
warwick.ac.uk/lib-publications  
 

 

 

 

 

 

A Thesis Submitted for the Degree of PhD at the University of Warwick 

 

Permanent WRAP URL: 

 

http://wrap.warwick.ac.uk/144850 

 

 

 

 

Copyright and reuse:                     

This thesis is made available online and is protected by original copyright.  

Please scroll down to view the document itself.  

Please refer to the repository record for this item for information to help you to cite it. 

Our policy information is available from the repository home page.  

 

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/144850
mailto:wrap@warwick.ac.uk


ME

Optimising Chronotherapy for
Gastrointestinal Cancers

by

Roger Hill

Thesis

Submitted to The University of Warwick

for the Degree of

Doctor of Philosophy

Centre for Complexity Science

October 2019



Table of contents

List of figures iv

List of tables x

Nomenclature xv

1 Background 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Personalised Medicine . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Gastrointestinal Cancers and their treatments . . . . . . . . . . . . . 3

1.3.1 Treatments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Circadian Rhythms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4.1 Definition and terminology . . . . . . . . . . . . . . . . . . . 7
1.4.2 The influence of circadian rhythms on cancer . . . . . . . . . 9

1.5 Chronotherapy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.6 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.6.1 Aims . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.6.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2 Mathematical methods 17
2.1 PK-PD modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1.1 Non-physiological VS physiologically-based modelling . . . . 17
2.1.2 Main laws for the design of physiologically-based models . . . 18

2.2 Multi-scale modelling approach . . . . . . . . . . . . . . . . . . . . . 24
2.3 Parameter estimation and model identifiability . . . . . . . . . . . . 24

2.3.1 Structural identifiability . . . . . . . . . . . . . . . . . . . . . 26
2.3.2 DAISY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.3.3 Least squares estimation . . . . . . . . . . . . . . . . . . . . . 28
2.3.4 CMAES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.3.5 Likelihood profile . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.3.6 Sobol sensitivity analysis . . . . . . . . . . . . . . . . . . . . 31

2.4 Model evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32



TABLE OF CONTENTS iii

2.4.1 Coefficient of determination . . . . . . . . . . . . . . . . . . . 32
2.4.2 Sum of squared residuals . . . . . . . . . . . . . . . . . . . . 32

3 Optimising chronotherapy 34
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3.1 Inter-patient variabilities in irinotecan, 5-fluorouracil and ox-
aliplatin PK after chronomodulated administration . . . . . . 46

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4 PBPK modelling of oxaliplatin 75
4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.2 Oxaliplatin blood PK: an in vitro study in mice, rats and humans . 76

4.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.2.2 Methods and Materials . . . . . . . . . . . . . . . . . . . . . 78
4.2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.2.5 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.3 Physiologically based whole body model of oxaliplatin pharmacokinet-
ics: A frame-work to explore sex dimorphism in circadian toxicity . . 87
4.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.3.2 Model Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.3.3 Model fitting to published data . . . . . . . . . . . . . . . . . 93

4.4 Model identifiability . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.4.1 Structural identifiability . . . . . . . . . . . . . . . . . . . . . 94
4.4.2 Practical identifiability . . . . . . . . . . . . . . . . . . . . . . 95
4.4.3 Identifiability conclusion . . . . . . . . . . . . . . . . . . . . . 97
4.4.4 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5 Conclusion 101

References 103

Appendix A Appendix 122



List of figures

1.1 Plot of circadian characteristics: level, amplitude, period and phase. 8
1.2 The CTS. The CTS consists of a central pacemaker located in the

SCN that displays circadian rhythms, but is also entrained by external
cues. The SCN then generates rhythmic physiologic signals to control
the molecular clocks present in nucleated cells. These signals induce
oscillations in the expression of a large number of genes involved in
key intracellular activities [1]. . . . . . . . . . . . . . . . . . . . . . . 9

1.3 Survival curves of male B6D2F1 mice following i.v. administration of
17mg/kg of oxaliplatin at 6 different times of injection. Survival rate
differed as a function of injection time with maximum difference in
survival rate of 50%. Original data were collected over 40 days. Data
shown here were truncated as survival percentage stays constant from
day 9 until the end of the experiment. Original data can be seen in
Boughattas et al 1989 [2]. . . . . . . . . . . . . . . . . . . . . . . . . 12

1.4 Body weight loss (BWL) as a function of irinotecan dose timing in
male or female mice from three mouse strains. Equally toxic doses of
irinotecan were delivered daily for 4 days to C57BL/6 or B6D2F1 (50
mg/kg/d) or B6CBAF1 (80 mg/kg/d) at either 3, 7, 11, 15, 19 or 23
ZT. Top row, histograms of mean body weight change ±SEM against
dosing time for B6D2F1 (A) and B6CBAF1 (B). Bottom row, cosinor
analysis of 3 chronotoxicity classes based on reconstructed circadian
patterns with 24-hour ± 12-hour rhythmic components: class 1, female
B6D2F1 and C57BL/6 (C); class 2, male B6D2F1 and C57BL/6 (D);
class 3, female and male B6CBAF1 (E). Data taken from Xiao Mei, li
et al 2013 [3]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

iv



LIST OF FIGURES v

1.5 Effect of patient’s sex on chronotolerance for 5-FU and oxaliplatin
in patients with metastatic colorectal cancer. (A) Overall incidence
of severe toxicities of any kind over two courses of treatment; (B)
Possible influence on circadian pattern of tolerability over two courses
of treatment. The x-axis label is given in number of hours before (−)
or after (+) the reference modality “0h”. For the reference modality
“0h”, the peak times of delivery occurred at 4 pm for oxaliplatin and
at 4 am for 5-FU. for other peak times the whole schedule was shifted
by 3, 6, 9, or 12 h (hours) earlier or later. Taken from Levi et al 2008
[4]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.6 Dosing time dependent incidence of severe neutropenia according to
sex. Rates (±SE) of patients with Grade 3-4 neutropenia as a function
of peak delivery timing of chronomodulated irinotecan in combination
with chronomodulated 5-fluorouracil, Leucovorin and oxaliplatin, and
corresponding best fit of 24-h cosine curve (p<0.05) (A) males (B) for
females. Grey refers to night time and light refers to day time. [5] . 15

2.1 A shows how the steepness of the Hill function changes with respect
to the Hill coefficient n (EC50 = 10). B shows the influence of the
half maximal effect coefficient EC50 on the Hill function curve (n = 2). 19

2.2 Multi-scale modelling pipelines. A shows the advancement from in
vitro intracellular to in vitro intercellular then in vivo, all within in
the same species. B shows the advancement from in vitro to in vivo
animal specimens and finally to in vivo humans. . . . . . . . . . . . 25

2.3 Diagram of potential likelihood profiles. A shows an identifiable
parameter θ̂i with confidence interval between θ− and θ+, B shows a
nonidentifiable parameter since the profile only passes the threshold
once. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1 (a) Delivery profiles of irinotecan, oxaliplatin, 5-fluorouracil and
glucose flushes as administered in the OPTILIV clinical trial. (b)
Schematic of the Mélodie infusion pump (Axoncable, Montmirail,
France) used in the OPTILIV study for hepatic artery infusion [6]. . 38



LIST OF FIGURES vi

3.2 (A) shows oxaliplatin concentration profile in the infusion tube. The
x-axis represents the distance along the tube, the y-axis represents
the time from the start of the pump delivery. For figures (B-G),
the x-axis represents Clock time and starts at the beginning of the
considered drug administration. The left column shows the both the
intended delivery profiles and the simulated delivery profiles evaluated
at the end of the tube (x=L), for irinotecan (B), oxaliplatin (D)
and 5-fluorouracil (F). The right-hand column shows the cumulative
percentage of drug delivered to the patient for the intended and actual
profiles over time for irinotecan (C), oxaliplatin (E) and 5-fluorouracil
(G). The initial delay between the intended and simulated profile is
due to filling of the tubing. The spike at the end of the delivery is
due to the glucose flush emptying the drug left in the tube in a short
space of time. Dose was calculated using the surface area of a person
as being 1.7m2, representing an “average” person. For patient based
simulations each patient’s own surface area is used. . . . . . . . . . . 44

3.3 Improved administration profiles. (a) shows the drug solution delivery
profile which consists of an initial bolus to fill the tube entirely, followed
by the original profile. (b) shows the rinse solution delivery rate which
continues drug delivery at the correct rate while clearing the tube
from any active substance, (c) shows how the flow rate along the tube
is smoothly switched between the drug and the rinse and (d) shows
the new drug delivery profile that will enter the patient compared to
the original profile used in the OPTILIV study. . . . . . . . . . . . . 46

3.4 Parameter Identifiability for irinotecan PK model. . . . . . . . . . . 50
3.5 Parameter Identifiability for oxaliplatin PK model. . . . . . . . . . . 51
3.6 Parameter Identifiability for 5-fluorouracil PK model. . . . . . . . . 52
3.7 Semi-physiological model of irinotecan PK. Compartments were min-

imised to the most important components, Liver to accurately repre-
sent drug delivery, Blood which is the measurement site and Organs to
represent the rest of the body. Ci is the rate constant of clearance from
compartment i. Irinotecan is bio-activated into its active metabolite
SN38. Irinotecan was assumed to be delivered directly into the liver
since hepatic arterial infusion was used. . . . . . . . . . . . . . . . . 53



LIST OF FIGURES vii

3.8 Semi-physiological model of oxaliplatin PK. Compartments were min-
imised to the most important components, Liver to accurately repre-
sent drug delivery, Blood which is the measurement site and Organs
to represent the rest of the body. Ci is the rate constant of clearance
from compartment i. Each compartment contains a bound and un-
bound drug fraction and only unbound molecules can migrate between
compartments. b and u are respectively the binding and unbinding
rate constants of platinum to proteins. Oxaliplatin was assumed to
be delivered directly into the liver in its unbound form. . . . . . . . 55

3.9 Semi-physiological model of 5-fluorouracil PK. Compartments were
minimised to the most important components, Liver to accurately
represent drug delivery, Blood which is the measurement site and
Organs to represent the rest of the body. Ci is the rate constant
of clearance from compartment i. 5-fluorouracil was assumed to be
delivered directly into the liver. . . . . . . . . . . . . . . . . . . . . . 57

3.10 Patient data best-fit of irinotecan PK model. Each subplot represents
an individual patient dataset, fit to the model independently. (a)
shows the fit of irinotecan plasma concentration, (b) shows that of
SN38, the active metabolite of irinotecan. . . . . . . . . . . . . . . . 59

3.11 Patient data best-fit of oxaliplatin PK model. Each subplot is an
individual patient data fit to the model independently. (a) shows
plasma ultrafiltrate platinum concentrations, and (b) shows plasma
total platinum concentrations. PK data for Patient 11 were missing. 62

3.12 Patient data best-fit of 5-fluorouracil PK model. Each subplot is an
individual patient data fit to the model independently. PK data for
Patient 6 and 11 were missing. . . . . . . . . . . . . . . . . . . . . . 64

3.13 Patient parameter clustering analysis for Irinotecan. (a) 2D visuali-
sation of patient clusters for different number of clusters. Centroids
(stars) and patients (dots) are shown, (b) VF S values for different
numbers of clusters. . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.14 Patient parameter clustering analysis for oxaliplatin. (a) 2D visuali-
sation of patient clusters for different number of clusters. Centroids
(stars) and patients (dots) are shown, (b) VF S values for different
numbers of clusters. . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.15 Patient parameter clustering analysis for 5-fluorouracil. (a) 2D visual-
isation of patient clusters for different number of clusters. Centroids
(stars) and patients (dots) are shown, (b) VF S values for different
numbers of clusters. . . . . . . . . . . . . . . . . . . . . . . . . . . . 69



LIST OF FIGURES viii

3.16 Inter-patient variability in drug PK parameters. The first line shows
parameter variability across the considered patient population for
irinotecan (A), oxaliplatin (B) and 5-fluorouracil (C), the colour and
symbols represent the clusters each parameter set belongs to. The
parameters are named with reference to the schematics of the models,
the subscripts refer to the blood (b), organs (o) and liver (l). In
the irinotecan parameters, additional subscripts cpt and sn refer to
irinotecan and SN38 respectively. The second line shows multidimen-
sional scaling representation of patient clustering based on their PK
parameters for irinotecan (D), oxaliplatin (E) and 5-fluorouracil (F),
the x refer to the cluster centroids and the points refer to patient PK
parameters projected onto 2D plot. . . . . . . . . . . . . . . . . . . . 70

4.1 Dose finding experiment showing the percentage survival of male and
female mice after different doses of oxaliplatin given at ZT 7, which
was chosen as it was the worst timing for male mice. No deaths were
observed for either sex at lower doses. . . . . . . . . . . . . . . . . . 76

4.2 Schematic of in vitro blood binding model. . . . . . . . . . . . . . . 80
4.3 Version 1 of the in vitro model where all parameters are kept equal

for both species while being scaled with allometric values. . . . . . . 83
4.4 Fit of oxaliplatin in vitro PK model to in vitro blood binding data

for rats (A), and humans (B) taken from [7, 8], with plasma protein
binding parameters differing between species. f and b subscripts refer
to the free and bound sections within each compartment. . . . . . . 84

4.5 Local identifability plot for parameter of the in vitro PK model. For a
parameter to be identifiable the likelihood needs to cross the threshold
twice. The threshold is set at 0.95 quantile of the χ2-distribution with
degrees of freedom of 1. The width between the two crossing points is
the pointwise confidence interval of the parameters. . . . . . . . . . . 85

4.6 Output of oxaliplatin in vitro PK model calibrated for mice, with
plasma binding parameter varied between 0.2 (orange) and 0.5 (black),
with a set size of 0.03. . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.7 Schematic of whole body pharmacokinetics model of oxaliplatin in
mice. Red compartments are blood compartments, yellow represent
the different tissues of interest and blue is the NET compartment for
which we have no data since it consists of a large range of different
tissues. The red arrows represent clearance from the system. . . . . 90



LIST OF FIGURES ix

4.8 Fit of whole body model to historical data taken from Boughattas et
al 1989 and 1994. The top row shows the fit to blood samples at each
different time of administration. The bottom row shows fit for each
different time of administration in the liver red blood cells (RBC) and
the jejunum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.9 Parameter sensitivity to cost function of published data from Boughat-
tas et al 1989 and 1994 for whole body mouse model. . . . . . . . . . 96

4.10 Local sensitivity of parameters for cost function on published data
from Boughattas et al 1989 and 1994. Each plot shows how cost
varies as the parameter is moved through a range of parameters. The
parameters have been split into groups with respect to their process. 97

4.11 Parameter sensitivity to cost function of the synthetic data for the
whole body mouse model. With parameters ranging across full fitting
range used in the initial parameter fitting to published data from
Boughattas et al 1989 and 1994. . . . . . . . . . . . . . . . . . . . . 98

4.12 Local sensitivity of parameters for cost function on synthetic data.
Each plot shows how cost varies as the parameter is moved through
a range of parameters. The parameters have been split into groups
with respect to their process. . . . . . . . . . . . . . . . . . . . . . . 99



List of tables

3.1 Table describing the defining delivery values for CPT11, LOHP and
5-FU. Dose is given in mg per surface area of the patient (m2). The
main peak refers to the maximum flow rate from the intended delivery
schedule. The spike peak rate refers to the maximum flow rate of the
delivery caused by the glucose flush. . . . . . . . . . . . . . . . . . . 45

3.2 Table of patient compartment volumes as determined by the Vauthey
method for liver volume[9], Nadler’s formula for blood volume [10].
Total volume was determined via the Sendroy method [11] then the
blood and liver volumes were subtracted to give organ volumes. . . . 48

3.3 Individual Parameter Estimates of irinotecan PK model . . . . . . . 60
3.4 Sum of Square Residuals (SSR) for the irinotecan PK model, with

either the original delivery profile, or that simulated through the
PDE pump-to-patient model. The table also shows improvement in
percentages for most patients and an overall average improvement. . 60

3.5 R2 values for irinotecan model, with either the original delivery profile,
or that simulated through the PDE pump-to-patient model. The table
also shows improvement in percentages for each patient and average
improvement for all patients. . . . . . . . . . . . . . . . . . . . . . . 61

3.6 Parameter Estimates of oxaliplatin PK model . . . . . . . . . . . . . 61
3.7 Sum of Square Residuals (SSR) for oxaliplatin model, with original

delivery profile, and oxaliplatin model with the PDE simulated delivery
profile. The table also shows improvement in percentages for each
patient and average (mean) improvement for all patients. . . . . . . 63

3.8 R2 values for oxaliplatin model, with original delivery profile, and
oxaliplatin model with the PDE simulated delivery profile. The table
also shows improvement in percentages for each patient and average
(mean) improvement for all patients. The much larger improvement
in patient 7’s R2 value is because this patient shows the largest spike
at the end of delivery and incorporating this into the delivery profile
vastly improves the fit. . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.9 Parameter Estimates of 5-fluorouracil PK model . . . . . . . . . . . 64

x



LIST OF TABLES xi

3.10 Sum of Square Residuals (SSR) for 5-fluorouracil model, with original
delivery profile, and 5-fluorouracil model with the PDE simulated
delivery profile. The table also shows improvement in percentages for
each patient and average (mean) improvement for all patients. . . . 65

3.11 R2 values for 5-fluorouracil model, with original delivery profile, and
5-fluorouracil model with the PDE simulated delivery profile. The
table also shows improvement in percentages for each patient and
average (mean) improvement for all patients. . . . . . . . . . . . . . 65

4.1 Volumes of blood compartments fixed for the in vitro model [12]. . . 81
4.2 Physiological parameters used for scaling parameters of the in vitro

oxaliplatin PK model. Rat parameters came from [13] except surface
area which was from [14]. Human parameters came from [15–17, 14, 18]. 82

4.3 R2 values for the different versions of the model. The first column
describes which parameter was fitted directly to each species. R2

values are shown for the rat data the human data and the combined
data (R2 of model fit to both data sets simultaneously). Note the
fitting process was always done on the combined data. . . . . . . . . 83

4.4 Best-fit parameters for oxaliplatin in vitro PK model. Confidence
intervals were obtained using likelihood profiles. . . . . . . . . . . . . 84

4.5 Descriptions of parameters and the symbols used within the whole
body pharmacokinetic model. The parameters units are ml/h. . . . . 92

4.6 Composition of NET and conversion from weight to volume. Relative
weights of each organ and conversion to volume [12]. . . . . . . . . . 93

4.7 Relative weights of each organ and conversion to volume [12]. . . . . 93



Acknowledgements

I would like to thank first and foremost Annabelle Ballesta, without her constant
support, encouragement and passion for this field, none of this work would have been
possible. You are an inspiration and I am extremely grateful for everything you have
done over the past 4 years. I would also like to thank Francis Lévi for providing
me with the clinical input to understand the importance of chronotherapy and the
impact it could make on future treatment. Your knowledge and connections made
me see that this is not only an interesting problem but one with the potential to
really help people.

To everyone in Mathsys and complexity the support and camaraderie has been
essential to keeping me going throughout my PhD and I hope the friends I have made
will last a lifetime. In particular I want to mention my long suffering office mates:
Ayman Boustati, Cameron Lack, Christopher Davis, Ellen Webborn, Joe Hilton and
Sami Al-Izzi, who have listened to my complaining and helped me stay on track and
together during my time at Warwick. I would also like to thank Robert Gowers for
his advice and input on my work over the years and Alvaro Cabrejas Egea for our
lunch strolls putting the world to rights.

I am so grateful to the support of my family, the Hills and the Cherrys. Whether
they had any idea what I was doing or not, I knew they always cared and wanted
me to succeed.

Finally, I want to thank Chloe Cherry. You have supported me no matter what.
You have built me up and kept me going when things felt like they were far more
than I could bare and your unwavering love has helped me get to the end of this
journey. Thank you.



Declaration

This thesis is submitted to the University of Warwick in support of my application
for the degree of Doctor of Philosophy. It has been composed by myself and has not
been submitted in any previous application for any degree. Parts of the material in
this thesis have been published as follows:

• Chapter 3 has been submitted to the Journal of Computational Biology and is
currently under review. All code used is accessible at https://github.com/
Rogerjwhill/Optimizing-circadian-drug-infusion..git

• The algorithm outlined in Chapter 3.3 is under review for a European patent.

• Chapter 4.2 is being prepared for publication with the inclusion of new experi-
mental data which will become available shortly.

Roger Hill
October 2019

https://github.com/Rogerjwhill/Optimizing-circadian-drug-infusion..git
https://github.com/Rogerjwhill/Optimizing-circadian-drug-infusion..git


Abstract

Gastrointestinal cancers are some of the most common and deadly cancers in the
world. The improvement of current treatments is of great importance to improve
patients survival and quality of life and decrease the burden of these cancers. Within
this thesis we will focus on two particular cancers: colorectal and pancreatic cancer,
and their treatment by three cytotoxics oxaliplatin, 5-fluorouracil and irinotecan.
The improvement of treatment will focus on the use of circadian rhythms. Circadian
rhythms are the innate approximately 24 hour rhythms present in almost all living
organisms. Treatments which take this innate rhythm into account is known as
chronotherapy and has already been shown to improve patient outcomes. However,
recent findings highlight the need of personalising drug timing to account for the
patient’s gender, chronotype and genetic background. We will firstly look at potential
improvements which can be made directly to current treatment protocols by using
mathematical models. A model of the drug solution dynamics from an infusion
pump to the patient blood will be developed and used to improve the accuracy of
chronomodulated drug delivery. Subsequently, semi-mechanistic models of individual
patient drug pharmacokinetics will be connected to the pump-to-patient model and
used as a method of patient stratification in order to better personalise treatments.
We will then use a multiscale approach- from in vitro to mouse studies- to build a
physiologically-based whole body model of oxaliplatin pharamcokinetics to look at
sexual dimorphism in the drug chronoefficacy and chronotoxicity. This model can
then be used to connect differences in drug dynamics to measurable biomarkers and
help inform future human trials. Overall, this thesis aims to develop mathematical
tools to personalize chronotherapy treatments and further the knowledge available
to biologists and clinicians working in this important area of cancer research.
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Chapter 1

Background

1.1 Introduction
Cancer is the largest broad class cause of death in the UK and puts a significant
pressure on society [19]. The search for improved treatment is always ongoing and
mathematics has been shown to help in this search. An increasingly important source
of improvement is the timing of treatments to the human body clock (circadian
clock). The benefits of such timing schemes have been shown in many drugs [1] but
the underlying reasons are still in need of investigation. The use of predictive and
explanatory mathematical models can help give new and important insights into
possible improvements and what can be done to help implement them in clinical
settings. This thesis will develop mathematical models to improve the treatment of
gastrointestinal cancers, by deepening the understanding of how circadian rhythms
influence drug pharmacokinetics and pharmacodynamics. This will be done by
drawing from biological studies of the drugs in question and using this information
as well as specific techniques to create realistic physiologically-based models. The
accurate fitting of these models will give parameters which have biological meaning
and can be used to inform new investigations into the causes of circadian differences.

1.2 Personalised Medicine
Currently most medicines are given empirically, meaning that it is assumed to work
equally for almost all relevant patients and prescribed as such [20]. Personalised
medicine is defined as patient care which is guided by an individual’s characteristics,
such as genetic profile or sex. The aim is to be able to assess each patient so they get
the right drug at the right time for them [21]. There are in fact varying degrees of
personalisation. The first level of personalisation would be stratified medicine, this
is where the population of patients is split into subgroups by certain criteria and

1



CHAPTER 1. BACKGROUND 2

then each group will be treated in specific ways. Then there is the truly personalised
medicine or “individualised medicine”, which is the development of a treatment
programme that is designed for a single patient [22]. Each of these methods has been
shown to give considerable benefit to treatments [23].

Oncology has felt the biggest impact from ‘personalised medicine’ [24]. The
terms ‘personalised medicine’, ‘genomic medicine’, ‘precision medicine’ or ‘precision
oncology’ are all interchangeable and describe the process of using an individual’s
molecular information (genomics and proteomics) to inform diagnosis, prognosis,
treatment and prevention of cancers for patients. This is the definition that the
European Society for Medical Oncology (ESMO) Personalised Medicine Task Force
prefers to use [24], and the one which will be used within this thesis.

A particularly famous example of prophylactic personalised medicine, medicine
intended to prevent disease, within oncology is the genetic testing of patients for the
breast cancer (BRCA) genes with a strong family connection of breast cancer. The
detection of these genes is associated with a high (45%) chance of developing breast
cancer [25]. If a patient is found to have these genes there are then prophylactic mea-
sures that can be taken i.e. breast tissue removal or chemical oestrogen deprivation
[26]. A Cochrane review showed that mastectomy helped significantly reduce the
“worry” of cancer and effectively reduced incidence of death [27].

Another example of prophylactic personalised medicine is in the case of colorectal
cancer (CRC) caused by familial adenomatous polyposis coli (FAP). FAP is a
autosomal dominant disorder with complete penetrance, i.e. everyone with the
mutation will have the clinical symptoms. The presence of FAP leads to frequent
development of CRC by 40-50 year olds. Genetic screening for FAP allows for the
potential for prophylactic treatment which in this case is bowel resection. Bowel
resection as a prophylactic treatment has led to a 55% reduction of CRC incidence
in FAP patients and improved overall survival. However, bowel resection does not
guarantee complete prevention [28, 29]. Although this thesis does not focus on
prophylactic therapies the use of personalised medicine is interesting and shows how
these new ideas have been used already.

An example of treatment using personalised medicine is in CRC where if a
patient expresses wild-type KRAS (an on-off switch in cell signalling) then treatment
with Cetuximab would be able to improve quality of life and has been shown to
almost double overall and progression free survival, whereas patients with a mutated
KRAS did not benefit from Cetuximab treatment [30]. Predicting drug response via
gene mutation has potential health economic benefits as it can reduce prohibitive
treatment costs, however targeted therapies carry a cost of their own. To optimise
personalisation of treatments understanding of important biomarkers, as mentioned
above, and cost effective measurements of these biomarkers need to be found.The
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understanding of important biomarkers and cost effective measurements need to be
found in order to optimise personalisation.

Alongside personalised treatments which use these biomarkers chronotherapy
can also be used in personalisation (see section 1.5). Chronotherapy has shown
great potential to improve and enrich personalised medicine [3, 5, 31, 32]. The
understanding of precise mechanisms, including biomarkers and timings, and their
influence on treatments has a key role in improving the access and quality of
personalised medicine.

1.3 Gastrointestinal Cancers and their treat-
ments

Gastrointestinal cancers are any of the cancers that affect the digestive tract. These
include cancers of the oesophagus, gallbladder, liver, pancreas, stomach, small
intestine, bowel (large intestine or colon and rectum), and anus. The main focus of
this thesis is gastrointestinal cancers that are currently treated with oxaliplatin, an
anticancer drug. The cancers which are treated with oxaliplatin are colorectal cancer
and pancreatic cancer [33].

Colorectal cancer is the is 4th most common cancer in the UK, however, if the
cancer incidences are split between sexes then it is 3rd most common for both males
and females [34]. Colorectal cancer accounts for approximately 42,000 new cases each
year in the UK. 1 in 14 men and 1 in 19 women will be diagnosed with colorectal
cancer within their lifetime. In Europe there are approximately 500,000 new cases of
colorectal cancer estimated to have been diagnosed in 2018 [35] and approximately
1.4 million new cases were diagnosed worldwide in 2016 [36].

The mortality rates of colorectal cancer account for 10% of all cancer deaths
in the UK which equates to approximately 16,000 people every year. In Europe
215,000 people were reported to have died of colorectal cancer with the worldwide
mortality of almost 700,000 people every year. 57% of people with colorectal cancer
will survive over 10 years and 59% of people will survive over 5 years [37].

There are multiple treatment options for colorectal cancer relating to some
combination of up to three chemotherapy drugs and one folinic acid supplement.
These are 5-fluorouracil (F), irinotecan (IRIN), oxaliplatin (OX) and folinic acid
(FOL) (also know as leucovorin). These can be combined to make different regimes:
FOLFIRINOX all of the above drugs, FOLFOX folinic acid, 5-fluorouracil and
oxaliplatin, FOLFIRI folinic acid, 5-fluorouracil and irinotecan. More details on these
drugs can be found in section 1.3.1. The standard treatment would be to receive the
FOLFOX regime [38]. Interactions between irinotecan and oxaliplatin, and between
oxaliplatin and 5-fluorouracil have not been demonstrated [39, 40] and irinotecan and
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5-fluorouracil also showed no interaction if irinotecan is delivered first [41]. Folinic
acid is used to enhance the antitumour effect of 5-fluorouracil by increasing binding
of 5-fluorouracil to enzymes in the cells and prolonging 5-fluorouracil exposure [42].
Due to this interaction folinic acid is given before 5-fluorouracil.

As with most chemotherapy treatments each of the regimes come with toxicities
and side effects. A list of common toxicities are: Myelosuppression, diarrhoea (can
appear very quickly and has a treatment to reduce impact), nausea and vomiting,
mucositis, neurotoxicity, allergic reactions (specifically to oxaliplatin, in which case
oxaliplatin will be stopped), alopecia, fatigue, cholinergic syndrome (combination of
diarrhoea, sweating, salivation and bradycardia, can be controlled with treatment),
palmar-plantar erythema (PPE), coronary artery spasm (caused by 5-fluorouracil,
and stops treatment), acute dysaethesia (tingling or pain in extremities, caused by ox-
aliplatin sensitivity, extended infusion time to reduce effect), ovarian failure/infertility
and interstitial pulmonary disease (uncommon) [43].

For each drug there is also the problem of the toxicities becoming dose-limiting,
meaning that the treatment may have to be reduced or even stopped due to the
severity of the side effects. The main dose limiting toxicity for oxaliplatin is the
neurotoxicity, specifically peripheral neuropathy [44, 45]. Peripheral neuropathy is
the damage of nerves in the extremities of the body. It can vary from numbness and
tingling in hands or feet to severe pain, loss of balance and muscle weakness [46]. The
two main dose-limiting toxicities for irinotecan are diarrhoea and neutropenia [47].
Neutropenia is when a patient has low levels of the white blood cells, neutrophils [48].
In the early stages of irinotecan use, diarrhoea was the major dose-limiting toxicity
however, better ways to deal with this side-effect have made it more manageable
and reduced the magnitude of this toxicity [47]. The dose limiting toxicities for
5-fluorouracil are myelosuppression, diarrhoea, plantar-palmar and mucositis [49, 50].

