mass motion, finite
size effects of the proton and neutron distributions, mag-
netic interactions, vacuum effects, short-range two-body
correlations etc. It can be calculated with great accuracy
(within 1 % error) [19]. If∆m∗np is assumed to be constant
and equal to the vacuum value, then Eq. (30) cannot be
satisfied. This phenomenon is called the Nolen-Schiffer-
anomaly (NSA). Quantitatively, the NSA ranges – through-
out the periodic table – from a few hundred keV for the
lightest nuclei up to several MeV for the heaviest ones.
A possible resolution is the assumption that the effective
neutron-proton mass difference would decrease with in-
creasing mass numberA, such that

∆NS A = ∆mnp− ∆m∗np . (31)

Within the present approach∆m∗np has a localR depen-
dence according to the location of the nucleons inside the
nuclei as shown in Fig. 5. In order to compare these results
with the experimental data one therefore has to average the
value of∆m∗np with respect to the separationR. Since the
nucleons inducing the Nolen-Schiffer anomaly are valence
nucleons, these must be located in the peripheral region of
each of the mirror nuclei, if the latter differ by one particle
or hole from a (magic) closed-shell nucleus. The averaged
effective masses and splittings can therefore be expressed
as follows:

m∗n ≡
∫

m∗n(R)
∣
∣
∣ψn(R)

∣
∣
∣
2
d3R ,

m∗p ≡
∫

m∗p(R)
∣
∣
∣ψp(R)

∣
∣
∣
2
d3R ,

∆m∗np ≡ m∗n − m∗p , (32)

where|ψn(R)|2 and|ψp(R)|2 are the density distributions of
the in-medium neutron and proton, respectively. In terms
of the difference of the density distributions

∆ψ2
np(R) ≡

∣
∣
∣ψn(R)

∣
∣
∣
2 −

∣
∣
∣ψp(R)

∣
∣
∣
2
,

Eq. (32) can be rewritten as

∆m∗np ≈
∫

{

∆ψ2
np(R) m∗p(R) + ∆m∗np(R) |ψp(R)|2

}

d3R

≡ ∆m∗(1)
np + ∆m∗(2)

np , (33)

where the subleading contribution of the cross term
∫

∆ψ2
np∆m∗np d3R

is neglected. Thus here the Nolen-Schiffer anomaly simply
reads

∆NSA = ∆mnp−
(

∆m∗(1)
np + ∆m∗(2)

np

)

. (34)

It is listed in Table 2, left panel (labeled ‘α=0’) of the
third column (labeled ‘Present approach’) for chosen pairs
of mirror nuclei, such that the overall mass numberA in-
creases.

Whereas qualitatively the calculated NSA values have
the correctA behavior, quantitatively the results are more
than one order of magnitude too big (compare with the em-
pirical values listed in the last column of Table 2). This can
be traced back to the pronounced negative shift of∆m∗(1)

np
(see the first entry of the third column of Table 2). This
shift is mainly there for three reasons:

(i) the rather large renormalization of the effective nucleon
mass,

(ii) the pronouncedR dependence ofm∗p inside the nucleus
(see Fig. 2), and

(iii) the relative swelling of the proton distributions dueto
the Coulomb factor,i.e. ∆ψ2

np , 0.

For example, the averaged in-medium mass of the valence
proton in17O is reduced tom∗p = 812.35 MeV. This drop
of about 125 MeV is very large in comparison with the em-
pirical value of the binding energy per nucleon in nuclear
matter. For heavier nuclei, where the density in the interior
approximates the normal nuclear matter density, the drop
of the averaged effective mass is even larger,e.g. mp−m∗p ∼
(150 – 200) MeV in the40Ca region (see the second col-
umn of Table 2) down to∼ 300 MeV in the208Pb region.

If solely the contribution∆m∗(2)
np (due to the explicitR

dependence of the neutron-proton mass difference) were
considered, then the NSA in the present approach would
even have a negative sign:∆mnp− ∆m∗(2)

np < 0.
Instead of driving the input parameters of Sect. 3.1 to

unphysical values in order to match the NSA discrepancy,
we suggested in Ref. [44] to invert the problem and to
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Table 2. The averaged massm∗p of the valence proton in a given nucleus, the contributions to the effective neutron-proton mass difference

(see Eq. (33)) and the Nolen-Schiffer discrepancy∆NSA calculated in the present approach by Eq. (34) or Eq. (35) andthe corresponding
“empirical” results of Ref. [19]. All quantities are in units of MeV.

