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aInstitut für Festkörperforschung, Forschungszentrum Jülich, D-52425 Jülich,

Germany, and bFaMAF, Universidad Nacional de Córdoba, IFEG-CONICET
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Abstract

Analytic theory and Stokesian dynamics simulations are used in conjunction with

dynamic light scattering, to investigate the role of hydrodynamic interactions in the

short-time diffusion in suspensions of charge-stabilized colloidal particles. The par-

ticles are modeled as solvent-impermeable charged spheres, repelling each other via

a screened Coulomb potential. Numerical results for self-diffusion and sedimentation

coefficients, and hydrodynamic and short-time diffusion functions are compared to

experimental data, for a wide range of volume fractions. The theoretical predictions

for the generic behavior of short-time properties obtained from this model are shown

to be in full accord with our experimental data. In addition, the effects of microion

kinetics, non-zero particle porosity, and residual attractive forces on the form of the

hydrodynamic function are estimated. This serves to rule out possible causes for the

strikingly small hydrodynamic function values determined in certain synchrotron radi-

ation experiments.
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1. Introduction

Dispersions of charged colloidal particles undergoing correlated Brownian motion form

a particularly important class of soft matter systems ubiquitously encountered in

chemical industry, food science and biology (Pusey, 1991; Nägele, 1996; Bowen &

Mongruel, 1998; Retailleau et al., 1999; Bowen et al., 2000; Riese et al., 2000; Koen-

derink et al., 2003; Gapinski et al., 2005; Prinsen & Odijk, 2007). The calculation of

diffusion transport properties for these systems is challenging since one needs to cope,

in addition to direct electro-steric and van der Waals inter-particle forces, with the

solvent-mediated hydrodynamic interactions (HIs). The latter type of interaction is

long-ranged and non-pairwise additive in non-dilute systems.

In the present paper, using analytic theory, simulation and light scattering, we dis-

cuss generic features of diffusion in fluid-like ordered suspensions of charge-stabilized

colloidal spheres, as observed on a short-time colloidal scale. The most frequently used

experimental methods to study the dynamics of charge-stabilized systems are dynamic

light scattering (DLS) and X-ray photon correlation spectroscopy (XPCS). In both

methods, the dynamic structure factor, S(q, t), is determined as a function of scatter-

ing wavenumber q and correlation time t. At short times, S(q, t) decays exponentially

according to (Pusey, 1991)

S(q, t) ∝ exp
{
−q2 D(q) t

}
. (1)

The short-time diffusion function (Nägele, 1996),

D(q) = d0H(q)/S(q) (2)

is determined by the ratio of the positive definite hydrodynamic function, H(q), and

the static structure factor S(q). At zero particle concentration, D(q) reduces to the

single-particle diffusion coefficient d0. The hydrodynamic function, H(q), obtained

experimentally by the short-time measurement of D(q) in combination with a static
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scattering experiment determining S(q), quantifies the influence of the HIs on colloidal

short-time diffusion and sedimentation. Without HIs, H(q) is a constant function

equal to one. Any q-dependence of H(q) reflects the influence of HIs. In the limit of

large wavenumbers compared to the position, qm, of the principal peak of S(q), the

function H(q) becomes equal to the normalized short-time self-diffusion coefficient,

dS/d0, which is smaller than one when HIs are significant. In the limit of q → 0,

H(q) reduces to the sedimentation coefficient K = Us/U0. Here, Us is the mean

sedimentation velocity of particles in a uniform suspension subject to a weak constant

force field, and U0 is the single-sphere sedimentation velocity under the same force

field. For an arbitrary value of q, H(q) has the meaning of a generalized sedimentation

(or mobility) coefficient, linearly relating a spatially periodic force field of wavelength

2π/q acting on the particles, to the resulting spatially periodic particle drift velocities.

The most significant value of H(q) is its principal peak height, H(qm), attained at a

wavenumber which coincides practically with the position, qm, of the principal peak of

S(q). The value of H(qm) relates to the short-time relaxation of density fluctuations

of wavelength 2π/qm, comparable in size to the radius of the dynamic cage of next-

neighbor particles formed around each particle.

A theoretical discussion of H(qm) for charged spheres as function of the particle

volume fraction φ was given recently by Gapinski et al. (2010). Therein, it was shown

that, due to the increasing strength of near-field HIs with increasing concentration,

H(qm) behaves non-monotonically in φ at low salinity, showing an initial increase

towards its maximal value larger than one, followed by a decline for further enlarged

φ to values that can be smaller than one. This behavior differs from that of the sedi-

mentation and short-time self-diffusion coefficients, which both decrease monotonically

with increasing φ. Gapinski et al. (2010) provided in addition the universal limiting

freezing line for H(qm), which leads to a useful map of hydrodynamic function peak
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values attainable in the fluid regime.

Our calculations of short-time diffusion properties are based on the one-component

macroion fluid (OMF) model which describes the colloidal particles as uniformly

charged spheres with stick hydrodynamic boundary conditions on their surfaces (Banchio

& Nägele, 2008). The spheres interact by a screened Coulomb potential of Derjaguin-

Landau-Verwey-Overbeek (DLVO) type. The accuracy of two analytical methods to

calculate short-time properties is assessed by comparison with results from numeri-

cally accurate, but computationally expensive, accelerated Stokesian Dynamics (ASD)

simulations (Banchio & Brady, 2003; Gapinski et al., 2005; Banchio & Nägele, 2008),

and with DLS data on charged silica spheres in a toluene-ethanol mixture.

The first analytical method is the δγ scheme by Beenakker & Mazur (1984). It

accounts in an approximate way for many-body HIs contributions, but ignores higher-

order near-field HIs contributions and lubrication effects. The δγ scheme gives qual-

itatively good results for H(q) throughout the liquid colloid phase. It can be further

improved in its prediction of H(q), when its microstructure-independent self part

is replaced by an accurate simulation expression (Gapinski et al., 2005; Banchio &

Nägele, 2008).

