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We calculate the time-dependent nonlinear transport current through an interacting quantum dot in the

single-electron tunneling (SET) regime. We show that an additional dc current is generated by the

electron-electron interaction by adiabatic out-of-phase modulation of the gate and bias voltage. This

current can arise only when two SET resonance conditions are simultaneously satisfied. We propose an

adiabatic transport spectroscopy where lock-in measurement of a ‘‘time-averaged stability diagram’’

probes interactions, tunnel asymmetries, and changes in the ground state spin degeneracy.
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Introduction.—Transport through nanoscale devices
modulated by time-dependent externally applied electric
fields is an active field of research important for transport
spectroscopy and manipulation of the charge and spin
degrees of freedom in nanostructures; see, e.g., [1]. A
particularly gentle way of time-dependently probing a
system is through ‘‘adiabatic pumping’’ [2–4]. Here a finite
dc current is generated in the absence of an applied bias by
a weak, low frequency periodic modulation of system
parameters. Adiabaticity in a transport situation means
that many electrons visit the system during one cycle of
the driving with frequency� and that the modulation is too
weak and too slow to excite the device by direct state-to-
state transitions. The current generated this way crucially
depends on which subset of parameters is modulated, on
the working point about which the modulation takes place,
and on interactions, which are of special importance in
nanoscale devices. For strictly adiabatic pumping one
needs to vary at least two parameters, single-parameter
pumping requiring a higher frequency [5]. Among the
various combinations of parameters studied so far, the
modulation of the applied bias has received little attention
[6]. Most works have considered small deviations around
an equilibriumworking point where no steady state current
is flowing. Adiabatic modulation around a nonequilibrium
transport state induced by a static nonlinear bias voltage
has been explored only for systems with negligible
Coulomb interaction [4], motivated by experiments with
surface acoustic waves [7]. Nonlinear bias voltage and
Coulomb interaction have received little theoretical atten-
tion in the adiabatic regime. Limited to an equilibrium
working point, some works have studied interacting quan-
tum dots [8,9] and wires [10]. Including the effect of strong
interactions beyond the mean-field picture is a challenge,
since the powerful scattering matrix approach [2] breaks
down here. Generally, one expects the additional nonequi-
librium introduced by a static dc-bias voltage, in combi-
nation with strong electron-electron interactions, to
strongly modify the pumping, providing novel opportuni-

ties to investigate and control transport properties of nano-
scale devices.
In this Letter we propose a new scheme for transport

spectroscopy of interacting systems using adiabatically
time-dependent electric fields. We analyze an interacting
quantum dot in the single-electron tunneling (SET) regime,
adiabatically driven by out-of-phase gate and bias poten-
tials. In contrast to previous works, the applied bias can be
arbitrary; i.e., we modulate the parameters around a steady
nonequilibrium state supporting a finite dc current. We
show that the strong local interaction generates an addi-
tional adiabatic dc current, which is identically zero with-
out interaction for any value of the applied voltages and
magnetic field. We propose to use this effect as a tool for
nonlinear transport spectroscopy which can be measured
using lock-in techniques. The adiabatic dc current is non-
zero only when two conditions for single-electron tunnel-
ing are simultaneously satisfied. Plotted as a function of the
time-averaged gate and bias voltage, it gives rise to a new
type of ‘‘stability diagram.’’ Furthermore, we show that in
an external magnetic field lifting the spin degeneracy, the
adiabatic modulation only gives rise to transport effects in
the regime of nonlinear bias, which qualitatively distin-
guish between different junction asymmetries.
Model.—We consider a quantum dot weakly coupled to

two electrodes as sketched in Fig. 1(a). The gate and bias
voltage are modulated with frequency � around the work-
ing point specified by the voltages �Vg and �Vb:

VxðtÞ ¼ �Vx þ �Vx sinð�tþ ’xÞ; x ¼ b; g: (1)

We consider the important case where a single orbital level
with strong Coulomb interaction U is relevant for trans-
port. We denote the spin-resolved dot number operator by

n� ¼ dy�d�, where the spin � ¼"; # is quantized along the
external magnetic field (if present). The Hamiltonian reads
HDðtÞ ¼ P

