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Abstract

Hlsarna ironmaking process is one of the emerging technologies being developed to mitigate the increasing
carbon footprint from the steel making industry. This innovative process offers flexibility with the type of
reductants used in the smelting reduction vessel for the conversion of iron ore to liquid hot metal. Natural gas is
well known for being a relatively clean fossil fuel producing carbon black and hydrogen when it undergoes
thermal decomposition. The gasification reactivity of carbon black compared to the carbonaceous materials used
in Hlsarna process is investigated in this work using isothermal gravimetric analysis (TGA) method at 1250°C,
1350°C and 1450°C under atmospheric pressure. Furthermore, physical-chemical characteristics of the
individual carbonaceous materials, which may influence the reactivity, are evaluated systematically. The
experimental results show that carbon black is the least reactive followed by thermal coal and charcoal. It was
found that the effect of the morphology of the carbonaceous materials on the reactivity is dominant compared to
the surface area of the materials. In addition, the reactivity increases with the alkali index (AI) and the level of
the amorphousness of the material’s structure. Three well-known kinetic models, i.e. the volumetric model
(VM), the grain model (GM) and the random pore model (RPM) were applied to predict the gasification
behaviour of the three carbonaceous materials. The random pore model best describes the gasification reaction
of the selected samples due to the influence of the pore diffusion on the reaction. It is observed that the
activation energy of the samples are not following the order of reactivity, this can be explained by the kinetic
compensation effect.
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1. Introduction
The steel industry is ranked as one of the highest CO» emitters due to the use of coal as a primary reductant for

iron and steel production'. It is currently responsible for 6% of the total world anthropogenic CO» emission and
in the EU, CO; emission is 1.8 tonnes per tonne of crude steel produced through the blast furnace-basic oxygen
furnace (BF-BOF) route?. The global demand for steel which has a potential to increase up to approx. 2200
(Million tonnes) Mt by 2050' may result in enormous increase in carbon footprint. In order to mitigate the
increasing CO; emission from the steel industry, the research and development initiatives around the world have
been investigating alternative ironmaking processes under CO» breakthrough programmes’. In Europe, the
ULCOS (Ultra Low CO; steelmaking) programme, involving major European steel companies, suppliers and
associations was established in 2004 to reduce CO, emission by at least 50% by 2050 compared to 1990 level*®.

HIsarna is one of the emerging ironmaking technologies developed by Tata Steel as part of the ULCOS. The
process involves the two main technologies, cyclone and HIsmelt technology, Figure 1. The cyclone melts the
ore, fluxes, and pre-reduces the ore, whilst HIsmelt technology provides the final reduction of the liquid pre-
reduced ore and coal gasification in the smelting reduction vessel (SRV). It aims to reduce the CO, emissions up
to 80% by 2050 with the combination of carbon capture and storage (CCS)®’. One of the main advantages of
this process is the flexibility to use alternative reductants to the current standard metallurgical coal. The CO»
reduction efficiency of Hlsarna’s pilot plant has previously been demonstrated using thermal coal (TC) and
charcoal (CC) as the alternative reductants. Further information on HIsarna and its current
progress/development can be found in the reported literature®!°. A potential alternative of interest is to utilise
natural gas in smelting reduction vessel (SRV) as a partial replacement of coal and biomass'!. If natural gas is
used as a carrier gas for the injection of coal into the slag/hot metal interface, upon rapid heating, it may crack
into carbon and hydrogen. The cracked carbon may react with the Hlsarna slag and carburise the hot metal.
Previously, natural gas has been used as a co-reductant in the ratio of 125 kg/t hot metal, with the gas containing
primarily methane in the North America’s blast furnaces as a partial replacement of coke'?. Natural gas is also
extensively used in direct reduction processes, like MIDREX that accounts for 60% global direct-reduced iron
(DRI) production'®. This previous work provides precedent to the potential successful application of natural gas

in Hlsarna.
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Figure 1 Schematic diagram of the Hlsasrna furnace involving two integrated technologies’

Natural gas is well known for being a relatively clean fossil fuel due to generation exclusively of elemental
carbon and hydrogen through thermal decomposition (equation (1)), which are two common reductants for the
reduction of iron oxide for the iron production'’'2. Consequently, it may aid lowering the carbon in the process

and ultimately the CO, emissions.