Pancreatic cancer is the 11th most common cancer in the UK with almost 10,000
new cases each year. Incidence rates have increased by 15% since 1990s, by 11%
in the last decade and are predicted to rise by 6% by 2035 [51, 52]. There are
approximately 132,600 new cases of pancreatic cancer and 128,000 deaths caused by
pancreatic in 2018 in Europe [35].

Pancreatic cancer, although only being the 11th most common cancer, is the 5th

most common cause of cancer death in the UK. There is approximately 9,000 people
that die from pancreatic cancer each year. The rate of mortality has been shown
to have increased over the past decade, and is predicted to increase by a further
3% by 2035 [51, 52]. Despite many clinical trials testing available pharmacotherapy
strategies, the survival rates for pancreatic cancer are very low with only 3-6%
surviving past five years and only 1% surviving for ten years. This 1% survival rate
past ten years has not changed since the 1970s [51, 53].
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1.3.1 Treatments
To improve the care and life of patients their treatments need to be understood.
When gastrointestinal cancers are treated with chemotherapy drugs they are usually
treated with one or a combination of the following, oxaliplatin, irinotecan and 5-
fluorouracil. Understanding the biological background of these chemotherapy agents
is key to making models which can give insight into the pathways and processes
which are key to efficacy and toxicity.

Oxaliplatin

Oxaliplatin predecessor cisplatin was brought onto the market in the late 1970’s,
with a second platinum compound following in the late 1980’s [54]. Oxaliplatin was
originally proposed in the late 1970’s but did not receive FDA approval until 2002
when four large phase III clinical trials demonstrated the potential of the combina-
tion treatment of 5-fluorouracil, leucovorin and oxaliplatin (FOLFOX). Oxaliplatin
was later combined with 5-fluorouracil, leucovorin, irinotecan and oxaliplatin into
FOLFIRINOX [55]. This treatment regime was then also approved for metastatic
pancreatic cancer in 2015.

There is limited experimental knowledge publicly available about the pharmacoki-
netics (PK) of oxaliplatin. Oxaliplatin is considered to pass into the cells mainly via
passive uptake, although copper transporters have been shown to also contribute to
the uptake of platinum complexes [56, 57]. Copper transporters have also exhibited
efflux mediation of oxaliplatin, in particular the copper transporter ATP7A (adeno-
sine triphosphate copper transporting alpha) [58, 59]. Copper transporters have
also been indicated as the sources of oxaliplatin resistance [59, 57]. Once delivered
into the body oxaliplatin undergoes spontaneous non-enzymatic conversions, and
forms several reactive species. These reactive species can form complexes with
amino acids, proteins, DNA and other macromolecules in the plasma and tissues of
treated subjects [60]. Due to the fact that oxaliplatin converts into a larger number
of platinum-containing products, platinum is the main feature assessed in the PK
and PD of oxaliplatin. The binding of platinum to plasma proteins is considered
moderate, between 79% and 87% of total platinum is found bound to proteins. It
also exhibits no saturation over a large range of doses [61].

Oxaliplatin is detoxified by glutathione (GSH), which limits the therapeutic effect
[62], if tumour cells over express GSH this could also lead to oxaliplatin resistance
[63].

Oxaliplatin elimination in humans is predominantly through renal clearance with
approximately 55% being cleared via urine and 2.1% through faecal clearance, 5 days
post injection [44].
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Oxaliplatin is associated with multiple mechanisms of action all relating to DNA
damage. These fall into four main categories: DNA aducts, arrest of DNA synthesis,
inhibition of RNA synthesis and triggering immunologic reactions [64]. There is also
evidence that oxaliplatin kills cells by ribosomal biogenesis stress [65]. Ribosomal
biogenesis is the process of creating ribosomes. Ribosomes are structures which create
proteins required for many cell functions including proliferation [66]. Ribosomal
biogenesis stress causes cell death by limiting the protein abundance [67], which is
the energy source used to proliferate.

Oxaliplatin alone often shows low activity in many tumours, hence the use in
combination therapy. The most common combination is when used alongside 5-
fluorouracil. Experimental results suggest that oxaliplatin down regulates or inhibits
the enzyme that degrades 5-fluorouracil [64] prolonging the effect of the drug.

These details of the PK and PD of oxaliplatin are required to build models which
have a strong grounding in physiological reality.

Irinotecan

Irinotecan was developed in the early 1990’s and gained FDA approval in 1996 for
use on colorectal cancer. More recently irinotecan has been approved for use in
pancreatic cancer as part of the FOLFIRINOX regime [55].

Irinotecan (CPT11) is a prodrug which means that it is considered to be relatively
inactive compared to it’s metabolite SN38.

The cellular absorption of CPT11 and SN38 is assumed to be either passive or by
fluid phase endocytosis [68]. Irinotecan and its main metabolites SN38 and SN38G
are transported out of the cells via ATP-Binding Cassette (ABC) transporters, as
this has been shown to be the case in both humans and mice [69, 70].

Irinotecan is metabolised into SN38 by carboxylesterases [71]. The metabolite
SN38 is approximately 100-1000 fold more toxic than the parent drug [72]. This
activation occurs predominantly in the liver, small intestine and kidney for both
humans and mice [72, 73]. SN38 is metabolised into a non-toxic SN38G via UDP
glucuronosyltransferases (UGT) [74]. This detoxification step mainly takes place in
the liver in humans [72].

The elimination of CPT11 and its metabolites is predominately faecal excretion
in humans (≈ 68% of irinotecan), with renal and biliary elimination accounting for
10-22% and 3-22% of irinotecan respectively [72].

Irinotecan’s mechanism of action involves topoisomerase I (TOP1) inhibition.
TOP1 is a nuclear enzyme that relaxes supercoiled DNA and is important for
replication and DNA decondensation [75]. TOP1 binds to supercoiled DNA and
cuts one strand, allowing it to rotate and relax. TOP1 then dissociates and allows
the strand to connect again. Irinotecan binds to these DNA/TOP1 complexes and
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extends their lifetime by preventing the necessary unbinding of the complex. If the
DNA/TOP1/irinotecan complex comes into contact with replication or transcription
mechanisms, this can trigger cell apoptosis [76, 77].

This biological information is used to build realistic physiological models that
can inform clinicians on processes that can be exploited to improve treatments.

5-Fluorouracil

5-Fluorouracil is part of a family of drugs known as Fluoropyrimidines which were
developed in the 1950s. Fluoropyrimdines are a class of antimetabolites widely used
for solid tumour treatments in cancers such as colorectal, breast and aerodigestive
tract cancers [78].

5-Fluorouracill can be given intravenously in its main form or via either of
the two pro-drugs capecitabine or tegafur. 5-Fluorouracil can be metabolised by
different routes, with only some of them leading to activation of the drug. The
main mechanism of 5-fluorouracil activation is the conversion to fluorodeoxyuridine
monophosphate (FdUMP) [78]. The main transporters of 5-fluorouracil which have
been reported are SLC22A7, ABCG2, ABCC3, ABCC4 and ABCC5 [79–82].

5-Fluorouracil is an analogue of uracil, which is one of the four nucleobases of
RNA, and uses the same transport mechanisms to rapidly enter the cell [83]. Once
converted into its active metabolites, i.e. FdUMP, it disrupts RNA synthesis and
inhibition of thymidylate synthase which is required for DNA synthesis [83, 84].

Elimination of 5-Fluorouracil is through two main pathways, catabolism by the
liver and urinary excretion [85]. Out of these two pathways liver metabolism is the
primary route of elimination with urinary excretion only accounting for approximately
5% in normal individuals [86].

These key details can be used to help build more meaningful models to inform
clinicians and improve patient care.

1.4 Circadian Rhythms

1.4.1 Definition and terminology
Circadian rhythms are the approximately 24-hour rhythms that are present within
most organisms and are believed to be phylogenetically ancient [87]. The cellular
mechanisms of the clock were first discovered in by Jeffrey C. Hall, Michael Rosbash
and Michael W. Young in 1989 [88], who in 2017 were awarded the Nobel Prize for this
discovery. Circadian rhythms are self-sustaining rhythms that are believed to have
evolved to anticipate daily events and energy needs giving an advantage in regards to
Darwinian fitness [89]. Although circadian organisation is present in most organisms,
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Fig. 1.1 Plot of circadian characteristics: level, amplitude, period and phase.

it is not necessarily set to the same time or phase. For instance diurnally active
species and nocturnally active species will have a significantly different circadian
clock as they have a roughly 12h shift in their rest-activity cycles [90]. As well
as different species having different rhythms there are natural rhythm differences
between sex and age [91]. Circadian rhythms are fully defined by their characteristics
of: mesor, amplitude, period and acrophase (Fig. 1.1).

Mesor is the mean value or baseline around which the rhythmic variation occurs.

Amplitude is the magnitude of the rhythmic variation.

Period is the duration of a full cycle, usually taken to be approximately twenty-four
hours although some rhythms have components with short periods.

Acrophase is the time for when the peak of a rhythm occurs.

In mammals many of the biological functions are organised by the circadian
timing system, such as circadian rhythms, which are stimulated by external cues (Fig.
1.2). There is a central pacemaker for the circadian timing system which is located
in the suprachiasmatic nuclei (SCN). The SCN then exert control over the peripheral
organs through rhythmic regulations of different biological and physiological factors
such as temperature, hormonal levels and the autonomous nervous system [92]. As
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well as the master clock in the SCN, each nucleated cell is endowed with a molecular
circadian clock that generates autonomous intracellular circadian variations. The
peripheral clocks are then entrained by SCN-driven and tissue-level factors [1]. In
fact, it has been shown that in mice and baboons at least the core clock genes exhibit
similar phases throughout various tissues [93, 94].

Fig. 1.2 The CTS. The CTS consists of a central pacemaker located in the SCN
that displays circadian rhythms, but is also entrained by external cues. The
SCN then generates rhythmic physiologic signals to control the molecular clocks
present in nucleated cells. These signals induce oscillations in the expression of
a large number of genes involved in key intracellular activities [1].

These rhythms are susceptible to disruption and one of the significant causes of
this disruption is a modern industrialised lifestyle [95]. The development of artificial
light has caused a fundamental change in the relationship between humans with their
surroundings [95]. This modified relationship manifests itself in a multitude of ways
but the most obvious are light-at-night and shift work. The impacts of these changes
are not yet fully understood but have been shown to have a detrimental effect on
health [96].

In particular, circadian rhythms are very important in cancer, since they influence
many areas of the disease, and taking advantage of them in treatments can increase
their efficacy and reduce toxicities.

1.4.2 The influence of circadian rhythms on cancer
Circadian rhythms influence many different areas of cancer, from development to
treatment.

There is now a significant amount of studies that have linked circadian disruption
with increased cancer risk [97–105], which has led to the International Agency for
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Research on Cancer to classify night work and shift work with circadian disruption
as “Probably Carcinogenic” [106]. The exact molecular events behind these increased
risks are likely to be a multitude of interlinked factors from, melatonin suppression
to faulty DNA repair [106].

Alongside the original development of cancers, it has also been shown that
circadian disruption is linked to progression of tumours [107–111]. Indeed, circadian
disruption achieved through either chronic jet lag or SCN ablation increased tumour
growth rate in tumour engrafted mice. Next, the disruption of rest-activity rhythms
in cancer patients was associated with a decreased quality of life and worse survival
rates [1].

Circadian rhythms can have a large impact on the treatment of cancers. This is
predominantly due to the chronopharmacology of different anti-cancer agents. There
are approximately 50 different anti-cancer agents that display circadian variations in
their pharmacology, related toxicities and/or anti-tumour efficacy [112, 113]. These
circadian variations in pharmacology have numerous causes, absorption, distribution,
metabolism or excretion, and it is most probably a combination of these [113,
32]. 24-hour rhythms in drug toxicity and efficacy, also called chronotoxicity and
chronoefficacy, may arise from controls of the CTS at various levels of DNA damage
sensing, DNA repair, cell cycle and cell death pathways [1, 114, 115].

The use of chronotherapy has already shown that the same drugs can produce
better outcomes with proper timing. Building a deeper understanding of how this is
possible has the potential to help clinicians develop better treatment regimes and
schedules.

1.5 Chronotherapy
Chronotherapy is the term used for changing and adapting treatments relative to
the biological rhythms of a patient over the 24-h span [1]. It can involve both
pharmacological or non-pharmacological treatments, such as surgery [116], physical
agents [117] and psychotherapy [118]. The goal is to optimise treatment efficacy,
while minimising toxicity or adverse effects.

The potential benefit of chronotherapy has been demonstrated for various patholo-
gies and for over 400 medications, including nearly 50 anticancer agents [112, 113].
Chronotherapy in terms of chemotherapy has been suggested as early as the late
1970’s [119–121]. The use of circadian rhythms and chronotherapy, although being
originally proposed nearly 50 years ago, and despite recent findings that circadian
timing can modify the tolerability of anticancer agents by 2-10 fold [112], is still
in its infancy. This is starting to change and in June 2016, there were 348 clinical
trials worldwide involving chronotherapy or circadian biology according to the US
National Institute of Health which is approximately 0.16% of existing trials and only
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3.4% of these trials apply to cancer [32]. As of December 2018 the number of clinical
trials related to chronotherapy or circadian biology has risen to approximately 600
[122]. This may be explained by the award of the 2017 Nobel prize of physiology
or medicine awarded to Jeffrey C. Hall, Michael Rosbash and Michael W. Young
for their discoveries of molecular mechanisms controlling the circadian rhythm. Fur-
thermore, the benefits of chronotherapy for diseases such as hypertension, arthritis,
asthma and peptic ulcers are significant, which has caused a sense of urgency in
health professionals and regulatory services in implementing chronotherapy in clinical
studies and evaluating trial results [32].

The evidence for chronotherapy for the particular drugs of focus in this thesis
have been building for a number of years. The first experiments to show that there is
a circadian variation in the pharmacology of 5-fluorouracil were done in the early 80’s.
These first experiments showed that the dose at which 50% of test animals die (Lethal
Dose 50, or LD50) increased by approximately 70% for different injection times during
the light dark cycle of mice, i.e. at certain times of the day the toxic effects are
lower [123]. It was then shown that in addition to the toxicity, the efficacy is also
affected by circadian timing. A study by Peters et al showed that the therapeutic
efficacy of 5-fluorouracil against murine colon cancer was higher when administered
at 0830 compared to 1830 [124]. Multiple studies then demonstrated the chrono-
pharmacokinetics in human cancer patients receiving long term continuous infusions.
This means that the level of 5-fluorouracil detected in the blood plasma fluctuated
with a 24h rhythm even though the dose being delivered was at a continuous rate
[125–127]. A phase I-II trial of chronomodulated delivery schedules of 5-fluorouracil
alone and in combination with oxaliplatin have shown to have increased efficacy
against metastatic colorectal cancer [128, 129].

Oxaliplatin, to my knowledge, is the only well-documented case in which a drug
after failing a phase I clinical trial was later shown to be clinically effective with the
integration of chronopharmacology [130]. Initial mouse experiments showed circadian
differences in toxicity (Fig. 1.3) and tissue uptake in the late 1980’s [2] which led to
clinical trials showing the potential benefits of circadian timed delivery of oxaliplatin
[131, 128, 132, 133]. With the discovery of more and more anti-cancer drugs being
influenced by circadian timing, investigations into more recently developed drugs
such as irinotecan were undertaken.

The first study to show irinotecan had circadian tolerability in mice was under-
taken by Filipski et al in 2004 [134]. The molecular interaction of irinotecan was
then investigated and modelled to understand the circadian influence at the cellular
level [74]. The intersubject variability of circadian timing was investigated relative
to irinotecan, showing that for three different strains of the C57BL/6 mouse (both
sexes) there were three different chronotoxicity classes with distinct chrono-toxicity
patterns [3] (Fig. 1.4). Then investigations have been done to identify a determinant
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Fig. 1.3 Survival curves of male B6D2F1 mice following i.v. administration of
17mg/kg of oxaliplatin at 6 different times of injection. Survival rate differed
as a function of injection time with maximum difference in survival rate of 50%.
Original data were collected over 40 days. Data shown here were truncated as
survival percentage stays constant from day 9 until the end of the experiment.
Original data can be seen in Boughattas et al 1989 [2].
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Fig. 1.4 Body weight loss (BWL) as a function of irinotecan dose timing in male
or female mice from three mouse strains. Equally toxic doses of irinotecan were
delivered daily for 4 days to C57BL/6 or B6D2F1 (50 mg/kg/d) or B6CBAF1
(80 mg/kg/d) at either 3, 7, 11, 15, 19 or 23 ZT. Top row, histograms of
mean body weight change ±SEM against dosing time for B6D2F1 (A) and
B6CBAF1 (B). Bottom row, cosinor analysis of 3 chronotoxicity classes based on
reconstructed circadian patterns with 24-hour ± 12-hour rhythmic components:
class 1, female B6D2F1 and C57BL/6 (C); class 2, male B6D2F1 and C57BL/6
(D); class 3, female and male B6CBAF1 (E). Data taken from Xiao Mei, li et
al 2013 [3].

that could predict optimal circadian timing in cell cultures. This revealed that least
irinotecan induced cell apoptosis occurred at a BMAL1 nadir (lowest levels in the 24h
cycle) [135]. The discoveries made for circadian influence on all three of these drugs
have led to the recent European study which shows the potential clinical benefit of
chronomodulated infusion of a combined treatment [6].

Although chronotherapy has been shown to make large improvements in treatment
efficacy, using a standardised approach for all patients is not optimal, specifically sex
related differences in optimal timing can negate improvements made by circadian
timing if every patient is treated the same.

For instance a meta-analysis by Giacchetti et al, has been shown that current
chronotherapy schedules have different success rates for males and females. This work
investigated three Phase III trials which compared the chronomodulated release or
conventional release of FOLFOX which showed that the chronomodulated treatment
improved overall survival for males from 17.5 months to 20.8 months, but for females
actually decreased overall survival form 18.4 months to 16.6 months [136].
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Fig. 1.5 Effect of patient’s sex on chronotolerance for 5-FU and oxaliplatin
in patients with metastatic colorectal cancer. (A) Overall incidence of severe
toxicities of any kind over two courses of treatment; (B) Possible influence on
circadian pattern of tolerability over two courses of treatment. The x-axis label
is given in number of hours before (−) or after (+) the reference modality “0h”.
For the reference modality “0h”, the peak times of delivery occurred at 4 pm
for oxaliplatin and at 4 am for 5-FU. for other peak times the whole schedule
was shifted by 3, 6, 9, or 12 h (hours) earlier or later. Taken from Levi et al
2008 [4].

The sex specific outcomes of chronomodulated treatments have also been observed
in the combination of 5-fluorouracil, leucovorin and carboplatin (platinum based
chemotherapy drug). Female patients experienced significantly higher toxicities
than males under the same conditions [137]. This has been shown for 5-fuorouracil,
leucovorin and oxaliplatin as well, where females were almost twice as likely to
experience severe toxicities and had an optimal timing of delivery of potentially 6
hours later [4](Fig. 1.5).

Sex differences in tolerance of irinotecan have also been observed recently in a
international time-finding study. This study demonstrated that optimal timing of
irinotecan dosage, with respect to tolerability, occurs 4-7 hours earlier in males than
in females [5, 138] (Fig 1.6). This phenomenon shows the need for a more detailed
understanding of what influences optimal times and more personalisation when it
comes to choosing delivery schedules.

Chronotherapy has been shown to improve efficacy and reduce toxicity. The
example of oxaliplatin really emphasises the importance that circadian influences can
have on drug efficacy and the significance circadian rhythms can have in preclinical
and clinical trials [130]. Producing accurate physiological based models has the
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Fig. 1.6 Dosing time dependent incidence of severe neutropenia according
to sex. Rates (±SE) of patients with Grade 3-4 neutropenia as a function
of peak delivery timing of chronomodulated irinotecan in combination with
chronomodulated 5-fluorouracil, Leucovorin and oxaliplatin, and corresponding
best fit of 24-h cosine curve (p<0.05) (A) males (B) for females. Grey refers to
night time and light refers to day time. [5]

potential to help to understand the processes behind the benefits of chronotherapies
and can be used to further increase positive treatment outcomes.
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1.6 Motivation
Gastrointestinal cancers are a significant burden on economy and health care systems
and have a devastating effect on the lives of patients and their loved ones. Research
shows that circadian rhythms have an impact on both the development and treatment
of gastrointestinal cancers. Oxaliplatin and the full FOLFIRINOX regimen have
been shown to have different toxicity levels for different times of administration,
optimal timing being dependent on the patient’s sex and geneteic background. Thus,
modern medicine is now moving towards a more personalised treatment approach.

There are known sex specific differences in the toxicity of oxaliplatin, 5-fluorouracil
and irinotecan. The development of mathematical models can help to direct and
inform biological research and help create smarter ways to personalise treatments for
patients.

1.6.1 Aims
This thesis aims firstly to improve currently used delivery profiles of chronomodulated
drug infusion and provide a novel method of patient stratification based on semi-
physiological pharmacokinetic parameters.

Secondly this thesis aims to use a quantitative systems pharmacology approach to
build a fuller picture of the pharmacokinetics of oxaliplatin. Focusing on inter-species
scaling of an in vitro model, and development of a whole body model that could be
used to gain insight into the sex specific differences of oxaliplatin pharmacokinetics
and pharmacodynamics.

1.6.2 Overview
With this in mind, chapter 3 of this thesis outlines an improvement to delivery profiles
for chronomodulated drug infusion, and a method of patient stratification based on
semi-physiological pharmacokinetics parameters. Chapter 4 then develops a novel
mathematical model which is shown to be able to scale between animal and human
pharmacokinetics of oxaliplatin. Model scaling is then used in a multi-scale modelling
fashion to build a whole body pharmacokinetics mouse model. This model has been
designed to explore the sex specific differences of oxaliplatin pharmacokinetics and
pharmacodynamics and give more information on what processes cause the sexual
dimorphisms which are observed.



Chapter 2

Mathematical methods

2.1 Pharmacokinetics-Pharmacodynamics
modelling

Pharmacokinetics, sometimes known as what the body does to a drug, refers to
the transport and transformation of the drug throughout the body. This includes
absorption, bioavailability, distribution, metabolism, and excretion (ADME) [139].

Pharmacodynamics, sometimes known as what the drug does to the body, de-
scribes the effects of the drug on the organism, including DNA binding, DNA damage
and drug-induced cell death [139].

2.1.1 Non-physiological VS physiologically-based
modelling

Pharmacokinetic-Pharmacodynamic (PK-PD) modelling began with simple dose
response curves, but over the last 60 years has developed into a range of sophisti-
cated and complex models which give insight into underlying mechanisms of drug
interactions [140].

The simplest PK models able to represent concentration-time profiles are based
on compartments which do not normally hold a physiological interpretation. They
are used for data description and interpolation, however they are very poor at
extrapolation since the parameters have no strict biological meaning [141]. The
size and complexity of the model usually increases with how physiologically-based
the model is, and how much biological meaning can be attributed to the model
structure and parameters [142]. The ultimate aim in achieving accuracy is to apply
physiologically based PK (PBPK) models or whole body PK (WBPK) models.
Originally, PBPK modelling was mainly focused on environmental toxicology, with
any use within pharmaceuticals being based in academia, however it has in the

17
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last 20 years been increasingly used in drug development and regulatory processes
[143, 144]. These types of models use pragmatic compartmental structures to
represent key anatomical features of the subject body, i.e. patient or animal. The
parameters can then take on direct biological meaning and be used to inform users
on previously unattainable information [142]. The downside to greater complexity is
overparameterisation. This is often balanced by combining parameters together that
have the same overall effect. For instance, if a drug can be metabolised in the liver
as well as cleared from the liver via the bile duct, this can be “lumped” together
as liver clearance. Another method to reduce overparameterisation is to consider
semi-physiological models (such as [145]), this is often required for clinical models as
human data may be more sparse than animal data.

Pharmacodynamics has moved from empirical to more qualitative descriptions
due to advances in analytical methods, computer hardware and software, and to the
increased interest from regulatory and academic organisations in precision medicine
[146]. Early PK-PD models, based on empirical methodologies, describe the complex
relationship between blood concentration and therapeutic effect by linking com-
partmental PK models with “effect models”. These effect models define how the
concentration in the compartment of interest translates to therapeutic effect. The
aim of these models is to give a consistent mathematical structure to the effect of
the drug. One of the most well used formulas is the Hill function, and can be used
to describe specific binding patterns with each parameter having a physical meaning
[147]:

E = Cn

Cn + ECn
50

(2.1)

where the drug effect E is dependent on the drug concentration in the studied
compartment C and the coefficient of half maximal effect EC50, with n being the
Hill coefficient which determines the steepness of the response, which can be seen in
Fig. 2.1.

2.1.2 Main laws for the design of physiologically-based
models

The structure of many PK-PD model parameters comes from three main principles:
the law of mass action, Michaelis-Menten kinetics and Fick’s first law.

Law of mass action

The law of mass action states that the rate of spontaneous chemical reactions is
directly proportional to the product of the concentrations of the reactants. Consider
the following reaction:
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Fig. 2.1 A shows how the steepness of the Hill function changes with respect to
the Hill coefficient n (EC50 = 10). B shows the influence of the half maximal
effect coefficient EC50 on the Hill function curve (n = 2).
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αA + βB γABK

from the law of mass action, the rate of the forward reaction is then:

K[A]α[B]β. (2.2)

This is often used in models with drug A binding to protein B. If the protein has
much higher concentration than the drug, i.e. if the protein is in large excess, then
the protein can be considered as constant and the reaction can be simplified to:

K∗[A]α, (2.3)

where K∗ incorporates the constant protein concentration. This manipulation is well
used in the field of pharmacokinetic modelling to simplify models.

Michaelis-Menten kinetics

Michaelis-Menten kinetics typically represent the rate of enzyme reactions. This is
often used in PK models to represent the metabolism of a drug catalysed by liver
enzymes. Consider the following reactions:

E + S ES E + P
K1

K−1

K2

where the substrate S is converted into the product P though the activity of the
enzyme E. This two-step process involves the reversible binding of the enzyme E to
the substrate S to form ES complexes, followed by the transformation of the bound
substrate into the product P and the concomitant release of unaltered enzyme E.
The rate of production of product P is then:

V = K2[ES] (2.4)

The rate of formation of ES would then be:

formation ES = K1[E][S] (2.5)

and the breakdown of ES would be:

breakdown ES = (K−1 + K2)[ES] (2.6)
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when the system is in steady state these would be equal and can be rearranged to:

[ES] = [E][S]/((K−1 + K2)
K1

) (2.7)

Under the assumption that the total amount of enzyme (ET ) is unchanged (ET =
E + ES) (2.6) becomes

[ES] = ([ET ] − [ES])[S]/((K−1 + K2)
K1

). (2.8)

Solving for [ES] and simplifying gives:

[ES] = [ET ][S]
(K−1+K2)

K1
+ [S]

(2.9)

if we multiply both sides of the equation by K2 we get the rate of production of P
(V ) as:

V = K2[ES] = K2[ET ][S]
(K−1+K2)

K1
+ [S]

. (2.10)

Since the concentration of the enzyme is assumed to be constant, notationally
this is classically written as Vmax = K2[ET ] where Vmax is the maximum possible
rate of production of product, and Km = (K−1+K2)

K1
which is the concentration of

substrate at which the rate is half its maximum, and the equation becomes:

v = Vmax[S]
Km + [S] . (2.11)

Fick’s first law for diffusion

In a spatial context, Fick’s first law relates the drug diffusive flux through a point
(1D) or a surface (2D) to the drug concentration as:

J = −D
∂C

∂x
(2.12)

where J is the diffusive flux, D is the drug diffusion coefficient, C is the drug
concentration and x is the spatial position. When this is restated for diffusion across
a membrane barrier of thickness dx, concentration gradients ∂C is approximated by
the concentration difference across the membrane i.e. concentration in compartment
1 minus concentration in compartment 2, (C1 − C2). D/dx is then the first-order
transfer constant kd.

J = −D/dx(C1 − C2) = kd(C1 − C2) (2.13)
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In a single compartmental model, C2 is not considered and therefore the flux out of
the comapartment can be writen as:

J = −D/dx(C1) = kd(C1) (2.14)

This law is used in the vast majority of PK models to represent drug transport
between compartments and is equivalent to discarding the concentration gradients
and only retaining the linear transfer property between compartments [148].. For
example, the transfer of a drug between three compartments (A, B and C) represented
as:
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A B

C

k1

k2k3

can be written as:

VA
dCA

dt
= k3VCCC − k1VACA (2.15)

VB
dCB

dt
= k1VACA − k2VBCB (2.16)

VC
dCC

dt
= k2VBCB − k3VCCC (2.17)

(2.18)

which simplifies to:

dCA

dt
= k3

VC

VA
CC − k1CA (2.19)

dCB

dt
= k1

VA

VB
CA − k2CB (2.20)

dCC

dt
= k2

VB

VC
CB − k3CC (2.21)

(2.22)

In this form the units of ki would be rate (1/t). It is also common for equations to
be written in a different form.

VA
dCA

dt
= K3CC − K1CA (2.23)

VB
dCB

dt
= K1CA − K2CB (2.24)

VC
dCC

dt
= K2CB − K3CC (2.25)

(2.26)

This formulation incorporates the volumes directly into the parameters since Ki =
kiVj and has units volume per time (v/t). These three techniques make up the main
toolbox of PK models and will be used in each of the models presented in this thesis.
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2.2 Multi-scale modelling approach
Most real-world problems involve a range of different spatial or time scales, as well
as different interacting processes. Taking these different scales and processes into
account is known as multi-scale modelling [149, 150]. Multi-scale modelling can take
many forms, in many different areas of research, from polymer composites [151] to
crowd dynamics [152]. Biological experiments can be conducted at many different
scales, looking at single proteins up to whole organisms which means data may exist
for these different scales [153]. In the field of biology multi-scale modelling can be
considered in two forms, the first look at intracellular, inter-cellular then whole body
scales for the same species (Fig. 2.2A), the second is to use multiple species to
develop models across in vitro, in vivo animal specimens and in vivo human (Fig.
2.2B). For both forms of multi-scale modelling the knowledge base is built upon at
each step and translated to each different level of the multi-scale pipeline [154].