���ðtÞn� þUn"n#. The energy of an electron

created by dy� equals ��ðtÞ ¼ ��VgðtÞ þ �B=2 using the

shorthand � ¼ �1 for spin "; # . Importantly, the time-
dependent gate voltage VgðtÞ capacitively modulates this
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energy with lever arm �< 1. Furthermore, B is the
Zeeman energy in units e ¼ @ ¼ kB ¼ 1. The many-body

eigenstates ofHDðtÞ are j0i, j�i ¼ dy�j0iwith � ¼"; # , and
j2i ¼ dy" d

y
# j0i with energies 0, ��ðtÞ,

P
���ðtÞ þU, re-

spectively. The time-dependent bias VbðtÞ enters through
the electrochemical potentials �rðtÞ ¼ �VbðtÞ=2 of elec-
trodes r ¼ L; R, which are described by HEðtÞ¼P

r;k;�½�kþ�rðtÞ�cyrk�crk�. Finally, HT ¼
P

r;k;�trcrk�d
y
�þ

H:c: describes the tunneling between the dot and the elec-
trodes, with tunnel coupling strength �r ¼ 2��rjtrj2,
where tr is the amplitude and �r the density of states of
lead r ¼ L; R. We define � ¼ P

r�r. We consider here the
important case where the transport is affected dominantly
through the modulation of the energy level positions "�ðtÞ
and the bias energy window �LðtÞ ��RðtÞ. The change in
the tunnel coupling is of negligible importance. This is the
typical situation in nonlinear transport spectroscopy of
quantum dots. It holds, in particular, for small amplitude
modulation of the voltages considered here.

Retarded occupations and transport current.—The total
Hamiltonian HðtÞ ¼ HEðtÞ þHDðtÞ þHT thus contains

strong interaction on the dot, an adiabatic time dependence
and nonequilibrium introduced by the nonlinear bias volt-
age. Within the framework of the real-time transport theory
the time-dependent occupation probabilities of the many-
body dot states, pðtÞ ¼ ðp0ðtÞ; p#ðtÞ; p"ðtÞ; p2ðtÞÞ, can be

shown to obey the kinetic equation [9]

_pðtÞ ¼
Z t

�1
dt0Wðt; t0Þpðt0Þ: (2)

The kernel, Wðt; t0Þ, accounts for changes of the dot occu-
pations due to electron tunnel processes to or from the
electrodes. Although, it explicitly depends on both time
arguments t and t0 (in contrast to the time-independent
case), it can be calculated perturbatively for slowly varying
fields [9]. Here we restrict ourselves to the lowest order
contributions in both the tunneling coupling (SET) and in
the time-dependent perturbation of external system pa-
rameters (adiabatic driving). We consistently solve the
kinetic equation by expanding it around the instantaneous

reference solution, pðiÞ
t , defined by

0 ¼ WðiÞ
t pðiÞ

t : (3)

The instantaneous kernel and its zero-frequency Laplace

transform WðiÞ
t ¼ lim�#0

R
t
�1 dt0WðiÞðt� t0Þe�ðt�t0Þ are

evaluated using stationary transport theory in lowest order
in �. In this limit of weak coupling, � � T, where T is the
electron temperature, the result reduces to Fermi’s golden
rule. In Eq. (3) the voltages are replaced by their instanta-
neous values at measuring time, Vx ! VxðtÞ, x ¼ b; g,
resulting in a parametric time dependence indicated by

the subscript t. Hence, pðiÞ
t would be the time-dependent

steady state of the dot if the system was able to follow the

parameter modulation instantaneously. By inserting pðtÞ ¼
pðiÞ
t þ pðaÞ

t in Eq. (2), using Eq. (3), and doing a systematic
lowest order expansion in �=� � 1, we find for the first

correction pðaÞ
t to the instantaneous reference solution pðiÞ

t :

_p ðiÞ
t ¼ WðiÞ

t pðaÞ
t : (4)

This correction accounts for the actual delay suffered by
the system due to the finite rate of sweeping the voltages.
Further corrections to this adiabatic approximation can be
neglected if in addition ��Vg; �Vb � T2=�. The time-

dependent steady state including the retardation is uniquely
determined by Eqs. (3) and (4), together with the normal-

ization conditions eTpðiÞ
t ¼ 1 and eTpðaÞ

t ¼ 0 with eT ¼
ð1; 1; 1; 1Þ.
The time-dependent current flowing from lead r ¼ L; R

into the dot is found in a similar way [9] and can be

decomposed into two corresponding parts, IðiÞt;r and IðaÞt;r .