CH,—>C+2H, )
The elemental carbon produced is known to be carbon black (CB) containing more than 97% carbon'# which
contrasts with TC and CC containing approximately 81.9% and 89.4% carbon respectively. Moreover, cracked
CB is a nano-material, known as active carbon which is applicable in making consumer products such as rubber,
inks, paints and coating'*!>. No information has been reported on the reaction between the cracked CB and solid
carbon materials with iron oxides under Hlsarna conditions. Therefore, the reduction behaviour of CB, and the
solid reductants used in Hlsarna with slag containing iron oxide is an area that needs further study in order to aid
the potential application.
Within the SRV, moisture and other volatile matters from solid carbon sources are reportedly released
immediately into the molten slag upon injection due to the high temperature within the vessel®7'°.
Then, the reduction of iron oxide may occur via two main reactions: (1) direct reduction, and (2) indirect
reduction'”?°. The direct reduction occurs initially through the direct contact between the devolatised carbon
and iron oxide in slag, producing CO (equation (2))!¥?7. The product gas, CO forms a gas film between molten
slag and the carbon!®?’. The iron oxide in the molten slag can then be further reduced by the product gas, and as

a result, CO; is generated (equation (3))'®?7. This gaseous reaction is known as indirect reduction. During the
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indirect reduction, a gas ferrying mechanism may occur?'-?2, This is due to the CO, traveling from the slag/gas
interface to gas/carbon interface, producing more CO through gasification reaction or Boudouard reaction
(equation (4)), which travels in the reverse direction of the CO,?!?%2. This mechanism is shown schematically in
Figure 2. Previous studies!®!*? stated that the mass transfer of iron oxide from bulk slag phase to the slag/gas
interface is the controlling step for the reduction rate when FeO % in the slag is less than 5%. However, the
gasification reaction plays a significant role due to the contribution of the indirect reduction. Furthermore, the
rate of the gasification reaction is dependent on the types of carbon in terms of their physical and chemical

properties, consequently it may likely have impact on the overall reduction rate of iron oxide.

Slag

Gas film
o

(Fe0)+(‘$=
A

(FeO) + C (s) =[Fe] + CO (g) 2)
(FeQ) + CO (g)= [Fe] + CO2(g) 3
CO,(g)+C(s)=2CO(g) 4)

Figure 2 Illustrative diagram of the reaction mechanism between the molten slag and a carbon particle.

The CO, gasification behaviour of various solid carbon materials such as coal and biomass char has been widely

reported in the past for both non-isothermal and isothermal studies?*-*

. The majority of the research has focused
on the gasification reactivity of the individual carbon materials, which may significantly influence the overall
operating efficiency and economic benefits of syngas production plants or gasification plants**33. Hence, the

reported studies®*-3

were mostly conducted around the industrial gasification plant’s operating conditions,
around 1000°C and below. The CO, gasification behaviour of CB, TC, and CC under Hlsarna operating
conditions at 1450°C, is an area that needs research.

The present work aims to investigate the gasification properties and kinetic behaviours of CB and the
carbonaceous materials (TC and CC) previously used in HIsarna trial campaigns using isothermal
thermogravimetric analysis (TGA) at high temperature range of 1250-1450°C. The major factors which may

influence the reactivity of the gasification reaction such as morphology (e.g. particle shape and porosity),

chemical structure, surface area, chemical composition of the materials are evaluated, which is coupled with
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kinetic analysis of the reaction through the well-known kinetic models i.e., Volumetric model (VM), Grain

model (GM), and Random pore model (RPM).

2. Experimental
2.1. Materials preparation

Three types of carbon materials, i.e. CB, TC and CC, were investigated in the present work. The lumps of TC
and CC were provided by Tata Steel. The samples were heated at 70 °C in a muffle furnace for 12 hours in order
to remove the surface moisture. The dried samples were crushed using a TEMMA disc mill with stainless steel
mill plates and subsequently sieved to obtain samples with a particles size of between 63-90 pm for the test. The
proximate and ultimate analysis results of the materials are given in Table 1.

