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Abstract 

 

Worldwide obesity has nearly tripled since 1975, with over 650 million cases in 

2016. Obesity can lead to many adverse metabolic effects in the cardiovascular, 

brain and endocrine systems. It has been previously shown, the dorsal vagal 

complex (DVC) of the brain regulates glucose homeostasis and controls food 

intake through insulin signalling in rats. In these rats, a 3-day high fat diet (HFD) 

has been shown to induce insulin resistance and diminishes the DVC’s ability to 

regulate glucose metabolism and food intake, though exact mechanistic effects 

of this are still unknown. HFD-feeding is associated with an increase in 

mitochondrial fission in the DVC. Mitochondrial fission is regulated by dynamin 

related protein 1 (Drp1), and an increase in Drp1 activity in the DVC modulates 

the insulin signalling pathway. Activation of Drp1 has been correlated with 

increased levels of inducible nitric oxide synthase (iNOS), increased endoplasmic 

reticulum (ER) stress and insulin resistance in the DVC. This study has shown 

that activation of Drp1 in the DVC leads to an increase in body weight gain, 

cumulative food intake and adipose tissue, these rats are also insulin resistant 

compared to regular chow (RC)- fed littermates and displayed higher levels of 

iNOS in the DVC. Conversely inhibiting Drp1, or knocking down iNOS, in the DVC 

in HFD-fed rats decreased body weight gain, cumulative food intake and adipose 

tissue, and prevented the development of insulin resistance. In addition to this, 

selective inhibition of Drp1 in astrocytes of the DVC in HFD-fed rats resulted in a 

decrease in food intake and body weight and prevented HFD-induced insulin 

resistance. Finally, in diet-induced obese, insulin resistant rats, inhibition of 

mitochondrial fission or knocking down iNOS in the DVC restored insulin 

sensitivity and decreased fat deposition. This study has determined the integral 

role Drp1 and iNOS in the DVC and the effect this has on feeding behaviours and 

body weight gain, in particular I demonstrated that it is sufficient to target 

astrocytes in the DVC to affect insulin sensing, feeding behaviours and fat 

deposition. 
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1 General Introduction 
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1.1 Insulin  

1.1.1 History and Discovery 

Insulin is a hormone which is released by the b-cells in the islet of Langerhans 

located in the pancreas (Lee and Pilch, 1994). The importance of the pancreas 

in the regulation of carbohydrate metabolism was first seen in 1890 (Mering and 

Minkowski, 1890), where removing the pancreas in a dog resulted in 

hyperglycaemia which subsequently led to diabetes and ketosis, ultimately 

resulting in death (Rosenfeld, 2002). In 1921, Fredrick Banting and Charles Best 

extracted a serum from a calf’s pancreas which effectively lowered blood glucose 

in diabetic dogs. They presented their findings to Macleod, a physiologist, who 

recruited the biochemist J.B. Collip, to analyse this extract. With this success, 

Banting, Best, Collip and Macleod were awarded the Nobel Prize for the 

discovery of this extract, named insulin (Rosenfeld, 2002). This was a medical 

breakthrough for the treatment of diabetes (Quianzon and Cheikh, 2012). 

1.1.2 Structure and Function 

Proinsulin is synthesised from pre-proinsulin mRNA and this is the precursor of 

insulin which is produced in b-cells of the pancreas (Wilcox, 2005). In 1964, 

Dorothy Hodgkin won a Nobel Prize for using x-ray crystallography to determine 

protein structures, five years later, Hodgkin and colleagues successfully 

determined the three dimensional structure of insulin (Adams et al., 1969). Insulin 

is a dimer of an A-chain and a B-chain with a combined molecular mass of 5808 

Da (Figure 1.1A) (Adams et al., 1969; Ward and Lawrence, 2011). Insulin binds 

to the a-subunit of the insulin receptor, initiating a cascade of downstream 

signalling. 
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The insulin receptor is a tetrameric protein comprised of two extracellular cysteine 

rich a-subunits and two tyrosine rich b-subunits, which are linked by disulphide 

bonds (Lee and Pilch, 1994; Saltiel and Kahn, 2001). The b-subunit is formed of 

three regions, the extracellular, transmembrane and cytosolic regions. The 

cytosolic tyrosine domain has an adenosine triphosphate (ATP) binding 

consensus sequence and three clusters of tyrosine which are phosphorylated in 

response to insulin (Lee and Pilch, 1994). Insulin binds to the a-subunit, initiating 

a string of events, firstly insulin binding increases the kinase activity of the b-

subunits, resulting in phosphorylation of the b-subunits leading to a 

conformational change of the receptor, which in turn increases the tyrosine 

kinase activity allowing recruitment of receptor substrates (Figure 1.1B) (Saltiel 

and Kahn, 2001). 

 

Insulin receptor substrate (IRS) proteins are a family of highly homogenous, 

cytoplasmic adaptor proteins that regulate signalling with insulin binding. IRS-1 

and -2 are ubiquitously expressed and are mediators of insulin-dependent 

Figure 1.1 Structure of insulin and insulin receptor 
 A: Monomer of insulin (green represents A chain, purple represents B chain) 

B: Structure of the insulin receptor 
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mitogenesis and glucose metabolism in cells (Boucher et al., 2014; Mardilovich 

et al., 2009; Saltiel and Kahn, 2001; Shaw, 2011). These substrates are 

extremely important in development, mice with an IRS-1 knockout were born 

around 70% smaller than wild type mice, and remained smaller throughout their 

lives. In addition, these mice were insulin resistant and had impaired glucose 

tolerance in peripheral tissues (Araki et al., 1994; Kadowaki et al., 1996; Kido et 

al., 2000; Shaw, 2011). In contrast, IRS-2 knockout mice were the same size as 

wild type mice, however they had many tissue-specific defects (Kido et al., 2000; 

Saltiel and Kahn, 2001; Withers et al., 1998). IRS-2 knockout mice had smaller 

brains due to a decrease in neuronal proliferation, they also had a reduction in 

number b-cells in the pancreas as well as insulin resistance in peripheral tissues 

(Kido et al., 2000; Saltiel and Kahn, 2001; Withers et al., 1998). These studies 

therefore illustrate the importance of IRS proteins in normal protein development 

and function. 

IRS proteins have a N-terminal pleckstrin homology (PH) domain adjacent to a 

phosphortyrosine-binding (PTB) domain. The PH domain directs IRS to the 

juxtamembrane domain on the insulin receptor where it binds and sequentially 

regulates tyrosine phosphorylation resulting in downstream effects (Boucher et 

al., 2014; Okada et al., 1994; Shaw, 2011). One of these downstream effectors 

is the p85 regulatory subunit of the phosphoinositide 3 kinase (PI3K) which is 

highly important in the activation of the serine threonine kinase, protein kinase B 

(AKT), which aids the metabolic regulation of insulin’s actions. The PI3K catalytic 

subunit, p110, phosphorylates phosphatidylinositol 4,5-phosphate (PIP2) leading 

to the activation of PIP3, activating AKT (Okada et al., 1994; Shaw, 2011; Sun et 

al., 1993). Activation of AKT leads to downstream signalling of key substrates in 
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response to insulin, including inhibiting Forkhead box class O (FOXO) 

transcription factors (Boucher et al., 2014; Shaw, 2011). FOXO transcription 

factors, integrate signals from stress and nutrient deprivation to increase 

gluconeogenesis and glycolysis (Figure 1.2) (Shaw, 2011; Webb and Brunet, 

2014). Another essential branch of the insulin signalling pathway is the mitogen 

activated protein kinases (MAPK) / extracellular signal-related kinases (ERK) 

pathway, this pathway is activated independently of the PI3K/AKT pathway 

Figure 1.2 Insulin signalling pathway 
 
Schematic representation of the insulin signalling pathways, insulin binds to the a subunits 

on its receptor to initiate a cascade of downstream effects. Insulin activates either the 

PI3K/AKT pathway or the MAPK/ERK1/2 pathway 
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(Boucher et al., 2014). Activated IRS proteins initiate a signalling cascade which 

results in serine threonine kinase Raf activation, that targets MAPK1 and -2, 

phosphorylating and activating MAP kinases, ERK1 and -2. ERK1 and -2 play 

important roles in cell proliferation and differentiation by regulating gene 

expression (Figure 1.2) (Boucher et al., 2014).  