The second analytical method, referred to as the fully pairwise-additive (full PA)

approximation, completely accounts for HIs on the pairwise level, but it ignores three-

body and higher-order hydrodynamic contributions. This method is exact for very

low values of φ, where HIs are pairwise additive. Therefore, by comparison with ASD

simulation data for the considered short-time property, the full PA scheme allows

to infer the importance of three-body and higher-order HIs contributions. Different

from the δγ scheme, the full PA method is bound to fail at higher concentrations

due to its complete neglect of many-body HIs. Both analytic methods require S(q)

or, alternatively, its real-space analogue, the radial distribution function g(r), as the

IUCr macros version 2.1.1: 2009/05/11



5

only input. The static input is computed using an improved version (Heinen et al.,

to be submitted) of the computationally very efficient particle background-corrected

rescaled mean spherical approximation (PBRMSA) scheme by Snook & Hayter (1992),

discussed further down. The good accuracy of this largely unknown analytical scheme

is demonstrated by comparison with Monte-Carlo (MC) simulations, and results from

the accurate but numerically far more elaborate Rogers-Young (RY) scheme (Rogers

& Young, 1984).

The theoretical and simulation results for the short-time properties are compared

with our (dynamic) light scattering data on low-salinity suspensions of charged silica

spheres, and with scattering data on charge-stabilized systems by some other groups.

The results presented in this paper serve to highlight generic features of short-time dif-

fusion properties of charged particles, in comparison to those of neutral hard spheres,

and to explore the range of applicability of useful analytic expressions describing a

non-analytical φ-dependence of dS , K and H(qm) for small values of φ and long-range

repulsion (low salinity).

In addition, we discuss qualitatively the changes in H(q) when interaction con-

tributions not included in the OMF model are operative. We analyze the effect of

short-range attractions caused, e.g., by van der Waals forces, the influence of particle

porosity, hydrodynamic screening, and the additional dynamic friction due to the elec-

trokinetic relaxation of the microionic cloud dragged along each colloidal sphere. This

discussion serves to scrutinize possible causes for the strikingly small values for H(q),

purportedly determined in synchrotron radiation experiments by Robert and collabo-

rators (Robert, 2001; Robert, 2007; Autenrieth et al., 2007; Robert et al., 2008; Grübel

et al., 2008), for certain low-salinity systems. These values are considerably smaller

than those of neutral hard spheres. The findings by Robert et al. are incompatible not

only with short-time predictions based on the OMF model, but also with experimen-
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tal data for all other (low-salinity) charge-stabilized systems we are aware of, where

H(qm) is found to be always larger than the peak value of hard spheres at the same

φ. We correct an incorrect statement by Robert (2007) made on the equality of the

self-diffusion coefficient for neutral and charged spheres.

While the present work focuses on short-time dynamics, we point here to recent DLS

experiments showing that a far-reaching scaling behavior of the dynamic structure

factor of neutral hard spheres (Segrè & Pusey, 1996), relating short-time to long-time

dynamics, is approximately valid also for charged colloids (Holmqvist & Nägele, 2010).

Short-time diffusion in charged colloids is not only an interesting topic in its own

right. Its knowledge is also a prerequisite for a better understanding of the long-time

dynamics.

2. Methods of calculation and experimental details

The presented analytic and computer simulation results for the short-time diffusion

properties and S(q), are based on the OMF model. In this simplifying model, a colloidal

sphere and its cloud of neutralizing microions are described as a uniformly charged

sphere of diameter σ, interacting electrostatically by an effective pair potential, u(r),

of DLVO type (Nägele, 1996)

u(r)
kBT

= LBZ2
(

eκa

1 + κa

)2 e−κr

r
, r > σ = 2a . (3)

The screening parameter, κ, is given by

κ2 =
4πLB [n|Z|+ 2ns]

1− φ
, (4)

where n is the colloid number density, ns is the number density of added 1-1 elec-

trolyte, and φ = (4π/3)na3 is the colloid volume fraction of spheres with radius a.

Furthermore, Z is the effective particle charge in units of the elementary charge e,
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and LB = e2/(εkBT ) is the Bjerrum length of the suspending Newtonian solvent of

dielectric constant ε at temperature T . The factor 1/(1−φ) is frequently introduced to

correct for the free volume accessible to the microions. Hydrodynamically, the colloidal

particles are treated as non-permeable rigid spheres with stick boundary conditions

on their surfaces. The OMF model captures essential features of charge-stabilized

suspensions, for systems where the short-range van der Waals forces can be neglected.

We use two efficient analytical methods to calculate H(q) and its small- and large-

q limiting values K and dS/d0. The first method is the zeroth-order δγ method by

Beenakker & Mazur (1984) which invokes a partial re-summation of many-body HIs

contributions. It uses truncated hydrodynamic mobility tensors without lubrication

corrections. An extensive comparison (Gapinski et al., 2005; Banchio & Nägele, 2008;

Banchio et al., 2006; Gapinski et al., 2007; Gapinski et al., 2009) of the δγ scheme

predictions for H(q) with ASD simulations results has shown that it reproduces the

H(q) of charge-stabilized particles quite well, to a degree even better than for neutral

hard spheres where lubrication is strong, when in place of the original self-part the

accurate ASD simulation result for dS/d0 is used so that H(q) = dASD
S /d0 + Hδγ

d (q).

At smaller φ, one can more conveniently use the full PA scheme result for dS . This

improvement can be understood from noting that dS is underestimated by the δγ

scheme, since its zeroth-order expression for dS used here does not account for the

pair structure of charged spheres. However, and most importantly, the wavenumber-

dependent distinct part, Hd(q), is well described by the δγ scheme (Gapinski et al.,

2005; Banchio & Nägele, 2008). In the following section, we exemplify the accuracy of

the self-part corrected δγ scheme, in comparison to MC simulations and experimental

results for H(q), for the most interesting case of suspensions of strongly correlated

particles at lower salt content.

The second analytical method is the fully pairwise additive (full PA) approximation.
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It uses tables of numerically precise values for the two-body mobility tensors provided

by Jeffrey & Onishi (1984), Kim & Mifflin (1985), and Jones & Schmitz (1988). The

full PA scheme is a significant improvement over earlier two-body approximations for

H(q), also commonly referred to as PA schemes, where only a long-distance form of

the hydrodynamic pair mobilities in terms of a (a/r) inverse pair distance expansion

truncated after a few terms has been used (Nägele et al., 1994; Nägele et al., 1995;

Nägele, 1996; Watzlawek & Nägele, 1999; Robert, 2001; Robert, 2007). The full PA

method becomes exact at very small φ where the HIs are truly pairwise additive.

However, it necessarily fails at larger φ since it disregards three-body and higher-

order hydrodynamic contributions.