Table 1 Proximate and ultimate analyses (dry basis) of charcoal and thermal coal provided by Tata Steel Europe,

IJmuiden
Proximate analysis (wt.%) Ultimate analysis (wt.%)
Sample
Volatile Fixed carbon  Ash H (0] N S C
CcC 12.1 81.5 1.8 3.1 6.9 0.57 0.1 89.4
TC 222 60.1 8.8 43 11.4 22 0.2 81.9

CB was produced through the thermal decomposition of methane gas using a bespoke lab gas furnace, Figure
3(a). The gas furnace is designed to operate at atmospheric pressure and under a controlled atmosphere. This
water-cooled furnace is equipped with the graphite heating element and can be heated up to 1600°C. Initially,
the furnace was heated under argon (N5.0, 99.999%) until the temperature reached at 1450°C. Once it reached
the temperature, ultra-high purity (N 5.5, 99.9995%) methane gas was introduced into the furnace through the
top injection lance (a schematic of which is shown in Figure 3(b)), generating solid carbon black which
contains > 97% elemental carbon and hydrogen. The generated hydrogen was transported to the gas burner via
top and side exhaust lines, where the reactive gas was burned. The by-products gases from the burner were
discharged into the atmosphere via the extractor. The solid particles are collected at room temperature and the

composition of the carbon black is shown in Table 2.
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Figure 3 Picture of the bespoke lab gas furnace (a) and a schematic diagram of the bespoke lab gas furnace (b)

Table 2 Composition of the carbon black'“.

Sample Elemental carbon  Ash content Organic

Carbon black >97% <1% <1%

The morphology of the raw materials before and after heating were observed by using a Sigma Zeiss SEM
(scanning electron microscopy) under the imaging conditions of 5kV voltage, 1,000 times magnification for TC
and CC, and 10,000 and 26,000 times for CB as they are nano-particles. The Brunauer-Emmett-Teller (BET)
surface areas and porosity of the samples (raw and char) were determined by nitrogen adsorption method at
77K. The samples were heated under vacuum at 120°C for 12 hours with the purpose of degassing the samples.
The degassing step was repeated two times prior to the BET test. Moreover, the structure of the chars were
studied by Raman spectroscopy method. Raman spectra for the sample chars produced at 1450°C are obtained
using a Renishaw spectrometer equipped with a silicon-based Charge Coupled Device (CCD) detector. The
measurements were made in the range of between the wavenumber of 1000 cm™ and 1800 cm™ under a green
laser (wavelength, A= 532nm). The laser power of 5% and 20s exposure time are chosen in order to avoid
irreversible thermal damage to the samples. The spectra from three different locations from each sample were
recorded due to the heterogeneous nature of the samples. The recorded spectra are analysed using the peak
analysis function in OriginPro 2019b.

2.2. Gasification test

One of the most commonly used methods to investigate the gasification of the carbonaceous materials is thermal
gravimetric analysis (TGA)*-32. In this study, a NETZSCH STA 449 F3 Jupiter was used for the TGA analysis.

At the start of each experiment, approximately 15 mg of the sample was placed in an alumina crucible (4 mm in
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height and 6.8 mm ¢). A small amount of sample was used to avoid heat transfer limitation, which was essential
to ensure that the results had a good reproducibility. The crucible containing the sample was then covered with
an alumina lid with a central hole. The temperatures for isothermal experiments were selected to be 1250°C,
1350°C, and 1450°C. The sample was heated at a rate of 30°C min™! under Argon (N5.0, 99.999%) until it
reached the target temperature. The sample was then held at the target temperature for 10 minutes under inert
atmosphere in order to have a stable weight before CO, was then introduced for gasification. The argon was
replaced by carbon dioxide (N5.0, 99.999%) with the flowrate of 50 ml/min in order to have the minimal
resistance around the particles resulting from the stagnant gaseous film?. The final temperature was kept for
gasification until no further weight loss could be observed. Each test was repeated at least three times to ensure
experimental rigor. Furthermore, a blank calibration test was run for each temperature with the crucible
containing 15 mg of alumina powder.