Here IðaÞt;r is the adiabatic correction to the current due
to the retardation of the system; i.e., it vanishes in the
limit �V� ! 0. The central quantities discussed in
this Letter are obtained when averaging the two current

FIG. 1 (color online). (a) Sketch of the transport setup.

(b) Adiabatic dc current through the left junction �IðaÞL as function

of the time-averaged gate and bias voltage for Coulomb inter-
action U ¼ 30T, zero magnetic field, and � ¼ 0:5T, 	 ¼ 0:25,
and driving parameters � ¼ 0:1T, ��Vg ¼ �Vb ¼ 0:5T. We

plot �IðaÞL scaled to the maximal absolute value at the degeneracy

points, �IðaÞmax;L ¼ 2�
27

�L�R

ð�=2Þ2
��Vg

4T
�Vb

4T , consisting of the frequency, a

coupling asymmetry factor, and the ratio of the voltage phase-
space factors to the thermal energy window. Inset: Differential

conductance d �IðiÞL =d �Vb vs �Vg and �Vb. (c) Voltage modulation

cycle around the degeneracy point ð� �Vg; �VbÞ � ð0; 0Þ with

dashed resonance lines "ðtÞ ¼ �rðtÞ. (d) Same as (b) for finite
applied magnetic field, B ¼ 10T.
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contributions over one entire modulation cycle �Iði or aÞr ¼
�
2�

R2�=�
0 dtIði or aÞt;r . Here, �IðiÞr equals the dc current one

would measure for time-independent voltages equal to
�Vg and �Vb. Plotting d �IðiÞL =d �Vb as a function of these

voltages, one obtains the standard Coulomb blockade
stability diagram [1]. The quantity of central interest

here, �IðaÞr , is the additional dc current component due to
the retardation of the quantum dot state. This quantity can
be obtained, e.g., by subtracting from the total measured
time-averaged current its zero-frequency limit.

For the time-dependent adiabatic current, we obtain a
central analytic result:

IðaÞt;r ¼ ð�r þ 
rÞð�� 
Þ þ �r�

�2 � 
2 þ �2

d

dt
hniðiÞt

þ 2
ð�r þ 
rÞ�� �rð�þ 
Þ

�2 � 
2 þ �2

d

dt
hSziðiÞt : (5)

The average instantaneous charge, hniðiÞt ¼ P
�p

ðiÞ
t;� þ

2pðiÞ
t;2, and spin, hSziðiÞt ¼ P

t;�ð�=2ÞpðiÞ
t;�, are found from

Eq. (3). Although the time-dependent adiabatic currents
depend on the junction r where they are evaluated, their

time averages are related by charge conservation,
P

rI
ðaÞ
t;r ¼

d
dt hniðiÞt , giving

P
r
�IðaÞr ¼ 0. The prefactors in Eq. (5) con-

tain


rðtÞ ¼ 1

2
�r

X
�

½fð��rðtÞÞ� fð��rðtÞ þUÞ�; (6)