The static input S(q) required by both analytical methods, is obtained using the

computationally highly efficient, particle background-corrected rescaled mean spher-

ical approximation (PBRMSA) by Snook & Hayter (1992). We have augmented this

method by a simple density rescaling of the screening parameter in Eq. (4). This

rescaling leads to very accurate structure factors, as shown recently by an extensive

comparison with simulation data, and results from the similarly accurate but numer-

ically far more costly Rogers-Young integral equation scheme (Heinen et al., to be

submitted). Two examples demonstrating the accuracy of the PBRMSA-S(q) are dis-

cussed in the following section.

Furthermore, we calculate H(q) using the accelerated Stokesian dynamics (ASD)

simulation code by Banchio & Brady (2003), extended to the OMF model of charged

spheres (Gapinski et al., 2005; Banchio et al., 2006; Banchio & Nägele, 2008). This

elaborate simulation method accounts for many-body HIs and lubrication. The cal-

culated hydrodynamic function exhibits a pronounced O(N−1/3) dependence on the

number, N , of particles in the basic simulation box. A finite-size scaling extrapo-

lation procedure originally used by Ladd (1990) for neutral spheres, is applied to
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extrapolate to the H(q) of a macroscopically large system. The good agreement of the

finite-size corrected ASD H(q) with the full PA scheme result at small volume frac-

tions (φ < 10−2), where the latter scheme becomes exact, demonstrates the validity of

Ladd’s finite size scaling method also in its application to charged spheres. Stokesian

dynamics simulations of H(q) are computationally expensive even when the acceler-

ated code is used. Therefore, fast approximate schemes such as the δγ method are

still on demand, in particular when various system parameters need to be varied to

explore generic features.

For dilute, low-salinity systems of strongly charged particles, characterized by qm ∝

φ1/3, very simple expressions with fractional exponents apply,

K ≈ 1− as φ1/3 (5)

dS/d0 ≈ 1− at φ
4/3 (6)

H(qm) ≈ 1 + pm φ1/3 . (7)

These expressions have been derived using the leading-order far-field forms of the

hydrodynamic mobilities (Nägele, 1996; Nägele et al., 1994; Nägele et al., 1995; Wat-

zlawek & Nägele, 1999). The coefficients as ≈ 1.6 − 1.8 and at ≈ 2.5 − 2.9 in the

expressions for K and dS/d0 depend to a certain extent on the particle charge and

size. The coefficient pm > 0 related to H(qm) also depends on Z and κa (Gapinski

et al., 2010; Banchio & Nägele, 2008). All coefficients are typically larger for more

structured suspensions, signalled by a higher peak value of S(qm). As we will show,

the φ-interval where the expression for dS in Eq. (6) applies is broader than the interval

for the collective properties K and H(qm).

It will prove useful in what follows to compare the short-time results for charged

colloidal spheres with those of neutral hard spheres at the same φ. Cichocki and

collaborators derived the following virial expansion results for neutral hard spheres
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(HS) (Cichocki et al., 1999; Cichocki et al., 2002),

KHS = 1− 6.546φ + 21.918φ2 +O(φ3) (8)

dHS
S /d0 = 1− 1.832φ− 0.219φ2 +O(φ3) , (9)

valid to quadratic order in φ. These truncated virial results fully account for HIs up

to the three-body level.

The hydrodynamic function peak height of hard spheres is given to excellent accu-

racy by (Banchio et al., 1999)

HHS(qm) = 1− 1.35φ , (10)

with the linear φ-dependence valid up to the freezing transition concentration.

The short-time experimental data presented in this work have been obtained using

dynamic light scattering (DLS) from fluid-ordered and nearly monodisperse suspen-

sions of negatively charged trimethoxysilylpropyl methacrylate (TPM) coated silica

spheres (Philipse & Vrij, 1988), dispersed in an index-matching 80 : 20 toluene-ethanol

solvent mixture at T = 20o C and LB = 8.64 nm. The particle radius determined

by small angle X-ray scattering (SAXS) is a = 136 nm, and the size polydispersity

is 0.06. The salinity of residual 1-1 electrolyte is below 1 µM. Monovalent counte-

rions (hydrated protons) are released into the solvent from the coated silica sur-

faces. The studied charged silica system freezes at φ ≈ 0.16 where S(qm) ≈ 3.2.

The DLS measurements were made using a light scattering set-up by the ALV-

Laservertriebsgesellschaft (Langen, Germany) and a ALV-5000 multi-tau digital cor-

relator. We carefully checked that there is no noticeable multiple scattering.

3. Results

In the following, we present our theoretical and simulation results for charged colloidal

particles based on the OMF model, in comparison with our light scattering data on
IUCr macros version 2.1.1: 2009/05/11
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coated charged silica spheres, and scattering data by two other groups. The results

for charged colloidal spheres (CS) are compared in addition with corresponding find-

ings for neutral hard spheres (HS), to highlight salient differences in the short-time

diffusion properties which are largest when low-salinity charge-stabilized systems are

considered. Therefore, only charge-stabilized systems of lower salinity are considered.

For the influence of added salt on the short-time diffusion coefficients and H(q) we

refer to extensive ASD simulations and analytic calculations published in (Gapinski

et al., 2009; Gapinski et al., 2010; Banchio & Nägele, 2008; Banchio et al., 2008).

Therein, it is shown that the OMF-based diffusion properties cross over monotoni-

cally, with increasing salt concentration, from their zero-salt values to those of neutral

hard spheres. This expected behavior is reflected also in the static structure factor.

3.1. Self-diffusion

Fig. 1 includes the prediction by the full PA scheme for the normalized short-time

self-diffusion coefficient, dS/d0, of charged and neutral hard spheres, respectively, in

comparison with ASD simulation results, and our DLS data for TPM coated charged

silica spheres. The comparison of the full PA scheme result with the ASD data allows

for deducing quantitatively the contribution to dS by the non-pairwise additive part

of the HIs arising from the solvent-mediated interactions of three and more particles.

The large-q regime related to self-diffusion is usually not accessible by DLS. There-

fore, using an argument by Pusey (1978), we identify dS approximately as dS ≈ D(q∗)

(crosses in Fig. 1), where q∗ is the first wavenumber located to the right of qm where

S(q∗) = 1 (see top part of Fig. 3). Simulations of charged and neutral spheres have

shown that dS is determined in this way to within 5 - 10% accuracy (Banchio &

Nägele, 2008; Abade et al., 2010). A comment is in order here on an incorrect propo-

sition by Robert (2007), who claims that one of the present authors (G.N.) has pre-
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dicted theoretically that there is no difference in the concentration dependence of dS

for charged and neutral particles. Quite the contrary, Nägele et al. have shown for

charged spheres at low salinity that dS/d0 ≈ 1− at φ
4/3 (cf. Eq. (6)), i.e., dS in these

systems has a fractional φ-dependence qualitatively different from that of hard spheres

(Nägele et al., 1994; Nägele et al., 1995; Nägele, 1996). Only the self-diffusion coeffi-

cient of neutral hard spheres can be described by a regular virial series, with the first

two virial coefficients given in Eq. (9). The correct second-order term, −0.219 φ2, in

Eq. (9) differs even in its sign from the erroneous result, +0.88 φ2, used by Robert

(2007).