2.3 Kinetic Models

The experimental conversion ( Xexp) of the three kinds of carbon used in this study (on a dry ash-free basis) via

the gasification process can be determined using equation (5):

X = m;, —m, (5)

exp
mi - mash

Where, midenotes the initial sample mass before the gasification; m, is the sample mass at time t; m, is the

mass of remaining ash in the sample after the reaction is complete.
The gasification of carbon can be considered as non-catalytic heterogeneous reaction. Hence, the conversion
rate of the CO; gasification of carbon dX/dt can be expressed by equation (6)!:

dX:k(

a 6
k(TR )£ (X) (©)

> Fco,

where, k is the apparent gasification rate constant influenced by temperature (7) and CO; pressure Pco:. f(x)
gives the dependency of physical and chemical properties with the relation to degree of reaction.
In the case of constant CO; pressure during the reaction, the apparent gasification reaction rate constant can be

determined by the Arrhenius equation, equation (7):

()
k= A (7
Where, Ay, E and R represent pre-exponential factor, activation energy and universal gas constant respectively.

Linearized Arrhenius equation is shown in equation (8):

7120



174

175

176

177

178
179

180
181

182

183

184

Ink =In(4,) —%(%} 3

In this study, three well-known kinetic models were adopted to predict the gasification rate of the three
carbonaceous materials under different conditions. The description of these three models can be found in Table

3. The linearized equations of the individual models were used to obtain the predicted conversion value (X) of

the samples.

Table 3 Three kinetic models for the prediction of the gasification of the three carbonaceous materials.

Models Governing equations Remarks
. d_X =k, (1- X) ) The model does not consider the structural
dt changes of the particles during the reaction,
Volumetric *  —In(l-X)=k,,t (10) assuming that there are uniformly
model (VM)*! . X =1— (11) distributed active sites on both the outside

Where, kvar denotes apparent gasification rate constant of

VM model.

and inside the particle surface, which are

reacting with the oxidising agents.

Grain model
or unreacted
core model

(GM) 32

. ‘z—f:kGM(l—X)” (12)

. 3[1_(1_)()‘“3)}:%; (13)
o X=1-(l—ky,t/3) (14)

Where, kom denotes apparent gasification rate constant of

GM model.

The model assumes that a porous particle
contains an assembly of uniform nonporous
spherical grains. The reaction occurs on the
external surfaces of the grains and
gradually moves inside. During the
reaction, unreacted core behaviour is
applied to each of these grains. As the
reaction continues, only the ash layer

remains.

Random pore
model

(RPM)*

* a-nfimymi-n 09
. [gj{(l—\ym(l —X))% - 1} =kt 10
v

—kgpar 1 Krputy.
* le—e[ { 4 )) 17
Where, krry is apparent gasification rate constant of RPM

model, ¥ pore structure of the non-reacted sample.

The model considers the pore structure and
its evolution; pore growth during initial
stages of gasification and destruction of
pores due to the coalescence of adjacent

pores.

The kinetic models used in this study can be validated through the comparison between the experimental and

predicted conversion values. The deviation ( DEV') between the experimental data and predicted data can be

determined by equation (18)3'.

DEV (X)(%) =100 X[27_1M]2 / max(X)

820

(13)
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Where, DEV(X)(%) is relative error: x, ~ is experimental data; x is the predicted data by the models;
max(X),, is the maximum conversion of the experiment; N is the number of data points.

3. Results & Discussion

3.1. Iso-thermal gravimetric analysis
In order to predict the kinetic behaviour of the studied materials, and to validate the selected kinetic models, the

experimental data was fitted to the different kinetic models using a least square non-linear curve fitting method.
The plots of conversion against time for both experimental and model fitted graphs are presented in Figure 4
(a) — (i). The duration of 2000s is considered for the conversion of all the studied carbon types. The rate
constants for all the chosen models, kv, kom and kreu, and the value of  in the RPM model are determined from
the slope of the optimum curve fitting. The latter value is constant and independent of the temperature as it

represents the original pore structure of the particles®!. The values of ( for the studied samples vary between 17

and 20. The Arrhenius plot, Figure 5 is attained by plotting the natural logarithm of the calculated rate
constants against inverse temperature. The gasification of the carbonaceous materials may occur under one
kinetic control regime as there is a good linear relation between the Ink and /T under varied temperatures®'. The
activation energy (E) and pre-exponential factor (4¢) in Table 4 are obtained from the slope and interception of
the plot respectively. The activation energy £ of the selected samples vary between 42.5 — 89.0 kJ/mol, and A4 is
2.9-149.2 s'!. The ranking of the activation energy for the studied samples is: TC char > CC char > CB. The
activation energy values obtained in this study are significantly lower than the literature values in Table 5,
which were studied at temperature 1050 °C and below. This can be explained as the reaction may occur under
mixed control regime rather than just the chemically-controled regime at high temperature range, where the