The main benefits of multi-scale modelling come from error reduction and in-
creased understanding. Since the separation of these sets of processes means that
the number of parameters fitted per data set is reduced, this leads to an overall
increase in accuracy [155]. Also mathematical multi-scale models can give a complete
overview of experiments, while still allowing the ability to focus in on particular key
functionalities or structures [156]. These are necessary requirements in order to build
informative models which can be used by clinicians to improve quality of treatment.

2.3 Parameter estimation and model identifi-
ability

If we define a general dynamical system as:

ẋ(t) = f(x(t), p) +
m∑

i=1
gi(x(t), p)ui(t) (2.27)

y(t, p) = h(u(t), x(t), p) (2.28)

where x is the n-dimensional state variable i.e. concentration, u is the m-dimensional
input vector of smooth functions e.g. drug delivery, y is the r-dimensional output
vector i.e. concentration sample sites and f , g and h are assumed to be polynomial
or rational functions of their arguments and p is a v- dimensional vector of unknown
parameters, then this model is said to be identifiable if there exists a unique vector p

of parameters [157]. In a mathematical description two parameter vectors are said
to be indistinguishable, written as p ∼ p̂, if they give rise to identical outputs i.e:

y(t, p) = y(t, p̂) for all t ≥ 0 (2.29)
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A

B

Fig. 2.2 Multi-scale modelling pipelines. A shows the advancement from in
vitro intracellular to in vitro intercellular then in vivo, all within in the same
species. B shows the advancement from in vitro to in vivo animal specimens
and finally to in vivo humans.
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If a parameter pi is said to be locally identifiable then there exists a neighbourhood,
N , of p such that:

p̂ ∈ N, p ∼ p̂ implies that pi = p̂i (2.30)

If the neighbourhood N encompasses the whole search space then the model is said
to be globally identifiable, otherwise it is said to be nonuniquely or locally identifiable
[158].

Identifiability is often split into two forms, structural and practical. Structural
identifiability describes whether it is theoretically possible to determine the true
value of a parameter from observations of the model output. In simple terms if a
model is structurally identifiable then given the “ideal” data set the parameters
would be uniquely identifiable. Practical identifiability relates to whether given the
“real” data are the model parameters uniquely identifiable. Practical identifiability
takes into account the limitations in quality and frequency of the data points to
determine whether model parameters can be uniquely expressed [159].

2.3.1 Structural identifiability
Structural identifiability is an important part of model design and a necessary
requirement for models to be informative [157]. There are a number of software
packages that have been designed to analyse the structural identifiability of models.
Three examples that have been designed to determine global identifiability are DAISY
[160], GenSSI [161] and COMBOS [162]. DAISY and COMBOS use a combination of
algerbraic transformations and computing Groëbner basis of model atirbutes. GenSSI
is based on the generating series approach coupled with the use of identifiability
tableaus [161] with the idea being to generate a non-linear system of equations
on the parameters. If this system has a unique solution the the parameters are
globally identifiable. All three methods will determine if a model is structurally
globally identifiable, structurally locally identifiable and structurally non-identifiable.
DAISY also gives the added benefit of saying whether initial conditions are required
for identifiability. The main limitation of DAISY is that it can not deal with too
many non-linearities and is restricted in the functional form of these non-linearities
[160, 161]. Taking into account that the models used within this thesis do not have
large amounts of non-linearities and the date the software was created the more well
established software of DAISY was chosen to preform structural analysis.

2.3.2 DAISY
Differential Algebra for Identifiability of SYstems (DAISY) is a software tool created
to perform global identifiability analysis on both linear and nonlinear dynamical
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models represented by differential polynomials. It uses a bespoke algorithm to
show whether model parameters are theoretically uniquely identifiable given certain
input-output data. For the general dynamical system:

ẋ(t) = f(x(t), p) +
m∑

i=1
gi(x(t), p)ui(t) (2.31)

y(t) = h(u(t), x(t), p) (2.32)

where x is the n-dimensional state variable, i.e. concentration, u is the m-dimensional
input vector of smooth functions e.g. drug delivery, y is the r-dimensional output
vector, i.e. concentration sample sites and f , g and h are assumed to be polynomial
or rational functions of their arguments and p is a v- dimensional vector of unknown
parameters. Initial conditions are also included in the analysis and can be used to
represent impulsive inputs. The algorithm’s steps are as follows:

0. If any of the polynomials are rational they are reduced to the same denominator.

1. A binary matrix is created with each row representing an equation and each
column representing a variable (inputs, outputs, states and their derivatives).
The matrix entries for row one would be 1 if the corresponding column variable
is present in equation one and zero otherwise.

2. The variables are ranked with respect to their derivatives i.e:

u1 < u2 < ... < y1 < y2 < ... < u̇1 < ü1 < ... < u̇2 < ü2 (2.33)

< ... < ẏ1 < ÿ1 < ... < ẏ2 < ÿ2 < ... < x1 < x2 (2.34)

< ... < ẋ1 < ẋ2 < ... (2.35)

Using this ranking the polynomials are then ordered by increasing size.

3. A comparison is made between the polynomial and the previous ones, if the
rank is greater than or equal to the previous polynomials, then it is reduced
with respect to the preceding ones via the pseudodivision algorithm (which
can be seen in[160]).

4. Steps 1-3 are repeated until an auto-reduced set of minimum rank is reached
i.e. no further reductions are possible. This is called the characteristic set.

5. If in the characteristic set a state component appears without its derivative
then it is algebraically observable.

6. Extract the polynomials only containing the input and output functions i.e.
without the x variable. These polynomials constitute the input-output relation
of the dynamical system. Their coefficients are polynomial functions in p.
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7. The coefficients of the polynomials and their derivatives are extracted and,
along with any parameter equality constraints, provide an exhaustive summary
of the original dynamic model.

8. A system of algebraic nonlinear equations in the unknown vector p is con-
structed, y evaluating each unknown p in the exhaustive summary at a randomly
chosen numerical values.

9. The algebraic nonlinear equations are then solved symbolically using built
in REDUCE, which is software designed for doing scalar, vector and matrix
algebra, modules which then provides the identifiability results.

10. If initial conditions are known, then they are the corresponding polynomials
of the characteristic set are evaluated at time t = 0. These known algebraic
polynomial functions of p are then added to step 7 and continue through steps
8 and 9.

Full details of this algorithm can be seen in the Bellu et al paper [160]. The algorithm
runs very fast for most models, however if there is more than one nonlinearity the
algorithm may be unable to complete due to lack of memory.

The results obtained by running DAISY gives information on the structural
identifiability of the model. The results can be from this list of possible answers:

• Globally identifiable, initial conditions not necessary. This means given the
“ideal” data the model parameters can be uniquely define with out the extra
information of initial conditions being required.

• Globally identifiable, initial conditions necessary. This means that with the
inclusion of initial conditions the model parameters are identifiable.

• Locally identifiable, initial conditions not necessary. This means there a
finite number of indistinguishable parameter values for this model without the
inclusion of initial conditions.

• Locally identifiable, initial conditions necessary. This means only with the
inclusion of initial conditions is there a finite number of indistinguishable
parameter values for this model.

• Not identifiable. This means there is an infinite number of indistinguishable
parameter values for this model.

2.3.3 Least squares estimation
Least squares estimation is a parameter fitting procedure which minimises the sum
of squared residuals between a model and data. It has been used in data fitting since
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1800’s with the first clear description coming from Legendre in 1805 [163]. It was
originally developed for fitting linear equations to data but since its inception has
been used for many different model types including the models used in this thesis:
ordinary differential equations (ODEs) [164]. The formulation of sum of squared
residuals is:

SSR =
n∑

i=1
(yi − f(xi, θ))2 (2.36)

where the yi are the observed data, xi is the location of the data points, and θ is the
vector of unknown parameters in the model f . One of the advantages of the least
squares method is that given the assumption that the noise in the data is normally
distributed the maximum likelihood estimator is identical to that which minimises
the sum of squared residuals. The assumption that noise is normally distributed is
one that if often done in literature unless there is prior knowledge to the contrary.
The noise in the data can be interrupted as the errors between predicted values and
the data. This can be evaluated by plotting the residuals and observing whether
they follow the normality line. The maximum likelihood estimator being identical to
the least squares estimator is key for the likelihood profile methods discussed later.

2.3.4 CMAES
The covariance matrix adaption evolutionary strategy (CMAES) was derived from
the concept of self-adaptation or evolutionary strategies (ES). It was created to deal
with optimisation problems which were formulated to minimise an objective function
(f), for which the only accessible information on f are cost function values. This
has meant that it is particularly good for handling complex cost function landscapes,
with small population sizes [165, 166] and has been shown to be highly competitive
in a number of test cases, alongside its successes in real world problems [165]. The
lack of information and complex cost function landscape also rules out the use of
gradient based searches, as the chances of becoming “trapped” in local minima is
too high [167]. A brief description of the algorithm is as follows:

1. Initialise parameters, evolutionary paths, sample mean and step-size.

2. Sample a new population of search points.

3. Select a certain number of “best” points to use to adapt mean and evolutionary
paths.

4. Adapt the covariance matrix using evolutionary paths and sample points.

5. Repeat steps 2-4 until the termination criterion has been met.
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A detailed description of the algorithm can be found in Hansen [165]. There are
implementations in multiple languages to improve usability, with the implementations
used within this thesis in MATLAB [168], or Python [169].

2.3.5 Likelihood profile
As stated above, parameter estimation is done by least squares estimation. Given
the assumption that the error in the data is normally distributed i.e. ϵ ∼ N(0, σ2),
the least squares estimator corresponds to the maximum likelihood estimate (MLE).
Given the sum of squared residuals corresponds to the likelihood we can substitute
it into the method of likelihood profiles described in [170]. This method can give
asymptotic confidence intervals as well as practical identifiability. If a parameter is
practically nonidentifiable, this means that the parameter has no significant effect
on the likelihood. If a parameter has been shown to be structurally identifiable this
does not imply it is practically identifiable, although the converse is true locally.
Practical identifiability comes down to the amount and quality of the data available
to fit a model. The method of likelihood profiles for identifiability defines practical
nonidentifiability as having an infinite likelihood based confidence region. These
confidence intervals are defined by:

{θ|χ2(θ) − χ2(θ̂) < ∆α} (2.37)

where the threshold is given by;

∆α = χ2(α, df), (2.38)

and χ2 represents the likelihood, θ̂ is the optimal parameter set, α is the quantile used
in the χ2-distribution with degrees of freedom (df) either 1 for a pointwise confidence
interval or the size of the parameter set for simultaneous confidence intervals. In
order to actually test identifiability with this method the parameter space is explored
to find the point where each parameter passes the threshold. Practically this involves
the following steps:

1. Find the MLE of the parameter set θ̂

2. Now take a parameter θi from the parameter set to leave a new set (θj ̸=i) of
size 1 less than the original parameter set #(θ − 1).

3. Now move through the parameter range fixing θi at a new value.

4. Re-optimise all other parameters, i.e. find the MLE for θj ̸=i.

5. Repeat steps 2 and 3 until the likelihood profile passes above the threshold.
This has been done by starting at θ̂i and moving in the positive direction until
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the threshold has been met θ = θ+ and then beginning at θ̂i and moving in
the negative direction θ = θ−.

The points at which the likelihood profile passes the threshold are the upper and
lower confidence intervals, so for parameter i the optimal parameter is θ̂i between θ−

and θ+, see Fig. 2.3A. If the parameter is nonidentifiable then the likelihood profile
will only pass through the threshold once, see Fig. 2.3B. This method proves very
useful in systems biology as it makes the defining of local identifiability and local
confidence intervals possible for complex nonlinear systems [171].

A B

i i

Fig. 2.3 Diagram of potential likelihood profiles. A shows an identifiable param-
eter θ̂i with confidence interval between θ− and θ+, B shows a nonidentifiable
parameter since the profile only passes the threshold once.

2.3.6 Sobol sensitivity analysis
Sensitivity analysis allows for the identification and quantification of parameter
influence on model output. The application of sensitivity analysis comes under four
categories:

i Understanding the relationship between the input and the output

ii Determining the influence of parameter uncertainty on model variability

iii Identification of the most influential parameters

iv Guiding future experimental design
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The main categories used within this thesis will be (iii) and (iv) since the number of
parameters makes it impossible to understand the true relationships and parameter
uncertainty has not been assessed in these models. There are two main types of
sensitivity, local and global sensitivity. Local sensitivity refers to model output
variations relative to single parameter changes, whereas, global sensitivity varies all
the parameters simultaneously over their respective spaces and evaluates the relative
contributions.

Sobol sensitivity analysis is a global sensitivity analysis method which is based on
variance decomposition techniques. The Sobol method determines the contribution
of each of the input parameters and their interactions to the overall model output
variance. The results of the analysis are often split into first order interactions
and total order interactions. First order is the fractional contribution of a single
parameter on the output variance. Total order includes first order, second order and
higher order effects on the output variance. The higher the interaction indices the
more influential the parameter on the model output. There is no stringent value of
these indices to determine what constitutes important or unimportant, although 0.05
is often used in the literature [172].

2.4 Model evaluation

2.4.1 Coefficient of determination
The coefficient of determination, often known as R2 or R2, provides an indication of
how well the observed outcomes are represented by a model [173]. There are several
definitions of R2, throughout this thesis the definition will be:

R2 = 1 −
∑

i(yi − fi)2∑
i(yi − ȳ)2 (2.39)

where yi refers to the data point i, ȳ is the mean of the data points and fi is the
model output for the corresponding value of i. It can be thought of as a measure of
how much better the fit of the model is relative to a straight line through the mean.

2.4.2 Sum of squared residuals
The sum of squared residuals (SSR) will also be used as a comparative measure of
goodness of fit between the models within this thesis. The definition of SSR follows
the same format as the least squares formula:

SSR =
n∑

i=1
(yi − fi)2 (2.40)
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where yi is the value of the data at point i and fi is the value of the model corre-
sponding to the data point i.



Chapter 3

Optimising circadian drug
infusion schedules towards
personalised cancer
chronotherapy

3.1 Introduction
Cancer management is challenged by large inter- and intra-patient variabilities in
both disease progression and response to treatments. Thus, the quest for accurate
and personalised cancer therapies has fostered the development of new technologies
enabling multi-type measurements in individual patients and complex drug scheduling.
To translate datasets available for an individual patient into personalised therapies
and further ensure their precise administration, new mathematical approaches are
required. Indeed, systems medicine, that involves the implementation of theoretical
approaches in medical research and practice, is critically needed as emphasised
in the roadmaps of the Coordinated Action for Systems Medicine (CaSyM) from
the European Union (https://www.casym.eu, [174]) and of the Avicenna action
(http://avicenna-isct.org/), and in other international consortia [175, 156, 176, 177].
The final aim is a measurable improvement of patient health through systems-based
practice which will enable predictive, personalised, participatory and preventive (P4)
medicine [178].

Accuracy and safety of infusion pumps are mandatory to ensure that the correct
drug dose is delivered to the patient over the intended period. Recurrent inci-
dents related to devices delivering fluids such as nutrients or medications into the
body have led the U.S Food and Drug Administration (FDA) to launch in 2010 an
initiative to reduce infusion pump risks (https://www.fda.gov/medicaldevices/

34
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productsandmedicalprocedures/generalhospitaldevicesandsupplies/infusionpumps/
ucm202501.htm). Many of the reported events are related to deficiencies in the
initial design of the device and of the embedded software. Adverse events may also
arise from a defect appearing over the device’s life cycle due to technical failure or
lack of proper maintenance. However, due to the complexity of the equipment, user
errors are also common [179].

Optimising the chemotherapeutics index, defined as the ratio between treatment
antitumor efficacy and induced toxicities, is complex at multiple levels. First, large
inter-patient variabilities are demonstrated in drug pharmacokinetics, tolerability and
anti-tumour efficacy [175, 180, 26, 181]. Next, important intra-patient variabilities
arise from the fact that a tumour and healthy tissues, rather than being static over
time, display time-dependent variations, in particular over a 24h span, which are
called circadian rhythms [1]. The circadian timing system controls most physiological
functions of the organism resulting in drug Absorption, Distribution, Metabolism
and Elimination (ADME) displaying 24h-rhythms with differences of up to several
folds between minimum and maximum activities [137, 113].

Chronotherapy, that is administering drugs according to the patient’s biological
rhythms over 24 h, is a growing field in medicine and especially in oncology. Indeed,
at least 22 clinical trials involving a total of 1773 patients with different types of
metastatic cancers have demonstrated a significant influence of administration timing
on the tolerability of 11 commonly-used anti-tumour drugs [182]. Two randomised
phase III clinical trials in 278 metastatic colorectal cancer (mCRC) patients receiving
irinotecan, oxaliplatin and 5-fluorouracil showed that cancer chronotherapy achieved
an up-to-5-fold decrease in treatment side effects and nearly doubled anti-tumour
efficacy compared to conventional administration of the same drug doses [112].
However, a meta-analysis of these two studies combined with another clinical trial
involving 564 mCRC patients receiving the same drugs (497 men and 345 women
in total) concluded that the chronomodulated drug modality significantly increased
the efficacy and survival in men while reducing that in women as compared to
conventional administration [136]. Such sex-specificity was further validated for
irinotecan chronotoxicity in mouse experiments [3] and in a clinical trial involving 199
mCRC patients treated with oxaliplatin (infusion peak 4pm), 5-fluorouracil (infusion
peak 4am) and irinotecan given at 6 different circadian times [5]. Both studies showed
a higher circadian amplitude in females as compared to males and a difference of
several hours between the optimal timing of each gender. Furthermore, circadian
biomarker monitoring in individual patients recently revealed up to 12 h inter-patient
differences regarding the timing of midsleep, the circadian maximum in skin surface
temperature or that in physical activity [183]. These investigations have highlighted
the need for the individualisation of drug combinations and chronoinfusion schemes to
further improve treatment outcome, taking into account the patient’s sex, chronotype

https://www.fda.gov/medicaldevices/productsandmedicalprocedures/generalhospitaldevicesandsupplies/infusionpumps/ucm202501.htm
https://www.fda.gov/medicaldevices/productsandmedicalprocedures/generalhospitaldevicesandsupplies/infusionpumps/ucm202501.htm
https://www.fda.gov/medicaldevices/productsandmedicalprocedures/generalhospitaldevicesandsupplies/infusionpumps/ucm202501.htm
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and genetic background. The accurate delivery of intended administration profiles is
obviously critical in this context. Chronotherapy requires precise delivery with the
error in drug infusion timing not to be greater than a few hours.

Clinical findings about cancer chronotherapy have motivated the development
of innovative technologies for chronomodulated drug delivery including the Mélodie
infusion pump (Axoncable, Montmirail, France, [6]). This portable electronic pump
allows for the administration of up to 4 compounds according to pre-programmed
schedules over the 24 h span. It was used in several clinical trials for the chronomod-
ulated delivery of irinotecan (CPT11), oxaliplatin (L-OHP) and 5-fluorouracil (5-FU)
into the central vein of metastatic colorectal cancer patients [113]. The Mélodie
pump was recently used to infuse those three anticancer drugs directly into the
hepatic artery of metastatic cancer patients in the translational European OPTILIV
Study [6]. This uncommon delivery route into the hepatic artery and the use of an
infusion pump to deliver the drugs according to chronomodulated profiles represent
a novel chemotherapeutic approach which needs to be quantitatively investigated to
maximise patient benefit. In this study, the plasma pharmacokinetics of oxaliplatin
revealed inconsistencies between programmed delivery schedules and observed drug
concentration within the patient blood including a delay in the time taken for the drug
to be detectable in the blood and unexpected peaks in plasma concentrations during
drug infusion. Such inconsistencies between targeted drug exposure patterns and
plasma drug levels motivated the design of a mathematical model of fluid dynamics
within the pump system presented hereafter. This pump-to-patient model was then
connected to semi-physiological PK models to investigate the inter-patient variability
in drug PK after hepatic artery administration. Thus, this systems pharmacology
study aimed to develop predictive mathematical models allowing for the quantitative
and general understanding of: i) the pump dynamics, irrespective of the drug de-
livery device, and ii) patient-specific whole-body PK of irinotecan, oxaliplatin and
5-fluorouracil after drug administration using an infusion pump. Such mathematical
techniques would then allow for precise and personalised drug timing.

3.2 Methods

Ethics Statement
The pharmacokinetic data used in this investigation came from the Lévi et al
pharmacokinetic investigation [6] and the comparison study companion study of
the European OPTILIV trial (ClinicalTrials.gov study ID NCT00852228), which
involved nine centres in four countries (France, Belgium, Italy and Portugal) [184].
The data have been analysed anonymously.

ClinicalTrials.gov
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OPTILIV clinical datasets
The OPTILIV trial included 11 colorectal cancer patients with liver metastases (7
men and 4 women with median age of 60). The combination of irinotecan, oxaliplatin
and 5-fluorouracil was delivered to patients by Hepatic Artery Infusion (HAI) using
the Mélodie pump [6]. The patients received an intravenous administration of
cetuximab 500 mg/m2 over 2 h 30 min on the morning of day 1 which was not
modelled. From day 2, chronomodulated HAI of irinotecan (180 mg/m2), oxaliplatin
(85 mg/m2) and 5-fluorouracil (2800 mg/m2) were given (Fig 3.1). Irinotecan was
delivered as a 6h sinusoidal infusion starting at 02:00, with a peak at 05:00 on day
2. Oxaliplatin was administered as an 11h 30min sinusoidal infusion beginning at
10:15 with a peak at 16:00 on days 2, 3 and 4. 5-fluorouracil was also delivered as
an 11h 30min sinusoidal infusion beginning at 22:15 with peak delivery at 04:00
at night, on days 3, 4 and 5. The superiority of this drug scheduling compared to
non-circadian based administration was demonstrated for intravenous administration
within several international clinical trials [74]. Between each drug infusion, there
was a glucose serum flush which cleared the tubing. This was a 30-min sinusoidal
infusion beginning at 09:45, and then again at 21:45, i.e. at the end of each infusion
(Figure 3.1).

Plasma pharmacokinetic (PK) data were gathered after the first dose of irinotecan,
oxaliplatin and 5-fluorouracil and measured longitudinally for each individual patient.
Plasma concentrations of irinotecan and its active metabolite SN38 were determined
in mg/ml at the start of infusion, then at 2, 3, 4, 6, 8 h 15 min and 31 h 45 min
post HAI onset, for a total of seven time points, including baseline. Oxaliplatin
concentrations were determined by measuring both platinum (Pt) plasma levels,
unbound and total. Oxaliplatin binds to proteins in the blood and the free Pt fraction
is the biologically active one. Thus, oxaliplatin concentrations were determined at
the start time of the infusion, then at 3, 6, 9 h, 11 h 30 min and 17 h 15 min post
HAI onset, for a total of six time points, including baseline. Plasma concentrations
of 5-fluorouracil were determined at the start of infusion, then at approximately 3 h,
5 h 45 min, 9 h and 11 h 30 min post HAI, for a total of five time points, including
baseline.

Plasma pharmacokinetic (PK) data were gathered after the first dose of irinotecan,
oxaliplatin and 5-fluorouracil and measured longitudinally for each individual patient.
Plasma concentrations of irinotecan and its active metabolite SN38 were determined,
using high performance liquid chromotagraphy (HPLC), in mg/ml at the start of
infusion, then at 2, 3, 4, 6, 8 h 15 min and 31 h 45 min post HAI onset, for a total
of seven time points, including baseline. Oxaliplatin concentrations were determined
by measuring platinum plasma levels using spectrophotometry, for both unbound
and total platinum levels. Oxaliplatin binds to proteins in the blood and the free
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Fig. 3.1 (a) Delivery profiles of irinotecan, oxaliplatin, 5-fluorouracil and glucose
flushes as administered in the OPTILIV clinical trial. (b) Schematic of the
Mélodie infusion pump (Axoncable, Montmirail, France) used in the OPTILIV
study for hepatic artery infusion [6].

Pt fraction is the biologically active one. Thus, oxaliplatin concentrations were
determined at the start time of infusion, then at 3, 6, 9 h, 11 h 30 min and 17 h
15 min post HAI onset, for a total of six time points, including baseline. Plasma
concentrations of 5-fluorouracil were determined using HPLC, at the start of infusion,
then at approximately 3 h, 5 h 45 min, 9 h and 11 h 30 min post HAI, for a total
of five time points, including baseline. The exact method used to assess plasma
concentrations can be seen in the Levi et al paper of the OPTILIV study [6].

Pump description
The Mélodie pump system weighs 500 g when empty (excluding drug reservoirs and
batteries) and measures 160 x 98 x 34 mm. The pump consists of four channels
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which correspond to the four reservoirs that are connected to the pump. Each
reservoir can have a maximum volume of 2 L. The four channels are controlled by
four independent mechanisms which control the delivery to the infusion tube (Fig
3.1). For the OPTILIV study, the infusion tube comprised of two sections, the first
was 135mm long with a diameter of 2.5mm, and the second section was 1500mm
long with a diameter of 1mm. The two sections had a total volume of 1.84ml. The
four pump reservoirs were loaded with irinotecan, oxaliplatin, 5-fluorouracil and
5% glucose solution respectively, with the latter used for washes in between drug
infusions [185].

Mathematical modelling
A pump-to-patient mathematical model was designed as follows, irrespective of the
drug delivery device. The drug solution’s dynamics from the pump to the patient’s
blood were modelled using a Partial Differential Equation (PDE) considering time
and 1 spatial dimension. This method was chosen as PDEs can take into account
both time and space which was key for modelling systems such as pump delivery.
The PDE was solved using a backward finite difference method written by the myself
within Python 3.5.2 (https://www.python.org/). The drug PK models were based
on Ordinary Differential Equations (ODEs) written in Python 3.5.2 and solved using
the odeint function from the scipy library version ’1.1.0’ which is capable of solveing
both stiff and non-stiff initial value first order ODEs such as are used in this thesis
[186].

PK model parameter estimation involved a weighted least squares approach (Sec
2.3.3), with conditions also placed on the drug clearance routes. For the fit of the
data of a given patient, the residuals were weighted by an estimated measurement
error of 10% in line with precision values of the assay methods [187–189]. This
method allowed correction of the residuals to be of the same order of magnitude for
the parent drug CPT11 and the metabolite SN38, or for oxaliplatin free and bound
concentrations. The minimisation of the least squares cost function was performed by
the Covariance Matrix adaptation Evolution Strategy (CMAES) within Python which
has been shown to be successful at handling complex cost function landscapes [166].
The fitting process was repeated 50 times for each patient with the best fit taken
as final parameter values to reduce the chances of finding local minima. Parameter
search ranges were chosen so the optimal value did not include the maximum of the
ranges. Model goodness of fit was assessed using the sum of squared residuals (SSR)
and R2 values. PK model parameter numerical identifiability given the available
data was investigated in a two-step process as follows. First, parameter sensitivity
regarding the least-square cost function was computed via a global Sobol sensitivity
analysis as a necessary condition for identifiability [172]. This method assesses
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the relative contributions of each parameter to the variance in the cost function
obtained when parameter values are varied, and thus allows for the identification of
parameters which have no effect on the cost function and are therefore not identifiable
from the available dataset. This step allowed a first reduction of the PK models.
Next, likelihood profiles of parameters of the reduced models were derived following
the procedure outlined in [170]. Additional biological constraints derived from the
literature were added to ensure numerical local identifiability of all parameters. This
two-step model design process was undertaken as computing likelihood profiles is
associated with a high computational cost.

PK models were fitted to pooled data first to get an indication of general model
fit then to single-patient plasma PK datasets independently to obtain patient-specific
parameter values. Data were available for 10 to 11 patients which was too few to
undertake mixed-effects population analysis and to reliably estimate the parameters’
variances within a patient population [190, 191]. Sampling points at 6h post injection
for irinotecan and 11h 30 mins post injection for oxaliplatin and 5-fluorouracil
theoretically occurred at the same time as the start of the 30 min glucose flush, that
is 9:45 for irinotecan and 5-fluorouracil, and 21:45 for oxaliplatin. As described in the
results section, the flush was equivalent to the administration of the drug quantity
remaining within the tube and logically influenced plasma drug concentrations.
However, the exact time of patient blood collection was not reported and could vary
by 10 to 15 minutes due to clinical constraints. Hence, the information of whether
the blood sample was taken before or during the flush was not available. Thus,
the collection time of the data points at theoretically 21:45 for oxaliplatin, 9:45 for
irinotecan and 9:45 for 5-fluorouracil were unchanged if the drug concentration at
the preceding data point was greater than the current one, indicating the flush might
not have occurred yet. If not, the collection time was modified and set equal to the
glucose peak time, which is 15min after its start time i.e. 22:00 for oxaliplatin and
10:00 for irinotecan and 5-fluorouracil, such a value leading to the best model fit.
Overall, the collection time was changed compared to the theoretical one for patients
1, 2, 3 and 7 for oxaliplatin, for patient 5 for 5-fluorouracil, and for no patients for
irinotecan.

Inter-patient variability and patient clustering
based on PK parameters

Given the relatively small number of patients, the inter-patient variability in param-
eter values was assessed using a nearly unbiased estimator of coefficient of variation
(CV),
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CV =
(

1 + 1
4n

)
× σ

µ
× 100,

where µ is the parameter mean, σ the parameter sample standard deviation and n is
the number of patients.