0 0.05 0.1 0.15
φ

0.6

0.7

0.8

0.9

1

d s 
/d

0

0 0.1 0.2
0

0.03

0.06

Fig. 1. Normalized short-time self-diffusion coefficient, dS/d0, of a deionized suspension
of charged spheres (CS, black color) and hard spheres (HS, gray color), respectively.
Crosses: DLS data for TPM coated charged silica spheres. Black circles and gray
diamonds: accelerated Stokesian Dynamics (ASD) results for CS and HS, respec-
tively. Solid black and gray lines: full PA-theory results for CS and HS, using
the PBRMSA and Percus-Yevick input for S(q), respectively. Dashed black line:
1 − 2.5 φ4/3. Dashed-dotted gray line: 2nd-order virial result for HS. Inset: dS/d0

as predicted by the full PA scheme (lines), and by ASD simulation (symbols), with
the leading-order far-field HIs part for CS (black) and HS (gray), respectively, sub-
tracted off.
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The φ4/3 dependence of dS/d0− 1 was confirmed both by the experiments of Over-

beck et al. (1999), and by ASD simulations based on the OMF model (Banchio &

Nägele, 2008). The depicted ASD data for a low salinity system of charged spheres

are overall well described by the fractional φ relation in Eq. (6) for at ≈ 2.5, over an

extended range of volume fractions (black solid line in Fig. 1).

Considering the scatter in the charged silica spheres DLS data for dS depicted in

Fig. 1, their overall φ dependence is consistent with the ASD simulation data, and

the φ4/3 scaling prediction. The full PA scheme overestimates the strength of the

HIs in non-dilute suspensions, for it does not account for the shielding of the HIs

between a pair of particles by intervening other ones. This is the reason why, at

intermediate and larger concentrations, the ASD and experimental data for dS are

underestimated by the full PA scheme method. Note that the full PA scheme result

for dS/d0 is still well described by the scaling relation in Eq. (6), but for a somewhat

larger parameter value of at ≈ 2.9. We emphasize here that hydrodynamic shielding

is a many-body HIs effect which lowers the strength but not the range of the HIs. It

should not be confused, as in earlier work (Riese et al., 2000), with the screening of

the HIs by spatially fixed particles or boundaries that absorb momentum from the

fluid, therefore causing a faster than 1/r decay of the flow perturbation created by a

point force (Diamant, 2007).

The hydrodynamic self-mobility related to dS is rather short-ranged, decaying like

1/r4 for a large separation r of two spheres. Consequently, the difference between dS

and its infinite dilution value d0 is smaller for charged spheres than for neutral ones,

since electric repulsion disfavors near-contact configurations. The inset in Fig. 1 shows

dS/d0, as obtained by the full PA scheme and ASD simulations, respectively, but with

the far-field part originating from the leading-order self-mobility part proportional to

1/r4 subtracted off. According to the inset, dS is rather insensitive to the near-field
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two-body part of the HIs, causing a small increase in dS only. The full PA scheme

reproduces exactly the first-order virial coefficient,−1.832, of hard spheres given in Eq.

(9). This demonstrates the high precision of the numerical tables for the hydrodynamic

pair mobilities used in our full PA scheme calculations. Three-body and higher-order

HIs contributions come into play for φ & 0.08, with an enlarging influence on dS

originating from hydrodynamic shielding.

0 0.05 0.1 0.15
φ

0

0.2

0.4

0.6

0.8

1

K

Fig. 2. Sedimentation coefficient, K = Us/U0, of charged spheres at low salinity com-
pared with that of neutral hard spheres. Experimental DLS/SLS data are shown for
charged polystyrene spheres in an ethanol-water mixture taken from Rojas-Ochoa
(2004) (open squares), and for our TPM coated silica spheres (crosses). Solid (dot-
ted) black lines: δγ theory (full PA scheme) results, respectively, for the low-salinity
polystyrene spheres system, obtained using the PBRMSA input for S(q) with a fixed
charge number Z = 200. Dashed-dotted black line: dS-corrected δγ scheme result.
Dashed black line: scaling form 1−1.71φ1/3 according to Eq. (5). Gray filled circles:
hard-sphere simulation results by Ladd (1990). Dashed gray line: 2nd-order virial
result for HS given in Eq. (8). Solid (dotted) gray lines: δγ scheme (full PA scheme)
results, respectively, for HS with Percus-Yevick input for S(q).
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3.2. Sedimentation

In principle, one needs to distinguish between the short-time and the long-time

sedimentation coefficients, but the latter is smaller than the first one by at most a

few percent. The two coefficients are practically equal in dilute systems where the

two-body HIs part dominates.

Fig. 2 includes theoretical, simulation and experimental results for the (short-time)

sedimentation coefficient, K, of homogeneous systems for charged and neutral spheres.

The key message conveyed by this figure is the qualitative difference in the φ depen-

dence of K for charged and neutral particles. This difference is more pronounced than

the one for the self-diffusion coefficient discussed earlier. Charged spheres sediment

more slowly than uncharged ones since near-contact configurations are disfavored.

Thus, stronger laminar friction takes place between the back-flowing solvent, and the

solvent layers dragged along with the settling spheres because of the stick hydro-

dynamic boundary condition. The solvent back-flow is created by a pressure gradi-

ent directed towards the container bottom which balances the non-zero, buoyancy-

corrected total gravitational force on the spheres.

At smaller φ and low salinity, K is well described by the non-linear expression,

1 − asφ
1/3, in Eq. (5), with a coefficient as ≈ 1.6 − 1.8 depending to some extent

on the strength of the electrostatic pair interactions. The exponent 1/3 arises from

the 2-body far-field part of the HIs which dominates the near-field part for φ . 0.08,

and the scaling relation, qm ∝ φ1/3, valid in low-salinity systems for the wavenumber

location of the structure factor peak (Banchio & Nägele, 2008). As a consequence, the

φ1/3 concentration dependence of K is observed both for dilute fluid and crystalline

systems of charged particles.