Insulin is secreted in response to circulating glucose levels, regulating blood 

glucose levels and maintaining energy homeostasis (Schwartz, 2005; Wilcox, 

2005). Insulin allows uptake of glucose, free fatty acids (FFA) and amino acids, 

in the liver, adipose tissue and muscle which are stored as glycogen, lipids and 

proteins, respectively (Figure 1.3). Insulin can rapidly supress hepatic glucose 

production (HGP) through direct action on the liver and indirectly via adipose 

tissue, muscle cells and a-cells of the pancreas (Girard, 2006; Schwartz, 2005; 

Wilcox, 2005). Insulin’s actions in the brain were first discovered nearly a century 

ago, since then there has been extensive research to understand its actions 

(Claude, 1855). Insulin in brain can initiate signalling cascades to decrease HGP 

through neuronal input to the liver, as well as decrease lipolysis and glucagon 

production (Filippi et al., 2012a; Schwartz, 2005).  

In addition to controlling glucose production, insulin has a critical role in the 

regulation of feeding; insulin is a satiety hormone which can signal to the brain to 

inhibit food intake and in turn affect body weight (Figure 1.3) (Woods et al., 2006). 

The ‘adiposity negative feedback’ model was created on the premise that 

circulating peripheral signals inform the brain of alterations in body fat to which it 

responds with adaptive adjustments to stabilise fat stores. Insulin receptors are 

heavily concentrated in the brain, when body fat mass increases, insulin signals 

to the brain to inhibit food intake, suggesting insulin is a key ‘ancestral negative 
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feedback regulator’ of energy homeostasis (Clegg et al., 2003; Schwartz, 2005; 

Smeets et al., 2012).  

Insulin signalling is tightly regulated, however disruption in its signalling pathway 

can cause insulin resistance. Insulin resistance can be defined as defects in the 

insulin signalling pathway, and clinically refers to impaired sensitivity to insulin 

required for glucose disposal. Insulin resistance results in increased levels of 

plasma insulin (hyperinsulinemia) required to enable glucose uptake in different 

areas of the body, such as the liver, muscle and fat (Wilcox, 2005). Chronic 

hyperinsulinemia can lead to diabetes, as the pancreas can no longer meet the 

demands to reached euglycemia. Studies have shown that in both human and 

mice, disruption of insulin signalling components results in insulin resistance and 

hyperglycaemia (Czech, 2017). 

Insulin is released by the pancreas in response to an increase in circulating glucose, which 

then acts on the white adipose tissue (WAT), liver, brain and muscle to maintain euglycemia 

Figure 1.3 Summary of the action of insulin in the body 
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1.2 Insulin’s mechanisms of actions in the body 

1.2.1 Liver 

The liver accounts for around 30% of insulin-mediated glucose disposal, HGP 

accounts for the majority of glucose production (Cherrington et al., 2007; 

Edgerton et al., 2006; Moore et al., 2012). Insulin is released constantly at a 

steady state to enable insulin-dependent glucose entry into the liver cells, 

preventing hydrolysis of triglycerides and limiting gluconeogenesis to maintain 

normal blood glucose levels (Cherrington, 1999; Cherrington et al., 2007; Wilcox, 

2005). In a post-prandial state, insulin concentrations are increased in the blood. 

Insulin binds directly to hepatic insulin receptors activating insulin signalling, 

allowing glucose uptake, facilitating glycogen storage and decreasing HGP via 

inhibition of gluconeogenesis and glycolysis (Biddinger et al., 2008; Cherrington, 

1999; Edgerton et al., 2006; Moore et al., 2012). The glucose transporters 

(GLUTs) are an important family which help facilitate glucose uptake into the liver 

to control blood glucose levels (Chadt and Al-Hasani, 2020). In particular, the 

GLUT1, -2, -5 and -8 are extremely important in glucose sensing and HGP (Chadt 

and Al-Hasani, 2020).  

The liver is a highly important organ in glucose regulation, mice with a liver-

specific insulin receptor knockout (LIRKO), were severely insulin resistant and 

were dramatically glucose intolerant (Biddinger et al., 2008). Insulin can control 

the synthesis and storage of lipids in the liver by increasing de novo lipogenesis 

which in turn supresses fatty acid oxidation. LIRKO mice were protected from 

fatty liver disease and lipid abnormalities seen in high fat diet (HFD) fed rats, 

despite being insulin resistant, highlighting the crucial role of insulin in stimulating 
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de novo lipogenesis in the liver (Biddinger et al., 2008; Cherrington et al., 2007; 

Titchenell et al., 2017). FOXO, is a transcription factor that is regulated by insulin 

and promotes many genes involved in gluconeogenesis. In a liver-specific, insulin 

receptor and FOXO1 knockout (LIRFKO) obese model, these mice had with 

improved glucose tolerance (O-Sullivan et al., 2015). 

In an insulin resistant state, insulin fails to stimulate glucose uptake and suppress 

HGP in both pre- and post-prandial states, resulting in higher circulating blood 

glucose levels (Brown and Goldstein, 2008; Ferris and Kahn, 2016; Titchenell et 

al., 2017). In the pathophysiology of obesity and type II diabetes mellitus (T2DM), 

a key contributing factor is an increase in triglyceride synthesis due to increased 

nutrient availability (Biddinger et al., 2008; Brown and Goldstein, 2008; Ferris and 

Kahn, 2016; Vatner et al., 2015). Insulin has an essential role in regulating 

glucose homeostasis in the liver and therefore in the development of T2DM. 

1.2.2 Skeletal Muscle  

Skeletal muscle consumes energy in the form of glucose; insulin signals to the 

muscle to promote glucose uptake and net glycogen synthesis, a process 

controlled by GLUT4 translocation (Dimitriadis et al., 2011; Petersen and 

Shulman, 2018). Glucose transport is important in cell metabolism as it controls 

the rate of glucose utilisation. Insulin activates enzymes hexokinase and 6-

phosphofructokinase in muscle leads to an increased rate of glycolysis in muscle 

(Dimitriadis et al., 2011; Petersen and Shulman, 2018). 

Insulin resistance in skeletal muscle is characterised by excess b-oxidation, a 

catabolic process were fatty acids are broken down to acetyl Co-A which can be 

used in the electron transport chain to produce energy (Bartlett and Eaton, 2004). 
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Muscle-specific models of insulin resistance demonstrated a 50% decrease in 

glycogen synthesis in muscle, ultimately leading to T2DM (Perseghin et al., 1996; 

Petersen and Shulman, 2018). In addition, studies have previously shown that a 

blockade of hexokinase activity decreases glycogen production and glucose 

transport due to decreased GLUT4 translocation, resulting in insulin resistance 

in humans (Dohm et al., 1988). Insulin resistance in muscle has been seen in 

obese mice, this was due to a decrease in tyrosine kinase activity in the insulin 

receptor impairing intracellular signalling of insulin (Garvey et al., 1998; Petersen 

and Shulman, 2018). It is evident that insulin acting on the muscle is extremely 

important in the maintenance and functionality of skeletal muscle. 