influence of pore diffusion becomes significant 3%,
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A6 06 0.6
i A
a8 . (@ Y () o8] (<)
L]
0] 10 1.0 4
1] s -1.24
144 1.4 141 .
= . . - -~
Y L6~ . 164 ol <
= A e =z 184
184 = -18 4
S 5 . -
20 204 :
224 22 "
24] WM " 244 = VM ' A
o GM 01 @ GM 2]
26 & RPM 2‘ 4 RPM 28] 4 RPM
. L | L . 24 - ! < i L I : L L L
28 PR S et pyTon 200064 000056 000058 0.00060 0.00062 0.00064 000066 000058 0.00060 000062 0.00064 000066
i
T VT (K VT (K")

Figure 5 Arrhenius plots of VM, GM and RPM models for (a) Charcoal, (b) Thermal coal, and (¢) Carbon black.

According to Figure 4, the RPM model has the best fitting for the gasification reaction of the studied materials
as opposed to VM and GM models since the RPM model considers the pore structure of the materials. This
result agrees well with the literature’!3235384%  However, in the case of TC at 1250°C, the VM model produces
the best fit line for the experimental data of the reaction, whereas the RPM model deviates significantly from the
experimental data. The deviation percentage between the predicted data and the experimental data for all set of
experiments are calculated using equation (18) and the calculated results are displayed in Table 6. The

calculated deviation percentage of the RPM for TC at 1250°C is 5.3%, while the VM model is 0.9%. This could
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be due to the non-porous nature of thermal coal and the pore evolution of TC char at 1250°C not being
dominant. As the sample was heated to the higher temperature, RPM model predicts better for TC compared to
the other two models due to the coal swelling and large pore evolution of TC char®®. This is further explained
qualitatively by the SEM images of before and after heating the samples to specific temperatures as shown in

Figure 6 (a)-(h).

Table 4 Kinetic Parameters for VM, GM, RPM of different samples obtained from Arrhenius plots & models fitting
to experimental data

VM GM RPM
Sample
E (kJ/mol) Ao(sh E (kJ/mol) Ao(s™) E (kJ/mol) Ao(s)
CC 81.2 68.7 71.9 55.2 70.3 21.4 20
TC 87.3 149.2 89 143.7 88.9 74.3 12
CB 42.5 5.2 46.3 5.7 48.3 2.9 18

Table 5 Activation energy values of coal and biomass chars reported in the literature for gasification reaction

Model E (kJ/mol) Materials Temperature ("C) Particle size (um)

Wang et al.’! RPM 129.8-180.3 Herbaceous & 800-950 <74
wooden residues

Biomass char
36 , .

Seo et al. RPM 134 ( Pinus densiflora) 850-1050 250-300
Li and Cheng?’ - 122 Wu Tai gas coal 850-960 2000-4000
Sircar et al.’ RPM 125.0+ 30 Pinewood char 727-897 56-180

Table 6 Deviation between the predicted data by the models and the experimental data
Samol DEV X (%) 1250°C DEV X (%) 1350°C DEV X (%) 1450°C
ample
VM GM RPM VM GM RPM VM GM RPM
CcC 6.5 46 23 6.9 47 2.1 7.4 5.2 1.9
TC 0.9 2.5 5.3 4.9 2.7 1.2 6.3 4 1.6
CB 3.9 22 1 6.7 45 22 7.5 53 22

3.2. Morphology of the materials

The morphological changes of the samples before and after heating to the reaction temperatures of 1250°C and
1450°C are studied using SEM and the images are presented in Figure 6. The raw CC used in this study is very
porous as shown in Figure 6(a). It was observed that as pyrolysis temperature increases, more pores collapse
causing the shrinkage of the material as shown in Figure 6(b), and new pores form on the surface of the CC

char particles after the shrinkage as shown in Figure 6(c). The behaviour of the CC during the pyrolysis fits
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well with the RPM model’s considerations on pore structure and its evolution, therefore, the RPM model gives
the best-fit line for the CC char (Figure 4(c)).