The experimental results by Rojas-Ochoa (2004) for the low-salinity sedimentation

coefficient of a suspension of charged polystyrene spheres in an ethanol/water mixture
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(a = 58.7 nm, ns = 1µM, LB = 1.48 nm), and also our data for the charged-silica

spheres system, are in accord with the OMF-based prediction of a steep (as compared

to neutral spheres) φ1/3-like decay of the sedimentation coefficient. The experimental

values of K in both systems discussed in Fig. 2 have been deduced from small-q DLS

and SLS measurements of D(q) and S(q), extrapolated to q = 0. Therefore, there is

an unavoidable scatter in the extrapolated data, in particular considering that the

osmotic compressibility coefficient S(0) of low-salinity systems is very small.

In contrast to charged particles, the small-φ dependence of K is well represented for

neutral spheres by a regular virial expansion. In fact, the second-order virial expres-

sion in Eq. (8) coincides, for φ . 0.08, with the simulation data for KHS by Ladd

(1990). At larger φ, shielding arising from the higher-order HIs terms comes into play,

contributing to K through the higher-order virial coefficients. Since shielding is dis-

regarded in the full PA scheme, it notably overestimates the strength of the HIs for

φ & 0.1. When applied to concentrations beyond its range of applicability, too small

and eventually even non-physical negative values for K are predicted (see the dotted

lines in Fig. 2). The reason for the failure of the full PA scheme at higher φ is that

it approximates the many-sphere hydrodynamic mobility matrix in a way that does

not guarantee the positive definiteness of this matrix for all physically allowed particle

configurations.

Fig. 2 displays additionally, both for neutral spheres and for the system parameters

of the charged polystyrene spheres system (Rojas-Ochoa, 2004), the predictions for

K by the δγ scheme of Beenakker & Mazur (1984), and by the full PA scheme. The

theoretical predictions for the silica system are not shown in order to not overburden

the figure with too many curves.

For neutral hard spheres, in both analytic methods the Percus-Yevick solution for

S(q) is used as input. To leading order in φ, we have obtained numerically that KHS
PA =
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1−6.546φ, in full agreement with the first-order coefficient in Eq. (8). For comparison,

KHS
δγ = 1 − 7.339 φ. Thus, the δγ scheme underestimate somewhat the hard-sphere

sedimentation coefficient at small φ. It is less accurate than the PA scheme at small φ

owing to its incomplete account of two-body HIs contributions, notably its neglect of

lubrication which plays a role for neutral spheres. Lubrication occurs in the thin fluid

layer between two almost touching spheres in a relative squeezing or shearing motion.

It is more influential to self-diffusion than to sedimentation, since in the latter case the

(monodisperse) spheres move with equal mean velocities in the direction of the applied

force field. In self-diffusion, on the other hand, a tagged particle is thermodynamically

driven in a squeezing motion towards particles in front of it. At larger φ, however, the

δγ scheme prediction for KHS is closer to the simulation data than the full PA scheme

result. We attribute this to the approximate inclusion of many-body HIs into the δγ

scheme which describe hydrodynamic shielding.

For charged spheres and small φ, the full PA scheme result for K follows precisely the

scaling prediction 1− as φ1/3, with as = 1.71. The (uncorrected) δγ scheme captures

the overall φ dependence of K at least in a qualitative way, both regarding the two

considered charge-stabilized systems, and neutral hard spheres. Extensive comparisons

with lower-q ASD simulation data of H(q), with Fig. 4 providing a representative

example, show that the δγ scheme has the tendency to somewhat underestimate K.

The self-part corrected δγ scheme, on the other hand, overestimates K ≈ H(q ¿ qm).

At larger q values, however, including the principal peak region of H(q), it is in

distinctly better agreement with the simulation data for H(q) than the uncorrected

version (Banchio & Nägele, 2008). Indeed, the self-part corrected δγ scheme result in

Fig. 2 for charged polystyrene spheres, with the dS input calculated using the full PA

scheme, lies distinctly above the experimental data for K. For the parameters of the

polystyrene system, a least-square fit of the calculated sedimentation coefficients in
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the range φ ≤ 0.02 leads to Eq. (5), with coefficients as = 1.65, 1.75 and 1.71 for

the dS-corrected and uncorrected δγ schemes, and the full PA scheme, respectively.

In accord with the general trends discussed above, the full PA scheme result for K,

which becomes exact al low φ, is bracketed by the self-part corrected and uncorrected

δγ schemes predictions.

3.3. Diffusion function

We proceed by discussing the short-time diffusion function, D(q), defined in Eq.

(2), which is measured in short-time DLS and XPCS experiments. DLS data of its

inverse, d0/D(q), are included in the bottom part of Fig. 3, for a low-salinity system

of charged silica spheres at a volume fraction φ = 0.15 rather close to the freezing

transition value. The experimental data are compared with our ASD simulation result

for D(q), the (dS-corrected) δγ scheme result where the dS-part is taken from the

ASD simulation, and the full PA scheme prediction. For the two analytic schemes, the

PBRMSA input for S(q) shown in the top part of Fig. 3 was used.

The shape of d0/D(q) is similar to that of S(q), owing to d0/D(q) = S(q)/H(q)

according to Eq. (2). The analytic PBRMSA scheme predicts a structure factor in

excellent agreement with our MC simulation data, and with the S(q) obtained from the

numerically elaborate RY scheme. The excellent agreement between all S(q) depicted

in the top part of Fig. 3, for all displayed wavenumbers, points to the accuracy of

our scattering data. The only adjustable parameter in calculating S(q) has been the

effective charge number, uniquely determined as Z = 190 by the PBRMSA, RY and

MC methods, from matching the experimental S(qm).
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Fig. 3. Top: static structure factor, S(q), obtained by static light scattering (SLS,
crosses) and compared with PBRMSA and RY results (lines), and MC simulation
data (open circles) for a common Z = 190. Bottom: short-time inverse diffusion
function, d0/D(q), for a low-salinity system of charged silica spheres. Crosses: DLS
data. Open circles: ASD-MC simulation data. Solid black and gray lines: uncor-
rected and dS-corrected δγ scheme predictions, respectively. Dotted gray line: full
PA method result. The system parameters are: a = 136 nm, φ = 0.15, ns = 0.7 µM,
and LB = 8.64 nm.