�rðtÞ ¼ 1

2
�r

X
�

�½fð��rðtÞÞ� fð��rðtÞ þUÞ�; (7)

and their sums by 
 ¼ P
r
r, and � ¼ P

r�r, where � ¼
� (corresponding to "; # ) and r ¼ L; R. All these quantities
depend on time through the distance to resonance ��rðtÞ ¼
��ðtÞ ��rðtÞ in the arguments of the Fermi function
fð!Þ ¼ ½expð!=TÞ þ 1��1. From Eq. (5) we infer a neces-
sary condition for a nonvanishing time-averaged adiabatic

current which also holds for more complex systems: �IðaÞL

can only be nonzero if two SET resonance conditions are
satisfied simultaneously. If only a single resonance condi-
tion is satisfied (effectively this is single-parameter pump-
ing), (5) is a total time derivative of a periodic function,

resulting in a zero time average. The resonances in �IðaÞL are
thus located at resonance line crossings of the standard

d �IðiÞL =d �Vb map.
Interaction-induced dc current.—The central result of

this Letter relates to the prefactors in Eq. (5). Since the
tunnel rates �r and � ¼ P

r�r are time independent, it is
clear that the adiabatic dc current is generated by the
Coulomb interaction U. Indeed, since 
r ¼ �r ¼ 0 for

U ¼ 0 the adiabatic current IðaÞt;r ¼ ð�r=�ÞðdhniðiÞt =dtþ
2dhSziðiÞt =dtÞ is a total time derivative, which, integrated

over a period, yields �IðaÞr ¼ 0. We emphasize that in this

case the current �IðaÞr vanishes identically for any value of
the time-averaged external voltages and of the time-
independent tunnel couplings and external magnetic field.
We now discuss the voltage dependence of the adiabatic dc
current in the experimentally important regime of strong
local interaction U � T � �. We fix the direction of the
modulation cycle by taking ’b ¼ 0 and ’g ¼ ��=2, for

which the adiabatic dc current is maximal, and time aver-
age the current numerically. We first focus on the case of
zero magnetic field for which "�ðtÞ ¼ "ðtÞ ¼ ��VgðtÞ is
independent of spin �. Therefore �r ¼ 0 and Eq. (5)

simplifies to IðaÞt;r ¼ ð�r þ 
rÞ=ð�þ 
ÞdhniðiÞt =dt. In
Fig. 1(b) we show a time-averaged stability diagram, i.e.,
�IðaÞL plotted as function of the time-averaged gate and bias

voltage. In contrast to the standard (d �IðiÞL =d �Vb) stability
diagram in the inset of Fig. 1(b), this map of pumped
current indeed shows resonant enhancements only at dis-
crete points of size / T where two SET resonances meet.
Most prominent are the two charge degeneracy points
ð� �Vg; �VbÞ � ð0; 0Þ and (U; 0) at which the adiabatic dc

current has opposite sign and maximum amplitude. We
now explain the microscopic origin of the positive sign of
the adiabatic dc current at the degeneracy point
ð� �Vg; �VbÞ � ð0; 0Þ for symmetric tunnel coupling �L ¼
�R. For t 2 ð0; �=�Þ the adiabatic current through the

left junction is positive, IðaÞt;L > 0, whereas in the second

half of the cycle IðaÞt;L < 0. This is because �þ 
 � �½1þP
rfð"ðtÞ ��rðtÞÞ=2� and dhniðiÞt =dt are symmetric and

antisymmetric functions of the time t. The time average
�IðaÞL is nevertheless nonzero due to the factor �L þ 
L �
�=2þ �fð"ðtÞ ��LðtÞÞ=2 in the numerator. Clearly, since
the first term is constant, the nonzero time average comes
from the contribution / fð"ðtÞ ��LðtÞÞ, which is nonzero
for times for which "ðtÞ<�LðtÞ [gray (red) part of cycle in
Fig. 1(c)]. One thus samples predominantly the loading

parts of the cycle where dhniðiÞt =dt > 0 [shaded in
Fig. 1(c)], where an excess of electrons tunnels onto the
dot through the left junction. Therefore the adiabatic dc
current is positive. Similarly, one finds for the point
ð� �Vg; �VbÞ � ðU; 0Þ the opposite adiabatic dc current due

to the negative sign of the second term in Eq. (6). For
asymmetric rates �L � �R the time dependence of �þ 

becomes important as well, but does not alter the sign of
the adiabatic dc current. In a magnetic field B � T the
adiabatic dc current plotted in Fig. 1(d) is completely
suppressed in the linear response regime �Vb � T.