On the other hand, raw TC is non-porous according to the Figure 6(d). After heating to 1250 °C, some tiny
pores are evolved with some ash on the surface due to the release of volatile gas compounds (Figure 6(e)).
Large pores are seen to evolve and the surface becomes cleaner after heating the TC to 1450 °C, from the release
of more volatile matters, causing ruptures in the materials (Figure 6(f)). The pore evolution of TC at 1250 °C
may not be dominant, hence the RPM model does not predict the experimental data well at that temperature
(Figure 4(f)). However, at 1450°C, the pore evolution of TC char becomes dominant, resulting in the RPM
model giving the best fit (Figure 4(f)).

The morphology of CB does not change significantly after heating as shown in Figure 6(g) and 6(h) due to the
material being produced at high temperature of 1450°C. According to Figure 6(g), carbon black has nano-
particle size and a grape like cluster shape which follows the descriptions of previous studies'®. Due to being
nano-size particles, no pores are observed within individual particles of CB. However, aggregates are formed
from the primary particles coming into contact, Figure 6(g). Clustering of these aggregates may lead to form
agglomerates, and the pore formation occurs between aggregates as in Figure 6(h). The particles
agglomeration and the pore formation are schematically presented in Figure 6(i). Hence, the gasification of

carbon black can be well represented by the RPM model (Figure 4(i)).

The reactivity of the samples at different temperatures are evaluated quantitatively according to their reactivity

index, Ry s using equation (19)314,

Ro.5:E (19)

t0.5
where, 75 is the time required for half the sample to be converted.
The calculated reactivity index values are shown in Table 7. The higher the value of Rys, the higher the
reactivity of the sample®!324°, Therefore, CC is the most reactive material followed by TC and finally CB.
Furthermore, the reactivity of all three materials studied increases with increasing the reaction temperature from

1250 °C to 1450 °C.
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Figure 6 Comparison of SEM photographs of the three different samples before and after pyrolysis at various
temperature: (a) CC raw, (b) CC char 1250°C, (¢) CC char 1450°C, (d) TC raw, (e) TC char 1250°C, (f) TC char
1450°C, (g)CB raw, (h) CB 1450°C, and (i) schematic view of CB agglomeration. All the SEM photos are taken under
magnification of 1,000 except 10,000 for (g) and 26,000 for (h).

Table 7 Reactivity index of the studied samples at different temperatures.

Temperature (°C) Charcoal char Thermal coal char Carbon black
1250 8.3 6.0 5.8
Reactivity Index
’ 1 . .1 .
Rosx 10 350 9.0 8 7.6
1450 15.9 11.5 8.6

Furthermore, surface area and porosity of the materials are investigated quantitatively, using N» adsorption
technique (BET test). The adsorption isotherms of the materials and their physical parameters are displayed in

Figure 7 and Table 8. According to International Union of Pure and Applied Chemistry (IUPAC)

recommendations*!, the isotherm of CC raw in Figure 7 (a) belongs to type I, which indicates that the sample
is microporous. The isotherm is found to be non-reversible resulting from the existence of a constricted
microporous structure*’. Moreover, the N> molecules move very slowly at 77K, hence the adsorption in very
narrow pores is kinetically limited?'. On the other hand, the isotherms of CC 1450°C, TC raw, TC 1450°C and
CB raw in Figure 7 (b)-(e) are type II*'. This indicates more micro/mesopores exist in the samples. Different
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292

293

shapes of adsorption isotherms result from different distribution of pores existing in various samples®'. The
morphology of CB before and after the pyrolysis, Figure 6 (g) and (h) is not changed, hence the adsorption test
is not done on the CB 1450°C.