1.2.3 White adipose tissue (WAT) 

Insulin facilitates glucose and FFA uptake in WAT, which in turn inhibits lipolysis 

and stimulates de novo fatty acid synthesis via activation of the GLUT4 

transporter (Kusminski and Scherer, 2012; Wilcox, 2005). Insulin can enhance 

the expression of WAT transcription factors, such as peroxisome proliferator-

activated receptor gamma (PPAR-g) (Boden, 2009; Cignarelli et al., 2019; 

Scherer et al., 2011). WAT produces a variety of adipokines, including leptin and 

adiponectin which regulate fat cell differentiation and systemic energy balance. 

Adipocytes break down triglycerides to release non-esterified fatty acids into the 

circulation when in fasted or in high energy consuming states (Boden, 2006; 

Scherer et al., 2011). 

WAT dysfunction can lead to uncontrolled lipolysis leading to an increase in FFA 

release and insulin resistance (Tokarz et al., 2018). In addition, WAT dysfunction 

increases the production of cytokines inducing insulin resistance by inhibiting 

insulin signalling cascades (Scherer et al., 2011; Wilcox, 2005). Adipocytes taken 



 11 

from diabetic mice had reduced levels of GLUT4 translocation and decreased 

IRS-1 expression (Wilcox, 2005). Adipocytes in HFD-fed rats displayed low levels 

of ATP, increased lipid storage and reduced mitochondrial biogenesis leading to 

lipid accumulation and high levels of reactive oxygen species (ROS) as well as 

insulin resistance (Brand, 2010; Kusminski and Scherer, 2012).  

1.2.4 Brain 

In 1854, Claude Bernard, a French physiologist demonstrated the role of the brain 

in glucose homeostasis by puncturing the floor of the fourth ventricle which 

resulted in glycosuria in a rabbit (Claude, 1855). Since then, there has been 

extensive research into insulin’s actions in the brain (Brüning, 2000; Kleinridders 

et al., 2014). There are many different satiety-related hormones which have been 

identified to have an effect in the brain, some of these include, insulin, leptin and 

ghrelin, to exert their actions these hormones must pass the blood brain barrier 

(BBB) (Banks, 2008). The BBB is a highly regulated interface between the 

periphery and the CNS, it maintains homeostasis in the brain (Morris et al., 

2018a). The BBB regulates the movement of molecules by way of a partially 

permeable membrane, which protects the CNS from foreign bodies such as 

viruses and bacteria, while also allowing certain proteins and hormones to pass 

through the CNS (Banks, 2008). 

The discovery that insulin could cross the BBB was made by Margolis and 

Altszuler, who showed that that intravenous injection of insulin peripherally 

caused an increase in insulin levels in the cerebrospinal fluid (Margolis and 

Altszuler, 1967). In 1997, Banks and colleagues demonstrated using an 

radioimmunoassay that insulin could pass though the BBB via a saturable 

transport system. The insulin receptor is highly expressed throughout the brain, 
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from the olfactory bulb to the brainstem (Brüning, 2000; Kleinridders et al., 2014). 

Insulin has many functions in the brain from regulating protein synthesis and 

autophagy, events which occur intracellularly that are important in aiding synaptic 

plasticity. In addition to this, insulin in the brain is extremely important in the 

regulation of food intake, energy expenditure and glucose metabolism 

(Kleinridders et al., 2014; Schwartz, 2005). Mice with a deletion of the insulin 

receptor in the brain (NIR knockout mice) presented with increased body fat and 

insulin resistance (Brüning, 2000), illustrating the role insulin plays in the 

regulation of energy balance. 

Insulin can also signal indirectly to the CNS, the brain receives signals from the 

gastrointestinal tract and adipose tissue via neuronal and hormonal signals 

(Smeets et al., 2012). This information is transmitted through the afferent branch 

of the vagus nerve to the brainstem where the nucleus tractus solitarii (NTS) 

regulates autonomic functions and homeostasis (Browning and Travagli, 2011; 

Travagli et al., 2006). Vagal afferent neurones express the insulin receptors 

directly reaching multiple areas of the brain including the hypothalamus to help 

regulate both food intake and body weight (Schwartz, 2006; Smeets et al., 2012). 

The hypothalamus is one of the most important and studied areas of the brain 

involved in the control of feeding and glucose homeostasis (Brüning, 2000; Obici 

et al., 2002a; Pocai et al., 2005; Timper and Brüning, 2017). Many studies have 

shown that food intake leads to activation of anorexigenic neuropeptide 

producing proopiomelanocortin (POMC) neurones which leads to a 

counterregulatory downstream effect of decreased food intake and increased 

energy expenditure. On the contrary, a fasted state induces the activation of 

orexigenic, neuropeptide-Y (NPY) and agouti-related peptide (AgRP) neurones, 
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which act to stimulate food intake. In addition to regulating food intake, these 

neurones also express the receptor for insulin (Stanley and Leibowitz, 1984; 

Timper and Brüning, 2017). Targeted deletion of the both the insulin and leptin 

receptor in POMC neurones caused a loss of central glucose regulation, 

determining that the direct action of insulin or leptin are essential in the 

maintaining glucose homeostasis (Hill et al., 2010). Mice with an insulin receptor 

knockout in AgRP neurones, failed to decrease HGP, determined by levels of 

decreased levels of interleukin-6, which has shown to suppress gluconeogenesis 

and an increase in levels of glucose-6-phophatase (G6PASE), an enzyme which 

produces glucose (Könner et al., 2007). Concluding that insulin binds to its 

receptor on AgRP-expressing neurones, decreasing firing and resulting in 

decreased HGP (Könner et al., 2007). Such findings illustrate the crucial role of 

hypothalamic insulin signalling on feeding behaviours and glucose homeostasis.  

In addition to regulating feeding, hypothalamic insulin is also important for 

sympathetic nervous outflow to the brown adipose tissue (BAT), a main function 

of which is to regulate body temperature (Bamshad et al., 1999; Kleinridders et 

al., 2014). Many hypothalamic nuclei have been shown to control BAT 

thermogenesis, such as the arcuate nucleus (ARC), dorsal medial hypothalamus, 

the paraventricular hypothalamus (PVN) and the lateral hypothalamus (LH) 

(Labbé et al., 2015). Injection of insulin into the hypothalamus activates BAT and 

induces hyperthermia, an effect which was lost in mice who had a neurone-

specific knockdown of the insulin receptor (NIRKO) (Labbé et al., 2015; Plum, 

2006). NPY in the ARC of the hypothalamus has been shown to be critical in the 

function of BAT, NPY signalling leads to a decrease in tyrosine hydroxylase, the 

rate-limiting enzyme in synthesising catecholamines, in the PVN, locus coeruleus 
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and the brainstem which in turn decreases BAT thermogenesis. HFD-fed mice 

with a knockdown of NPY had increase mRNA of tyrosine hydroxylase and 

improved BAT function compared to HFD-fed controls (Shi et al., 2013).  

There is growing evidence that insulin is important in memory, cognition and 

behaviour (Lee et al., 2016). Insulin resistance in the brain induces dopaminergic 

dysfunction leading to anxiety and behavioural disorders (Kleinridders et al., 

2015). Activation of neurones in hippocampal slices with insulin, increased 

neurotransmitter release from presynaptic terminals and promoted synaptic 

plasticity by modulating long term potentiation and long-term depression (Van 

Der Heide et al., 2005; Lee et al., 2011). Post-synaptically in the hippocampus, 

activation of the PI3K pathway is essential for translocation of the glutamate 

receptor to the plasma membrane during synaptic plasticity (Lee et al., 2011; 

Schmitz et al., 2018). Hippocampal slices of mice lacking IRS-2 had a decrease 

in N-methyl-D-aspartate (NMDA) receptor synaptic plasticity and PI3K 

downstream targets, which could underlie cognitive defects linked to insulin 

signalling (Costello et al., 2012). Illustrating the of importance insulin signalling in 

synaptic plasticity and cognition. 