Next, fuzzy c-means clustering was used to define patient clusters based on
individual PK parameters, for each drug separately. The fuzzy c-means clustering
was done using a Python library sckit-fuzzy version ’0.2’ (http://pythonhosted.org/
scikit-fuzzy/). The method is based on the determination of cluster centroids and
classification of patient parameter vectors into the clusters such that the following
quantity is minimised:

n∑
i=1

c∑
j=1

w2
ij (xi − cj)2

where n is the number of patients, c is the number of clusters, xi is the parameter
vector of patient i, cj is the centroid of cluster j, wij is the probability of patient i

belonging to cluster j and can be expressed as:

wij = 1∑c
k=1

(
xi−cj

xi−ck

)2

Note that, for a given patient i, the following holds:

c∑
j=1

wij = 1.

The validity function proposed by Fukuyama and Sugeno [192] was used to
determine the number of clusters for each drug. The function is defined as:

VF S =
n∑

i=1

c∑
j=1

w2
ij(||xj − cj ||2 − ||cj − c̄||2),

where c̄ is the average of the centroids. The number of clusters was chosen between
2 and n − 1 inclusively such that the VFS was minimised. Plotting the clustering
results was done using a multidimensional scaling (MDS) algorithm which projects
multidimensional data onto a 2D plane while keeping a distance metric scaled relative
to original data (Python library sklearn.manifold [193]). Correlation coefficients be-
tween the original Euclidean distance and the 2D-Euclidean distance were calculated

http://pythonhosted.org/scikit-fuzzy/
http://pythonhosted.org/scikit-fuzzy/
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and were high for all models (> 0.98) which showed that the MDS projections were
accurate [194].

3.3 Results
The overall objective of this study was to accurately investigate the inter-patient
variability in the plasma PK of the three anticancer drugs administered during the
OPTILIV trial. A first strategy consisted in using compartmental PK modelling
taking the delivery profiles programmed into the infusion pump as inputs for the
plasma compartments. However, such methodology revealed inconsistencies between
the best-fit models and the data, including delays of several hours. I then concluded
that the fluid dynamics from the pump to the patient had to be quantitatively
modelled. Hence, I designed the complete model in two sequential mathematical
studies. First, I studied the drug solution dynamics from the pump to the patient’s
blood for which the model was based on partial differential equations. This novel
model of the pump delivery system took into account the specificity of the equipment
used in order to accurately predict drug delivery in the patient’s blood, although it
could be easily adapted to any similar drug delivery device. Second, I connected this
model to compartmental PK models based on ordinary differential equations. This
complete framework allowed the investigation of inter-patient variability in drug PK
after hepatic artery administration.

Pump-to-patient drug solution dynamics

Model design

The pump-to-patient model is a transport equation representing the dynamics of
the drug solution along the administration tube, with respect to time (t) and one-
dimensional space (x)(equation 3.1). This simplification neglects possible non-linear
wave fronts across the diameter of the tube, however since the diameter is very small
the effect of this would be negligible on the overall infusion profile. x is the distance
along the tube from the pump (x = 0) to the patient (x = L). The drug solution was
assumed to be incompressible so that the fluid velocity was considered as constant
along the whole tube. Thus, the drug concentration in the tube u(x, t) changes with
respect to the following equation:

∂u(x, t)
∂t

= −V (t)∂u(x, t)
∂x

t ∈ [0, T ], x ∈ [0, L] (3.1)

with a Dirichlet boundary condition of,
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u(0, t) = S(t)
sa × V (t) , (3.2)

where V (t) is the fluid velocity inside the tube, expressed in mm/h. The constant
sa = πr2 is the cross sectional surface area of the tube (in m2), with r being the
radius of the tube. The source term S(t) represents the amount of drug delivered
according to the infusion profile programmed into the pump and is expressed in
mol/h. Initial conditions along the tube are u(x, 0) = 0. The fluid velocity and source
terms are controlled by the pump which imposes a fluid delivery rate expressed in
ml/h. They are computed by converting the fluid delivery rate into mm/h and mol/h
respectively using the tube geometry and the concentration of each drug solution.
Hence, model simulations at the end of the tube (x = L) do not depend on the exact
geometry of the tube but rather on its total volume. The input function for PK
models depending only on quantities at the end of the tube, the original infusion
tube which was constituted of two sections of different diameters was simplified in
numerical simulations to a tube of radius 1mm and total length 2340mm that had
the same total volume as the original set-up. The total tube volume was set to 1.84
mL for in the equipment used in the OPTILIV study. The transport equation with
associated initial and boundary conditions can be solved using the classical method
of characteristics [195] which gives:

u(t, x) =

0 if
∫ t

0 V (r)dr < x

S(τ(t,x))
sa×V (τ(t,x)) otherwise

,

where τ(x, t) is the time at which the drug reaching point x at time t initially
entered the system, i.e.

∫ t

τ(t,x)
V (s)ds = x.

The input function for the PK models corresponds to the rate of drug infusion
into the patient (i.e. at x = L) and can be obtained by:

d(t) = sa × V (t)u(t, L) =

0 for t such that
∫ t

0 V (r)dr < L

V (t) S(τL(t,L))
V (τL(t,L)) otherwise, with

∫ t
τ(t,L) V (s)ds = L

Note that, for all drug infusions apart from the glucose flushes, the source term
S(t) is proportional to the fluid velocity V (t) as the drug is infused within the tube
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at the same time as the fluid, so that d(t) is proportional to V (t) once the tube
is filled, i.e. for times t such that

∫ t
0 V (r)dr > L . An example of the PDE model

simulations in time and space for oxaliplatin delivery is shown in Fig 3.2 A.
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Fig. 3.2 (A) shows oxaliplatin concentration profile in the infusion tube. The x-
axis represents the distance along the tube, the y-axis represents the time from
the start of the pump delivery. For figures (B-G), the x-axis represents Clock
time and starts at the beginning of the considered drug administration. The left
column shows the both the intended delivery profiles and the simulated delivery
profiles evaluated at the end of the tube (x=L), for irinotecan (B), oxaliplatin (D)
and 5-fluorouracil (F). The right-hand column shows the cumulative percentage
of drug delivered to the patient for the intended and actual profiles over time
for irinotecan (C), oxaliplatin (E) and 5-fluorouracil (G). The initial delay
between the intended and simulated profile is due to filling of the tubing. The
spike at the end of the delivery is due to the glucose flush emptying the drug
left in the tube in a short space of time. Dose was calculated using the surface
area of a person as being 1.7m2, representing an “average” person. For patient
based simulations each patient’s own surface area is used.

Differences between programmed infusion profiles and actual drug
delivery in the patient’s blood

The pump infusion schemes used in the OPTILIV trial were simulated for the
three drugs: irinotecan, oxaliplatin and 5-fluorouracil. Whereas the drug profiles
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programmed into the pump followed a smooth sinusoidal function, the actual drug
delivery in the patient artery differed from the programmed profiles by two main
features. First, the model predicted a significant time delay between the actual start
of the drug delivery by the pump and the time the drug first reached the patient
blood (Fig 3.2 B, D, F). This delay was evaluated by the model to be 3 h 5 min
for oxaliplatin, 2 h 20 min for 5-fluorouracil and 51 min for irinotecan. The cause
of this delay is due to the time taken to fill the infusion tube with the solution
containing the drug at the beginning of the infusion. The delay was drug-specific as
it depended on the drug solution concentration and the velocity of the solution in
the tube driven by the programmed input profiles. Next, at the end of the infusion
profiles, the pump stopped and did not administer the amount of drug left inside
the tube. This remaining drug was flushed out by the glucose rinse subsequent to
drug administration which induced a sudden delivery spike in the patient’s artery
(Fig 3.2 C, E, G). The amount of drug in this spike was expressed as a percentage of
the total drug delivered and was estimated to be 10.7% for oxaliplatin, 5.36% for
5-fluorouracil and 1.85% for irinotecan.

Drug Total dose
(mg/m2)

Drug solution
concentration
(mg/ml)

Main peak rate
(ml/m2/h)

Spike peak rate
(ml/m2/h)

CPT11 180 3.33 18.02 7.38
LOHP 28 3 1.63 7.28
5-FU 933 50 3.4 6.96

Table 3.1 Table describing the defining delivery values for CPT11, LOHP and
5-FU. Dose is given in mg per surface area of the patient (m2). The main peak
refers to the maximum flow rate from the intended delivery schedule. The spike
peak rate refers to the maximum flow rate of the delivery caused by the glucose
flush.

Our systems approach revealed important differences between the intended drug
infusion profile and the actual administration into the patient artery. Hence, I
developed optimised infusion profiles that strictly achieved the drug administration
intended by clinicians. The same equipment was considered to avoid the cost of
changing. Drug concentrations of the infusion solutions were kept unchanged in
order to avoid possible problems of drug stability. In order to administer the drug
in to the patient’s blood following a smooth sinusoidal function, a profile in three
parts is required as follows (Fig 3.3). The first part of the profile is an initial bolus
to fill the tube between the pump and the patient with the drug solution. Once the
tube is filled, the original sinusoidal profile starts. Then, to solve the problem of the
amount of drug left in the tube when the pump stops, the original sinusoidal profile
needs to be interrupted when the total drug amount has left the drug bag. Then, a
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subsequent glucose rinse needs to be infused according to the final segment of the
sinusoidal curve in order to deliver the drug remaining in the tube at the correct
rate.
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Fig. 3.3 Improved administration profiles. (a) shows the drug solution delivery
profile which consists of an initial bolus to fill the tube entirely, followed by the
original profile. (b) shows the rinse solution delivery rate which continues drug
delivery at the correct rate while clearing the tube from any active substance,
(c) shows how the flow rate along the tube is smoothly switched between the
drug and the rinse and (d) shows the new drug delivery profile that will enter
the patient compared to the original profile used in the OPTILIV study.

3.3.1 Inter-patient variabilities in irinotecan, 5-fluorouracil
and oxaliplatin PK after chronomodulated admin-
istration

The pump-to-patient model provided educated predictions of the drug infusion into
the patients’ blood, which was a prerequisite to study the inter-patient variability in
the PK of irinotecan, oxaliplatin and 5-fluorouracil. A compartmental physiological
model was designed for each drug separately, since interactions between CPT11 and
LOHP, and between LOHP and 5-FU have not been demonstrated [39, 40] and
CPT11 and 5-FU also showed no interaction if CPT11 is delivered first as it is in
this study [41]. All parameters were fitted for each patient independently.
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Compartmental models of irinotecan, oxaliplatin and 5-fluorouracil
pharmacokinetics

PK models represented the drug fate in: the Liver, to accurately represent hepatic
delivery, the Blood, the measurement site, and the rest of the body known throughout
this chapter as Organs. The volume of each compartment was individualised for
each patient using the Vauthey method for Liver [9], Nadler’s formula for Blood [10],
and the Sendroy method for Organs [11]. For each formula below w is the weight of
an individual patient and h is the height of the patient. Vauthey method for liver
volume(Vl):

Vl = 191.80 + 18.51 ∗ w

Nadler’s formula for blood volume (Vb):

Males : Vb = 0.3669 ∗ h3 + 0.03219 ∗ w + 0.6041 (3.3)

Females : Vb = 0.3561 ∗ h3 + 0.03308 ∗ w + 0.1833 (3.4)

Sendroys formula for total body volume (Vt)

Vt = 50.6 ∗ SA ∗ (w/h)0.426 (3.5)

where SA is surface area of the body, this was given for each patient in this study.
This is then used to calculate organ volume by:

Vo = Vt − Vl − Vb (3.6)

Each model assumed that the drug was delivered directly into the liver com-
partment to represent the Hepatic Artery Infusion (HAI, Fig 3.7, 3.8 & 3.9). All
transports in between compartments were considered as passive and were represented
by linear terms. Throughout this chapter, the terms Blood-Liver or Blood-Organ
transport represent a bidirectional transport that encompasses the transfer across
the blood vessel walls into/from tissues. This simplification has been adopted due
to lack of data on the transport processes between compartments. In the models,
the drug clearance terms accounted for all types of drug metabolism which were not
explicitly modelled (e.g. hepatic CYP450 activity) and i) renal elimination for the
Blood compartment, ii) intestinal elimination for the Organs compartment and iii)
biliary excretion for the Liver compartment only for irinotecan and 5-fluorouracil
since it could be neglected for oxaliplatin [60, 196, 86]. The Organs compartment did
not include the intestinal lumen and only accounted for the intestinal cells composing
the wall of the intestine which were exposed to the drug through blood circulation.
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Patient Volumes (ml)
Liver Blood Organs

1 1539 4737 65289
2 1236 3461 53139
3 1224 3658 50614
4 1798 4819 77765
5 1462 4636 61303
6 1690 5327 70900
7 1872 5832 78914
8 1537 4861 64437
9 1208 3517 51124
10 1618 4990 68479
11 1619 5238 67249

Table 3.2 Table of patient compartment volumes as determined by the Vauthey
method for liver volume[9], Nadler’s formula for blood volume [10]. Total
volume was determined via the Sendroy method [11] then the blood and liver
volumes were subtracted to give organ volumes.

The intestinal cells may expel the drug toward the lumen or transform the drug
through metabolism, both phenomena being represented by the intestinal clearance
in the models. The drug excreted through the bile directly reached the intestinal
lumen - which was not considered as part of the Organs compartment- and the drug
recirculation was neglected as no evidence has been found for any of the drugs when
delivered intravenously [197, 198, 60] and the PK profiles did not show the multiple
peaks associated with recirculation [199]. In the absence of quantitative data and
to avoid model over-parametrisation, circadian rhythms were neglected in the PK
models and all parameters were assumed to be constant over the 8h time window of
PK measurements. Any chemical species bound either to plasma proteins or to DNA
was assumed to be unable to move between compartments or to be cleared from the
system.

Parameter identifiability assessed though sensitivity analysis to cost function
variations revealed poor sensitivity of the clearance rate constant in the Organs
compartment for the three drugs (see Methods). Hence, Organ clearance was
neglected for 5-fluorouracil which is mainly cleared through hepatic metabolism,
biliary excretion and renal elimination [86]. Organs clearance and liver clearance
was neglected for oxaliplatin since majority of platinum is cleared via renal clearance
and the total amount cleared after the end of treatment was set to 54% in line with
the literature [60]. Irinotecan organ clearance was assumed to be scaled relative to
that of the Liver compartment, this is since similar amounts of irinotecan are cleared
via faecal clearance and biliary clearance [196]. In the model of 5-fluorouracil, poor
sensitivity was also obtained for transport parameters between Blood and Organs.
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Hence, transport rate constants were assumed to be proportional to compartment
volumes for Blood-Liver and Blood-Organs transport, for each of the three drugs,
thus neglecting organ-specific transporter expression.

Parameter likelihood profiles analysis revealed that additional constraints were
needed to ensure the local identifiability of all parameters (see Methods and SI).
Hence, information on renal, intestinal and hepatic clearance relative rates was
inferred from literature as follows. For irinotecan, CPT11 drug amount though
renal clearance and though combined intestinal elimination and biliary clearance
were respectively set to 25% and 60% of the total administered dose [196]. As
SN38, which is the active metabolite of CPT11, renal elimination was documented
as negligible, the metabolite was considered to only be cleared through the Liver,
via metabolism into SN38, or Organs and these cleared amounts were assumed to
account for 15% of the total administered dose of irinotecan [196]. The amount of
SN38 cleared via metabolism in the liver accounted for approximately 4% of the
total administered does of irinotecan where as SN38 excretion into the intestinal
lumen accounted for approximately 9% of the total dose of irinotecan therefore I
have set the SN38 clearance via organs to be twice that of the liver clearance [196].
Oxaliplatin clearance was set such that 54% of the total administered drug amount
was cleared via the kidneys [60]. The amount of platinum (Pt) bound within the
Organs or within the Liver was set to 84% and 12% of the total dose, respectively [2].
The Boughattas et al paper [2] was used to give tissue concentrations, no data to our
knowledge exists for humans so I have used these mouse data as a best approximation.
The amount of platinum in the tissues was calculated from total amount found in
the respective organs relative to total dose. 5-FU was shown to be mainly cleared
through hepatic metabolism, so that the amount of drug cleared through the Liver
was assumed to account for approximately 80% of the total dose [86]. With the
addition of these constraints the models were all shown to be identifable.
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Fig. 3.4 Parameter Identifiability for irinotecan PK model.

The final irinotecan model had six compartments as each of the three Liver,
Blood and Organs compartments, had two sub-compartments: the parent drug
irinotecan, and its active metabolite SN38 (Fig. 3.7). Initial irinotecan administered
in the liver was assumed to be only in the form of the parent drug. Irinotecan was
converted into SN38 via Michaelis Menten kinetics within the liver and organs, since
this is an enzymatic reaction [200], but not in the Blood since the activation enzymes
carboxylesterases are not expressed in blood cells in humans [201]. The parameter
estimate Km = 59.2µM which reflects the affinity of the substrate and the enzyme
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Fig. 3.5 Parameter Identifiability for oxaliplatin PK model.

was taken directly from an in vitro study in human liver cells [200], thus making the
assumption that Km values are unchanged from in vitro to in vivo as classically done
in the literature [202, 203]. SN38 was considered to only be present in its bound form
since the bound fraction is reported to be greater than 95% [204]. SN38 clearance
terms accounted for SN38 elimination including its deactivation into SN38G though
UDP-glycosyltransferases (UGTs) [74].
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Fig. 3.6 Parameter Identifiability for 5-fluorouracil PK model.

The model equations for irinotecan are:

dLcpt

dt
= (d(t) − Ccptl/o

∗ Lcpt − kb,l ∗ Lcpt + kb,l ∗ Bcpt

− (Vmaxcp ∗ Lcpt)/(Km + Lcpt))/Vl (3.7)
dLsn

dt
= (−Csnl

∗ Lsn − kb,l ∗ Lsn + kb,l ∗ Bsn

+ 0.67 ∗ (Vmaxcp ∗ Lcpt)/(Km + Lcpt))/Vl (3.8)
dBcpt

dt
= (kb,l ∗ Lcpt − kb,l ∗ Bcpt + kb,o ∗ Ocpt

− kb,o ∗ Bcpt − Ccptb
∗ Bcpt)/Vb (3.9)

dBsn

dt
= (kb,l ∗ Lsn − kb,l ∗ Bsn + kb,o ∗ Osn − kb,o ∗ Bsn)/Vb (3.10)

dOcpt

dt
= (kb,o ∗ Bcpt − kb,o ∗ Ocpt − Ccptl/o

∗ Ocpt

− (Vmaxcp ∗ Ocpt)/(Km + Ocpt))/Vo (3.11)
dOsn

dt
= (kb,o ∗ Bsn − kb,o ∗ Osn − Csno ∗ Osn

+ 0.67(Vmaxcp ∗ Ocpt)/(Kcp + Ocpt))/Vo (3.12)
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Fig. 3.7 Semi-physiological model of irinotecan PK. Compartments were min-
imised to the most important components, Liver to accurately represent drug
delivery, Blood which is the measurement site and Organs to represent the rest
of the body. Ci is the rate constant of clearance from compartment i. Irinotecan
is bio-activated into its active metabolite SN38. Irinotecan was assumed to be
delivered directly into the liver since hepatic arterial infusion was used.

where Li, Bi and Oi represent the concentration in the Liver, Blood and Organs
respectively, with cpt representing CPT11, and sn standing for SN38. d(t) refers to
the drug infusion function equal to the explicit solution of the PDE-based pump-to-
patient model. The parameter values all included relevant compartment volumes,
which means Vmax is in terms of ml/h rather than the standard mg/ml/h. The
weight conversion factor 0.67 in equation (3.4) and (3.8) is to account for the difference
in molecular weight of SN38 compared to CPT11. Initial conditions were that all
compartments had zero drug in them since this was the first dose in the course of
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treatment.

x0 = (Lcpt0 , Lsn0 , Bcpt0 , Bsn0 , Ocpt0 , Osn0) = 0̄ (3.13)

Model observations came from blood compartment for both CPT11 and SN38
separately.

Bcpt(T ), Bsn(T ) (3.14)

where T is vector of times (h)

T = [0, 2, 3, 4, 6, 8.25, 31.75] (3.15)

All parameters are in terms of ml/h.
The oxaliplatin PK model had six compartments corresponding to bound and

free (Pt) molecules in the Liver, Blood and other Organs. Oxaliplatin is rapidly
metabolised into platinum complex forms [60], which were not distinguished in
the current data. In the absences of any data on the dynamics of these different
metabolites they were all assumed to have the same PK properties in the model.
Initial oxaliplatin administered in the liver was assumed to be free. Free Pt could
bind to proteins and unbind from proteins, due to protein degradation [60], which
was included in all compartments (Fig 3.8).
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Fig. 3.8 Semi-physiological model of oxaliplatin PK. Compartments were min-
imised to the most important components, Liver to accurately represent drug
delivery, Blood which is the measurement site and Organs to represent the rest
of the body. Ci is the rate constant of clearance from compartment i. Each
compartment contains a bound and unbound drug fraction and only unbound
molecules can migrate between compartments. b and u are respectively the
binding and unbinding rate constants of platinum to proteins. Oxaliplatin was
assumed to be delivered directly into the liver in its unbound form.
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The equations for oxaliplatin PK model are:

dLf

dt
= (d(t) − kb,l ∗ Lf + kb,l ∗ Bf − b ∗ Lf + u ∗ Lb)/Vl (3.16)

dLb

dt
= (b ∗ Lf − u ∗ Lb)/Vl (3.17)

dBf

dt
= (kb,l ∗ Lf + kb,l ∗ Of − kb,o ∗ Bf − kb,o ∗ Bf

− Cb ∗ Bf − b ∗ Bf + u ∗ Bb)/Vb (3.18)
dBb

dt
= (b ∗ Bf − u ∗ Bb)/Vb (3.19)

dOf

dt
= (kb,o ∗ Bf − kb,o ∗ Of − b ∗ Of + u ∗ Ob)/Vo (3.20)

dOb

dt
= (b ∗ Of − u ∗ Ob)/Vo (3.21)

where Li, Bi and Oi represent the concentration in the Liver, Blood and Organs
respectively, with i representing either the the bound drug b or the free drug f

and d(t) refers to the infusion function. The parameter values all included relevant
compartment volumes. Initial conditions were that all compartments had zero drug
in them since this was the first dose in the course of treatment.

x0 = (Lf0 , Lb0 , Bf0 , Bb0 , Of0 , Ob0) = 0̄ (3.22)

Model observations came form the blood compartment for total platinum, i.e. sum
of both free and bound, and free compartment.

BT ot(T ) = Bf (T ) + Bb(T ), Bf (T ) (3.23)

where T is vector of times (h)

T = [0, 3, 5.75, 9, 11.5] (3.24)

All parameters are in terms of ml/h.
The final model for 5-fluorouracil had three compartments. The drug clearance

accounted for both drug elimination and drug metabolism in each compartment
(Fig 3.9). Protein binding of 5-fluorouracil was neglected in the model because of the
low protein affinity of this drug [205]. Equations for the three models can be seen in
SI.

The equations for 5-fluorouracil PK model are:

dL

dt
= (d(t) − Cl ∗ L − kb,l/o ∗ L + kb,l/o ∗ B)/Vl (3.25)

dB

dt
= (kb,l/o ∗ L + kb,l/o ∗ O − kb,l/o ∗ B − kb,l/o ∗ B − Cb ∗ B)/Vb (3.26)

dO

dt
= (kb,l/o ∗ B − kb,l/o ∗ O)/Vo (3.27)
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Fig. 3.9 Semi-physiological model of 5-fluorouracil PK. Compartments were
minimised to the most important components, Liver to accurately represent
drug delivery, Blood which is the measurement site and Organs to represent
the rest of the body. Ci is the rate constant of clearance from compartment i.
5-fluorouracil was assumed to be delivered directly into the liver.

where Li, Bi and Oi represent the concentrations of 5-fluorouracil in the Liver, Blood
and Organs respectively and d(t) refers to the infusion function. The parameter
values all included relevant compartment volumes. Initial conditions were that all
compartments had zero drug in them since this was the first dose in the course of
treatment.

x0 = (L0, B0, O0) = 0̄ (3.28)



CHAPTER 3. OPTIMISING CHRONOTHERAPY 58

Model observations came from the blood compartment.

B(T ) (3.29)

where T is vector of times (h)

T = [0, 3, 6, 9, 11.5, 17.25] (3.30)

All parameters are in terms of ml/h.

Inter-patient variability in irinotecan, oxaliplatin and 5-fluorouracil
PK parameters.

Overall, each of the three drug models showed a very good fit to data as demonstrated
by R2 values averaged over all patients of 0.98 for irinotecan, 0.96 for oxaliplatin
and 0.8 for 5-fluorouracil (Figs 1, 2 and 3 and table 4, 7 and 10 in SI). The results
obtained using infusion rates computed through the pump-to-patient model were
compared with simulations with infusion rates equal to the profiles programmed into
the pump (see SI). Using the pump-to-patient model allowed an improvement of the
model fit to pooled data for each drug (see SI) and the model fit to patient specific
data for SSR values by an average of 4.9% for irinotecan, 43.4% for oxaliplatin and
12.5% for 5-fluorouracil, thus proving a measure of validity for our approach.

The irinotecan model had an almost perfect fit, it matched the linear increase of
AUC compared to dose as described in the FDA drug label (SI Fig. 2) [206], and
showed a rapid accumulation of both irinotecan and SN38 in the plasma of patients
(Fig 3.10).

To test the validity of the PDE-based pump-to-patient model, I compared the
goodness of this fit with that of the PK model with drug infusion rate equal to the
infusion profile programmed in to the pump. Using the PDE to account for the
properties of the system largely increased the model validity (Table 3.4, 3.5). The
model was also fitted to the total data for one parameter set and then compared
between using the intended delivery and the PDE derived delivery profile, this showed
and increase quality of fit form a SSR of 7912.50 to 7828.28 and a R2 of 0.89 to 0.92,
which is an improvement of 1.1% for SSR and 3.4% for R2. Pooled data agree with
the improved fit our PDE model as the drug input but showed a worse fit to data.

No obvious impact on irinotecan and SN38 plasma concentrations was observed
regarding the time needed to fill the infusion tube or the 30-min glucose delivery
spike, as predicted by the pump-to-patient model.

The fit for the oxaliplatin PK model captured all general trends (Fig 3.11).
The model fit for patient 7 did not fully capture the dynamics of total Pt plasma
concentration but correctly simulated free Pt concentration. The model did predict i)
a delay in plasma Pt concentrations at the start of the infusion due to the pump-to-
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Fig. 3.10 Patient data best-fit of irinotecan PK model. Each subplot represents
an individual patient dataset, fit to the model independently. (a) shows the
fit of irinotecan plasma concentration, (b) shows that of SN38, the active
metabolite of irinotecan.

patient drug transport and ii) a spike during the glucose flush for all patients. This
drug spike had an effect on the time of maximum concentration tmax of the free Pt
by shifting the time by up to 6 h. The model underestimated the free platinum peak
concentrations after the glucose flush for the patients with the most significant rise
in concentration, that are patients 2, 3 and 7.

To test the validity of the PDE-based pump-to-patient model, I compared the
goodness of this fit with that of the PK model with drug infusion rate equal to the
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Patient
Parameter Values

Ccptl/o
Ccptb

Csnl
& Csno/2 Vmax kb,l kb,o

(ml/h) (ml/h) (ml/h) (ml/h) (ml/h) (ml/h)

1 2.592e3 4.883e3 2.545e4 1.500e4 1.159e3 6.012e4
2 1.874e3 2.233e3 9.471e3 8.322e3 5.982e2 6.369e4
3 4.276e3 6.879e3 1.558e4 1.935e4 1.208e3 1.092e5
4 4.138e3 6.715e3 2.873e4 4.276e4 2.172e3 1.138e8
5 3.812e3 8.143e-1 3.900e3 6.665e3 1.430e3 6.813e4
6 2.483e3 9.758e3 3.657e4 2.654e4 1.370e3 8.997e7
7 2.876e3 5.202e3 2.592e4 2.100e4 1.170e3 1.092e5
8 1.777e3 4.386e3 1.105e4 1.206e4 3.157e2 3.524e4
9 8.231e2 4.928e3 1.137e4 9.328e3 2.054e2 3.722e4
10 2.326e3 2.547e3 5.431e3 6.452e3 9.495e2 6.315e4
11 1.799e3 1.675e4 2.818e4 2.234e4 1.414e3 1.166e8

Mean 2.6164e3 5.8446e3 1.8334e4 1.7258e4 1.0905e3 2.918e7
CV 42.4 77.9 61.3 64.5 52.6 176.3

Table 3.3 Individual Parameter Estimates of irinotecan PK model

Patient Model SSR
Original profile PDE profile Improvement (%)

1 16.53 19.12 -15.6
2 140.17 145.69 -3.9
3 88.47 97.28 -9.9
4 171.51 150.32 12.3
5 480.52 417.51 13.1
6 93.84 83.01 11.5
7 15.35 13.36 12.9
8 10.30 10.18 1.1
9 45.73 38.79 15.1
10 74.23 73.48 1.0
11 96.76 81.2 15.9

Mean improvement 4.89
Table 3.4 Sum of Square Residuals (SSR) for the irinotecan PK model, with
either the original delivery profile, or that simulated through the PDE pump-
to-patient model. The table also shows improvement in percentages for most
patients and an overall average improvement.

infusion profile programmed in to the pump. Using the PDE to account for the
properties of the system largely increased the model validity (Table 3.7, 3.8). The
model was also fitted to the total data for one parameter set and then compared
between using the intended delivery and the PDE derived delivery profile, this showed
and increase quality of fit form a SSR of 0.0033 to 0.0026 and a R2 of 0.83 to 0.87,
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Patient Model R2

Original profile PDE profile Improvement (%)
1 1 0.99 -1
2 0.98 0.99 1
3 1 0.99 -1
4 0.93 0.94 1
5 0.93 0.94 1
6 0.96 0.97 1
7 0.1 0.99 -1
8 0.99 1 1
9 0.97 0.98 1
10 0.99 0.99 0
11 0.96 0.96 0

Mean improvement 0.27
Table 3.5 R2 values for irinotecan model, with either the original delivery profile,
or that simulated through the PDE pump-to-patient model. The table also
shows improvement in percentages for each patient and average improvement
for all patients.

which is an improvement of 22% in SSR and 3.9% in R2. Pooled data agree with the
improved fit our PDE model as the drug input but showed a worse fit to data.