The BET surface area and pore parameters of the samples are shown in Table 8. CB gives the highest surface
area among the raw carbonaceous materials owing to being a nano-size material. Hence, it was initially expected
to have the highest reactivity. However, spherical particles are known to be less reactive compared to the
irregular particles®. On the contrary, the surface area of TC raw is very small because it is non-porous.
According to Table 8, the average pore diameter for TC raw is the largest and for CC raw the smallest. The
measured pore diameter of the TC raw could result from the rough surface of the samples. Moreover, the pore
diameters of the CC and TC chars are significantly decreased. This could be due to collapsing of the original
pores and evolution of smaller pores in the case of CC char, Figure 6 (c), whereas pore formation occurs in TC
char, Figure 6 (f) resulting in the higher BET surface areas than the raw materials. Consequently, faster reaction
rate is achieved with increasing temperature. The results indicate that the morphology of the materials such as
particle shape and porosity of the samples may have more significant effect on the reactivity compared to the

surface area of the individual samples studied.
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Figure 7 BET nitrogen adsorption isotherms of raw materials and chars (a) CC raw, (b) CC 1450°C, (¢) TC raw, (d)
TC 1450°C, and (e) CB raw.

Table 8 Parameters for physical properties of both raw carbonaceous materials and chars.

BET surface area

Cumulative pore

Average pore

Samples (m?*/g) volume (m%/g) diameter (nm)
CC raw 9.19 0.005738 13.94
CC char 1450°C 14.31 0.005433 2.58
TC raw 1.14 0.004945 25.28
TC char 1450°C 22.10 0.016686 3.37
CB raw 9.89 0.030688 14.31

4.5+ Thermal coal
4.0
3.5
Charcoal
3.0 -
N
= 25
2.0+
1.5
RPM|
1.0 ® Carbon black
! ! ! ! !
40 50 60 70 80 90

E (kJ/mol)

Figure 8 The relation between /n(4¢) and E of different materials.
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It was found that the ranking of the activation energy of the samples do not follow the order of the reactivity
index. In general, the lower the activation energy of the material is, the higher the reactivity is obtained, which is
not the case in this study. According to Wang et al. 20163, this could be due to the reactivity being affected by
not only activation energy but also by the pre-exponential factor. Under the circumstance of increasing pre-
exponential factors with the increasing activation energies, kinetic compensation effect may occur®!. Figure 8
shows that there is an apparent linear relation between /ndy and E. The lower the activation energy, it is easier to

046,47

attach CO, molecules to the active carbon sites to produce C . However, the stronger bond between C(O) is

formed and the structure of the chars become more stable, which alternatively limits the movement of CO3!41:42,

This could result in the lower pre-exponential factors®!46:47,

3.3 Chemical structural effect on the gasification rate

Previous research reported that the chemical structure of the sample may take part in controlling the gasification
rate3#>48, Raman spectroscopy is the most common method to study the chemical structure of the materials.
The focus of this study is to determine the reactivity of the carbonaceous materials at Hlsarna’s condition.

Hence, the raman spectra are obtained for the samples that have been pyrolysed at HIsarna operating

temperature of 1450°C and they are presented in Figure 9 (a).

Charcoal char

20 (b)

1.8 4
1.6 4
3 —————— 1.4 4
= | Thermal Coal char 1
£ O 12
= < 1
2
-
=
=
=
g |
& | Carbon Black ”'6':
0.4 -
0.2 4
n Tt 0.0
1000 1200 1400 1600 180 CC char TC char CB
Wavenumber (cm'l) Different types of char produced at 1450°C

Figure 9 (a) Raman spectra of the carbonaceous materials with the respective peak fitting curves, and (b) Area ratio
of D band and G band of the sample chars.

The two significant peaks occurred at ~1350 ¢cm™ and ~ 1600 ¢cm™!' which are known as the D and G bands

48,33-51

individually . The disorder-induced D band corresponds to the contribution of amorphous carbon structure

and G band is responsible for a stretching vibration mode of graphite C=C bonds?*'->!

. The experimental spectra
of CC char is deconvoluted into three peaks (D, D3, and G) using Gaussian functions according to the method

proposed by Sonibare et al., 2010°2. The D3 band occurs in the range of 1500 — 1550 cm™ from the amorphous
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Sp?bonded forms of carbon in the materials®!. On the other hand, the spectra of TC char and CB are fitted with
Lorentzian function®; only D and G bands are found.