We recall from Eq. (2) that D(q →∞) = dS and D(q → 0) = d0 K/S(q → 0) = dc.
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Here, dc is the short-time collective diffusion coefficient which quantifies the initial

decay rate of long-wavelength thermal concentration fluctuations. The short-time dc

is only slightly larger than its long-time counterpart, even when a concentrated system

is considered. The relative osmotic compressibility coefficient, S(q → 0), in the consid-

ered low-salinity system is very small, so that dc is exceedingly larger than d0, reflected

in Fig. 3 in the low-q values of d0/D(q) close to zero. The function D(q) attains its

minimum at qm. The so-called cage diffusion coefficient, D(qm), characterizes the slow

relaxation of density fluctuations of a wavelength ∼ 2π/qm matching the radius of the

nearest-neighbor shell. With increasing concentration and pair interactions, the cage

stiffens, i.e., it becomes more sharply structured, as reflected by a smaller D(qm).

According to the bottom part of Fig. 3, there is good agreement between the

ASD simulation data for d0/D(q), and the dS-corrected δγ scheme prediction with

its PBRMSA input. The ASD simulation peak height is somewhat overestimated by

the uncorrected δγ scheme which uses a too small value for the self-diffusion coefficient

of charged spheres (see Fig. 1). For the charged silica particles system considered here,

the experimental peak height of d0/D(q) happens to be somewhat closer to that of

the uncorrected δγ scheme. However, the first minimum of d0/D(q) to the right of qm

is in better accord with the corrected δγ scheme prediction.

To illustrate the failure of the full PA scheme for concentrations φ & 0.1 where

many-body HIs are strong, we have included its prediction into Fig. 3. It deviates

from the experimental and simulation data most strongly at q ≈ 0 and near qm,

reflecting its overestimation of the HIs at the large volume fraction φ = 0.15, by

giving a too small value for K, and a too large value for H(qm).
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3.4. Hydrodynamic function
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Fig. 4. Gray diamonds: DLS and SLS data for H(q) and S(q) (in inset), respectively,
taken from Philipse & Vrij (1988), for a charge-stabilized system at φ = 0.101,
in comparison with corresponding ASD and MC data predictions (filled black cir-
cles). Solid gray and black lines: uncorrected and dS-corrected δγ scheme result,
respectively. Black solid and dashed gray lines in inset: RY and PBRMSA S(q),
respectively, for Z = 100, a = 80 nm, ns = 2 µM and LB = 5.62 nm.

In Fig. 4 the experimental findings by Philipse & Vrij (1988) for the H(q) and S(q)

of a well-structured, charge-stabilized suspension of silica spheres suspended in a 70:30

toluene-ethanol mixture (ε = 10 at T = 298 K), are compared with our theoretical

and simulation predictions based on the OMF model. The PBRMSA, RY and MC

S(q) of common charge number Z = 100 shown in the inset, coincide practically in

the depicted q-range, demonstrating the accuracy of the PBRMSA scheme.

There is good overall agreement between the experimental H(q), and the ASD

and dS-corrected δγ scheme results (with dS taken from the ASD simulation), on

accounting for the scatter in the experimental data for H(q) which have been obtained

from multiplying the experimental data for D(q) by those for S(q). The dS-corrected
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δγ scheme underestimates to some extent the ASD H(qm), but except of the precise

peak value the overall shape of H(q) is well reproduced. Without dS-correction, the

ASD H(q) is underestimated at all q, owing to the fact that the δγ scheme predicts a

too small value for the charged-particles dS . Figs. 3 - 4 exemplify that the (self-part

corrected) δγ scheme allows for predicting consistently, and to almost quantitative

accuracy, the short-time generic features of many charge-stabilized systems including

small proteins and large colloidal spheres.

Low-salinity systems are typically characterized by a peak value of H(qm) larger

than one. In a recent study based on the OMF model, the upper limiting freezing

line for H(qm) was derived (Gapinski et al., 2010), from which it follows that H(qm)

never exceeds the value of 1.3. However, H(qm) in low-salt systems is not always larger

than one. At very low φ, it increases monotonically according to 1 + pm φ1/3, with

a moderately system-dependent coefficient pm > 0 (see Eq. (7)). At larger φ where

near-field HIs matter, H(qm) can pass through a maximum typically occurring at

φ ∼ 10−2 − 10−1, with an ensuing decline when φ is further increased. Provided the

system remains fluid at larger φ, such as in apoferritin protein solutions (Gapinski

et al., 2005), H(qm) can reach values smaller than one.
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Fig. 5. XPCS and SAXS data of H(q) and S(q) (in inset), taken from Robert
et al. (2008), for a low-salinity system of charged poly-perfluoropentylmethacrylate
spheres (CS) with a = 62.5 nm, ns = 16 µM, and φ = 0.18 in a water/glycerol mix-
ture at T = 293 K where ε = 62.95 and LB = 0.91 nm (open diamonds). Inset: RY
and PBRMSA S(q) for Z = 163. Comparison with OMF model based ASD data,
dS-corrected δγ and full PA scheme results for H(q), all obtained using Z = 163.
The experimental H(q) is substantially smaller than the ASD HHS(q) (gray circles),
and the δγ scheme result for hard spheres (gray solid line).

In the OMF model, H(qm) is bound from below by the corresponding peak height

of neutral spheres. The latter decreases linearly in φ in the whole fluid phase regime

(see Eq. (10)). At fixed φ and with increasing salt content, H(qm) and dS decrease

monotonically, with qm shifted to larger q values, towards the limiting hard-sphere

values HHS(qm) and dHS
S , respectively. Opposite to this, K increases monotonically

with increasing salinity, for the reasons discussed earlier, towards its upper hard-sphere

limit. In summary, the ordering relations

H(qm) ≥ HHS(qm)

dS ≥ dHS
S

K ≤ KHS , (11)
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are fulfilled. The equality sign holds for zero particle charge, Z = 0, and in the infinite

salinity limit, κa →∞. The OMF model ordering relations in Eq. (11) are obeyed by a

large variety of experimentally studied charge-stabilized systems, including nanosized

proteins (Gapinski et al., 2005), suspensions of compact colloidal particles (Philipse

& Vrij, 1988; Phalakornkul et al., 1996; Härtl et al., 1999; Rojas-Ochoa, 2004; Rojas-

Ochoa et al., 2003; Gapinski et al., 2009; Banchio et al., 2006; Holmqvist & Nägele,

2010), and thermosensitive charged microgel spheres (Braibanti et al., in preparation).