Patient
Parameter Values

Cb kb,l kb,o b u
(ml/h) (ml/h) (ml/h) (ml/h) (ml/h)

1 1.780e4 2.198e4 9.447e3 1.059e4 4.644e2
2 1.198e4 6.784e4 6.635e3 4.202e3 1.806e2
3 9.812e3 1.049e6 5.011e3 4.312e3 2.629e2
4 8.418e3 1.544e4 4.008e3 5.485e3 7.080e2
5 6.104e3 9.188e3 4.323e3 5.918e3 5.481e2
6 1.380e4 4.303e3 9.096e3 7.701e3 7.327e2
7 1.185e4 7.017e7 7.655e3 3.689e3 1.899e2
8 7.322e3 2.601e3 5.951e3 8.886e3 1.070e3
9 4.292e3 3.931e3 2.316e3 4.094e3 6.873e2
10 9.102e3 6.526e3 6.382e3 7.053e3 5.926e2

Mean 1.0050e4 7.1356e6 6.0829e3 6.194e3 5.4370e2
CV 40.36 318.2 38.1 38.4 52.8
Table 3.6 Parameter Estimates of oxaliplatin PK model

The 5-fluorouracil model showed a very good fit to data, despite a slight systematic
under-estimation of the third data point in time. Model fit was assessed through
Sum of Squared Residuals (SSR) (Table 3.10) and R2 values (Table 3.11). To test the
validity of the pump-to-patient model, I compared the goodness of this fit with that
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Fig. 3.11 Patient data best-fit of oxaliplatin PK model. Each subplot is an
individual patient data fit to the model independently. (a) shows plasma
ultrafiltrate platinum concentrations, and (b) shows plasma total platinum
concentrations. PK data for Patient 11 were missing.

of the PK model with drug infusion rate equal to the infusion profile programmed
in to the pump. Using the PDE to account for the properties of the system largely
increased the model validity (Table 3.10, 3.11). The model was also fitted to the
total data for one parameter set and then compared between using the intended
delivery and the PDE derived delivery profile, this showed and increase quality of fit
form a SSR of 2.6e-5 to 2.5e-6 and a R2 of 0.44 to 0.47, which is an improvement
of 3% for SSR and 6.7% for R2. Pooled data agree with the improved fit our PDE
model as the drug input but showed a worse fit to data.
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Patient Model SSR
Original profile PDE profile Improvement (%)

1 96.31 62.32 35.28
2 112.60 84.71 24.76
3 315.69 168.27 46.69
4 45.50 7.0 84.48
5 64.51 48.86 24.25
6 19.20 8.38 56.31
7 864.37 483.18 44.10
8 9.90 5.16 47.87
9 105.80 73.48 30.55
10 35.93 21.62 39.83

Mean improvement 43.4
Table 3.7 Sum of Square Residuals (SSR) for oxaliplatin model, with original
delivery profile, and oxaliplatin model with the PDE simulated delivery profile.
The table also shows improvement in percentages for each patient and average
(mean) improvement for all patients.

Patient Model R2

Original profile PDE profile Improvement (%)
1 0.94 0.96 2.3
2 0.94 0.97 2.5
3 0.91 0.93 1.6
4 0.97 0.99 2.6
5 0.97 0.98 1.0
6 0.96 0.98 1.8
7 0.64 0.78 21.6
8 0.91 0.93 1.6
9 0.96 0.97 1.6
10 0.96 0.98 1.4

Mean improvement 3.9
Table 3.8 R2 values for oxaliplatin model, with original delivery profile, and
oxaliplatin model with the PDE simulated delivery profile. The table also shows
improvement in percentages for each patient and average (mean) improvement
for all patients. The much larger improvement in patient 7’s R2 value is because
this patient shows the largest spike at the end of delivery and incorporating
this into the delivery profile vastly improves the fit.

The model predicted that the glucose flush induced a late spike in plasma drug
concentration which could not be seen in the data for all patients, probably because
blood sampling frequency was not high enough (Fig 3.12). This model-predicted
spike in 5-fluorouracil concentration changed the tmax value for Patients 5, 6 and 9.
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The predicted spike AUC was equal to approximately 5% of the total AUC which was
in agreement with the pump-to-patient model prediction. This was only calculable
for 5-fluorouracil since its elimination was fast enough for its concentration to be
close to zero by the time the glucose flush began.
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Fig. 3.12 Patient data best-fit of 5-fluorouracil PK model. Each subplot is an
individual patient data fit to the model independently. PK data for Patient 6
and 11 were missing.

Patient Parameter value
Cl, Co (ml/h) Cb (ml/h) Efo/l, Upo/l (ml/h)

1 132384 84801 21.09
2 118360 46116 6540
3 125355 70614 38.89
4 334605 181219 86.54
5 349150 86562 2.682e+05
6 888311 221789 1.048e+06
7 131285 98929 23.68
8 523901 130879 1.618e+06
9 117557 36451 58.18

Mean 302323 106373 326127
CV 84.18 56.0 176.79

Table 3.9 Parameter Estimates of 5-fluorouracil PK model
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Patient Model R2

Original profile PDE profile Improvement (%)
1 241.2 186.5 22.6
2 131.1 48.7 62.9
3 640.4 554.3 13.4
4 84.4 80.4 4.7
5 604.3 861.2 -42.5
6 57.6 57.5 0.01
7 306.8 256.6 16.3
8 308.2 294.2 4.5
9 1556.8 1076.4 30.8

Mean improvement 12.5
Table 3.10 Sum of Square Residuals (SSR) for 5-fluorouracil model, with
original delivery profile, and 5-fluorouracil model with the PDE simulated
delivery profile. The table also shows improvement in percentages for each
patient and average (mean) improvement for all patients.

Patient Model R2

Original profile PDE profile Improvement (%)
1 0.79 0.84 6.3
2 0.96 0.99 3.1
3 0.73 0.77 5.5
4 0.85 0.86 1.2
5 0.69 0.55 -20.0
6 0.86 0.86 0.0
7 0.75 0.79 5.3
8 0.64 0.65 1.5
9 0.83 0.88 6.0

Mean improvement 49.5
Table 3.11 R2 values for 5-fluorouracil model, with original delivery profile,
and 5-fluorouracil model with the PDE simulated delivery profile. The table
also shows improvement in percentages for each patient and average (mean)
improvement for all patients.

The model fit to each individual patient PK data allowed an investigation of the
inter-patient variability in the resulting PK parameters (Fig 3.16 A, B, C). The CV
of each PK parameter was calculated among the patient population (see SI). Then,
the mean CVs for the entire parameter set of each drug model were calculated as
a single measure of inter-patient variability. Irinotecan had the smallest mean CV
with a value of 79.18%, and a range from 42.48 to 176.25%. Oxaliplatin had the
second smallest value of mean CV, 97.56%, with the largest range from 38.1 - 318.2%.
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5-fluorouracil had the largest mean CV at 112.10%, with the smallest range from
59.4 to 187.51%. In all three models the parameters which showed the largest inter-
patient variability were transport parameters specifically, for irinotecan Blood-Organ
transport, for oxaliplatin Blood-Liver Transport and Blood-Liver/Organ transport
for 5-fluorouracil.

For each drug model, individual patient parameter sets were then utilised to
identify patient clusters. The numbers of clusters were determined by minimising
the validity index of Fukuyama and Sugeno VF S as described in [207]. Clustering
for different numbers of clusters and their respective VF S can be seen in the (Figs.
3.13, 3.14, 3.15). For irinotecan, the minimum value of VF S was achieved for four
clusters. One cluster was composed of Patients 1, 2, 3, 5, 7, 8, 9 and 10, the other
three patients were in a cluster on their own. The analysis for oxaliplatin concluded
to two clusters, a cluster of only one patient, patient 7, and the rest of the patients
being clustered together. The analysis for 5-fluorouracil revealed four clusters: 5
patients were grouped in the largest cluster (Patients 1, 2, 3, 7, and 10), two patients
in the second cluster (Patients 4, 5) and the final two patients were in clusters on
their own. Only patients 1, 3 and 10 were consistently clustered together for all three
drugs.

Once the patient PK parameters had been clustered, the mean of the parameter
CVs was reassessed for each cluster with 2 or more patients within. Irinotecan mean
CV in the largest cluster was 51.52%, which represented a large decrease compared
to the mean CV for the entire patient population equal to 79.18%. The oxaliplatin
main cluster which was constituted of all patient but patient 7 had a mean CV of
87.37% as compared to 97.56% for the entire population. 5-fluorouracil’s largest
cluster had a CV of 32.37% and the smaller cluster had a CV of 72.87%, which
corresponded to a drastic decrease of inter-patient variability as the population mean
CV was equal to 112.10%. All other clusters for each drug had only a single patient
and therefore the CV could not be assessed. Clustering was compared to covariates
of patients, such as gender, age and gene polymorphism, to see if there was any
correlation however none was found.
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Fig. 3.13 Patient parameter clustering analysis for Irinotecan. (a) 2D visualisa-
tion of patient clusters for different number of clusters. Centroids (stars) and
patients (dots) are shown, (b) VF S values for different numbers of clusters.

3.4 Discussion
Precision and personalised medicine requires accurate technologies for drug ad-
ministration and proper systems pharmacology approaches for individual patient
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Fig. 3.14 Patient parameter clustering analysis for oxaliplatin. (a) 2D visualisa-
tion of patient clusters for different number of clusters. Centroids (stars) and
patients (dots) are shown, (b) VF S values for different numbers of clusters.

multidimensional data analysis. Here, plasma PK data of the OPTILIV trial in which
patients received irinotecan, oxaliplatin and 5-fluorouracil through a chronomodulated
schedule delivered by an infusion pump into the hepatic artery were mathematically
analysed. To allow for an accurate analysis of PK patient data, a model of the
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Fig. 3.15 Patient parameter clustering analysis for 5-fluorouracil. (a) 2D
visualisation of patient clusters for different number of clusters. Centroids
(stars) and patients (dots) are shown, (b) VF S values for different numbers of
clusters.

pump drug delivery was successfully designed and connected to semi-mechanistic PK
models. Although no data were available to directly validate the model-predicted
drug infusion rates, the overall framework achieved a very good fit to individual
time-concentration profiles which showed model accuracy. The validity of the ap-
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Fig. 3.16 Inter-patient variability in drug PK parameters. The first line shows
parameter variability across the considered patient population for irinotecan
(A), oxaliplatin (B) and 5-fluorouracil (C), the colour and symbols represent
the clusters each parameter set belongs to. The parameters are named with
reference to the schematics of the models, the subscripts refer to the blood (b),
organs (o) and liver (l). In the irinotecan parameters, additional subscripts
cpt and sn refer to irinotecan and SN38 respectively. The second line shows
multidimensional scaling representation of patient clustering based on their
PK parameters for irinotecan (D), oxaliplatin (E) and 5-fluorouracil (F), the x
refer to the cluster centroids and the points refer to patient PK parameters
projected onto 2D plot.

proach was further demonstrated by the modestly improved data fit using the PDE
model’s explicit solution connected to PK models compared to PK models directly
integrating infusion profiles that were programmed into the pump (see SI). This
study gave insights into inter-patient variability and paved the path to treatment
optimisation.

The simulations for the pump-to-patient model showed and quantified a delay
between the actual start of the pump and the time when the drug appeared in
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the patient blood which was due to the delay needed for the drug solution to fill
up the infusion tube and eventually reach the patient. A validation of this model
prediction could be seen directly in the data as 5-fluorouracil and oxaliplatin plasma
concentrations were close to zero for the first two measurement times. The length
of this delay depends on both the drug solution concentration and the volume of
the infusion tube, so that its importance was high for oxaliplatin, intermediate
for 5-fluorouracil and minor for irinotecan. Temporal accuracy is key for precision
medicine especially in the context of chronotherapy and chronomodulated drug
delivery. Thus, the programming of any drug administration devices need to account
for these delays. The pump-to-patient model that I present here allows to adaption
to any infusion scheme for any drug administration devices in order to properly
administer the treatment schedules initially intended by the oncologists.

In addition to such “pump-to-body” delay, the increase in free Pt concentration
near 22:00 shown in the PK data was explained by a spike in oxaliplatin delivery
resulting from the glucose rinse flushing out the residual oxaliplatin left within the
infusion tube. This phenomenon was well captured and quantified by the oxaliplatin
PK model which predicted that the quantity of drug delivered in the final spike was
equal to 10.7% of the total dose. The model also showed that the tmax of oxaliplatin
plasma concentration was shifted by several hours due to this delivery profile spike.
In silico simulations also predicted that the glucose flush would alter the PK of
5-fluorouracil. The spike only accounted for a small amount of 5-fluorouracil dose
of 5.36% and may not have caused any significant detrimental effect. More data
points covering the time of unexpected drug administration due to the glucose flush
would have further validated the model which already achieved a very good fit to
the available data points. However, free oxaliplatin plasma concentration displayed
complex patterns with high values at the start of the glucose flush for patients 1, 2,
3 and 7 which left no doubt on the large impact of the glucose flush on oxaliplatin
administration. Similarly, unexpectedly high plasma concentrations of 5-fluorouracil
were observed at the start of the glucose flush for patient 5 and 9 which partially
validated the model. The delivery spike due to the glucose rinse did not seem to
have influenced the plasma concentration profile of irinotecan because the drug
concentration in the solution was much lower and the flow rate programmed into the
pump was much higher as compared to oxaliplatin and 5-fluorouracil administration.
Indeed, the spike only accounted for less than 2% of the total dose of irinotecan.

The pump-to-patient model further showed that these inconsistencies between
the simulated and intended drug administration could be overcome with a simple and
easily constructed adaptation of the infusion profiles, given the specific dimensions
of the infusion tube. The new profile showed a much better match with the original
intended administration profile.
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Several published clinical studies propose mathematical models of the PK of
5-fluorouracil, oxaliplatin or irinotecan with various levels of complexity. First, a
physiologically-based PK model of capecitabine, a pro-drug of 5-fluorouracil, was
designed for humans [203]. However, the data available in the OPTILIV study
would not allow for estimating parameters of such a detailed model. Next, numerous
clinical studies have performed compartmental analysis of plasma PK data from
cancer patients receiving either 5-fluorouracil, oxaliplatin or irinotecan [208]. These
models were designed for intravenous injection and could not be readily used for
intra-arterial hepatic administration, this also meant that comparison of parameter
values was limited between our model and the literature. Thus, the development of
new semi-physiological PK models was necessary to include the drug delivery site as a
separate compartment, that was different from the Blood compartment for which data
were provided. This meant that it was difficult to compare parameter values from
the literature to the parameter values obtained in our analysis. The parameter values
we obtain were very large with some having large confidence intervals but apart from
via quality of fit to data there was no way to assess biological relevance of these vales
which is a limitation of this model and the data set. The intention was also to develop
more physiologically-relevant models in view of future account of circadian rhythms
and chronotherapy optimisation investigations. Indeed, the developed models are
called semi-physiological as the compartment volumes together with relative fractions
of clearance routes were inferred from the literature. The quantity of data available for
this study limited the models to being semi-physiological in nature. However, these
models could be further extended to physiologically-based models, with increased
data sets, by detailing the “Organs” compartment and be connected to mechanistic
PD models to represent organ-specific drug PK-PD. Furthermore, the current models
do not account for any circadian rhythms although they may largely impact on
drug PK-PD. Thus, new circadian clinical studies are needed to improve the models
towards drug chrono-administration optimisation.

Inter-patient differences in maximum plasma drug concentrations and in the time
at which it occurred led us to further investigate variability in between subjects.
Although there is only a small sample size in this study the methods used could be
easily applied to larger data sets and can still give useful information on this data
set. Irinotecan showed the lowest mean variability. Clustering analysis indicated
that patients could be classified into five clusters with respect to irinotecan PK
parameters. The second largest inter-patient variability was found for 5-fluorouracil.
Clustering for 5-fluorouracil showed there were four clusters. Regarding oxaliplatin,
there was the largest variability between patient’s PK model parameters with all
parameters showing high variance. The fitting process was repeated for each patient
many times to reduce the chance that the large variance was due to finding different
local minimums. Clustering according to oxaliplatin PK parameters split patients
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into two clusters leading to isolation of patient 7. This clustering of the patients
led to a reduced inter-patient variability for all drugs, especially for irinotecan and
5-fluorouracil. This decrease in CVs is not unexpected, but the significant level of
reduction means this method could be used as a way to stratify patients into treatment
groups with less inter-patient variability in PK profiles. The measure of inter-patient
variability could be interpreted as an indicator of the need for personalisation as high
differences between subjects implies high potential benefit of drug administration
personalisation. Here, I demonstrated that the PK of all three considered drugs
displayed important inter-subject variability. The remaining clinical challenge lays in
determining clinical biomarkers for stratifying patients before drug administration,
in order to reach the intended plasma PK levels. In order to do so, patient clusters
were compared to known covariates such as age, gender and gene polymorphisms.
However, none showed significant correlation. I then performed modelling analyses
and identified the PK parameters which were critical for inter-patient variability
for irinotecan, 5-fluorouracil and oxaliplatin which were the transport parameters
between the Blood and either the Liver or the Organs compartments.

Conclusion
In conclusion, a mathematical framework was designed to allow for accurate analysis
of patient PK data. A model of the dynamics of the drug solution from the pump to
the patient’s blood was designed, irrespective of the drug delivery device. It was used
to represent the chronomodulated drug administration though the Mélodie infusion
pump into the patient hepatic artery of irinotecan, oxaliplatin and 5-fluorouracil.
The model revealed significant inconsistencies between the drug profiles programmed
into the pump which corresponded to the drug exposure intended by clinicians and
the actual plasma PK levels. Importantly, it allowed for the design of innovative
drug infusion profiles to be programmed into the pump to precisely achieve the
desired drug delivery into the patient’s blood. Next, the pump-to-patient model was
connected to semi-physiological models of the PK of irinotecan, oxaliplatin and 5-
fluorouracil. The overall framework achieved a very good fit to data and gave insights
into inter-patient variability in the PK of each drug. Potential clinical biomarkers for
treatment personalisation were suggested although further investigations in larger
cohorts of patients are required. Overall, this complete framework informs on drug
delivery dynamics and patient-specific PK of irinotecan, oxaliplatin and 5-fluorouracil
towards precise and personalised administration of these drugs.
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Chapter 4

Physiologically-based modelling
of oxaliplatin pharmacokinetics
based on preclinical studies

4.1 Motivation
The motivation behind this chapter came from available experimental and clinical
evidence of sex-related differences in tolerability and optimal timing of oxaliplatin.
Indeed, clinical investigations of the sexual dimorphism in circadian-dependent
tolerance of FOLFOX revealed that the sex was a significant determinant of the drug
schedule tolerability. Optimal times of delivery for men and women could differ by
up to 6 hours [4]. To further investigate this phenomenon at the molecular scale,
oxaliplatin sex-dependent chronotoxicity is studied in mice.

A dose finding experiment was done which demonstrates the sex specific differences
of oxaliplatin treatment. The mice were given a single injection at ZT 7, the most
toxic time for males, and then tracked for 2 weeks to see the survival rate for different
doses. Female mice were more sensitive to oxaliplatin with lethal toxic doses first
evident at 13 mg/kg compared to 19 mg/kg for male mice (Fig 4.1). Body weight
losses were consistent with these survival results (data not shown).

This experiment shows sex dimorphism in response to oxaliplatin treatment. Two
mathematical models have been developed in a multi-scale modelling frame work to
accurately predict oxaliplatin PK/PD and better understand sex dimorphism in a
preclinical setting. The first model is an in vitro model which quantifies how drug-
protein binding occurs in the blood of different species. This model can then be used
as, firstly, a proof of the structure of oxaliplatin dynamics and secondly as the first
step in a multiscale modelling approach for the whole body model. The whole body
model has been designed to give information on the differences in chronotoxicities

75



CHAPTER 4. PBPK MODELLING OF OXALIPLATIN 76

0

25

50

75

100
su

rv
iv

al
 (%

)
dose 13mg/kg dose 16mg/kg

female
male

1 4 7 10 13
days

0

25

50

75

100

su
rv

iv
al

 (%
)

dose 19mg/kg

1 4 7 10 13
days

dose 22mg/kg

Fig. 4.1 Dose finding experiment showing the percentage survival of male and
female mice after different doses of oxaliplatin given at ZT 7, which was chosen
as it was the worst timing for male mice. No deaths were observed for either
sex at lower doses.

between male and female mice. The aim of this model is to be able to inform future
work on sex dimorphisms in human patients by connecting differences in model
parameters with specific measurable processes.

4.2 Oxaliplatin blood PK: an in vitro study in
mice, rats and humans

4.2.1 Introduction
One of the early steps in drug development is animal testing during which 11% of
drugs fail due to unacceptable toxicity levels in animals [209]. However, it is unknown
whether the tolerability problems in animals would translate into humans, since
animal models do not relate very well at all to human results [210]. Even if drugs
make it through the preclinical stages to phase I clinical trials the percentage of
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drugs that make it to approval is only 13.8% [211]. This lack of success has in part
been attributed to the inability to make accurate predictions in humans based on
preclinical animal models [212]. Thus, there exists a need for quality scaling and
extrapolation methods between species.

One method to tackle this problem has been physiologically-based (PB) modelling
and quantitative systems pharmacology (QSP) which has been developing since the
90s. CaSyM [174] and Avicenna [213] European consortia recently recommended
developing systems pharmacology approaches based on physiology, as these methods
do not subdivide living organisms into independent components. Physiologically
based approaches instead recognise that genes, proteins, cells and organs interact
with each other and with the environment in complex ways that can vary over
time. Indeed, anticancer drug toxicity and efficacy are ultimately determined at the
molecular scale by the response of gene and protein networks involved in the drug
pharmacokinetics (PK) and pharmacodynamics (PD) in different cell populations,
healthy or tumour, located in different organs. Hence, theoretical models of whole-
body drug PK-PD and cell type-specific regulatory pathways constitute a reliable
physiological basis from which the drug can be selected for further investigations.
Such detailed molecular and dynamical mathematical modelling further allows for
the direct integration of the patient’s and tumour’s molecular profiles into treatment
decision.

Because the complex molecular physiology of healthy and diseased tissues together
with their temporal organisation are unlikely to be completely assessed directly in
individual cancer patients, multi-scale methodologies integrating in vitro, pre-clinical
and clinical investigations are required [214]. Mathematical models which are not
based on the physiology only allow for allometric animal-to-human scaling typically
using body weight or body surface area. These methods have been proven inaccurate
in part because they do not consider the species-specific metabolic rates and expression
of transporters and intracellular proteins [215]. In contrast, mathematical variables
and parameters of physiologically-based models do have a biological meaning which
is conserved across species [216]. Hence, extrapolation from rodent studies to
clinical investigations is made possible by keeping the model structure and re-sizing
parameters. Current challenges in the field of QSP lie in developing reliable scaling
methods to extrapolate human parameter values from preclinical datasets [217].
Empirical allometric procedures have been used for decades. One of the first papers
to combine the idea of physiological modelling with allometric scaling was Johnson et
al in 1992 [218]. The premise behind allometric scaling is that since many physiological
parameters are a function of the size of an animal, pharmacokinetic parameters may
also be a function of the size [219]. The use of these empirical scaling techniques and
physiological modelling has now become common-place within the pharmaceutical
industry [220, 221]. There have been recent examples of successful translational
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scaling of PBPK models between multiple species [222–224]. However, in 2015
the FDA still deemed the predictive power of PBPK modelling to be inadequately
demonstrated which may be due to deficient inter-species scaling methodologies
[225]. Indeed, a recent study of temozolomide brain disposition demonstrated that
scaling transport parameters from mice to humans using organ volumes was far
from accurate [226]. Thus, as will be shown here, there are still scenarios in which
allometric scaling methods cannot bridge species gaps.

It is known that the binding of cancer metal-drugs with plasma proteins largely
impacts on their pharmacokinetics and antitumour efficacy [227]. Protein binding
has been shown to be of importance for oxaliplatin as only 13-21% of the drug is in an
unbound state 6h after administration in humans [60]. The plasma binding rate for
a given drug is known to vary across species probably as a result of different plasma
proteins present at different relative concentrations in the blood [228]. However, to
our knowledge, scaling methods do not exist to predict drug binding in humans based
on rodent studies. Hence, this study aimed to investigate oxaliplatin binding and
transport in the whole blood of mice, rats and humans, with the aim of being able
to use the information gained from these models to better inform whole-body PBPK
models of oxaliplatin. To this end, an in vitro PK model has been designed to assess
the plasma protein binding of oxaliplatin together with its transport between the
different components of the blood for different species.

4.2.2 Methods and Materials

Data sets

The data sets used in this work are from two species, Wistar male rats and humans.
The rat data were originally presented by Luo et al in “Biotransformations of

oxaliplatin in rat blood in vitro” [7]. The rats were male, 6-8 weeks of age and
approximately 225g of body mass. They had been kept in 12 hour light/dark cycle
at a temperature of 22°C for at least one week prior to the experiment. Animals
were sacrificed and 4.75ml of heparinized blood (250 units heparin/ml) from the rats
was mixed with 0.25ml of oxaliplatin stock solution (400 µg/ml or 1 mM) to obtain
an initial oxaliplatin concentration of 50µM. The mixture was then incubated in
5% CO2 at 37°C for up to 24 hours. Aliquots of 0.5ml were taken at 0, 0.5, 1, 2,
4, 7, 9, 12 and 24 hours after initial mixing. The samples were then analysed for
platinum content in the red blood cells (RBC) and plasma. The platinum in the
plasma and RBC was evaluated as bound platinum and ultra-filtrate platinum (i.e.
unbound fraction). Full details of the exact experimental procedure can be found in
the original article [7].

The human data were taken from the Pendyala et al paper “In Vitro Cytotoxicity,
Protein Binding, Red Blood Cell Partitioning, and Biotransformation of Oxaliplatin”
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[229]. Oxaliplatin was mixed with human whole blood and incubated at 37°C. 1
ml aliquots were taken from the whole blood sample at 0, 1, 2, 3, 4, 5 and 6 hours
post mixing, and analysed for platinum content in the RBC and the plasma, the
platinum in the plasma was evaluated as bound platinum and ultra-filtrate platinum.
Three separate experiments were undertaken for oxaliplatin concentrations of 5, 10
and 20 µg/ml. The results were collated since there was no significant effect of the
initial drug concentration on the percentage of total platinum recovered in each
compartment. Full details of the experiment can be found in the original article
[229].

Mathematical modelling

The in vitro PK models were based on physiologically-based compartmental models
using Ordinary Differential Equations (ODEs) programmed using MATLAB [230]
and solved using ode45 in the standard MATLAB library.

PK model parameter estimation was achieved using a weighted least squares
approach, with the weighting set as the standard deviation of the data from original
papers. The minimisation of the least squares cost function was performed by the
Covariance Matrix adaptation Evolution Strategy (CMAES) within MATLAB [231]
which has been shown to be successful at handling complex cost function landscapes
[166]. Model goodness of fit was assessed using R2 values. PK model parameter
identifiability was assessed using the software DAISY [160], written in REDUCE, for
structural identifiability and likelihood profiles for practical identifiability, following
the procedure outlined in [170].

4.2.3 Results

Model structure

The model for oxaliplatin in vitro blood PK includes two compartments, plasma and
RBC, with each compartment having a bound platinum and free platinum fraction
(Fig. 4.2). The bound platinum was assumed not to be able to move between
compartments. Binding in plasma and RBC was linearly dependent on platinum
concentration within the given compartment, as was unbinding or dissociation.
Unbinding was included since this is the only way equilibria with non-zero values of
unbound platinum could be reached, especially considering that binding saturation
is not seen within the concentration profiles [229]. Binding and unbinding rates
were assumed to be different for plasma and RBC compartments. The transport
between compartments was also assumed to be linear with respect to compartment
concentrations.
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Fig. 4.2 Schematic of in vitro blood binding model.

The model equations are given by:

dPf

dt
= (−kb,p ∗ Pf − kin ∗ Pf + ku,p ∗ Pb + kout ∗ Ef )/Vp (4.1)

dPb

dt
= (kb,p ∗ Pf − ku,p ∗ Pb)/Vp (4.2)

dEf

dt
= (kin ∗ Pf − kout ∗ Ef − kb,e ∗ Ef + ku,e ∗ Eb)/Ve (4.3)

dEb

dt
= (kb,e ∗ Ef − ku,e ∗ Eb)/Ve (4.4)

where P and E refer to plasma and RBC (erythrocytes which is another term for
red blood cells), with subscripts f and b referring to free (ultrafiltrate) and bound
respectively. The model has 9 parameters which are: volumes of plasma and RBC
(Vp, Ve), oxaliplatin binding rates in plasma and RBC (kb,p, kb,r), unbinding rates
(ku,p, ku,r) and transport rates between plasma and RBC cytoplasm (kout, kin). For
the rat data, observations were taken from free platium and total platinum in both
the plasma and the RBC’s, the human data was observed from free and total platinum
in the plasma and total platinum in the RBC’s: for rats

Pf (T ), Ptot(T ) = Pf (T ) + Pb(T ), Ef (T ), (4.5)

Etot(T ) = Ef (T ) + Eb(T ) (4.6)

where T in vector of time points (h)

T = [0, 0.5, 1, 2, 4, 7, 9, 12, 24] (4.7)
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and for humans

Pf (T ), Ptot(T ) = Pf (T ) + Pb(T ), Etot(T ) = Ef (T ) + Eb(T ) (4.8)

where T in vector of time points (h)

T = [0, 1, 2, 3, 4, 5, 6] (4.9)

Initial conditions were set as the total drug unbound in the plasma compartment
and all other compartments were empty.

The volumes were all fixed using parameters from the literature and all other
parameters were shown to be structurally globally identifiable without the need for
initial conditions to be present, using DAISY as described in 2.3.2.