From Figure 9(a), the D and G bands of CC char are broader compared to the relevant bands of TC char and
CB. The broader the G band of the material, the more amorphous structure of the material is obtained, hence CC
char is more amorphous than TC char and CB***°. The broad D band of CC char suggests that the crystallite size
of the carbon in the materials is small, which further indicates that the material is highly amorphous®*. On the
contrary, the D and G bands of the TC char and CB are narrower and sharper, which proves that they are more
highly ordered.

The ratio of the intensity of D and G bands, (In/Ig) are known to determine the degree of the organisation of the

351 The area

carbon materials; the intensity ratio increases with the increase in the degree of amorphousness
ratios of D and G bands (Ap/Ag) are calculated in this study in order to obtain the most accurate result, and the
results are displayed in Figure 9(b). The area ratios of CC char, TC char, and CB are approx. 1.79, 0.78 and
0.67 respectively. Hence, the level of amorphousness is as follows: CC char > TC char > CB. Wang et al.,’!
claimed that the more disorder the structure is, the more chemically reactive under oxidation atmosphere. The
result obtained in this study agrees well with the literature as the reactivity of the materials follows the trend of
the amorphousness.

3.4 Effect of ash composition on the gasification rate

Generally the carbonaceous materials contain both volatile and ash matters which may influence the gasification
reactivity. The role of volatile matter is not considered in this study, as the reaction happens at above de-
volatilisation temperature, and the starting mass comparison is taken after 10 minutes at the reaction temperature
for standardisation. Contradictory results are reported regarding the effect of ash contents on the reactivity
depending on the type of samples and the experimental conditions. Some studies claimed that the ash content in

coal and biomass does not have any effect on the reactivity?31-32

, whereas other researchers reported that the
minerals contained in the ash such as calcium, potassium, and sodium increase the reactivity*##>%5-7_ Zhang et
al, 2010%° claimed that calcium enhanced the reactivity at the lower conversion of coal chars, < 0.4, while
potassium encouraged the reactivity with increasing conversion. It has been reported that the inorganic elements
such as potassium, calcium, magnesium, sodium, and iron have a catalytic nature, whereas silicon and

aluminium are known to have inhibiting effect on the reaction’>*. Hence, the effect of ash content on the

reactivity of the studied samples is investigated. This is done through comparison of the alkali index (AI)
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32.33.4445 for TC and CC. The alkali index for CB is not calculated and assumed very low since it contains only

<1 % ash.

Fe,0,+CaO + MgO + Na,O + K,0 (20)
Si0, + AL, 0,

Al = Ash x

The calculated A7 values of the samples are ranked as follows: CC > TC > CB and the values are shown in
Table 9. 1t shows a good relationship with the reactivity index. Hence, it may be concluded that the reactivity

of individual materials are affected by their ash compositions.

Table 9 Ash composition and Alkali Index of the studied samples

Sample Fe, O3 CaO MgO Na,O K,O SiO, ALOs; Al
CC 294 1480 1.63 190 531 61.50 7.65 438
TC 0.00 11.16 290 0.35 1.58 41.56 2286 2.18

4. Conclusions
In order to optimise the use of reductants in HIsarna ironmaking process, the CO; gasification reactivity of three

carbon materials of thermal coal, charcoal and carbon black (the decomposition product of natural gas) and the
influencing factors have been studied. The following conclusions can be obtained:

e  The carbon black produced from the thermal decomposition of natural gas is the least reactive followed
by thermal coal and charcoal.

e The random pore model (RPM) gives the best prediction of the CO, gasification reaction for the
samples studied, except the thermal coal char at 1250°C due to the morphology of the sample. The
activation energies of the studied samples obtained from the RPM model fall within 48.3-88.9 kJ/mol
and kinetic compensation effect occurs during the gasification process.

e The effect of the morphology of the particles such as particle shape, pore structure and its evolution
within the samples exceeds the influence of the surface area on the reactivity of the studied materials.
Hence, the surface area of the individual materials may not have significant influence on the reactivity.

e  Furthermore, the reactivity increases with increasing temperature, and with the degree of
amorphousness of the materials. The degree of amorphousness of the three carbonaceous materials
studied in the descending order is: charcoal char > thermal coal char > carbon black.

e  The reactivity of the individual materials is also governed by their ash content (alkali index). The alkali
index of the three carbonaceous materials in the descending order is: charcoal > thermal coal > carbon
black.
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