In a series of articles, Robert, Grübel and coworkers (Grübel et al., 2008; Robert,

2007; Riese et al., 2000; Robert et al., 2008) reported on their observation of very small

values for H(q), for certain low-salinity suspensions of intermediately large volume

fractions, which they studied by combining XPCS and SAXS techniques. At all probed

wavenumbers, their H(q) are substantially smaller than those of neutral hard spheres

at the same φ. This findings of so-called ultra-small H(q) is incompatible with the

OMF model since the first two ordering relations in Eq. (11) are violated.

A typical result for an ultra-small H(q) with peak height H(qm) ≈ 0.47, taken from

Robert et al. (2008) for a system of poly-perfluoropentylmethacrylate spheres in a

water/glycerol mixture at φ = 0.18, is shown in Fig. 5, in comparison with our OMF

model based simulation and theoretical results for H(q), which predict a peak value

for H(q) larger than one. The inset displays the experimentally determined S(q), and

the peak-height adjusted MC, RY and PBRMSA results obtained for the common

charge value Z = 163, and ns = 16 µM (κa = 1.46). The experimental peak height,

S(qm) ≈ 2.63, identifies the system as fluid-ordered according to the Hansen-Verlet

freezing rule. There is a visible small-q upturn in the experimental S(q) which is not

reproduced by the OMF structure factors describing purely repulsive particles. How-

ever, this upturn should not be over-interpreted as a sign for a significantly influential

particle attraction since the experimental S(q) of very similar systems of charged poly-
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perfluoropentylmethacrylate spheres shown in Robert et al. (2008) do not have such

an upturn. Moreover, the peak position of the experimental S(q) in Fig. 5 fulfills the

relation qm = 1.1× 2πn1/3 (Banchio & Nägele, 2008), characteristic of a low-salinity

system of electrostatically strongly repelling particles where van der Waals attraction

plays no role. This follows also from standard DLVO theory when the parameters for

the electric potential part quoted in the caption of Fig. 5 are used.

Just like in the silica system considered before, the dS-corrected δγ scheme result

for H(q), based on the PBRMSA S(q) depicted in the inset input for its distinct part,

and the precise ASD simulation result for its self-part, is in overall good agreement

with the full ASD simulation result for H(q). It underestimates the ASD peak height

to some extent, but aside from the precise peak value the agreement with the ASD

H(q) is quantitatively good.

For completeness, Fig. 5 shows also the full PA scheme prediction for H(q). The

concentration here is clearly too large for the full PA scheme to apply, with the con-

sequence that nonphysical negative values of H(q) are predicted for qa . 1.2. This

shows that for the present system, where φ = 0.18, H(q) is strongly influenced by

many-body HIs. Quite notably, however, for the same particle system, an ultra-small

hydrodynamic function, with H(qm) ≈ 0.7 < HHS(qm) = 0.95, was reported by Robert

et al. (2008) even at φ = 0.04, i.e., for a concentration where two-body HIs dominate.

The experimental peak height in Fig. 5 is considerably smaller than the peak value,

HHS(qm) = 0.76, of hard spheres, the latter calculated according to Eq. (10). To

allow for a comparison at all probed q values, Fig. 5 includes the ASD and δγ scheme

results for the H(q) of hard spheres. The hard-sphere structure factor peak value is

SHS(qm) = 1.19 at φ = 0.18.

Grübel, Robert and coworkers originally tried to explain their observation of strik-

ingly low values for H(q) as the result of HIs screening (Riese et al., 2000; Robert,

IUCr macros version 2.1.1: 2009/05/11



26

2001). To support their assertion, they presented a Brinkman fluid-type calculation of

H(q) (Riese et al., 2000), wherein only the leading-order far-field part of the hydrody-

namic pair mobility is considered, treating the Brinkman screening length as a fitting

parameter. However, in a later experimental-theoretical study (Banchio et al., 2006), it

was pointed out that hydrodynamic screening does not occur in fluid-ordered, uncon-

fined suspensions of mobile colloidal particles (see here also Diamant (2007)). Fur-

thermore, the assumed screening of the HIs conflicts with the fact that the short-time

diffusion and viscosity properties of many charge-stabilized systems, at concentra-

tions and interaction parameters similar to the ones probed by Robert et al., are well

explained by OMF model based methods without any necessity to invoke HIs screen-

ing. The low-salinity system in Fig. 3, for example, is in the concentration range where

an ultra-slow H(q) should be observable.

More recently, Robert et al. retracted from their interpretation of ultra-small H(q)’s

as being due to HIs screening (Autenrieth et al., 2007). In an alternative attempt

to explain their findings (Robert et al., 2008), they introduced a correction factor,

f = η0/ηeff < 1, multiplying the OMF model based δγ scheme H(q), with the value of

f determined such that the ultra-small experimental H(q) is overall matched. Further-

more, they conjecture that f can be identified by the ratio of the solvent viscosity and

some effective suspension viscosity ηeff, leaving it unspecified, however, whether ηeff

should be identified with the high-frequency viscosity, η∞, or with the substantially

larger static suspension viscosity. This ad-hoc modification of the δγ scheme lacks a

sound physical basis, for the δγ scheme expression for H(q) describes a genuine dif-

fusion property. The values for f obtained from fitting the ultra-small H(q) given by

Robert et al. (2008), are neither consistent with calculated (Banchio & Nägele, 2008)

nor experimental (Bergenholtz et al., 1998) results for η0/η∞. In this context, we note

that the generalized Stokes-Einstein relation, D(qm)/d0×η∞/η0 ≈ 1, relating the cage
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diffusion coefficient to the short-time (high-frequency) viscosity, is valid approximately

for neutral spheres only (Banchio & Nägele, 2008; Abade et al., submitted), but not for

low-salinity suspensions of charge-stabilized particles (Koenderink et al., 2003; Ban-

chio & Nägele, 2008).

3.5. Influence of additional interactions

In the following, we analyze the effect on H(q) caused by particle interaction con-

tributions not considered in the OMF model. On a qualitative level, we discuss the

influence of particle porosity, residual attractive forces and microion kinetics on the

shape of H(q).

The effect of particle porosity on the H(q) of dense suspensions of neutral porous

spheres has been explored in a recent simulation study (Abade et al., 2010). A non-zero

solvent permeability has the effect to weaken the HIs, reducing thus the deviations of

H(q) at all q from its zero-concentration limiting value of one. For the same reason, a

suspension of porous particles is less viscous than a suspension of impermeable ones

(Abade et al., submitted). Porosity is less influential when the particles are charged

since near-contact configurations are then unlikely. The particles studied by Robert et

al. are only very weakly porous, if at all. Thus, porosity can not explain the findings of

ultra-small H(q)’s. On the contrary, significant porosity would lead to a H(q) overall

closer to one.