Present approach

Nuclei m∗p αren = 0 αren = 0.95 ∆
empirical

NSA

αren= 0 αren= 0.95 ∆m∗(1)
np ∆m∗(2)

np ∆NSA ∆m∗(1)
np ∆m∗(2)

np ∆NSA Ref. [19]

15O-15N 767.45 928.30 -4.27 1.56 4.02 -0.21 1.33 0.20 0.16± 0.04
17F-17O 812.35 930.54 -5.53 1.52 5.33 -0.28 1.32 0.27 0.31± 0.04
39Ca-39K 724.78 926.16 -8.11 1.67 7.75 -0.41 1.33 0.37 0.22± 0.08
41Sc-41Ca 771.71 928.51 -9.74 1.62 9.44 -0.49 1.33 0.47 0.59± 0.08

estimate the effective nucleon mass inside finite nuclei ac-
cording to the results in the isospin-breaking sector. To per-
form this task an artificially added renormalization param-
eterαren in the expression

m∗n,p(R, αren) = m∗n,p(R) +
(

mn,p − m∗n,p(R)
)

αren (35)

of the effective nucleon mass is fine-tuned in such a way,
that the Nolen-Schiffer anomaly is satisfied. The results
are presented in Table 2, fourth column labeled ‘αren =

0.95’. It can be seen that a successful description of the
correct order of the NSA implies a rather small drop of the
mass of the valence nucleons:mn,p − m∗n,p(αren = 0.95) ∼
10 MeV which is close to the empirical binding energy per
nucleon in nuclear matter. In this case, the contribution to
the Nolen-Schiffer anomaly from the term∆m∗(2)

np can be

neglected:∆mnp− ∆m∗(2)
np (αren = 0.95) ∼ −0.02 MeV.

9 Final remarks

Let us discuss the relevance of our results for the Nolen-
Schiffer anomaly. Qualitatively, our approach predicts the
sign and the relative mass-number increase of this anomaly.
But quantitatively it is far from satisfactory: the results
are more than one order of magnitude too large. Clearly,
the part of our calculation relevant to the Nolen-Schiffer
anomaly depends on the proton and neutron distributions
of the mirror nuclei and is very sensitive to the behavior
of the wave functions of the valence nucleons in the pe-
ripheral region of the nucleus. We have pointed out the
possibility that the Nolen-Schiffer anomaly may rather fol-
low from the behavior of the effective nucleon mass in
finite nuclei than from the effective neutron-proton mass
difference: our calculations imply that the Nolen-Schiffer
anomaly could not and, maybe, should not be saturated by
∆m∗(2)

np (the averaged contribution due to the explicit den-
sity and radial dependence of the neutron-proton mass dif-
ference). Rather more important is∆m∗(1)

np , the contribu-
tion due to the difference in the squared wave functions
of valence proton and neutron weighted by the local (den-
sity and density-gradient induced) variation of the effec-
tive mass of the nucleon. In fact, when we restrict the in-
medium reduction of the (averaged effective) proton mass
to about 1 % of the free proton mass – a value which is

compatible with the empirical binding energy per nucleon
in nuclear matter – we obtain a rather precise description of
the NSA. Here, we should remark that the gradient terms
which are present in our model do not noticeably affect the
scaling behavior ofm∗. They are important for the surface
behavior of∆m∗np, though.

The calculated Coulomb energy differences∆EEM (30)
for mirror nuclei of Ref. [19] incorporate a contribution
due to the different wave functions of valence nucleons that
is known as Thomas-Ehrman effect [46,47]. Note, how-
ever, that in Ref. [19] a constant,R-independent value of
the nucleon mass – namely the free mass in vacuum – was
used, whereas here the effect is based on theR-dependence
of the effective nucleon mass.

In summary, the possibility exists that the anomaly of
the mirror nuclei can be saturated by invoking a dynamical
(local) mass of the nucleon that needs to be only slightly
reduced in comparison to its free counter part. In this con-
text, it should be pointed out that the anomaly could also
be removed by the introduction of an additional term into
the Coulomb part of the energy density of nuclear systems
in the local-density-functional approach [48,49,50,51].In
fact, this term is chosen such that it is proportional to the
isoscalar rather than to theisovector density. Furthermore,
it should be stressed that the isoscalar contribution is sur-
face dominated. It is even argued in Refs. [52,53] that the
effective-to-free-nucleon-mass ratiom∗N/mN is unity to within
a few percent. Apparently, different model calculations can
lead to similar conclusions about the origin of the Nolen-
Schiffer anomaly.

Returning to the in-medium modified Skyrme model,
we would like to point out that the results might still be im-
proved if the calculations can be made more self-consistent,
e.g., by the incorporation of feedback mechanisms between
the modified skyrmion and the local nuclear background.
In addition, the inclusion of further degrees of freedom
might be a useful possibility as their introduction can any-
how be motivated by more detailed considerations about
the nucleon structure and the nucleon-nucleon interaction.
Also the non-local character of the effective nucleon mass
may be of importance.
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