Table 4.1 Volumes of blood compartments fixed for the in vitro model [12].

Organ Volume (ml) Symbol
Plasma 1.0 Vp

RBC 0.71 Vr

1 Total blood minus plasma.

Parameter estimation for Rats and Humans

The model was then fitted to both the rat and human data simultaneously. Parameters
were scaled using allometric measures taken from the literature as follows. The
volumes of plasma (Vp) and RBC (Ve) were calculated from species haematocrit,
which is the ratio of the volume of RBCs to the total volume of blood measured
as a percentage (Table 4.2). Next, the transport rates between compartments were
scaled by the total surface area of RBCs in the blood which was calculated by RBC
count in each species (#RBC) multiplied by the surface area of a single RBC of that
species (SA):

kS
in = Kin × #RBCS × SAS

kout
S = Kout × #RBCS × SAS .

The superscript S denotes the species and is equal to either rats or humans. Ox-
aliplatin binding parameters in the plasma was scaled by the species-specific total
plasma protein concentration and the binding parameter in the RBC was scaled
using Haemoglobin levels since they are the most abundant protein in the RBC and
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have well documented measurements in all analysed species [232]:

kb,p
S = KS

BindPlas × Total plasma proteinS

kb,e
S = KBindE × RBC HaemoglobinS .

Unbinding was considered a passive action and no scaling was applied to these
parameters.

Allometric scaling Species
Rat Human

Total plasma protein (g/dl) 6 7
RBC Haemoglobin (g/dl) 13 15

RBC count (106 cells/mm3) 6.46 5.4
RBC surface area (mm2) 1.04 1.36

Haematocrit (%) 36% 42%
Table 4.2 Physiological parameters used for scaling parameters of the in vitro
oxaliplatin PK model. Rat parameters came from [13] except surface area
which was from [14]. Human parameters came from [15–17, 14, 18].

Using the above equations, parameters were fitted simultaneously to rat and
human datasets by estimating the quantities Kbindplas

, KbindE
, ku,p, ku,r, Kin, and

Kout. However this first model calibration strategy failed to provide a good fit to data,
thus given the assumption that our model is correct purely allometric scaling fails
for this study (Fig. 4.3 and Table. 4.3)). I have not been able to find an equivalent
model within the literature for oxaliplatin so model comparison or validation was
not possible in this way.

Next, to provide a better data fit and understand the species difference between
human and rat PK, only one of the estimated parameters was allowed to be different
with respect to species. The model fitting was run while changing which of the
parameters was estimated directly for each species (Table. 4.3).

The final model kept all parameters scaled to each species except for the plasma
binding parameter since this had higher a R2 value than all other options (Fig.4.4).
The model fit was good with an R2 of 0.96. Model long term behaviour is shown to
not have settled down completely after 24hours is may be a limitation of the model
however no details exist over this time frame so can not be verified. The values and
confidence intervals of all parameters can be seen in Table 4.4 and Fig 4.5. The
final values for binding rates in the plasma for humans was twice as large as that
for rats whereas the maximum difference in protein levels was approximately 1.2
times as large. No other protein level could be found within the literature that could
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Fig. 4.3 Version 1 of the in vitro model where all parameters are kept equal for
both species while being scaled with allometric values.

Parameter fitted by species R2

Rat Human Combined
None 0.9220 0.3994 0.7677

Plasma binding 0.9711 0.9477 0.9641
RBC binding 0.9350 0.8434 0.9080

Unbinding Plasma 0.9385 0.8773 0.9204
Unbinding RBC 0.9307 0.8369 0.9031

Uptake 0.9377 0.8440 0.9101
Efflux 0.9363 0.8526 0.9116

Table 4.3 R2 values for the different versions of the model. The first column
describes which parameter was fitted directly to each species. R2 values are
shown for the rat data the human data and the combined data (R2 of model
fit to both data sets simultaneously). Note the fitting process was always done
on the combined data.

replicated this large difference. All parameters were shown to be practically locally
identifiable from these datasets using likelihood profiles (see Fig. 4.5).

Next, the developed scaling method was used to investigate oxaliplatin in vitro
PK in mice, as they are one of the main species utilised in preclinical studies. All
parameters except the plasma binding rate were scaled using allometric equations as
described above. Mouse values were 5.6 g/dl of total plasma protein, 14.2 g/dl of
haemoglobin, cell count of 9.48 million cells/mm3, a haematocrit of 46% [233] and
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Fig. 4.4 Fit of oxaliplatin in vitro PK model to in vitro blood binding data
for rats (A), and humans (B) taken from [7, 8], with plasma protein binding
parameters differing between species. f and b subscripts refer to the free and
bound sections within each compartment.

Symbol Parameter Description Value (ml/h) Confidence interval (ml/h)
kr

bindplas
Plasma binding rat 0.2066 0.198-0.216

kh
bindplas

Plasma binding human 0.4900 0.473-0.508
kbindE

RBC binding 0.6747 0.895-1.860
ku,p Unbinding plasma 0.4093 0.370-0.449
ku,r Unbinding RBC 2.6399 1.891-4.302
Kin RBC uptake 0.2775 0.264-0.290
Kout RBC efflux 0.1919 0.165-0.224

Table 4.4 Best-fit parameters for oxaliplatin in vitro PK model. Confidence
intervals were obtained using likelihood profiles.

a surface area of 0.91 mm2 [14]. The plasma binding rate was assumed to vary in
the interval [0.2, 0.5] which corresponds to the union of the parameter confidence
intervals obtained for rat or human data, this was chosen as no information could be
found on possible variations between mice and humans or rats. Time-concentration
profiles for 10 different values of plasma binding rates are shown in Fig 4.6. The
change in proportion of platinum found in each of the compartments is significant
and can also be seen in the data for rats and humans, with humans having the
majority of platinum in the plasma and the larger plasma binding rate while rats
having the converse.
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4.2.4 Discussion
A physiologically based model of oxaliplatin in vitro PK together with a scaling
method were developed in order to reliably predict the drug transport and binding for
different species. The model obtained a good level of fit (R2=0.96, Table 4.3) to the
rat and human data while only having a single parameter (plasma protein binding)
differ between the two species, all other parameters being scaled using physiological
measurements. The model was also shown to be structurally globally identifiable
and locally practically identifiable. The scaling of the parameters could account for
the variance between the drug PK in the two different species. In order to keep
parameter overlap at a maximum and increase translational potential, only single
parameter changes were investigated. Model fits may be improved if more parameters
were fitted for each species but this would also be counter productive for the purpose
of the model and has therefore not been investigated in this work. The parameter
which was changed in order to provide the best fit was binding of platinum in plasma
proteins. No allometric scaling related to the concentration of the most abundant
proteins in the plasma could be found to explain the large difference in binding rates
between the two species (albumin, globulin, total protein etc) and binding in the
plasma is predominantly to albumin [60]. The molecular weight of albumin was also
investigated as a potential scaling method, however this could not account for such a
large difference in binding rates of the two species either. The affinity of oxaliplatin
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Fig. 4.6 Output of oxaliplatin in vitro PK model calibrated for mice, with
plasma binding parameter varied between 0.2 (orange) and 0.5 (black), with a
set size of 0.03.

binding to most abundant proteins in the blood should therefore be investigated
in order to create a better scaling method, which could then be used to create a
translational model of oxaliplatin.

With a model that can now accurately predict oxaliplatin in vitro PK for humans
and rats, an example of potential dynamics was shown for mice. Varying the plasma
binding rate has an impact on the percentage of the dose that is recovered from each
compartment (Fig 4.6). In particular the change in binding has a large impact on
whether the RBC or the plasma has the majority of the total dose. This shows that
for this model to be used for another species, quantitative information on the binding
affinity of oxaliplatin with the different plasma proteins in each species would be
required. This study clearly demonstrates that in order to create translational PBPK
models, details on the exact reactions and interactions of drugs at the cellular level
need to be incorporated in the inter-species scaling. This model can now be used to
give smaller search ranges based on confidence intervals for parameters in a larger
more complex whole body PBPK models.

The model of oxaliplatin in vitro PK in the whole blood and the developed scaling
method can be used in the design of a whole body model of oxaliplatin PK. The in
vitro model will be used as the blood compartments of the whole body model. The
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parameters of binding/unbinding and RBC transport can now be used directly to
reduce the number of unknown parameters in the whole body model. This multi-scale
method of fitting models is very important for creating identifiable models that can
describe the complex drug PK at the level of a whole organism [155].

4.2.5 Future Work
To verify the quality of this model and its ability to scale between species, in vitro
data of Pt PK in mouse whole blood will be incorporated into the model. The data
will be from an experiment which is currently running at INSERM U935 (Villejuif,
France). The data will be as close to the available experimental datasets in rat and
human blood as possible and will consist of PK longitudinal measurements of bound
and free platinum amounts in the plasma and RBC.

In order to verify the model, all parameters will be kept the same except the
plasma binding. Each of the allometric scaling values will be updated with the mouse
equivalent. The plasma binding parameter will then be fit to the new data using the
CMAES algorithm and a least squares cost function. Achieving a good fit to the new
data will show that this method can be used as a basis for predicting species-specific
oxaliplatin PK and corresponding parameter values.

4.3 Physiologically based whole body model
of oxaliplatin pharmacokinetics: A frame-
work to explore sex dimorphism in circa-
dian toxicity

4.3.1 Introduction
Standardised guidelines for medical treatment have been the status quo for many
years, however recently the idea of personalised medicine has begun to gain traction
with the UK and USA bringing in strategies and initiatives to develop methods to
replace the “one size fits all” approach [22]. Personalised medicine can be broken
down into different levels of personalisation, from stratification, which is reducing
population to smaller biologically relevant groupings, to precision, which is designing
treatment to the exact biology of an individual patient. Each level can lead to
improved outcomes, however, each level of personalisation also comes at a cost,
and this cost needs to be balanced with the benefits of the personalisation [234].
Therefore methods need to be designed with a simple stratification or test that will
still bring benefits to patients.
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One of the possible types of personalisation is chronotherapy, which is giving
treatment relative to a patient’s circadian clock. The benefit of giving treatments
relative to optimal circadian timings has been shown in both preclinical and clinical
settings [1, 2, 235] although it is still not broadly applied in medical practice [32].
One of the problems that is limiting the use of chronotherapy is the lack of reliable,
inexpensive and noninvasive measurement methods of key circadian rhythms [32].
Initial and promising work has been done, by multiple groups to try and build such
methods [135, 236, 237]. If the connection between important pathways relating to
the PK of a drug can be linked to specific circadian biomarkers this could vastly
improve the personalisation of chronotherapy.

An intuitive method of stratification within the human population is by sex.
It has been evident, for a number of years, that there is a sexual dimorphism in
human disease, drug pharmacokinetics (PK) and pharmacodynamics (PD), and in
the circadian timing system (CTS) [238–240]. The sex specific difference in efficacy
of chronotherapy treatment has been demonstrated in mice for irinotecan [3] and
more recently in humans [5]. In fact the recent clinical trial from Levi et al suggests
that the optimal timing of irinotecan for females is between 4-7 hours later than
males, and when taken at its optimal timing can reduce the chance of high grade
toxicities significantly [5]. These findings motivated the exploration of whether similar
phenomena exists for oxaliplatin. It has already been shown that oxaliplatin has
circadian influences on PK and initial unpublished results have shown that there is
also a sex specific difference in both timing and maximum tolerated dose. It is now
important to understand what drives circadian differences in PK/PD effects and sex
specific timings.

In order to build the required understanding a mathematical framework has been
developed. This framework draws upon mathematical tools to develop models in
order to simulate the pharmacokinetic profiles. Since the data will be from mice, the
data can come from a large range of organs and therefore allow the use of whole body
models. Whole body pharmacokinetic models (WBPK) or physiologically based
pharmacokinetic models (PBPK) aim to be a physiologically realistic representation
of the body with parameters taking on biological meaning [241]. Although there is
no concrete definition of either WBPK or PBPK they are usually related to whether
the overall structure has been developed based on physiological structure and before
the fitting stage has taken place, rather than being determined by the best fit to
data [242]. The use of this type of model can help inform biologists and clinicians
which parameters have the largest influence on different features of treatment and
can give the opportunity to find specific biomarkers to link between pathways and
treatment outcomes.
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4.3.2 Model Design
A whole body pharmacokinetic (WBPK) model has been developed in order to
understand the cause of circadian differences in PK levels of oxaliplatin observed
within data. This WBPK model of oxaliplatin takes into account the most significant
physiological compartments, with regard to desired clinical effect, toxicity and clinical
measurement sites.

The blood is an important compartment to model as it will be the main connecting
compartment for the whole model, the site for delivery of the initial dose of oxaliplatin
and is also the main site of clinical measurements of PK data in humans. Blood
is split into two sub-compartments, plasma and red blood cells (RBC). This is to
capture the dynamics, demonstrated in section 4.2, of oxaliplatin moving into the
RBCs and no longer being able to move to other compartments. Within the blood
sub-compartments, plasma and the RBC, binding to proteins can also occur. This
is key to the dynamics since if oxaliplatin is bound to proteins it is assumed to be
unable to move between compartments. Oxaliplatin can however unbind from these
proteins and become free to move between compartments again. This behaviour of
binding and unbinding to proteins is considered in all compartments within the model.
Alongside this blood is considered to be the main route of clearance representing
the renal clearance pathway, which accounts for 60% of total drug clearance after 24
hours within humans [60], this is used in the absence of available data for mice.

The organ compartments are: jejunum, liver and non-eliminating tissue (NET).
The jejunum has been included into the model since one of the toxicities often
observed with oxaliplatin is gastrointestinal i.e. nausea, vomiting and diarrhoea.
The jejunum is also a clearance pathway from the body accounting for clearance
of approximately 5% of the total delivered dose in humans [60], this is used in the
absence of available data for mice. The liver is one of the main targets of oxaliplatin
when used in colorectal cancer, since colorectal cancer metastasises to the liver [243]
and is therefore of particular clinical significance. The final compartment included in
the model is the NET. The NET is an aggregate of all tissues which oxaliplatin is
likely to move between but no significant evidence of its effect can be found and no
clearance can be achieved. The model schematic summarises the WBPK model (Fig.
4.7).

The model equations have been developed using the mathematical tools described
in Section 2.1 and can be seen in equations 4.11[a-k]. Circadian oscillations were
added to clearance from both the blood and the jejunum, as well as the transport
parameters to liver and to the jejunum from the plasma and the binding in the red
blood cells. This oscillation took the form of:(

1 + A × cos[2π

24 (t − ϕ)]
)

(4.10)
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Plasmaf
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RBCf RBCb

Jejunumf Jejunumb

Liverf Liverb

NETfNETb

Input f(t)

Clearance

Fig. 4.7 Schematic of whole body pharmacokinetics model of oxaliplatin in mice.
Red compartments are blood compartments, yellow represent the different
tissues of interest and blue is the NET compartment for which we have no data
since it consists of a large range of different tissues. The red arrows represent
clearance from the system.

where A is the amplitude of the oscillations relative to the mean and ϕ is the time of
the peak [244]. It is known that the clearance for both the blood and jejunum are
likely to have their phase during the dark phase (since mice are nocturnal) [245, 246]
so the phase will be restricted to the dark ZT i.e. 12-24 hours. The parameter names
and description can be seen in table 4.5.
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dPf

dt
= (f(t) + k(l,p)Lf + k(n,p)Nf + k(r,p)Rf + kunbindPb

− (k(p,l) + k(p,n) + k(p,r) + +k(p,j) + k(bind,p) + Cblood)Pf )/Vp (4.11a)
dPb

dt
= (k(bind,p)Pf − kunbindPb)/Vp (4.11b)

dRf

dt
= (k(p,r)Pf + kunbind,eRb − (k(r,p) + k(bind,r))Rf )/Vr (4.11c)

dRb

dt
= (k(bind,r)Rf − kunbind,eRb)/Vr (4.11d)

dNf

dt
= (k(p,n)Pf + kunbindNb − (k(n,p) + k(bind,n))Nf )/Vn (4.11e)

dNb

dt
= (k(bind,n)Nf − kunbindNb)/Vn (4.11f)

dLf

dt
= (k(p,l)Pf + kunbindLb + k(j,l)Jf − (k(l,p) + k(bind,l))Lf )/Vl (4.11g)

dLb

dt
= (k(bind,l)Lf − kunbindLb)/Vl (4.11h)

dJf

dt
= (k(p,j)Pf + k(c,j)Cf + kunbindJb − (k(j,l) + k(bind,j)

+ CJej)Jf )/Vj (4.11i)
dJb

dt
= (k(bind,j)Jf − kunbindJb)/Vj (4.11j)

(4.11k)

Observations for the data will be taken from the plasma, RBC, liver and jejunum as
both free and total platinum.

Pf (T ), Ptot(T ) = Pf (T ) + Pb(T ), (4.12)

Rf (T ), Rtot(T ) = Rf (T ) + Rb(T ), (4.13)

Lf (T ), Ltot(T ) = Lf (T ) + Lb(T ), (4.14)

Jf (T ), Jtot(T ) = Jf (T ) + Jb(T ) (4.15)

where T in vector of time points (h)

T = [0.1667, 0.6667, 6, 24, 48, 72] (4.16)

The input was considered as an initial condition, taken to be the total total dose and
only present in the plasmaf compartment, all other compartments were considered
empty. All compartmental volumes have been taken directly from literature.

Alongside the PK model there is also a PD model for the key area of toxicology,
jejunum. The model is based on the Hill function discussed in section 2.1 and
describes cell death due to drug concentration in the compartment. This process
could be modelled in multiple ways depending on what the data require. The drug
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effect could be considered as an inhibition of the production of cells (equation 4.17),
or a stimulation of cell death (equation 4.18).

dR

dt
= kin

(
1 − EmaxCn

Cn + ECn
50,j

)
− kout (4.17)

dR

dt
= kin − kout

(
1 + EmaxCn

Cn + ECn
50,j

)
(4.18)

where Emax is the maximum effect of the drug, EC50 is the concentration in
which the drug is at 50% maximum effect, kin is production of new cells and a
constant, kout is natural cell death which is also constant, C is the concentrations of
drug in the specific compartment and R is the response which in our case is the cell
count in the effected tissue. The Emax parameter may also be considered circadian
and becomes:

Emax = emax

(
1 + A cos[2π

24 (ϕ − t)]
)

.

Parameter description Parameter symbol
Transport from plasma to NET k(p,n)

Transport from plasma to red blood cells (RBC) k(p,r)
Transport from plasma to liver k(p,l)

Transport from plasma to jejunum k(p,j)
Transport from NET to plasma k(n,p)
Transport from RBC to plasma k(r,p)
Transport from liver to plasma k(l,p)
Transport from jejunum to liver k(j,l)

Unbinding of oxaliplatin from proteins
in tissues and plasma k(unbind)

Unbinding of oxaliplatin from proteins in RBC k(unbind,e)
Binding in the plasma compartment k(bind,p)
Binding in the NET compartment k(bind,n)
Binding in the RBC compartment k(bind,r)
Binding in the liver compartment k(bind,l)

Binding in the Jejunum compartment k(bind,j)
Clearance from Blood compartment Cblood

Clearance from Jejunum compartment Cjej

Table 4.5 Descriptions of parameters and the symbols used within the whole
body pharmacokinetic model. The parameters units are ml/h.
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The parameters in Table 4.5 will be fitted using CMAES and least squares
methods discussed in section 2.2, except the parameters taken from the in vitro
model. These are transport to and from RBC and the binding and unbinding in
the RBC, as well as unbinding in plasma. The additional coefficients representing
physiological values are taken from Brown et al [12], which gives a comprehensive
list of physiological parameters and conversion methods for scaling between mass
and volume, see Tables 4.6 and 4.7.

Table 4.6 Composition of NET and conversion from weight to volume. Relative
weights of each organ and conversion to volume [12].

Organ % of body weight Conversion (g:ml) Volume (ml)
Muscle 38.4 1:1 9.5
Skin 16.53 1:1.4519 6

Adipose tissue 6.84 1:2.1427 3.664

Table 4.7 Relative weights of each organ and conversion to volume [12].

Organ % of body weight Conversion (g:ml) Volume (ml)
Bone Marrow 5.8 1:1 1.48

Liver 5.49 1:1 1.37
Jejunum 2.51 1:1 0.625

NET Shown above n/a 19.164
1 Total small intestine

4.3.3 Model fitting to published data
In order to give a proof of concept for the model, existing data were taken from
two papers by Boughattas et al from 1989 and 1994 [2, 8]. The first data set was a
single time point 24h post injection of oxaliplatin 17mg/kg. The data were mean
values of four repeats for tissue concentration of platinum from three different times
of injection (Halo, after light, 0, 8 and 16). The tissues data used in the fitting
came from liver, RBC and jejunum but only at a single time point as data at any
great level of detail are impractical in humans. The second data set consisted of
6 time points for mean concentration of platinum in RBC and both free and total
platinum in the plasma for 162 male B6D2F1 mice given 17mg/kg of oxaliplatin at
three different times of injection (Halo 0, 8 and 16) although data were combined as
limited differences were observed in the experiments. The data were then combined
into the three delivery times for blood, liver, RBC and jejunum. The data were fitted
using least squares residuals and the CMAES algorithm in Python.

The fit to the published data set is good and, with the addition of circadian
rhythms in relevant transport parameters, shows the model can successfully fit to
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Fig. 4.8 Fit of whole body model to historical data taken from Boughattas et
al 1989 and 1994. The top row shows the fit to blood samples at each different
time of administration. The bottom row shows fit for each different time of
administration in the liver red blood cells (RBC) and the jejunum.

real data. The data are obviously very sparse which would be a problem for practical
identifiability. The inclusion of the circadian parameters was necessary to capture
the significant differences in organs values for different delivery schedules.

4.4 Model identifiability

4.4.1 Structural identifiability
With the level of complexity and biological relevance in our model comes a large
amount of parameters, which opens the model up to the problem of identifiability.
The first step in assessing identifiability was to use the Differential Algebra for
Identifiability of SYstems (DAISY) which is a package written in REDUCE that
determines structural identifiability of models, further details can be found in section
2.3.2. Both the published data and the experimental data that will be available in
the future take samples from each compartment of the model except the NET. The
location of observations was input into DAISY alongside the model equations and
initial conditions, input was considered as an initial condition, and analysed. The
analysis revealed that the model was structurally globally identifiable with out the
need for initial conditions to be included. It is important to note that structurally
identifiable is not the same as practically identifiable. Structurally identifiable only
says that theoretically given the “ideal” data in the indicated compartments the
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model parameters will be identifiable. Practical identifiability is, given the actual
data the parameters are identifiable. This is important since actual data will be
noisy, sparse or both and this can effect the ability to find parameters accurately.
Another limitation of DAISY is that it cannot give any indication on whether our
circadian parameters are identifiable since there is no input of sample times of data.

4.4.2 Practical identifiability
Practical identifability will be evaluated by looking at the sensitivity of the cost
function to the parameter set. Global sensitivity will be produced using Sobol
sensitivity as outlined in Section. 2.3.6. Local sensitivity will be done by finding
the best fit parameters then varying a single parameter at a time and observing the
change in the cost function. Each parameter will be varied between lower and upper
bounds with a thousand points and plotted. Sensitivity is determined by a change in
cost as the parameter is varied. Parameter sensitivity does not guarantee practical
identifiability however it is a necessary condition [172].

Published data

Sobol global sensitivity analysis, as described in section 2.3.6, shows that the model
is most sensitive to transport from liver to plasma, platinum unbinding and clearance
from the blood. It also shows that circadian parameters have negligible effect relative
to the other parameters. This is not unexpected since any effect of the circadian
parameters will be dependant on the transport or binding parameter they influence
i.e. for the equations:

ki,j

(
1 + ki,jA ∗ cos[2π

24 (ki,jϕ
− t)]

)
(4.19)

ki,j would have more of an effect than the amplitude ki,jA or the phase ki,jϕ
(Fig

4.9).
Local analysis shows that the cost function is sensitive to all parameters apart

from blood clearance phase and amplitude (Fig. 4.10). It can be seen from the scales
of the plots the magnitude of the change for the circadian parameters is significantly
lower which agrees with the global sensitivity.

Future experimental data

The synthetic data are created by first using the parameters fitted to the published
data. The output from the model is then reduced to be the same number of time
points and repeats as the experimental data. Multiplicative noise is then introduced
to the data to make the data “realistic”, this is in the form of Gaussian white noise



CHAPTER 4. PBPK MODELLING OF OXALIPLATIN 96

k
(b

in
d

,p
)

C
je

j

C
je

j A

C
je

j ϕ

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

k
(b

in
d
,l
)

k
(b

in
d
,j
)

k
(u

n
b
in

d
)

k
A

(p
,l
)

k
ϕ

(p
,l
)

k
A

(p
,j
)

k
ϕ

(p
,j
)

C
A

b
lo

o
d

C
ϕ

b
lo

o
d

A
k

(b
,r

)

k
(j

,l
)

k
(l

,p
)

k
(p

,j
)

k
(p

,l
)

k
(p

,n
)

Parameter Sensitivity

first order
total

k
(b

in
d

,n
)

C
b
lo

o
d

k
(b

,r
)

k
(u

n
,r

) ϕ
k

(b
,r

)

k
(n

,p
)

Fig. 4.9 Parameter sensitivity to cost function of published data from Boughattas
et al 1989 and 1994 for whole body mouse model.

with mean 1 and standard deviation of 0.1. The cost function is then the least
squares distance of the model from this data.

Global sensitivity was then assessed for these data. The sensitivity showed that
the cost function was most sensitive to transport and binding/unbinding parameters
and presented negligible relative sensitivity for the circadian parameters (Fig. 4.11).

Local sensitivity demonstrates the cost function is sensitive to all parameters
apart circadian parameters for blood clearance and circadian parameters for plasma
to liver transport (Fig. 4.12). The scales show again that the magnitude of effect on
the cost function is significantly lower for circadian parameters.
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from Boughattas et al 1989 and 1994. Each plot shows how cost varies as the
parameter is moved through a range of parameters. The parameters have been
split into groups with respect to their process.

4.4.3 Identifiability conclusion
The model has been shown to be structurally globally identifiable assuming availability
of both the published data and the future experimental data. This is very good and
also a fundamental prerequisite for parameter identifiability [160]. The published
data has a large disparity relative to the impact of the parameters on the cost
function, shown by both the sobol sensitivity and the local sensitivity, which may
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Fig. 4.11 Parameter sensitivity to cost function of the synthetic data for the
whole body mouse model. With parameters ranging across full fitting range
used in the initial parameter fitting to published data from Boughattas et al
1989 and 1994.

impact reliability of fit of some parameters. Since two parameters are not locally
sensitive and others show a monotonically decreasing or increasing change in the
cost function, the model is unlikely to be identifiable for this data set. The lack of
influence of circadian parameters (amplitude and phase) of the clearance from the
blood may be due to the fact that the published data in the blood was taken to be
an aggregate of the three different times of administration. This aggregation was
done as the blood data showed no significant differences between delivery times.

Global sensitivity of the synthetic data showed very similar profiles to the
published data. The local sensitivity analysis showed that for the synthetic data
the blood clearance phase and amplitude were not sensitive, which aligns with the
model fitted to the published data from Bougattas et al. Local sensitivity also shows
that the phase for transport between plasma and the liver has no impact on the cost
function.

Overall, sensitivity analysis shows that the majority of parameters are sensitive
and this is an encouraging sign for model identifiability, but if real data has the same
sensitivity as synthetic data, the model will not be identifiable and some circadian
parameters may need to be informed by the literature, removed from the model or
extra experimental samples observed.

Once the real experimental data are available, sensitivity analysis will be evaluated
on the new data set. To fully evaluate the practical identifiability of the model, the
method of likelihood profiles will be used as for Chapter 3. However, due to the
large number of parameters and the complexity of the model, an optimised way



CHAPTER 4. PBPK MODELLING OF OXALIPLATIN 99

0.0 0.2 0.4 0.6 0.8 1.0

102

103

104
co

st

transport

k(p,n)

k(p,l)

k(p,j )

k(n,p)

k(l,p)

k(j ,l)

Cblood

Cj ej

0.0 0.2 0.4 0.6 0.8 1.0
normalised parameter value

102

103

104

co
st

binding

k(bind,p)

k(bind,n)

k(bind,l)

k(bind,j )

k(unbind)

0.0 0.2 0.4 0.6 0.8 1.0

100

200

co
st

normalised parameter value

circadian phase

kp,lφ
kp,jφ
Cbφ

Cj ejφ

0.0 0.2 0.4 0.6 0.8 1.0

50

100

150

200

co
st

normalised parameter value

circadian amplitude

kp,lA
kp,j A
CbloodA

Cj ej A

k(b,r)A

A

B

C

D

normalised parameter value

k(b,r)φ

Fig. 4.12 Local sensitivity of parameters for cost function on synthetic data.
Each plot shows how cost varies as the parameter is moved through a range of
parameters. The parameters have been split into groups with respect to their
process.

of simulating the likelihood profile method would be required to allow for reduced
simulation time.

4.4.4 Future work
The fitting of the model could be done for males and females separately, using the
CMAES algorithm with the distance from model simulation to data points measured
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by the least squares approach. Once the fit of the model is satisfactory (R2 value
of over 0.95) the residual errors will be assessed using graphical plots. With an
accurate fit to PK in all the compartments, parameter sensitivity analysis can be
evaluated. Sensitivity analysis could also be undertaken on the fixed volumes of
each compartment to see if inter-patient/specimine variation would have a significant
effect on PK outcomes.

The evaluation of sensitivity could be done using the Sobol method discussed
in Section 2.3.6 and local sensitivity in a similar fashion to Section 4.4. Parameters
would first need to be tested for circadian influence on the jejunum PK since this
is where we want the therapeutic effect to take place and where major toxicity is
observed. The parameters would also need to be investigated to see which of the
non-circadian parameters has the greatest effect on concentrations in the organs of
interest. This could be done by looking into sensitivity of a given measurement such
as the area under the curve (AUC) relative to the different parameters.