An attractive interaction contribution enlarges both S(0) and the sedimentation

coefficient K (Moncha-Jordá et al., 2010). The enlargement of the latter is over-

compensated by the former, at least at smaller φ (van den Broeck et al., 1981).

Thus, in dispersions of moderately charged particles such as bovine serum albumin or

lysozyme proteins with sufficiently strong short-range attraction, the collective diffu-

sion coefficient, dc = d0K/S(0), can attain values smaller than d0 (Cichocki & Felder-
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hof, 1990; Bowen & Mongruel, 1998; Bowen et al., 2000; Prinsen & Odijk, 2007).

Opposite to sedimentation, attraction tends to slow self-diffusion, resulting in smaller

values of the short-time and long-time self-diffusion coefficients (Cichocki & Felder-

hof, 1990; Seefeldt & Solomon, 2003). Attraction-induced slowing of self-diffusion is

accompanied by an augmentation of the short-time (high-frequency) and long-time

(static) suspension viscosities (Woutersen et al., 1994). Attraction fosters the forma-

tion of short-lived, transient particle pairs and clusters, which are better shielded from

the solvent backflow so that sedimentation is enhanced. In self-diffusion, however, the

mean velocity of a weakly forced particle driven towards its next-neighbor cage parti-

cles becomes smaller with increasing attraction, owing to the larger tendency of nearby

particles to form a transient cluster. This picture also explains why attraction-induced

slowing of long-time self-diffusion is found not only in colloidal systems, where HIs

are present, but also in atomic liquids (Bembenek & Szamel, 2000). Sedimentation

is different in the sense that all particles, not just a single tagged one, are forced to

move, on the average, in the direction of the external force. Summarizing, the overall

effect of attraction is to lower the difference between H(∞) −H(0), and to shift the

peak position qm to larger values.

The data by Robert et al. for S(q) and H(q) give no hint on an appreciable attractive

interaction part. The short-range van der Waals attraction acting between the particles

is masked in low-salinity systems by the strong and long-ranged electric forces to such

an extent that it can not influence H(q) significantly. Moreover, the experimental S(q)

given by Robert et al. can be described to good accuracy by the OMF model based

structure factor. Significant attraction would enlarge at low q the gap between the

OMF model and the ultra-small H(q) in Fig. 5, instead of reducing it.

On first sight, the non-instantaneous electrokinetic relaxation of counter- and coions

forming overlapping electric double layers around the charged colloids is a more
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promising candidate for causing ultra-small H(q)’s. Indeed, the relaxation of the

microion clouds has a slowing influence on colloid diffusion, referred to as the elec-

trolyte friction effect. This effect can lower H(0) (Gapinski et al., 2005) to a smaller

extent, and also the values of the short-time and long-time self-diffusion coefficients

(McPhie & Nägele, 2007). However, electrolyte friction scales with the ratio, d0/dm,

of the free diffusion coefficient, d0, of the slowly moving colloids relative to the (mean)

free diffusion coefficient, dm, of the small microions (Retailleau et al., 1999; Gapinski

et al., 2005; McPhie & Nägele, 2007). Because of the huge difference in these two

free diffusion coefficients, it is unlikely that electrokinetics can explain the strikingly

low values for H(q) reported on by Robert and collaborators. Whereas the electroki-

netic influence on colloid diffusion is very small for larger colloidal spheres, it can be

significantly strong for small, nanosized macroions such as proteins.

4. Conclusions

The generic behavior of short-time diffusion properties in suspensions of charge-

stabilized colloidal particles with strong electrostatic interactions has been studied

by simulation and analytic theory, in conjunction with dynamic light scattering on

charged silica spheres. Our calculations are based on the OMF model which inter-

polates between the limiting cases of a deionized (low-salinity) system and a system

of neutral hard spheres. Two analytic methods to determine H(q), namely the full

PA scheme and the (self-part corrected) δγ scheme have been tested against Stoke-

sian dynamics simulations and compared to experimental results. The full PA scheme

becomes exact at very low volume fractions but it can not be applied to denser systems.

The self-part corrected δγ scheme gives overall good results in the whole liquid phase

regime, for all wavenumbers except those in the low-q regime. The experimental confir-

mation of OMF model based low-φ predictions, notably the φ1/3 scaling of K (Rojas-
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Ochoa, 2004) and H(qm) (Härtl et al., 1999), the φ4/3 scaling of dS/d0 (Overbeck

et al., 1999; Holmqvist & Nägele, 2010), and in addition the dr
S/dr

0 = 1− ar φ2 scaling

(with ar ≈ 1.3) of the short-time rotational diffusion coefficient dr
S , normalized by its

zero-concentration limiting value dr
0 (Koenderink et al., 2003), add to the credibility

of the OMF model.

A large body of experimental results for D(q) and H(q), for systems of different

particle types and sizes, concentrations, salt contents and solvents, is well described

by the OMF model, with all the ordering relations in Eq. (11) satisfied. Residual

attractive pair interactions or particle porosity, and most likely also electrolyte friction,

can not explain the ultra-small H(q) findings of Robert and collaborators. Ultra-small

values of H(q) have not been observed in our scattering experiments, nor in the ones

by our collaborators and various other groups (Philipse & Vrij, 1988; Phalakornkul

et al., 1996; Rojas-Ochoa et al., 2003; Rojas-Ochoa, 2004).

Information on short-time dynamic properties is indispensable for a better under-

standing of long-time dynamic properties such as the static viscosity and the long-time

self-diffusion coefficient. Short-time transport coefficients are used, e.g., as input in

mode-coupling and dynamic density functional theory calculations of long-time prop-

erties. For charge-stabilized systems, we have shown recently (Holmqvist & Nägele,

2010) that dS and D(q) are linked to their corresponding long-time quantities by a

simple, approximate scaling relation.
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Phys., 132, 014503; ibid. Phys. Rev. E, 81, 020401(R).

Abade, G., Cichocki, B., Ekiel-Jezewska, M., Nägele, G. & Wajnryb, E. (submitted).
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Banchio, A., Gapinski, J., Patkowski, A., Häussler, W., Fluerasu, A., Saccana, S., Holmqvist,
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Heinen, M., Banchio, A. & Nägele, G. (to be submitted).
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Phys. Rev. Lett. 85, 5460.
Robert, A. (2001). Dynamic behavior of charge-stabilized colloidal suspensions. Ph.D. thesis,
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