Insulin resistance leading to T2DM has been linked to the development of 

Alzheimer’s disease (AD) (Boyt et al., 1999; Ferreira et al., 2018; Perry et al., 

2010). Insulin resistance can influence amyloid-b plaque deposition, which 

impairs synaptic plasticity and memory formation; many studies have shown that 

insulin signalling is impaired in the brain of AD patients (Boyt et al., 1999; Hiltunen 

et al., 2012). HFD-fed mice overexpressing amyloid precursor protein and 

presenilin, a protein important in amyloid-b plaque formation, presented with 

hyperglycaemia, poor spatial learning and increased amyloid-b plaques, 
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illustrating regulatory mechanisms which link T2DM and AD (Hiltunen et al., 

2012). However, the underlying mechanisms of this and the role of insulin in the 

development of AD are still unknown (Boyt et al., 1999; Ferreira et al., 2018).  

1.2.4.1 Mediobasal hypothalamus  

The mediobasal hypothalamus (MBH) is situated adjacent to the third ventricle of 

the brain and is a region that responds to insulin to modulate food intake and 

glucose metabolism. The MBH is comprised of the ARC, PVN, VMH and LH, 

together they regulate glucose homeostasis (Roh et al., 2016). Hormones and 

nutrients in the systemic circulation and cerebrospinal fluid can easily access the 

hypothalamic ARC as it is in close contact with the median eminence, this region 

is rich in fenestrated capillaries close to the BBB (Rodríguez et al., 2010; Roh et 

al., 2016). As mentioned previously, the ARC has two distinct neuronal 

populations involved in satiety: the orexigenic NPY and AgRP neurones, and the 

anorexigenic POMC and cocaine- and amphetamine-regulated transcript 

neuropeptides producing neurones (Roh et al., 2016; Schwartz, 2005).  

The neuropeptide a-melanocyte-stimulating hormone (a-MSH), is produced by 

the post-transcriptional processing of POMC, once released it binds to 

melanocortin 3 and 4-receptor (MC3R and MC4R, respectively), and initiates 

catabolic pathways resulting in a decrease in food intake and increase in energy 

expenditure (Figure 1.4) (Cowley et al., 2001; Raffan et al., 2016; Roh et al., 

2016; Schwartz, 2005). POMC neurones are stimulated by insulin and leptin and 

function to inhibit food intake and promote weight loss (Figure 1.4) (Cowley et al., 

2001; Raffan et al., 2016). Targeted deletion of MC4R and mutations in the 

POMC gene induced hyperphagia and decreased energy expenditure, leading to 

obesity in mice (Raffan et al., 2016). Furthermore, selective knockdown of the 
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insulin receptor in POMC neurones in mice increased HGP and insulin resistance 

(Hill et al., 2010; Ruud et al., 2017). 

  

AgRP promotes feeding by competing with a-MSH released from POMC 

neurones to bind to MC3R and MC4R (Krashes et al., 2014). Activation of AgRP 

neurones decreased insulin-stimulated glucose uptake and impaired insulin 

sensitivity and glucose tolerance (Ollmann et al., 1997; Steculorum et al., 2016). 

Ablation of NPY and AgRP neurones in mice caused a significant decrease in 

food intake and body weight (Ruud et al., 2017). Central administration of NPY 

stimulated rapid feeding and insulin resistance in mice (Ruud et al., 2017). In 

obese insulin-resistant models, insulin neuronal input is reduced due to higher 

activation of NPY and AgRP neurones inducing hyperphagia (Schwartz, 2005). 

Figure 1.4 Regulation of energy balance by the MBH.  
 Increased levels of circulating insulin and leptin signal to POMC neurones to increase energy 

expenditure. In addition, insulin and leptin inhibit AgRP and NPY neurones to decrease food 

intake. On the other hand, ghrelin, an orexigenic hormone, signals to AgRP and NPY 

neurones to increase food intake. Defects in secretions of these hormones lead to an 

increase in food intake leading to obesity and T2DM. 
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Such findings, highlight the critical role of NPY and AgRP neurones in promoting 

food intake. 

Evidence of central action of insulin on glucose regulation and food intake was 

documented in a primate model, where intracerebroventricular (ICV) infusion of 

a low dose of insulin resulted in a decrease in food intake and body weight 

(Woods et al., 1980). A few decades later, knockdown of the insulin receptor in 

mice resulted in an increase in body weight and food intake, while administration 

of insulin into the third ventricle decreased HGP. It was therefore postulated that 

insulin had an integral role in the central regulation of energy and glucose 

homeostasis (Brüning, 2000; Obici et al., 2002a; Pocai et al., 2005).  

When insulin binds to its receptors in the MBH it activates the PI3K and AKT 

signalling pathway and activation of KATP channels, leading to hyperpolarisation 

of neurones. This initiates a cascade of events which leads to a decrease in the 

expression of phosphoenolpyruvate carboxykinase (PEPCK) and G6PASE in the 

liver, thus inhibiting gluconeogenesis (Obici et al., 2002b; Pocai et al., 2005). 

Overnutrition can affect the ability of insulin to lower glucose production, for 

example, three days of HFD can negate the glucose lowering effect of acute 

infusion into the MBH (Filippi et al., 2012b). In diabetic rats PI3K expression was 

reduced in the hypothalamus, however, PI3K signalling in these diabetic rats was 

restored by overexpression of IRS-2 or PKB, this re-established hypothalamic 

insulin ability to decrease blood glucose (Gelling et al., 2006). Chronic activation 

of S6 kinase, a ribosomal protein inhibit PIP3, leads to inhibition of insulin 

signalling through a negative feedback loop by IRS-1. Molecular inhibition of S6 

kinase, using an adenovirus, in the MBH supressed HGP and blunted the effect 

of HFD-diet feeding (Ono et al., 2008). ICV injection of the KATP channel activator, 
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diazoxide, lowered glucose production, while infusion of a sulfonylurea to block 

KATP channels prevented the ability of insulin to lower glucose production in rats 

(Pocai et al., 2005).  

As mentioned previously, the brain communicates information on nutritional 

status to the periphery via the vagus nerve. Following hepatic vagotomy which 

compromised the ability of efferent fibres to exert effects of ICV insulin to 

decrease hyperglycaemia (Pocai et al., 2005). ICV injection of an insulin receptor 

antisense oligonucleotide inhibited insulin’s central actions impairing HGP in 

hyperinsulinemic clamps. Furthermore ICV injection of insulin suppressed HGP 

irrespective of systemic levels of insulin, thereby highlighting the role of CNS 

insulin in modulating hepatic glucose metabolism (Obici et al., 2002a, 2002b).  