After characterising parameter influence on overall PK, sex specific differences
in PK and tolerability have been completed, these results would need to be given
biological meaning. To this end, a literature search of proteins and pathways relevant
to the most influential parameters would be undertaken to look for evidence of
circadian rhythms, previous evidence of the influence on oxaliplatin and potential
biomarkers or gene polymorphisms that could impact the efficacy of their processes.
If the search was fruitful then these would be suggested as potential biomarkers for
treatment personalisation.

Another element which will be added to the model is the effects of oxaliplatin on
the bone marrow and haematopoietic system. Bone marrow is the predominant site
of blood cell production (haematopoiesis). Since myelosuppression (decreased bone
marrow activity) is a possible side effect of the regimes which include oxaliplatin,
experiments are currently running at INSERM U935 (Villejuif, France) to evaluate
the effect of oxaliplatin treatment in the bone marrow of mice. In order to add these
details into the model, the NET compartment would need to be separated into the
bone marrow and the rest of NET so as to track the PK. A PD model would also be
added to the bone marrow compartment. The bone marrow PD parameters would be
fitted to the new data using CMAES and least squares residuals. With a successful
fit this could give important information on how to reduce this often dose limiting
side effect of oxaliplatin treatment regimes.



Chapter 5

Conclusion

This PhD thesis aimed to design mathematical models to allow for precise and
personalised chronotherapeutics against gastrointestinal cancers towards improved
treatment outcomes. My initial aim as set out in section 1.6.1, has been achieved
in chapter 3 with an improve delivery profile being created and a novel method of
patient stratification being outlined, however the method still needs to be verified
on a larger patient cohort. The second main aim of this thesis has only been partly
achieved due to unforeseen problems with data acquisition. A method of inter-species
scaling was devised however needs to be verified with another species to show validity.
A whole body model has been developed but has not been able to be fit to real world
data and subsequently has not been able to give insight into sex specific differences.
The full frame work is, however, ready to be used to complete these goals when data
becomes available.

Chapter 3 designed a mathematical framework which allowed for accurate analysis
of patient pharmacokinetic data from 11 patients receiving oxaliplatin, irinotecan and
5-fluorouracil via a chronomodulated pump into the hepatic artery. A representative
model of the dynamics of the drug solution from the pump to the patient’s blood was
designed, irrespective of the drug delivery device. This model was used to represent
the chronomodulated drug administration via the Mélodie infusion pump used within
the study. The model revealed important inconsistencies between the drug profiles
intended by clinicians and the simulated profiles patients may have been receiving.
The model also allowed for the design of innovative drug infusion profiles which
precisely match the desired drug delivery into the patient’s blood. The pump-to-
patient model was then used in connection with the semi-physiological models of the
PK of irinotecan, oxaliplatin and 5-fluorouracil. The overall framework achieved a
very good fit to data and gave insights into inter-patient variability in the PK of
each drug. Potential clinical biomarkers for the personalisation of treatments were
suggested although further investigations in larger cohorts of patients are required
to confirm the validity of this work. Overall, the complete framework developed in
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this chapter gives insight into drug delivery dynamics and patient-specific PK of
irinotecan, oxaliplatin and 5-fluorouracil and could be used as a step towards the
precise and personalised administration of these drugs.

Chapter 4 looks into preclinical models to deepen the knowledge of oxaliplatin PK,
with a focus on inter-species scaling and a framework which could potentially give
insight into sex dimorphism. An in vitro physiologically based model was developed
with the intention to be able to scale between species. The model showed a good fit
to the rat and human data and is globally structurally identifiable and at least locally
practically identifiable. Allometric scaling by itself could not explain the difference
in the drug PK between the two different species. However, a single parameter,
plasma binding, needed to be fit specifically to each species to fit all data. This
work implies that the binding affinity of oxaliplatin to serum proteins of multiple
species should be investigated, if a translational model of oxaliplatin were to be
created. The model was then used to provide possible predictions for mouse PK and
revealed that the proportion of platinum found in each compartment was shown to
be highly dependent on this binding parameter. This in vitro model was then used
in a multi-scale fashion to inform the whole body model of oxaliplatin PK in mice,
thus reducing model parameters and improving identifiability.

Chapter 4 continues by developing a whole body model of oxaliplatin PK in
mice. The model has a strong physiological grounding, with all compartmental
volumes being taken from literature. As a proof of concept, the model is shown to fit
historical data successfully. The model is then fit to synthetic data which takes the
form of future data which is currently being gathered. Sensitivity analysis shows the
cost function is sensitive to most parameters, although not for the three circadian
parameters. Analysis of the whole model showed it is structurally identifiable with
the given observation locations which is a fundamental prerequisite to practical
identifiability. The framework for future model analysis is then outlined. The model
when fitted successfully will be able to give insights into the sex dependent differences
in oxaliplatin chronotoxicity and direct biological research as to how oxaliplatin
chrono-infusion could be personalised in the future.

As more data become available and the benefit of chronotherapy becomes more
apparent, mathematical modelling, as outlined in this thesis, has the potential to
become more important. The combination of mathematical models and biological
experiments may give a much great quality of information and help progress the
personalisation and improvement of treatments for digestive cancers.
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Chapter 4: DAISY input in vitro model

WRITE "MOD CPT11" $

% B_ i s a r e s e rved name used to i n d i c a t e the vec to r input ,
output and s t a t e v a r i a b l e s
B_:={y1 , y2 , y3 , P_f ,P_b, R_f ,R_b}$

% Def ine the components o f vec to r B_ as time−depending
v a r i a b l e s
FOR EACH EL_ IN B_ DO DEPEND EL_, T$

% B1_ i s a r e s e rved name used to i n d i a t e the vec to r o f
unknown parameters
B1_:={p1 , p2 , p3 , p4 , p5 , p6}$

% NX_ and NY_ are r e s e rved to i n d i c a t e the numbers o f
s t a t e s , outputs and inputs r e s p e c t i v e l y
NX_:=4$
NY_:=3$
NU_:=0$
% C_is a r e s e rved v a r i a b l e name used to i n d i c a t e the
system o f d i f f e r e n t i a l po lynomia l s that d e s c r i b e the model
C_:={ df (P_f , t)=−p1∗P_f + p2∗P_b − p3∗P_f + p4∗R_f ,
df (P_b, t)=p1∗P_f − p2∗P_b,
df (R_f , t)=−p4∗R_f + p3∗P_f −p5∗R_f + p6∗R_b,
df (R_b, t)=p5∗R_f − p6∗R_b,
y1=P_f ,
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y2=P_b,
y3=R_f+R_b}$
f lag_ :=1$
% Invoke the procedure that c a l c u l a t e s the
c h a r a c t e r i s t i c s e t
SEED_:=25$
DAISY( ) $
IC_:={P_f=100 ,P_b=0,R_f=0,R_b=0}$
%ICUNK_:={x10=x1u}$
CONDINIZ( ) $
END$

Chapter 4: DAISY input whole body model

WRITE "MOD whole body pk " $

% B_ i s a r e s e rved name used to i n d i c a t e the vec to r input ,
output and s t a t e v a r i a b l e s
B_:={y1 , y2 , y3 , y4 , y5 , y6 , y7 , y8 , P_f ,P_b, R_f ,R_b,M_f,M_b, N_f ,
N_b, L_f ,L_b, J_f , J_b}$

% Def ine the components o f vec to r B_ as time−depending
v a r i a b l e s
FOR EACH EL_ IN B_ DO DEPEND EL_, T$

% B1_ i s a r e s e rved name used to i n d i a t e the vec to r o f
unknown parameters
B1_:={k_p_r ,k_p_m, k_p_n, k_p_l , k_p_j , k_r_p ,k_m_p, k_n_p,
k_l_p , k_j_l , k_b_p, k_b_r ,k_b_m, k_b_n, k_b_l , k_b_j , k_un ,
Clear_b , Clear_l , Clear_j }$

% NX_ and NY_ are r e s e rved to i n d i c a t e the numbers o f
s t a t e s , outputs and inputs r e s p e c t i v e l y
NX_:=12$
NY_:=8$
NU_:=0$
% C_is a r e s e rved v a r i a b l e name used to i n d i c a t e the
system o f d i f f e r e n t i a l po lynomia l s that d e s c r i b e the model
C_:={ df (P_f , t )=((k_un∗P_b + k_r_p∗R_f + k_n_p∗N_f +
k_m_p∗M_f + k_l_p∗L_f ) − (k_b_p + k_p_r + k_p_n +
k_p_m + k_p_l + k_p_j + Clear_b )∗P_f)/V_p,
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df (P_b, t )=(k_b_p∗P_f − k_un∗P_b)/V_p,
df (R_f , t )=((k_p_r∗P_f + k_un∗R_b) −
(k_b_r + k_r_p)∗R_f)/V_r ,
df (R_b, t )=(k_b_r∗R_f − k_un∗R_b)/V_r ,
df (M_f, t )=((k_p_m∗P_f + k_un∗M_b) −
(k_b_m + k_m_p)∗M_f)/V_m,
df (M_b, t )=(k_b_m∗M_f − k_un∗M_b)/V_M,
df (N_f , t )=((k_p_n∗P_f + k_un∗N_b) −
(k_b_n + k_n_p)∗N_f)/V_n,
df (N_b, t )=(k_b_n∗N_f − k_un∗N_b)/V_n,
df (L_f , t )=((k_p_l∗P_f + k_un∗L_b + k_j_l∗J_f ) −
(k_b_l + k_l_p + Clear_l )∗L_f )/V_l ,
df (L_b, t )=(k_b_l∗L_f − k_un∗L_b)/V_l ,
df ( J_f , t )=((k_p_j∗P_f + k_un∗J_b) −
(k_b_j + k_j_l + Clear_j )∗ J_f )/V_j ,
df (J_b , t )=(k_b_j∗J_f − k_un∗J_b)/V_j ,
y1=P_f ,
y2=P_b,
y3=R_f ,
y4=R_b,
y5=L_f ,
y6=L_b,
y7=J_f ,
y8=J_b}$

%l e t k_b_n = k_n_b$

% Invoke the procedure that c a l c u l a t e s the
c h a r a c t e r i s t i c s e t
SEED_:=60$
DAISY( ) $

IC_:={p_f=50,p_b=0, r_f=0,r_b=0,n_f=0,n_b=0,
m_f=0,m_b=0, l_f =0,l_b=0, j_f =0,j_b=0}$
CONDINIZ( ) $
END$

Chapter 4: DAISY output in vitro model

MOD IN VITRO MODEL$
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seed_ := 25$

NUMBER OF EQUATIONS$

n_ := 7$

VARIABLES VECTOR$

b_ := {y1 ,
y2 ,
y3 ,
p_f ,
p_b ,
r_f ,
r_b}$

UNKNOWN PARAMETER(S) VECTOR$

b1_ := {p1 ,
p2 ,
p3 ,
p4 ,
p5 ,
p6}$

RANKING AMONG THE VARIABLES$

bb_ := {y1 ,
y2 ,
y3 ,
df ( y1 , t ) ,
d f ( y2 , t ) ,
d f ( y3 , t ) ,
d f ( y1 , t , 2 ) ,
d f ( y2 , t , 2 ) ,
d f ( y3 , t , 2 ) ,
d f ( y1 , t , 3 ) ,
d f ( y2 , t , 3 ) ,
d f ( y3 , t , 3 ) ,
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df ( y1 , t , 4 ) ,
d f ( y2 , t , 4 ) ,
d f ( y3 , t , 4 ) ,
p_f ,
p_b ,
r_f ,
r_b ,
df ( p_f , t ) ,
d f (p_b , t ) ,
d f ( r_f , t ) ,
d f ( r_b , t )} $

NUMBER OF INPUT(S) $

nu_ := 0$

NUMBER OF OUTPUT(S) $

ny_ := 3$

NUMBER OF STATE(S) $

nx_ := 4$

MODEL EQUATION(S) $

c_ := { df ( p_f , t )= − ( p3∗p_f − p4∗ r_f − p2∗p_b) − p1∗p_f ,
df (p_b , t)=p1∗p_f − p2∗p_b ,
df ( r_f , t )= − ( p5∗ r_f − p6∗r_b + p4∗ r_f ) + p3∗p_f ,
df ( r_b , t)=p5∗ r_f − p6∗r_b ,
y1=p_f ,
y2=p_b ,
y3=r_b + r_f}$

CHARACTERISTIC SET$

aa_ (1) := − df ( y2 , t ) + y1∗p1 − y2∗p2$

aa_ (2) := − df ( y1 , t )∗ p4∗∗3 − df ( y3 , t )∗ p4∗∗3 − y1∗p1∗p4∗∗3
+ y2∗p2∗p4∗∗3$
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aa_ (3) := − df ( y1 , t , 2 ) ∗ p4∗∗4
− df ( y1 , t )∗ p4 ∗∗4∗( p1 + p3 + p4 + p5 + p6 )
+ y1∗p4 ∗∗4∗( p1∗p2 − p1∗p4 − p1∗p5 − p1∗p6 − p3∗
p5 − p3∗p6 ) + y2∗p2∗p4 ∗∗4∗( − p2 + p4 + p5 + p6 )
+ y3∗p4∗∗5∗ p6$

aa_ (4) := − p_f + y1$

aa_ (5) := − p_b + y2$

aa_ (6) := − df ( y1 , t ) + r_f∗p4 − y1 ∗( p1 + p3 ) + y2∗p2$

aa_ (7) := − df ( y1 , t ) − r_b∗p4 − y1 ∗( p1 + p3 ) + y2∗p2 + y3∗p4$

MODEL ALGEBRAICALLY OBSERVABLE$

NORMALIZED INPUT /OUTPUT RELATION(S) $

aan_ (1) := − df ( y2 , t ) + y1∗p1 − y2∗p2$

aan_ (2) := df ( y1 , t ) + df ( y3 , t ) + y1∗p1 − y2∗p2$

aan_ (3) := df ( y1 , t , 2 ) + df ( y1 , t )∗ ( p1 + p3 + p4 + p5 + p6 )
+ y1 ∗( − p1∗p2 + p1∗p4 + p1∗p5 + p1∗p6 + p3∗p5 + p3∗p6 ) + y2∗
p2 ∗( p2 − p4 − p5 − p6 ) − y3∗p4∗p6$

RANDOMLY CHOSEN NUMERICAL PARAMETER(S) VECTOR$

b2_ := {p1=5,p2=10,p3=24,p4=22,p5=16,p6=17}$

EXHAUSTIVE SUMMARY $

f l i s t _ := {p1 − 5 ,
− p2 + 10 ,

p1 − 5 ,
− p2 + 10 ,
− p4∗p6 + 374 ,

p2∗∗2 − p2∗p4 − p2∗p5 − p2∗p6 + 450 ,
p1 + p3 + p4 + p5 + p6 − 84 ,
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− p1∗p2 + p1∗p4 + p1∗p5 + p1∗p6 + p3∗p5 + p3∗p6 − 1017}$

MODEL PARAMETER SOLUTION(S) $

G_:=GROESOLVE(FLIST_ ,B1_) $

g_ := {{p3=24,p4=22,p5=16,p6=17,p1=5,p2=10}}$

MODEL GLOBALLY IDENTIFIABLE$

INITIAL CONDITION(S) NOT NECESSARY$

Chapter 4: DAISY output whole body model

MOD whole body pk$

seed_ := 60$

NUMBER OF EQUATIONS$

n_ := 18$

VARIABLES VECTOR$

b_ := {y1 ,
y2 ,
y3 ,
y4 ,
y5 ,
y6 ,
y7 ,
y8 ,
p_f ,
p_b ,
r_f ,
r_b ,
n_f ,
n_b ,
l_f ,
l_b ,
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j_f ,
j_b}$

UNKNOWN PARAMETER(S) VECTOR$

b1_ := {k_p_r ,
k_p_n,
k_p_l ,
k_p_j ,
k_r_p ,
k_n_p,
k_l_p ,
k_j_l ,
k_b_p,
k_b_r ,
k_b_n,
k_b_l ,
k_b_j ,
k_un ,
clear_b ,
c l ear_l ,
c l e a r_ j }$

RANKING AMONG THE VARIABLES$

bb_ := {y1 ,
y2 ,
y3 ,
y4 ,
y5 ,
y6 ,
y7 ,
y8 ,
df ( y1 , t ) ,
d f ( y2 , t ) ,
d f ( y3 , t ) ,
d f ( y4 , t ) ,
d f ( y5 , t ) ,
d f ( y6 , t ) ,
d f ( y7 , t ) ,
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df ( y8 , t ) ,
d f ( y1 , t , 2 ) ,
d f ( y2 , t , 2 ) ,
d f ( y3 , t , 2 ) ,
d f ( y4 , t , 2 ) ,
d f ( y5 , t , 2 ) ,
d f ( y6 , t , 2 ) ,
d f ( y7 , t , 2 ) ,
d f ( y8 , t , 2 ) ,
d f ( y1 , t , 3 ) ,
d f ( y2 , t , 3 ) ,
d f ( y3 , t , 3 ) ,
d f ( y4 , t , 3 ) ,
d f ( y5 , t , 3 ) ,
d f ( y6 , t , 3 ) ,
d f ( y7 , t , 3 ) ,
d f ( y8 , t , 3 ) ,
d f ( y1 , t , 4 ) ,
d f ( y2 , t , 4 ) ,
d f ( y3 , t , 4 ) ,
d f ( y4 , t , 4 ) ,
d f ( y5 , t , 4 ) ,
d f ( y6 , t , 4 ) ,
d f ( y7 , t , 4 ) ,
d f ( y8 , t , 4 ) ,
d f ( y1 , t , 5 ) ,
d f ( y2 , t , 5 ) ,
d f ( y3 , t , 5 ) ,
d f ( y4 , t , 5 ) ,
d f ( y5 , t , 5 ) ,
d f ( y6 , t , 5 ) ,
d f ( y7 , t , 5 ) ,
d f ( y8 , t , 5 ) ,
d f ( y1 , t , 6 ) ,
d f ( y2 , t , 6 ) ,
d f ( y3 , t , 6 ) ,
d f ( y4 , t , 6 ) ,
d f ( y5 , t , 6 ) ,
d f ( y6 , t , 6 ) ,
d f ( y7 , t , 6 ) ,
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df ( y8 , t , 6 ) ,
d f ( y1 , t , 7 ) ,
d f ( y2 , t , 7 ) ,
d f ( y3 , t , 7 ) ,
d f ( y4 , t , 7 ) ,
d f ( y5 , t , 7 ) ,
d f ( y6 , t , 7 ) ,
d f ( y7 , t , 7 ) ,
d f ( y8 , t , 7 ) ,
d f ( y1 , t , 8 ) ,
d f ( y2 , t , 8 ) ,
d f ( y3 , t , 8 ) ,
d f ( y4 , t , 8 ) ,
d f ( y5 , t , 8 ) ,
d f ( y6 , t , 8 ) ,
d f ( y7 , t , 8 ) ,
d f ( y8 , t , 8 ) ,
d f ( y1 , t , 9 ) ,
d f ( y2 , t , 9 ) ,
d f ( y3 , t , 9 ) ,
d f ( y4 , t , 9 ) ,
d f ( y5 , t , 9 ) ,
d f ( y6 , t , 9 ) ,
d f ( y7 , t , 9 ) ,
d f ( y8 , t , 9 ) ,
d f ( y1 , t , 1 0 ) ,
df ( y2 , t , 1 0 ) ,
df ( y3 , t , 1 0 ) ,
df ( y4 , t , 1 0 ) ,
df ( y5 , t , 1 0 ) ,
df ( y6 , t , 1 0 ) ,
df ( y7 , t , 1 0 ) ,
df ( y8 , t , 1 0 ) ,
p_f ,
p_b ,
r_f ,
r_b ,
n_f ,
n_b ,
l_f ,
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l_b ,
j_f ,
j_b ,
df ( p_f , t ) ,
d f (p_b , t ) ,
d f ( r_f , t ) ,
d f ( r_b , t ) ,
d f ( n_f , t ) ,
d f (n_b , t ) ,
d f ( l_f , t ) ,
d f ( l_b , t ) ,
d f ( j_f , t ) ,
d f ( j_b , t )} $

NUMBER OF INPUT(S) $

nu_ := 0$

NUMBER OF OUTPUT(S) $

ny_ := 8$

NUMBER OF STATE(S) $

nx_ := 10$

MODEL EQUATION(S) $

c_ := { df ( p_f , t )=(k_r_p∗r_f + k_un∗p_b − k_p_r∗p_f
− k_p_n∗p_f − k_p_m∗p_f − k_p_l∗p_f − k_p_j∗p_f
+ k_n_p∗n_f + k_m_p∗
m_f + k_l_p∗ l_f − k_b_p∗p_f − clear_b ∗p_f )/v_p ,
df (p_b , t )=(k_b_p∗p_f − k_un∗p_b)/v_p ,
df ( r_f , t )=( − (k_r_p∗r_f − k_un∗r_b − k_p_r∗p_f )
− k_b_r∗ r_f )/v_r ,
df ( r_b , t )=(k_b_r∗ r_f − k_un∗r_b)/v_r ,
df ( n_f , t )=(k_p_n∗p_f + k_un∗n_b − k_n_p∗n_f
− k_b_n∗n_f )/v_n ,
df (n_b , t )=(k_b_n∗n_f − k_un∗n_b)/v_n ,
df ( l_f , t )=(k_p_l∗p_f + k_un∗l_b − k_l_p∗ l_f − k_b_l∗ l_f
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+ j_f ∗k_j_l − c l e a r_ l ∗ l_f )/ v_l ,
df ( l_b , t )=(k_b_l∗ l_f − k_un∗l_b )/ v_l ,
df ( j_f , t )=( − ( ( k_b_j + k_j_l )∗ j_f − k_p_j∗p_f − j_b∗k_un)
− c l e a r_ j ∗ j_f )/ v_j ,
df ( j_b , t )=( − j_b∗k_un + j_f ∗k_b_j)/ v_j ,
y1=p_f ,
y2=p_b ,
y3=r_f ,
y4=r_b ,
y5=l_f ,
y6=l_b ,
y7=j_f ,
y8=j_b}$

CHARACTERISTIC SET$

aa_ (1) := − df ( y2 , t )∗v_p + y1∗k_b_p − y2∗k_un$

aa_ (2) := df ( y3 , t )∗v_r − y1∗k_p_r + y3 ∗(k_b_r + k_r_p)
− y4∗k_un$

aa_ (3) := − df ( y4 , t )∗v_r + y3∗k_b_r − y4∗k_un$

aa_ (4) := − df ( y5 , t )∗ v_l + y1∗k_p_l
− y5 ∗( c l e a r_ l + k_b_l + k_l_p) + y6∗k_un + y7∗k_j_l$

aa_ (5) := − df ( y6 , t )∗ v_l + y5∗k_b_l − y6∗k_un$

aa_ (6) := df ( y7 , t )∗ v_j − y1∗k_p_j
+ y7 ∗( c l e a r_ j + k_b_j + k_j_l ) − y8∗k_un$

aa_ (7) := − df ( y8 , t )∗ v_j + y7∗k_b_j − y8∗k_un$

aa_ (8) := df ( y1 , t , 3 ) ∗k_n_p∗∗4∗k_un∗v_j∗v_l ∗∗4∗v_n∗∗2∗v_p
∗∗4∗v_r∗∗4
+ df ( y1 , t , 2 ) ∗k_n_p∗∗4∗k_un∗v_j∗v_l ∗∗4∗v_n∗v_p∗∗3∗v_r
∗∗4∗( clear_b ∗v_n + k_b_n∗v_p + k_b_p∗v_n + k_n_p∗v_p
+ k_p_j∗v_n+ k_p_l∗v_n+ k_p_m∗v_n + k_p_n∗v_n + k_p_r∗v_n
+ k_un∗v_p)
+ df ( y1 , t )∗k_n_p∗∗4∗k_un∗v_j∗v_l ∗∗3∗v_p∗∗2∗v_r∗∗3∗(
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clear_b ∗k_b_n∗v_l∗v_n∗v_p∗v_r + clear_b ∗k_n_p∗v_l∗v_n∗v_p∗v_r
+ clear_b ∗k_un∗v_l∗v_n∗v_p∗v_r + k_b_n∗k_b_p∗v_l∗v_n∗v_p∗v_r
+ k_b_n∗k_p_j∗v_l∗v_n∗v_p∗v_r + k_b_n∗k_p_l∗v_l∗v_n∗v_p∗v_r
+ k_b_n∗k_p_m∗v_l∗v_n∗v_p∗v_r + k_b_n∗k_p_n∗v_l∗v_n∗v_p∗v_r
+ k_b_n∗k_p_r∗v_l∗v_n∗v_p∗v_r + k_b_p∗k_n_p∗v_l∗v_n∗v_p∗v_r
− k_b_p∗k_un∗v_l∗v_n∗∗2∗v_r + k_b_p∗k_un∗v_l∗v_n∗v_p∗v_r
− k_l_p∗k_p_l∗v_n∗∗2∗v_p∗v_r + k_n_p∗k_p_j∗v_l∗v_n∗v_p∗v_r +
k_n_p∗k_p_l∗v_l∗v_n∗v_p∗v_r + k_n_p∗k_p_m∗v_l∗v_n∗v_p∗v_r +
k_n_p∗k_p_r∗v_l∗v_n∗v_p∗v_r + k_n_p∗k_un∗v_l∗v_p∗∗2∗v_r +
k_p_j∗k_un∗v_l∗v_n∗v_p∗v_r + k_p_l∗k_un∗v_l∗v_n∗v_p∗v_r
+ k_p_m∗k_un∗v_l∗v_n∗v_p∗v_r + k_p_n∗k_un∗v_l∗v_n∗v_p∗v_r −
k_p_r∗k_r_p∗v_l∗v_n∗∗2∗v_p + k_p_r∗k_un∗v_l∗v_n∗v_p∗v_r )
+ y1∗k_n_p∗∗4∗k_un∗v_l ∗∗2∗v_p∗v_r∗∗2∗( clear_b ∗k_n_p∗k_un∗v_j∗
v_l ∗∗2∗v_p∗∗2∗v_r∗∗2
+ c l ea r_ l ∗k_l_p∗k_p_l∗v_j∗v_n∗∗2∗v_p∗∗2∗v_r∗∗2
+ k_b_l∗k_l_p∗k_p_l∗v_j∗v_n∗∗2∗v_p∗∗2∗v_r∗∗2
− k_b_n∗k_b_p∗k_un∗v_j∗v_l ∗∗2∗v_n∗v_p∗v_r∗∗2
− k_b_n∗k_l_p∗k_p_l∗v_j∗v_l∗v_n∗v_p∗∗2∗v_r∗∗2
− k_b_n∗k_p_r∗k_r_p∗v_j∗v_l ∗∗2∗v_n∗
v_p∗∗2∗v_r − k_b_p∗k_n_p∗k_un∗v_j∗v_l ∗∗2∗v_n∗v_p∗v_r∗∗2
+ k_b_p∗k_n_p∗k_un∗v_j∗v_l ∗∗2∗v_p∗∗2∗v_r∗∗2
+ k_b_p∗k_un∗∗2∗v_j∗v_l ∗∗2∗v_n∗∗2∗v_r∗∗2
− k_b_p∗k_un∗∗2∗v_j∗v_l ∗∗2∗v_n∗v_p∗v_r∗∗2
+ k_b_r∗k_p_r∗k_r_p∗v_j∗v_l ∗∗2∗v_n∗∗2∗v_p∗∗2
− k_j_l∗k_l_p∗k_p_j∗v_l∗v_n∗∗2∗v_p∗∗2∗v_r∗∗2
+ k_l_p∗∗2∗k_p_l∗v_j∗v_n∗∗2∗v_p∗∗2∗v_r∗∗2
− k_l_p∗k_n_p∗k_p_l∗v_j∗v_l∗v_n∗v_p∗∗2∗v_r∗∗2
− k_l_p∗k_p_l∗k_un∗v_j∗v_l∗v_n∗v_p∗∗2∗v_r∗∗2
+ k_n_p∗k_p_j∗k_un∗v_j∗v_l ∗∗2∗v_p∗∗2∗v_r∗∗2
+ k_n_p∗k_p_l∗k_un∗v_j∗v_l ∗∗2∗v_p∗∗2∗v_r∗∗2
+ k_n_p∗k_p_m∗k_un∗v_j∗v_l ∗∗2∗v_p∗∗2∗v_r∗∗2
− k_n_p∗k_p_r∗k_r_p∗v_j∗v_l ∗∗2∗v_n∗v_p∗∗2∗v_r
+ k_n_p∗k_p_r∗k_un∗v_j∗v_l ∗∗2∗v_p∗∗2∗v_r∗∗2
+ k_p_r∗k_r_p∗∗2∗v_j∗v_l ∗∗2∗v_n∗∗2∗v_p∗∗2
− k_p_r∗k_r_p∗k_un∗v_j∗v_l ∗∗2∗v_n∗v_p∗∗2∗v_r )
+ y2∗k_n_p∗∗4∗k_un∗∗3∗v_j∗v_l ∗∗4∗v_p∗v_r∗∗4∗(
k_b_n∗v_n∗v_p + k_n_p∗v_n∗v_p
− k_n_p∗v_p∗∗2 − k_un∗v_n∗∗2 + k_un∗v_n∗
v_p) + y3∗k_n_p∗∗4∗k_r_p∗k_un∗v_j∗v_l ∗∗4∗v_p∗∗3∗v_r∗∗2∗(
k_b_n∗k_b_r∗v_n∗v_r + k_b_n∗k_r_p∗v_n∗v_r − k_b_r∗∗2∗v_n∗∗2
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+ k_b_r∗k_n_p∗v_n∗v_r − 2∗k_b_r∗k_r_p∗v_n∗∗2
− k_b_r∗k_un∗v_n∗∗2 + k_b_r∗k_un∗v_n∗v_r
+ k_n_p∗k_r_p∗v_n∗v_r − k_n_p∗k_un∗
v_r∗∗2 − k_r_p∗∗2∗v_n∗∗2 + k_r_p∗k_un∗v_n∗v_r )
+ y4∗k_n_p∗∗4∗k_r_p∗k_un∗∗2∗v_j∗v_l ∗∗4∗v_n∗v_p∗∗3∗v_r∗∗2∗(
− k_b_n∗v_r + k_b_r∗v_n − k_n_p∗v_r + k_r_p∗v_n
+ k_un∗v_n − k_un∗v_r )
+ y5∗k_l_p∗k_n_p∗∗4∗k_un∗v_j∗v_l ∗∗2∗v_p∗∗3∗v_r∗∗4∗(
− c l e a r_ l ∗∗2∗v_n∗∗2 − 2∗ c l e a r_ l ∗k_b_l∗v_n∗∗2
+ c l ea r_ l ∗k_b_n∗v_l∗v_n− 2∗ c l e a r_ l ∗k_l_p∗v_n∗∗2
+ c l ea r_ l ∗k_n_p∗v_l∗v_n+ c l ea r_ l ∗k_un∗v_l∗v_n
− k_b_l∗∗2∗v_n∗∗2+ k_b_l∗k_b_n∗v_l∗v_n
− 2∗k_b_l∗k_l_p∗v_n∗∗2+ k_b_l∗k_n_p∗v_l∗v_n
+ k_b_l∗k_un∗v_l∗v_n− k_b_l∗k_un∗v_n∗∗2
+ k_b_n∗k_l_p∗v_l∗v_n− k_l_p∗∗2∗v_n∗∗2
+ k_l_p∗k_n_p∗v_l∗v_n+ k_l_p∗k_un∗v_l∗v_n
− k_n_p∗k_un∗v_l ∗∗2)
+ y6∗k_l_p∗k_n_p∗∗4∗k_un∗∗2∗v_j∗v_l ∗∗2∗v_n∗v_p∗∗3∗v_r∗∗4∗(
c l e a r_ l ∗v_n + k_b_l∗v_n − k_b_n∗v_l + k_l_p∗v_n − k_n_p∗v_l
− k_un∗v_l + k_un∗v_n)