Indeed, in this limit, 
r ¼ �r, and IðaÞt;r has zero average

[e.g., around � �Vg � T it is IðaÞt;r � ð�r=�ÞdpðiÞ
t;#=dt]. In

general, the interaction breaks the symmetry of loading
and unloading parts of the cycle. The magnetic field, how-
ever, restores this symmetry in the linear response regime

by lifting the spin degeneracy. Therefore, �IðaÞr is suppressed
for Vb � T even though U � 0. This is to be contrasted

with the standard d �IðiÞL =d �Vb map shown in the inset, where
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in linear response the conductance shows the Coulomb
oscillation peaks. Only at a finite voltage �Vb ¼ B, where
the spin-excited state becomes available, the loading-

unloading symmetry is broken again and �IðaÞr is restored.
Coupling asymmetry.—Asymmetric rates induce addi-

tional features in Figs. 1(b) and 1(d) at finite bias j �Vbj ¼ U

and U� B, respectively. In Fig. 2 we plot �IðaÞL along the
dashed line in Fig. 1(a) as function of the coupling asym-
metry, quantified by 	 ¼ ð�L � �RÞ=�. Strikingly, the two
high bias features marked (3) and (4) are qualitatively
sensitive to the coupling asymmetry: if, e.g., resonance
(3) is negative (positive), then �L > �R (�L < �R).
Quantitatively, for 	 > 0 the adiabatic dc current reso-
nances marked (2) and (3) deviate from the ‘‘bare’’ reso-
nance positions (	 ¼ 0) by a shift which depends linearly
on the temperature T [11]. One can thus sensitively probe
the coupling asymmetry.

Adiabatic spectroscopy.—Our results generalize to
quantum dots with more complicated states and spectra:
without interaction, the adiabatic dc current vanishes in
leading order in � and �. Therefore, measurement of the
time-averaged stability diagrams enables an adiabatic
spectroscopy of nonlinear transport. Importantly, the oc-
currence of adiabatic dc current at sharply defined resonant
points indicates that one is measuring in the adiabatic limit.
This relates to the required effective two parameter modu-
lation discussed with Eq. (5). Satisfying two SET reso-
nance conditions simultaneously is, however, not yet
sufficient for a nonzero average adiabatic current, as illus-
trated above for the crossing of the two ground-to-ground
state resonances in a magnetic field. In general, the occur-
rence and sign of adiabatic dc current at a charge degen-
eracy point can be tied to the change in spin degeneracy in
the ground state: the sign is positive (negative) if the
ground state spin degeneracy increases (decreases) with
the quantum dot charge and it vanishes if there is no
change. The time-averaged stability diagram thus directly

reveals nondegenerate ground states if �IðaÞL vanishes in the
linear response regime. This may be interesting, e.g., for
transport through magnetic molecules with high spin de-

generacies or in carbon nanotubes where both spin and
orbital degeneracies play a role. Another important aspect
of the proposed spectroscopy is that the effects of ‘‘spu-
rious’’ modulation of the barrier can be clearly identified
experimentally. As shown in Ref. [9], a modulation of the
gate voltage and of the barrier (instead of the bias voltage)
results in an adiabatic dc current which is symmetric with
respect to reversal of the time-averaged gate voltage
� �Vg ! U� � �Vg, in contrast to the antisymmetric shape

found here. The proposed spectroscopy does furthermore
not rely on quantum fluctuation effects and can therefore
be observed readily in weakly coupled devices at moderate
temperature and low driving frequency. We have checked
that the corrections from next-to-leading order tunnel pro-
cesses (�2) to the effects discussed here are quantitative
and small, even for �� T. Importantly, even when includ-
ing these corrections the adiabatic dc current still vanishes
exactly for zero interaction. By measuring the proposed
time-averaged stability diagram one thus gently probes
junction asymmetries and strong interaction effects. This
may prove valuable, for instance, in molecular quantum
dots where stability is a key issue and transport is the only
local probe available. Adiabatic transport through interact-
ing nanosystems operated in the nonlinear regime is thus a
promising topic where new experiments can be done.
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