1.2.4.2 Dorsal Vagal Complex 

The dorsal vagal complex (DVC) of the brainstem, located close to the fourth 

ventricle, controls energy homeostasis in various different ways. The DVC 

encompasses the NTS, the dorsal motor nucleus of the vagus (DMX), and the 

area postrema (AP) which has a leaky BBB (Filippi et al., 2012b; Gelling et al., 

2006; Yettefti et al., 1997). The AP can sense circulating hormones released by 

peripheral organs, it can receive sensory input from vagal afferents originating 

from the gastrointestinal tract, lastly, it can receive and relay energy-related 

signals from other areas of the brain via the AP (Schneeberger et al., 2014). The 

DVC relay signals to and from the periphery via the vagus nerve. Acute and 

chronic stimulation of the vagal afferents in rats led to a decrease in food intake 

(Berthoud, 2008). Chemical stimulation of the DMX resulted in an increase in 

plasma insulin levels, while subdiaphragmatic vagotomy abolished this effect, 
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connecting the DMX to the pancreas via the vagus nerve to regulate levels of 

insulin (Ionescu et al., 1983).  

POMC neurones in the ARC of the hypothalamus project signals to the NTS 

where there are high levels of MC4R (Kishi et al., 2003). In addition to this, 

delivery of a MC4R agonist into the NTS decreased food intake and increased 

energy expenditure (Kishi et al., 2003). Deletion of MC4R in the DMX, using chat-

cre mice, resulted in hyperinsulinemia and weight gain, therefore illustrating a 

role for the DMX in regulating insulin levels (Berglund et al., 2014; Rossi et al., 

2011). POMC neurones in the NTS act differently to those in the ARC, acute 

activation of POMC neurones in the NTS results in immediate suppression of 

food intake, whereas in the ARC, chronic activation of POMC is required to inhibit 

feeding behaviours (Zhan et al., 2013).  

As previously mentioned, in the MBH, insulin activates the PI3K/AKT pathway to 

regulate glucose homeostasis. However, when insulin was injected into the DVC 

at the same dose that activated the PI3K/AKT pathway in the MBH, it did not 

activate this pathway, instead the ERK1/2 pathway was activated determined 

using western blotting methods (Figure 1.5) (Filippi et al., 2012b). In addition to 

this, chemical and molecular inhibition of DVC ERK1/2 also negated the effect of 

insulin on glucose homeostasis, confirming that the ERK1/2 pathway is critical in 

the regulation of glucose homeostasis in the DVC (Filippi et al., 2012b). 

Furthermore, infusion of the KATP channel blocker, glibenclamide, alongside 

insulin into the DVC; negated the ability of the DVC to lower glucose production 

and increase glucose infusion rate. This demonstrates that changes in HGP in 

response to DVC insulin are dependent on the activation of KATP channels via the 

ERK1/2 pathway in the DVC (Filippi et al., 2012b). Acute infusion of insulin into 
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the DVC decreased food intake, where molecular inhibition of ERK1/2 increased 

food intake in healthy male rats, this molecular disruption of signalling induced 

obesity after two weeks of feeding (Filippi et al., 2014). Together, this highlights 

the importance of ERK1/2 signalling in the DVC in the regulation of energy 

balance. 

The neuronal populations in the DVC which insulin targets have been shown to 

be neurones, astrocytes and oligodendrocytes, however the exact mechanism of  

are not fully understood, a possible way in which information about energy 

balance are communicated to such neurones could be that astrocytes secrete 

endozepines, such as octadecaneuropeptide (ODN), which are involved in the 

regulation food intake (Guillebaud et al., 2017). For example, central 

administration of ODN decreased food intake in rats, suggesting that ODN could 

Figure 1.5 Two pathways insulin signalling pathways in the brain resulting in a 
decrease food intake and HGP. 
  Insulin in the MBH activates the PI3K/AKT pathway while in the DVC activates ERK1/2 

dependent pathway and the KATP channel to decrease blood glucose by inhibiting HGP 
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modify the excitability of NTS neuronal circuits (Guillebaud et al., 2017). 

Furthermore, activation of astrocytes using DREADDs in the DVC decreased 

food intake and decreased rebound hyperphagia after fasting (MacDonald et al., 

2019). 

There are lots of complexities involved in glucose sensing and therefore as yet 

there are no specific glucose excitatory or glucose inhibitory cells defined in the 

DVC. It has been previously demonstrated that ERK1/2 dependent insulin 

signalling activates KATP channel in the hippocampus, which is also seen in the 

DVC; KATP could be a downstream mediator of glucose sensing (Balfour et al., 

2006; Filippi et al., 2012b; O’Malley et al., 2003). It is evident that the DVC has 

an important role in central control of metabolism, further investigation is 

warranted to fully understand these mechanisms. 

1.3 How clinically relevant are insulin’s actions in the brain? 

There is both in vivo and in vitro evidence to support that insulin in the brain is a 

key regulator in peripheral glucose metabolism and feeding behaviours. Many 

studies have been carried out across species showing that insulin has similar 

effects on glucose metabolism and feeding (Blázquez et al., 2014). Infusion of 

insulin in the lateral cerebral ventricle reduced food intake and body weight in 

baboons, similarly this central administration of insulin has been shown to 

decrease food intake in rats, sheep, mice and humans (Brüning, 2000; Clegg et 

al., 2003; Filippi et al., 2012a; Woods et al., 1980). ICV injection of insulin in the 

third ventricle resulted in a decrease in food intake in male rats but not females 

(Brüning, 2000). Oral administration of diazoxide, a KATP channel activator, and 

somatostatin, to inhibit the release of endogenous insulin, decreased glucose 

production compared to humans given a placebo, with no effect on glucose 
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uptake (Kishore et al., 2011). Similarly, ICV injection of diazoxide in rats 

decreased glucose production, in agreement with previous literature with showed 

that regulation of endogenous glucose production is mediated by hypothalamic 

KATP channels (Kishore et al., 2011; Obici et al., 2002b; Pocai et al., 2005).  

Intranasal peptide delivery was developed to understand the effects of insulin in 

the brain in humans. Intranasal insulin rapidly increases insulin in the 

cerebrospinal fluid without altering serum insulin, suggesting that insulin directly 

penetrated from the nasal mucosa to access the brain (Hallschmid et al., 2004). 

It was found that intranasal insulin significantly suppressed endogenous glucose 

production in healthy men determined by an arterial pancreatic clamp to maintain 

euglycemia (Dash et al., 2015). Although the mechanisms of central insulin are 

not fully understood, a likely mechanism could be the activation of KATP channels 

by intranasal insulin to decrease HGP, though this is yet to be determined 

(Kishore et al., 2011). In addition to this, intranasal insulin administered over eight 

weeks reduced body fat and weight in healthy men, with consistent findings in rat 

models (Benedict et al., 2011; Clegg et al., 2003). Intranasal delivery of insulin 

reduced postprandial appetite in women; in addition, women were less likely to 

eat palatable food like cookies or chocolate (Guthoff et al., 2010; Hallschmid et 

al., 2004). There is mounting evidence that insulin’s action in the brain can be 

regulated by both energy and glucose homeostasis, these findings illustrate the 

potential clinical relevance of the actions of insulin in the brain and insulin actions 

seen in rats (Spetter and Hallschmid, 2015).  

In addition to insulin’s role in feeding, research has previously shown the 

important role in memory formation. Interestingly, intranasal insulin improved 

cognitive function in humans (Benedict et al., 2008; Spetter and Hallschmid, 
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2015). Furthermore, systemic inhalation of insulin improved memory in AD 

patients as measured by story recall; it is thought that insulin can have a direct 

effect on Apoe4 (Avgerinos et al., 2018). Intranasal insulin is therefore a safe 

intervention in both diabetes and AD, understanding the mechanisms and 

efficacy will aid future treatment which can selectively target the brain using 

pharmacological approaches.  

1.4 Insulin resistance 

Insulin resistance is characterised by defects in insulin receptor, kinase activity, 

phosphorylation levels and glucose transport protein translocation, together 

these lead to the inability to maintain euglycemia, resulting in hyperglycaemia, 

hyperinsulinemia and dyslipidaemia (Ruud et al., 2017; Saltiel and Kahn, 2001). 