+ y7∗k_j_l∗k_l_p∗k_n_p∗∗4∗k_un∗v_l ∗∗2∗v_n∗v_p∗∗3∗v_r∗∗4∗(
c l e a r_ j ∗v_l∗v_n + c l ea r_ l ∗v_j∗v_n + k_b_j∗v_l∗v_n
+ k_b_l∗v_j∗v_n − k_b_n∗v_j∗v_l + k_j_l∗v_l∗v_n
+ k_l_p∗v_j∗v_n − k_n_p∗v_j∗v_l − k_un∗v_j∗v_l )
− y8∗k_j_l∗k_l_p∗k_n_p∗∗4∗k_un∗∗2∗ v_l ∗∗3∗v_n∗∗2∗v_p∗∗3∗v_r∗∗4
− k_m_p∗k_n_p∗∗5∗k_un∗∗2∗m_f∗v_j∗v_l ∗∗4∗v_p∗∗3∗v_r∗∗4$

aa_ (9) := − p_f + y1$

aa_(10) := − p_b + y2$

aa_(11) := − r_f + y3$

aa_(12) := − r_b + y4$

aa_(13) := − df ( y1 , t )∗v_p + n_f∗k_n_p
− y1 ∗( clear_b + k_b_p + k_p_j+ k_p_l + k_p_m
+ k_p_n + k_p_r) + y2∗k_un
+ y3∗k_r_p + y5∗k_l_p + k_m_p∗m_f$
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aa_(14) := − df ( y1 , t , 2 ) ∗k_n_p∗v_l∗v_n∗v_p∗∗2∗v_r −
df ( y1 , t )∗k_n_p∗v_l∗v_p∗v_r∗( clear_b ∗v_n + k_b_n∗v_p
+ k_b_p∗v_n+ k_n_p∗v_p + k_p_j∗v_n + k_p_l∗v_n
+ k_p_m∗v_n + k_p_n∗v_n + k_p_r∗v_n)
+ n_b∗k_n_p∗∗2∗k_un∗v_l∗v_p∗v_r
+ y1∗k_n_p∗( − clear_b ∗k_b_n∗v_l∗v_p∗v_r
− clear_b ∗k_n_p∗v_l∗v_p∗v_r − k_b_n∗k_b_p∗v_l∗v_p∗v_r
− k_b_n∗k_p_j∗v_l∗v_p∗v_r − k_b_n∗k_p_l∗v_l∗v_p∗v_r
− k_b_n∗k_p_m∗v_l∗v_p∗v_r − k_b_n∗k_p_n∗v_l∗v_p∗v_r
− k_b_n∗k_p_r∗v_l∗v_p∗v_r − k_b_p∗k_n_p∗v_l∗v_p∗v_r +
k_b_p∗k_un∗v_l∗v_n∗v_r + k_l_p∗k_p_l∗v_n∗v_p∗v_r
− k_n_p∗k_p_j∗v_l∗v_p∗v_r − k_n_p∗k_p_l∗v_l∗v_p∗v_r
− k_n_p∗k_p_m∗v_l∗
v_p∗v_r − k_n_p∗k_p_r∗v_l∗v_p∗v_r + k_p_r∗k_r_p∗v_l∗v_n∗v_p)
+ y2∗k_n_p∗k_un∗v_l∗v_r∗(k_b_n∗v_p + k_n_p∗v_p − k_un∗v_n)
+ y3∗k_n_p∗k_r_p∗v_l∗v_p∗(k_b_n∗v_r − k_b_r∗v_n
+ k_n_p∗v_r − k_r_p∗v_n)
+ y4∗k_n_p∗k_r_p∗k_un∗v_l∗v_n∗v_p + y5∗k_l_p∗k_n_p∗v_p∗v_r∗(
− c l e a r_ l ∗v_n − k_b_l∗v_n + k_b_n∗v_l − k_l_p∗v_n + k_n_p∗v_l )
+ y6∗k_l_p∗k_n_p∗k_un∗v_n∗v_p∗v_r + y7∗
k_j_l∗k_l_p∗k_n_p∗v_n∗v_p∗v_r
+ k_m_p∗k_n_p∗m_f∗v_l∗v_p∗v_r∗(k_b_n + k_n_p) $

aa_(15) := − l_f + y5$

aa_(16) := − l_b + y6$

aa_(17) := − j_f + y7$

aa_(18) := − j_b + y8$

MODEL ALGEBRAICALLY OBSERVABLE$

NORMALIZED INPUT /OUTPUT RELATION(S) $

aan_ (1) := − df ( y2 , t )∗v_p + y1∗k_b_p − y2∗k_un$

aan_ (2) := df ( y3 , t )∗v_r − y1∗k_p_r
+ y3 ∗(k_b_r + k_r_p) − y4∗k_un$
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aan_ (3) := − df ( y4 , t )∗v_r + y3∗k_b_r − y4∗k_un$

aan_ (4) := − df ( y5 , t )∗ v_l + y1∗k_p_l
− y5 ∗( c l e a r_ l + k_b_l + k_l_p) + y6∗k_un + y7∗k_j_l$

aan_ (5) := − df ( y6 , t )∗ v_l + y5∗k_b_l − y6∗k_un$

aan_ (6) := df ( y7 , t )∗ v_j − y1∗k_p_j
+ y7 ∗( c l e a r_ j + k_b_j + k_j_l ) − y8∗k_un$

aan_ (7) := − df ( y8 , t )∗ v_j + y7∗k_b_j − y8∗k_un$

aan_ (8) := ( df ( y1 , t , 3 ) ∗ v_j∗v_l ∗∗2∗v_n∗∗2∗v_p∗∗3∗v_r∗∗2
+ df ( y1 , t , 2 ) ∗ v_j∗v_l ∗∗2∗v_n∗v_p∗∗2∗v_r∗∗2∗( clear_b ∗v_n
+ k_b_n∗
v_p + k_b_p∗v_n + k_n_p∗v_p + k_p_j∗v_n + k_p_l∗v_n
+ k_p_m∗v_n + k_p_n∗v_n + k_p_r∗v_n + k_un∗v_p) +
df ( y1 , t )∗ v_j∗v_l∗v_p∗v_r∗( clear_b ∗k_b_n∗v_l∗v_n∗v_p∗v_r
+ clear_b ∗k_n_p∗v_l∗v_n∗v_p∗v_r
+ clear_b ∗k_un∗v_l∗v_n∗v_p∗v_r + k_b_n∗k_b_p∗v_l∗v_n∗v_p∗v_r
+ k_b_n∗k_p_j∗v_l∗v_n∗v_p∗v_r + k_b_n∗k_p_l∗v_l∗v_n∗v_p∗v_r
+ k_b_n∗k_p_m∗v_l∗v_n∗v_p∗v_r + k_b_n∗k_p_n∗v_l∗
v_n∗v_p∗v_r + k_b_n∗k_p_r∗v_l∗v_n∗v_p∗v_r
+ k_b_p∗k_n_p∗v_l∗v_n∗v_p∗v_r − k_b_p∗k_un∗v_l∗v_n∗∗2∗v_r
+ k_b_p∗k_un∗v_l∗v_n∗v_p∗v_r − k_l_p∗k_p_l∗v_n∗∗2∗v_p∗v_r
+ k_n_p∗k_p_j∗v_l∗v_n∗v_p∗v_r + k_n_p∗k_p_l∗v_l∗v_n∗v_p∗v_r
+ k_n_p∗k_p_m∗v_l∗v_n∗v_p∗v_r + k_n_p∗k_p_r∗v_l∗v_n∗v_p∗v_r
+ k_n_p∗k_un∗v_l∗v_p∗∗2∗v_r + k_p_j∗k_un∗v_l∗v_n∗v_p∗v_r
+ k_p_l∗k_un∗v_l∗v_n∗v_p∗v_r + k_p_m∗k_un∗v_l∗v_n∗v_p∗v_r
+ k_p_n∗k_un∗v_l∗v_n∗v_p∗v_r − k_p_r∗k_r_p∗v_l∗v_n∗∗2∗v_p
+ k_p_r∗k_un∗v_l∗v_n∗v_p∗v_r )

+ y1 ∗( clear_b ∗k_n_p∗k_un∗v_j∗v_l ∗∗2∗v_p∗∗2∗v_r∗∗2
+ c l ea r_ l ∗k_l_p∗k_p_l∗v_j∗v_n∗∗2∗v_p∗∗2∗v_r∗∗2
+ k_b_l∗k_l_p∗k_p_l∗v_j∗v_n∗∗2∗v_p∗∗2∗v_r∗∗2
− k_b_n∗k_b_p∗k_un∗v_j∗v_l ∗∗2∗v_n∗v_p∗v_r∗∗2
− k_b_n∗k_l_p∗k_p_l∗v_j∗v_l∗v_n∗v_p∗∗2∗v_r∗∗2
− k_b_n∗k_p_r∗k_r_p∗v_j∗v_l ∗∗2∗v_n∗v_p∗∗2∗v_r
− k_b_p∗k_n_p∗k_un∗v_j∗v_l ∗∗2∗v_n∗v_p∗v_r∗∗2
+ k_b_p∗k_n_p∗k_un∗v_j∗v_l ∗∗2∗v_p∗∗2∗v_r∗∗2
+ k_b_p∗k_un∗∗2∗v_j∗v_l ∗∗2∗v_n∗∗2∗v_r∗∗2
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− k_b_p∗k_un∗∗2∗v_j∗v_l ∗∗2∗v_n∗v_p∗v_r∗∗2
+ k_b_r∗k_p_r∗k_r_p∗v_j∗v_l ∗∗2∗v_n∗∗2∗v_p∗∗2
− k_j_l∗k_l_p∗k_p_j∗v_l∗v_n∗∗2∗v_p∗∗2∗v_r∗∗2
+ k_l_p∗∗2∗k_p_l∗v_j∗v_n∗∗2∗v_p∗∗2∗v_r∗∗2
− k_l_p∗k_n_p∗k_p_l∗v_j∗v_l∗v_n∗v_p∗∗2∗v_r∗∗2
− k_l_p∗k_p_l∗k_un∗v_j∗v_l∗v_n∗v_p∗∗2∗v_r∗∗2
+ k_n_p∗k_p_j∗k_un∗v_j∗v_l ∗∗2∗v_p∗∗2∗v_r∗∗2
+ k_n_p∗k_p_l∗k_un∗v_j∗v_l ∗∗2∗v_p∗∗2∗v_r∗∗2
+ k_n_p∗k_p_m∗k_un∗v_j∗v_l ∗∗2∗v_p∗∗2∗v_r∗∗2
− k_n_p∗k_p_r∗k_r_p∗v_j∗v_l ∗∗2∗v_n∗v_p∗∗2∗v_r
+ k_n_p∗k_p_r∗k_un∗v_j∗v_l ∗∗2∗v_p∗∗2∗v_r∗∗2
+ k_p_r∗k_r_p∗∗2∗v_j∗v_l ∗∗2∗v_n∗∗2∗v_p∗∗2
− k_p_r∗k_r_p∗k_un∗v_j∗v_l ∗∗2∗v_n∗v_p∗∗2∗v_r )
+ y2∗k_un∗∗2∗v_j∗v_l ∗∗2∗v_r∗∗2∗(k_b_n∗v_n∗v_p
+ k_n_p∗v_n∗v_p − k_n_p∗v_p∗∗2 − k_un∗v_n∗∗2 + k_un∗v_n∗v_p)
+ y3∗k_r_p∗v_j∗v_l ∗∗2∗v_p∗∗2∗(k_b_n∗k_b_r∗v_n∗v_r
+ k_b_n∗k_r_p∗v_n∗v_r− k_b_r∗∗2∗v_n∗∗2
+ k_b_r∗k_n_p∗v_n∗v_r − 2∗k_b_r∗k_r_p∗v_n∗∗2
− k_b_r∗k_un∗v_n∗∗2 + k_b_r∗k_un∗v_n∗v_r
+ k_n_p∗k_r_p∗v_n∗v_r − k_n_p∗k_un∗v_r∗∗2
− k_r_p∗∗2∗v_n∗∗2 + k_r_p∗k_un∗v_n∗v_r )
+ y4∗k_r_p∗k_un∗v_j∗v_l ∗∗2∗v_n∗v_p∗∗2∗( − k_b_n∗v_r
+ k_b_r∗v_n − k_n_p∗v_r + k_r_p∗v_n + k_un∗v_n − k_un∗v_r )
+ y5∗k_l_p∗v_j∗v_p∗∗2∗v_r∗∗2∗( − c l e a r_ l ∗∗2∗v_n∗∗2
− 2∗ c l e a r_ l ∗k_b_l∗v_n∗∗2 + c l ea r_ l ∗k_b_n∗v_l∗v_n
− 2∗ c l e a r_ l ∗k_l_p∗v_n∗∗2 + c l ea r_ l ∗k_n_p∗v_l∗v_n
+ c l ea r_ l ∗k_un∗v_l∗v_n − k_b_l∗∗2∗v_n∗∗2
+ k_b_l∗k_b_n∗v_l∗v_n − 2∗k_b_l∗k_l_p∗v_n∗∗2
+ k_b_l∗k_n_p∗v_l∗v_n + k_b_l∗k_un∗v_l∗v_n
− k_b_l∗k_un∗v_n∗∗2 + k_b_n∗k_l_p∗v_l∗v_n
− k_l_p∗∗2∗v_n∗∗2 + k_l_p∗k_n_p∗v_l∗v_n
+ k_l_p∗k_un∗v_l∗v_n − k_n_p∗k_un∗v_l ∗∗2)
+ y6∗k_l_p∗k_un∗v_j∗v_n∗v_p∗∗2∗v_r
∗∗2∗( c l e a r_ l ∗v_n + k_b_l∗v_n − k_b_n∗v_l
+ k_l_p∗v_n − k_n_p∗v_l − k_un∗v_l + k_un∗v_n)
+ y7∗k_j_l∗k_l_p∗v_n∗v_p∗∗2∗v_r
∗∗2∗( c l e a r_ j ∗v_l∗v_n + c l ea r_ l ∗v_j∗v_n + k_b_j∗v_l∗v_n
+ k_b_l∗v_j∗v_n − k_b_n∗v_j∗v_l + k_j_l∗v_l∗v_n + k_l_p∗v_j∗v_n
− k_n_p∗v_j∗v_l − k_un∗v_j∗v_l )
− y8∗k_j_l∗k_l_p∗k_un∗v_l∗v_n∗∗2∗v_p∗∗2∗v_r∗∗2
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− k_m_p∗k_n_p∗k_un∗m_f∗v_j∗v_l ∗∗2∗v_p∗∗2∗
v_r ∗∗2)/( v_j∗v_l ∗∗2∗v_n∗∗2∗v_p∗∗3∗v_r∗∗2) $

RANDOMLY CHOSEN NUMERICAL PARAMETER(S) VECTOR$

b2_ := {k_p_r=54,
k_p_n=7,
k_p_l=9,
k_p_j=15,
k_r_p=52,
k_n_p=18,
k_l_p=17,
k_j_l=23,
k_b_p=5,
k_b_r=22,
k_b_n=38,
k_b_l=41,
k_b_j=6,
k_un=20,
clear_b =3,
c l e a r_ l =59,
c l e a r_ j =57}$

EXHAUSTIVE SUMMARY $

f l i s t _ := {k_b_p − 5 ,
− k_un + 20 ,
− k_p_r + 54 ,
− k_un + 20 ,

k_b_r − 22 ,
− k_un + 20 ,

k_p_l − 9 ,
k_un − 20 ,
k_j_l − 23 ,
k_b_l − 41 ,
− k_un + 20 ,
− k_p_j + 15 ,
− k_un + 20 ,

k_b_j − 6 ,
− k_un + 20 ,
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k_b_r + k_r_p − 74 ,
( − k_j_l∗k_l_p∗k_un + 7820)/( v_j∗v_l∗v_p) ,
(k_m_p∗m_f∗( − k_n_p∗k_un + 360) )/ (v_n∗∗2∗v_p) ,
− c l e a r_ l − k_b_l − k_l_p + 117 ,

c l e a r_ j + k_b_j + k_j_l − 86 ,
(k_b_n∗k_un∗∗2∗v_n∗v_p + k_n_p∗k_un∗∗2∗v_n∗v_p
− k_n_p∗k_un∗∗2∗v_p∗∗2 − k_un∗∗3∗v_n∗∗2
+ k_un∗∗3∗v_n∗v_p + 8000∗v_n∗∗2 −

30400∗v_n∗v_p + 7200∗v_p∗∗2)/(v_n∗∗2∗v_p∗∗3) ,
( − k_b_n∗k_r_p∗k_un∗v_r + k_b_r∗k_r_p∗k_un∗v_n
− k_n_p∗k_r_p∗k_un∗v_r + k_r_p∗∗2∗k_un∗v_n
+ k_r_p∗k_un∗∗2∗v_n − k_r_p∗k_un∗∗2∗v_r
− 97760∗v_n + 79040∗v_r )/ (v_n∗v_p∗v_r ∗∗2) ,
( c l e a r_ l ∗k_l_p∗k_un∗v_n + k_b_l∗k_l_p∗k_un∗v_n
− k_b_n∗k_l_p∗k_un∗v_l + k_l_p∗∗2∗k_un∗v_n
− k_l_p∗k_n_p∗k_un∗v_l − k_l_p∗k_un∗∗2∗ v_l
+ k_l_p∗k_un∗∗2∗v_n + 25840∗ v_l
− 46580∗v_n)/( v_l ∗∗2∗v_n∗v_p) ,
( c lear_b ∗v_n + k_b_n∗v_p + k_b_p∗v_n + k_n_p∗v_p
+ k_p_j∗v_n + k_p_l∗v_n + k_p_n∗v_n + k_p_r∗v_n
+ k_un∗v_p − 93∗v_n − 76∗v_p)/(v_n∗v_p) ,
( c l e a r_ j ∗k_j_l∗k_l_p∗v_l∗v_n
+ c l ea r_ l ∗k_j_l∗k_l_p∗v_j∗v_n +
k_b_j∗k_j_l∗k_l_p∗v_l∗v_n + k_b_l∗k_j_l∗k_l_p∗v_j∗v_n
− k_b_n∗k_j_l∗k_l_p∗v_j∗v_l + k_j_l ∗∗2∗k_l_p∗v_l∗v_n
+ k_j_l∗k_l_p∗∗2∗v_j∗v_n − k_j_l∗k_l_p∗k_n_p∗v_j∗v_l
− k_j_l∗k_l_p∗k_un∗v_j∗v_l + 29716∗v_j∗v_l
− 45747∗v_j∗v_n − 33626∗ v_l∗v_n)/( v_j∗v_l ∗∗2∗v_n∗v_p) ,
(k_b_n∗k_b_r∗k_r_p∗v_n∗v_r + k_b_n∗k_r_p∗∗2∗v_n∗v_r
− k_b_r∗∗2∗k_r_p∗v_n∗∗2 + k_b_r∗k_n_p∗k_r_p∗v_n∗v_r
− 2∗k_b_r∗k_r_p∗∗2∗v_n∗∗2 − k_b_r∗k_r_p∗k_un∗v_n∗∗2
+ k_b_r∗k_r_p∗k_un∗v_n∗v_r + k_n_p∗k_r_p∗∗2∗v_n∗v_r
− k_n_p∗k_r_p∗k_un∗v_r∗∗2 − k_r_p∗∗3∗v_n∗∗2
+ k_r_p∗∗2∗k_un∗v_n∗v_r + 307632∗v_n∗∗2
− 292448∗v_n∗v_r + 18720∗v_r ∗∗2)/(v_n∗∗2∗v_p∗v_r ∗∗2) ,
( − c l e a r_ l ∗∗2∗k_l_p∗v_n∗∗2 − 2∗ c l e a r_ l ∗k_b_l∗k_l_p∗v_n∗∗2
+ c l ea r_ l ∗k_b_n∗k_l_p∗v_l∗v_n − 2∗ c l e a r_ l ∗k_l_p∗∗2∗v_n∗∗2
+c l ea r_ l ∗k_l_p∗k_n_p∗v_l∗v_n + c l ea r_ l ∗k_l_p∗k_un∗v_l∗v_n
− k_b_l∗∗2∗k_l_p∗v_n∗∗2 + k_b_l∗k_b_n∗k_l_p∗v_l∗v_n
− 2∗k_b_l∗k_l_p∗∗2∗v_n∗∗2 + k_b_l∗k_l_p∗k_n_p∗v_l∗v_n
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+ k_b_l∗k_l_p∗k_un∗v_l∗v_n − k_b_l∗k_l_p∗k_un∗v_n∗∗2
+ k_b_n∗k_l_p∗∗2∗ v_l∗v_n − k_l_p∗∗3∗v_n∗∗2
+ k_l_p∗∗2∗k_n_p∗v_l∗v_n + k_l_p∗∗2∗k_un∗v_l∗v_n
− k_l_p∗k_n_p∗k_un∗v_l∗∗2 + 6120∗ v_l∗∗2 − 151164∗
v_l∗v_n + 246653∗v_n∗∗2)/( v_l ∗∗2∗v_n∗∗2∗v_p) ,
( c lear_b ∗k_b_n∗v_l∗v_n∗v_p∗v_r +
clear_b ∗k_n_p∗v_l∗v_n∗v_p∗v_r +
clear_b ∗k_un∗v_l∗v_n∗v_p∗v_r + k_b_n∗k_b_p∗v_l∗v_n∗v_p∗
v_r + k_b_n∗k_p_j∗v_l∗v_n∗v_p∗v_r +
k_b_n∗k_p_l∗v_l∗v_n∗v_p∗v_r +
k_b_n∗k_p_m∗v_l∗v_n∗v_p∗v_r + k_b_n∗k_p_n∗v_l∗v_n∗v_p∗
v_r + k_b_n∗k_p_r∗v_l∗v_n∗v_p∗v_r
+ k_b_p∗k_n_p∗v_l∗v_n∗v_p∗v_r −
k_b_p∗k_un∗v_l∗v_n∗∗2∗v_r + k_b_p∗k_un∗v_l∗v_n∗v_p∗v_r
− k_l_p∗k_p_l∗v_n∗∗2∗v_p∗v_r + k_n_p∗k_p_j∗v_l∗v_n∗v_p∗v_r
+ k_n_p∗k_p_l∗v_l∗v_n∗v_p∗v_r + k_n_p∗k_p_m∗v_l∗v_n∗v_p∗v_r
+ k_n_p∗k_p_r∗v_l∗v_n∗v_p∗v_r +
k_n_p∗k_un∗v_l∗v_p∗∗2∗v_r + k_p_j∗k_un∗v_l∗v_n∗v_p∗v_r
+ k_p_l∗k_un∗v_l∗v_n∗v_p∗v_r +
k_p_m∗k_un∗v_l∗v_n∗v_p∗v_r − 76∗k_p_m∗v_l∗v_n∗v_p∗v_r
+ k_p_n∗k_un∗v_l∗v_n∗v_p∗v_r − k_p_r∗k_r_p∗v_l∗v_n∗∗2∗v_p
+ k_p_r∗k_un∗v_l∗v_n∗v_p∗v_r + 2808∗ v_l∗v_n∗∗2∗v_p
+ 100∗ v_l∗v_n∗∗2∗v_r − 6942∗ v_l∗v_n∗v_p∗v_r
− 360∗ v_l∗v_p∗∗2∗v_r + 153∗v_n∗∗2
∗v_p∗v_r )/ ( v_l∗v_n∗∗2∗v_p∗∗2∗v_r ) ,
( c lear_b ∗k_n_p∗k_un∗v_j∗v_l ∗∗2∗v_p∗∗2∗v_r∗∗2
+ c l ea r_ l ∗k_l_p∗k_p_l∗v_j∗v_n∗∗2∗v_p∗∗2∗v_r∗∗2
+ k_b_l∗k_l_p∗k_p_l∗v_j∗v_n
∗∗2∗v_p∗∗2∗v_r∗∗2
− k_b_n∗k_b_p∗k_un∗v_j∗v_l ∗∗2∗v_n∗v_p∗v_r∗∗2
− k_b_n∗k_l_p∗k_p_l∗v_j∗v_l∗v_n∗v_p∗∗2∗v_r∗∗2
− k_b_n∗k_p_r∗k_r_p∗v_j∗v_l ∗∗2∗v_n∗v_p∗∗2∗v_r
− k_b_p∗k_n_p∗k_un∗v_j∗v_l ∗∗2∗v_n∗v_p∗v_r∗∗2
+ k_b_p∗k_n_p∗k_un∗v_j∗v_l ∗∗2∗v_p∗∗2∗v_r∗∗2
+ k_b_p∗k_un∗∗2∗v_j∗v_l ∗∗2∗v_n∗∗2∗v_r∗∗2
− k_b_p∗k_un∗∗2∗v_j∗v_l ∗∗2∗v_n∗v_p∗v_r∗∗2
+ k_b_r∗k_p_r∗k_r_p∗v_j∗v_l ∗∗2∗v_n∗∗2∗v_p∗∗2
− k_j_l∗k_l_p∗k_p_j∗v_l∗v_n∗∗2∗v_p∗∗2∗v_r∗∗2
+ k_l_p∗∗2∗k_p_l∗v_j∗v_n∗∗2∗v_p∗∗2∗v_r∗∗2
− k_l_p∗k_n_p∗k_p_l∗v_j∗v_l∗v_n∗v_p∗∗2∗v_r∗∗2
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− k_l_p∗k_p_l∗k_un∗v_j∗v_l∗v_n∗v_p∗∗2∗v_r∗∗2
+ k_n_p∗k_p_j∗k_un∗v_j∗v_l ∗∗2∗v_p∗∗2∗v_r∗∗2

+ k_n_p∗k_p_l∗k_un∗v_j∗v_l ∗∗2∗v_p∗∗2∗v_r∗∗2
+ k_n_p∗k_p_m∗k_un∗v_j∗v_l ∗∗2∗v_p∗∗2∗v_r∗∗2
− k_n_p∗k_p_r∗k_r_p∗v_j∗v_l ∗∗2∗v_n∗v_p∗∗2∗v_r
+ k_n_p∗k_p_r∗k_un∗v_j∗v_l ∗∗2∗v_p∗∗2∗v_r∗∗2
− 360∗k_p_m∗v_j∗v_l ∗∗2∗v_p∗∗2∗v_r∗∗2
+ k_p_r∗k_r_p∗∗2∗v_j∗v_l ∗∗2∗v_n∗∗2∗v_p∗∗2
− k_p_r∗k_r_p∗k_un∗v_j∗v_l ∗∗2∗v_n∗v_p∗∗2∗v_r
− 207792∗ v_j∗v_l ∗∗2∗v_n∗∗2∗v_p∗∗2
− 2000∗v_j∗v_l ∗∗2∗v_n∗∗2∗v_r∗∗2
+ 213408∗ v_j∗v_l ∗∗2∗v_n∗v_p∗∗2∗v_r
+ 7600∗v_j∗v_l ∗∗2∗v_n∗v_p∗v_r∗∗2
− 30960∗v_j∗v_l ∗∗2∗v_p∗∗2∗v_r∗∗2
+ 11628∗v_j∗v_l∗v_n∗v_p∗∗2∗v_r∗∗2
− 17901∗v_j∗v_n∗∗2∗v_p∗∗2∗v_r∗∗2
+ 5865∗ v_l∗v_n∗∗2∗v_p∗∗2∗v_r ∗∗2)/(
v_j∗v_l ∗∗2∗v_n∗∗2∗v_p∗∗3∗v_r∗∗2)} $

MODEL PARAMETER SOLUTION(S) $

G_:=GROESOLVE(FLIST_ ,B1_) $

g_ := {{k_p_n=7,
c l e a r_ j =57,
k_b_j=6,
k_p_r=54,
clear_b =3,
k_p_j=15,
k_b_p=5,
k_p_l=9,
k_b_n=38,
k_n_p=18,
k_b_r=22,
k_j_l=23,
k_b_l=41,
c l e a r_ l =59,
k_r_p=52,
k_l_p=17,
k_un=20}}$
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MODEL GLOBALLY IDENTIFIABLE$

INITIAL CONDITION(S) NOT NECESSARY$
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