Deletions of key components of the insulin signalling pathway have been shown 

to decrease insulin sensitivity leading to T2DM (Saltiel and Kahn, 2001; 

Schwartz, 2005; Wilcox, 2005).  

Insulin resistance can occur in many ways, for example, stress increases 

inflammatory cytokines and can cause impairments in the insulin signalling 

pathway in the liver, skeletal muscle and adipose tissue (Mullington et al., 1996). 

Sleep deprivation increases fasting blood glucose levels and is associated with a 

decrease in plasma levels of insulin and increased central adiposity (Marette, 

2002). Overnutrition is associated with obesity and can be defined as an increase 

in body mass index and adiposity. Obesity has been linked with endoplasmic 

reticulum (ER) stress leading to insulin resistance and inflammation (Boden, 

2009). It is thought that in obesity, insulin resistance evolves in the muscle, liver 

and adipose tissue. The adipose tissue produces many cytokines which are 

associated with the insulin resistance such as interleukins and tumour necrosis 
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factor (TNF)-a which lead to ER-stress and inflammation (Kahn et al., 2006; 

Perseghin et al., 2003; Wilcox, 2005).  

In pancreatic b-cells the adaptive response to insulin resistance results in an 

increase in mass and function to maintain euglycemia, however, when b-cells 

start to become dysfunctional this results in impaired glucose tolerance, 

increased food intake and can lead to T2DM (Kahn, 2001; Wilcox, 2005). 

Furthermore, chronic feeding leading to obesity increases non-esterified fatty 

acids, which can induce insulin resistance and impair b-cell function leading to 

T2DM, therefore making obesity a risk factor for T2DM (Kahn et al., 2006). 

1.4.1 Endoplasmic reticulum stress and insulin resistance 

ER stress is a key player in the development of insulin resistance. Abnormal 

levels of circulating lipids and inflammatory cytokines disrupt insulin signalling 

and induce insulin resistance. ER stress plays an important role in the 

development of insulin resistance as it can transduce lipid metabolites and 

cytokines into stress kinases, which ultimately affects insulin signalling (Salvadó 

et al., 2015).  

The ER is the main cellular organ involved in the synthesis, assembly and 

secretion of proteins. ER stress occurs when there is an imbalance of protein 

folding and protein loads, resulting in misfolded proteins (Cunarro et al., 2018; 

Morris et al., 2018b). ER stress triggers the activation of the unfolded protein 

response (UPR). The main roles of the UPR are to restore normal function by 

halting translation, degrade any misfolded proteins and to activate signalling 

pathways that increase chaperones involved in protein folding. If these 

mechanisms cannot maintain ER homeostasis the cell undergoes apoptosis. The 
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loss of UPR signalling can cause diseases such as diabetes and 

neurodegenerative disorders.  

The UPR is mediated by three transmembrane proteins: inositol-requiring 

enzyme 1 (IRE1), double stranded RNA-activated protein kinase-like ER kinase 

(PERK) and activating transcription factor 6 (ATF6) (Ron and Walter, 2007; 

Salvadó et al., 2015; Schröder and Kaufman, 2005). IRE1 monitors ER 

homeostasis through luminal sensing, under ER stress, binding immunoglobulin 

protein (BiP), a glucose regulated protein, is released from the lumen of the ER 

where it acts as a chaperone in the activation of the stress transducers of UPR 

Figure 1.6 The relationship between insulin resistance and ER stress.  
 Insulin resistance results in misfolded proteins, leading to the activation of the UPR. The 

UPR has three branches, ATF6, IRE-1 and the PERK, these branches work in unison to 

try to relieve ER stress, if this is not possible proteins get degraded which leads to 

inflammation. 
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(Figure 1.6) (Ron and Walter, 2007; Salvadó et al., 2015). Activation of IRE-1 

initiates downstream signalling and the splicing of X-box binding protein 1 

(XBP1), which increases transcription of UPR genes and as well as genes 

involved in inflammation, lipid metabolism and adipogenesis; IRE-1 also 

produces apoptotic signals (Ron and Walter, 2007; Salvadó et al., 2015). ATF6 

senses protein folding status, during ER stress, ATF6 translocates to the Golgi  

body to regulate expression of XBP1 and genes involved in folding, maturation 

and secretion of proteins (Figure 1.6) (Ron and Walter, 2007; Salvadó et al., 

2015). PERK can homodimerize and auto-phosphorylate itself under ER stress, 

this is turn phosphorylates eukaryotic initiating factor 2 alpha (eIF2a) which 

results in a decrease in the load of newly synthesised proteins and the flux of 

protein in the ER, therefore reliving stress (Figure 1.6) (Ron and Walter, 2007; 

Salvadó et al., 2015). 

Chronic activation of the UPR can lead to T2DM, obesity, atherosclerosis, heart 

and liver diseases (Salvadó et al., 2015). HFD-feeding has been shown to 

increase ER stress in adipose tissue, which in turn increased levels of interleukin-

6 and PERK, leading to insulin resistance; in addition it was also demonstrated 

that PERK can negatively modulate insulin responsiveness in adipose tissue 

(Figure 1.6) (Bobrovnikova-Marjon et al., 2012). In the liver, ER stress can induce 

insulin resistance by dysregulating the expression of gluconeogenic genes. 

Furthermore, XBP1 can initiate degradation of FOXO1 in the liver leading to 

reduced gluconeogenesis (Lee et al., 2010; Zhou et al., 2011). ER stress also 

increases the phosphorylation of IRS-1 and -2 via IRE-1 mediated pathways, and 

as a result induces insulin resistance (Peng et al., 2011a; Salvadó et al., 2013). 
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It is therefore evident that ER stress plays a dominant role in the pathophysiology 

of insulin resistance in the body.  

1.4.2 Inflammation and insulin resistance 

In addition to ER stress, insulin resistance is also associated with low grade 

inflammation in tissues which is induced by various pro-inflammatory cytokines. 

TNF-a is a pro-inflammatory cytokine that has been shown to promote insulin 

resistance by inhibiting tyrosine phosphorylation of IRS-1, this same pathway is 

also seen in the presence of FFA, demonstrating that both cytokines and FFA act 

via the same pathway (Figure 1.7) (Hotamisligil et al., 1996). FFA and cytokines 

stimulate phosphorylation of the serine residues on IRS-1 which in turn dampens 

insulin signalling. In particular, one serine residue, ser-307, on the IRS-1 

substrate is important target for the c-Jun N-terminal kinases (JNK) (Aguirre et 

al., 2000; Hirosumi et al., 2002). JNKs are a sensing juncture for cellular stress 

and inflammation, and can phosphorylate IRS-1 at the ser-307 residue (Figure 

1.7)  (Aguirre et al., 2000). JNK activation has been seen in several models of 

obesity and insulin resistance; conversely, mice with knockdown of JNK gained 

less weight and had smaller adipocytes with less fatty livers when fed a HFD, 

therefore illustrating the role of JNK-mediated phosphorylation of the IRS-1 in the 

development of insulin resistance (Hirosumi et al., 2002). 

An increase in FFA in the blood can result in inflammation leading to insulin 

resistance. In insulin resistant states, adipocytes release FFA into the 

bloodstream due to the disruption in the anti-lipolytic effect of insulin, this in turn 

causes lipotoxicity (Figure 1.7) (Burgos-Morón et al., 2019). Lipotoxicity can lead 

to b-oxidation and an increase in reactive oxygen species (ROS). An increase in 

FFA results in an overload to the mitochondria which in turn causes higher levels 
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of ROS leading ER stress, and ultimately to insulin resistance (Burgos-Morón et 

al., 2019). 

Immune sensors, such as toll like receptors (TLR) play an important role in 

sensing pathogens and detecting tissue injury including insulin resistance. 

Activation of TLR initiates a cascade of events leading to the activation of nuclear 

factor kappa-light-chain enhancer of activated B cells (NF-kB) resulting in the 

production of inflammatory cytokines (Figure 1.7) (Tanti et al., 2013). TLR also 

activates ERK1/2 signalling, JNK and ERK (Könner and Brüning, 2011). In 

particular, TRL4 which has an important role in inflammation and insulin 

resistance in obesity (Figure 1.7). TLR4 is expressed in macrophages, 

adipocytes, hepatocytes, muscles and in the hypothalamus (Könner and Brüning, 

2011). In obese mice there is a significant increase in TLR4 expression along 

with a decrease in insulin sensitivity (Könner and Brüning, 2011). Mice with 

knockdown of TLR4 gained less weight than controls on a HFD and presented 

with lower levels of inflammation (Shi et al., 2006).  

The suppressor of cytokine signalling (SOCS) protein family control the 

degradation of proteins, and are induced by inflammatory cytokines. SOCS 

proteins interact with the tyrosine kinase, Janus-activated kinases (JAK), to 

initiate cytokine mediated signals to inhibit tyrosine phosphorylation (Figure 1.7). 

SOCS are involved in a negative feedback loop to downregulate the actions of 

satiety hormones, insulin and leptin (Lebrun and Van Obberghen, 2008; Tanti et 

al., 2013). SOCS3 has been shown to inhibit insulin signalling by binding to the 

SH2 domain on the juxtamembrane of the insulin receptor, preventing its 

interaction with IRS-1 (Emanuelli et al., 2000). In addition, SOCS1 and SOCS6 

inhibit tyrosine kinase activity of the insulin receptor, demonstrating the 
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importance of SOCS proteins in the pathogenesis of insulin resistance (Emanuelli 

et al., 2000). Inflammation leads to the upregulation of SOCS proteins in many 

peripheral tissues, where overexpression of SOCS1 and SOCS3 resulted in 

decreased expression of IRS leading to insulin resistance (Figure 1.7) (Lebrun 

and Van Obberghen, 2008; Tanti et al., 2013). Mice with a CNS knockdown of 

SOCS3 were protected against diet-induced obesity and insulin resistance 

(Howard et al., 2004). 

 

Figure 1.7 The relationship between insulin resistance and inflammation.  
 Insulin resistance results in an increase in FFA and proinflammatory cytokines, this in turn 

causes ER stress, mitochondrial stress and the generation of an inflammatory response 

via activation of many pathways. 
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1.5 Mitochondria 

Mitochondria are intracellular organelles in eukaryotic cells and are deemed the 

‘powerhouses of the cell’ (Annesley and Fisher, 2019; Nunnari and Suomalainen, 

2012; Stark and Roden, 2007). As the mitochondria are a primary source of ATP, 

the major metabolic pathways that occur within these organelles are oxidative 

phosphorylation, the Krebs cycle and b-oxidation (Stark and Roden, 2007). In 

addition, mitochondria have an important role in the biosynthesis of cytosolic free 

calcium (Frey and Mannella, 2000; Nunnari and Suomalainen, 2012; Stark and 

Roden, 2007). Mitochondria’s role in maintaining calcium concentrations is 

important in cell homeostasis, it helps maintain energy production by buffering 

and shaping cytosolic calcium to determine the fate of the cells (Contreras et al., 

2010). Furthermore, calcium handling is extremely important in the regulation of 

neuronal and hormonal signalling, highlighting the significance mitochondria play 

in endocrine function (Stark and Roden, 2007).  

To ensure the mitochondrial network is working efficiently to meet energy 

demands, mitochondria themselves undergo autophagy, which is termed 

mitophagy (Palikaras et al., 2018). Mitophagy to degrade mitochondria happens 

in two main steps, first is the initiation of autophagy, followed by the priming of 

selected mitochondria for removal (Ding and Yin, 2012). The inductive putative 

kinase (PINK1)-Parkin pathway primarily regulates the priming step in mitophagy, 

PINK1 accumulates in the outer mitochondrial membrane (OMM) and Parkin 

translocates to the OMM and mediates ubiquitination of mitochondrial proteins to 

initiate autophagy of their adaptors thus initiating degradation (Ding and Yin, 

2012; Ordureau et al., 2018; Pickles et al., 2018; Sarraf et al., 2013). Basal 

mitophagy is seen in every cell and occurs at different rates. Extracellular stress 
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signals affect mitochondrial physiology by inducing mitophagy and altering 

mitochondria to meet the ‘new’ metabolic adjustments (Palikaras et al., 2018; 

Sekine and Youle, 2018). 

1.5.1 Mitochondrial dynamics 

Organisms can maintain metabolic homeostasis by adjusting the capacity and 

efficiency of ATP generation to meet energy supply and demand (Gao et al., 

2014). Mitochondrial dynamics regulate the morphology, number, distribution and 

function of the mitochondria, which is critical in the maintenance of mitochondrial 

homeostasis in response to stress (Gao et al., 2014; Meyer et al., 2017). The 

changes in mitochondria involve a delicate balance of proteins promoting fusion 

and fission. Mitochondrial fusion is regulated by mitofusin 1 and 2 (MFN-1 and 

MFN-2, respectively) and optic atrophy 1 (OPA1), while mitochondrial fission is 

regulated by dynamin related protein 1 (Drp1) and Fission 1 (Fis1) (Figure 1.8) 

(Gao et al., 2014; Lee and Yoon, 2016; Meyer et al., 2017). Mitochondrial fusion 

allows extension of the mitochondrial network to effectively meet high energy 

demands and allowing increased generation of ATP (Figure 1.8). Conversely, 

mitochondrial fission serves to eliminate damaged mitochondria from the network 

by autophagy, demonstrating the importance of this process as a quality control 

mechanism for the maintenance of mitochondria (Westermann, 2012). Continual 

fission and fusion of mitochondria is integral to the adaptation to metabolic 

changes; cells in a fed state maintain fragmented mitochondria, favouring fission, 

while in a fasted state, mitochondria tend to be fused (Figure 1.8) (Gao et al., 

2014; Lee and Yoon, 2016).  
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1.5.1.1 Mitochondrial fusion  

Mitochondrial fusion, otherwise known as elongation of mitochondria, is a cell 

survival mechanism; by increasing respiratory efficacy. Maintaining a network of 

mitochondria that are hyperfused protects the cells from degrading by autophagy 

in a nutrient deficient state (Gomes et al., 2011; Meyer et al., 2017; Ramírez et 

al., 2017). Mitochondrial fusion is tightly regulated by proteins at both the inner 

mitochondrial membrane (IMM) and the OMM. These proteins have GTPase 

activity which converts guanosine triphosphate (GTP) to guanosine diphosphate 

(GDP) and have the ability to self-assemble and remodel membranes (Olichon et 

al., 2006; Stark and Roden, 2007; Tilokani et al., 2018). Fusion of mitochondria 

requires merging of the OMM and then the IMM, fusion is regulated by mitofusin 

GTPases MFN1 and -2 on the OMM. In the IMM, MFN1 is required for 

mitochondria fusion which is promoted by OPA1. OPA1 mediates IMM fusion and 

also controls cristae morphogenesis, apoptosis and respiratory capacity (Olichon 

et al., 2006).  

To initiate mitochondrial fusion, two mitochondria outer membranes are tethered 

together by the transmembrane domain of MFNs (Figure 1.9) (Tilokani et al., 

2018). The GTP binding and hydrolysis induce a conformational change in the 

Figure 1.8 An overview of mitochondrial dynamics.  
 
Mitochondrial dynamics are regulated by many proteins, during a low energy intake state 

mitochondrion favour mitochondrial fusion, aided by regulators MFN2 and Opa1. In high 

energy intake, mitochondria favour mitochondrial fission regulated by Drp1 and Fis1. (Small 

dots indicate Drp1) 
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MFNs resulting in mitochondrial docking and an increase in membrane contact 

sites. GTP dependent oligomerisation ensures OMM fusion has taken place 

(Figure 1.9) (Tilokani et al., 2018), following from this, OPA1 and cardiolipin (CL), 

an important component of IMM, drive IMM fusion (Tilokani et al., 2018). The 

interaction between OPA1 and cardiolipin tethers the two IMM and they fuse 

together following OPA1-dependent GTP hydrolysis; this results in mitochondria 

fusion (Figure 1.9) (Tilokani et al., 2018). 

 

Figure 1.9 Schematic of mitochondrial fusion.   
 1. The OMM are tethered by the GTPase domains of Mfn2. 2. This induces a conformation 

change leading to mitochondrial docking. 3. GTPase oligomerises and fuses the OMM. 4. 
Opa1 and CL tether the two IMMs which fuse together via Opa1 dependent GTP hydrolysis 
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1.5.1.2 Mitochondrial fission 

Mitochondrial fission occurs around the ER site and requires separating the OMM 

and the IMM, and re-joining these in the correct orientation without losing proteins 

from the mitochondria matrix. In addition to this, mitochondrial fission has to split 

mitochondrial proteins and mtDNA to allow the new organelle to function properly 

(Figure 1.10B) (Scott and Youle, 2010; Sesaki and Jensen, 1999). Mitochondrial 

fission involves recruitment of a large GTPase, Drp1. Drp1 is a cytosolic protein 

which is recruited to mitochondrial membranes when they oligomerise and drives 

the constriction of the membrane.  

Drp1 protein has four domains, a GTPase domain (G-domain), middle domain, 

variable domain and a GTPase effector domain (GED). Drp1 contains a bundle 

of signalling elements which connect to the GTPase domain allowing recruitment 

of Drp1 to the OMM, leading to its oligomerisation (Figure 1.10A) (Lee and Yoon, 

2016; Tilokani et al., 2018). Mitochondrial fission proteins are regulated by post-

translational modifications including phosphorylation, ubiquitination, sumolaytion 

and nitrosylation. Phosphorylation is an important way in which Drp1 activity is 

modulated. To date, three different phosphorylation sites have been identified, 

Ser616, which is phosphorylated by protein kinase C (PKC), Ser693, 

phosphorylated by glucose synthase kinase 3 beta (GSK3b), and Ser637, 

phosphorylated by protein kinase A (PKA) and AMP-activated protein kinase 

(AMPK) (van der Bliek et al., 2013; Chang and Blackstone, 2007, 2010; Li et al., 

2015; Wang et al., 2012a). Phosphorylation of Ser616 activates mitochondrial 

fission as it promotes binding to other fission proteins, such as mitochondrial 

fission factor (Mff), fission 1 (Fis1), and two docking proteins mitochondrial 

dynamic proteins 49 and 51 (MiD49 and 51, respectively). Ser637 inhibits 
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mitochondrial fission by reducing GTPase activity. Both Ser637 and Ser616 are 

located at the end of the variable domain (Figure 1.10A) (van der Bliek et al., 

2013; Chang and Blackstone, 2007, 2010; Wang et al., 2012a). Ser693 is 

phosphorylated by GSK3b inhibiting mitochondrial fission during apoptosis, this 

site is located on the GED domain where Drp1 oligomerisation and GTP 

hydrolysis occurs (Figure 1.10A) (Chou et al., 2012).  

Drp1 interacts with several OMM proteins; Fis1 is anchored to the OMM, but it is 

more uniformly distributed along the mitochondrial tubules. When Fis1 interacts 

with Drp1 it changes the phosphorylation status of Drp1, it is thought that Fis1 

acts under different physiological stress stimuli to increase mitochondrial fission 

(Sesaki et al., 2014; Wang et al., 2012b). Similarly, Mff is anchored to the OMM 

and forms punctate structures around mitochondria tubules, when Drp1 interacts 

with Mff, it results in an enhancement of GTPase activity of Drp1 (Sesaki et al., 

2014). MiD49 and -51 are OMM proteins which can interact with both Drp1 and 

Mff, and serve primarily as adaptors to link together Drp1 and Mff forming a 

trimeric complex. Low levels of MiD’s can increase Drp1 accumulation on 

mitochondria, however, it has been previously demonstrated that high levels of 

MiD 49 and -51 can sequester Drp1 in cells and cause elongation of 

mitochondria; maintaining the equilibrium between mitochondrial fission and 

fusion (Yu et al., 2017).  

The first step of mitochondria fission happens in the matrix when replication of 

mtDNA triggers the recruitment of ER and initiates constriction by Drp1 (Figure 

1.10B). Mff and MiD's recruit Drp1 and accumulate at the ER site, where it 

oligomerises into a ring like structure. GTP hydrolysis leads to a conformational 
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change which enhances mitochondrial constriction and cuts the mitochondria into 

two, leading to two daughter mitochondria (Figure 1.10B)  (Tilokani et al., 2018).  

Figure 1.10 Mitochondrial fission  
 A: Structure of Drp1 encompassing a G-domain, a middle and variable domain and a GED 

domain. Serine 616 activates mitochondrial fission, where Serine 637 inhibits mitochondrial 

fission. Ser693 activates mitochondrial fission during apoptosis. 

B: Schematic of mitochondrial fission. 1. Replication of MtDNA occurs in the mitochondrial 

matrix leading to the recruitment of the ER. 2. Drp1 recruits its adaptor proteins which 

accumulate at the ER leading to oligomerisation in a ring like structure around the 
mitochondrion to initiate constriction. 3. GTP hydrolysis leads to a conformational change 

leading to scission of the mitochondrion and Drp1 disassembly. 



 37 

Abnormal mitochondrial fission leads to mitochondrial dysfunction resulting in ER 

stress and inflammation (Chang and Blackstone, 2010; Raza et al., 2015; Tilokani 

et al., 2018). 

1.6 Mitochondrial dysfunction 

The importance of mitochondrial functionality has been shown in many knockout 

models where knockout of any of the key genes involved in mitochondrial 

biogenesis results in embryonic lethality (Bertholet et al., 2016; Davies et al., 

2007; Ishihara et al., 2009). There is a fine balance needed between 

mitochondrial fission and fusion to meet energy demands of cells, when this 

balance is skewed it results in mitochondrial dysfunction.  

Mitochondrial dysfunction is an imbalance of mitophagy and mitochondrial 

biogenesis, resulting in mitochondrial stress, energy depletion and increased 

levels of ROS, ultimately leading to cell death (Palikaras et al., 2015). 

Dysfunctional mitochondria are targeted by vesicles called autophagosomes and 

are transported to lysosomes for degradation by mitophagy (Palikaras et al., 

2015). During cell death and stress mitochondria tend to be less elongated which 

is associated with mitochondrial fission (Zemirli et al., 2018). Mitochondrial 

dysfunction increases phosphorylation of Mff increasing the recruitment of Drp1, 

resulting in mitochondrial fission and the degradation of damaged mitochondria 

(Toyama et al., 2016). Physiological changes have been associated with 

mitochondrial dysfunction including insulin resistance and ageing, which can lead 

to conditions such as Parkinson’s disease and metabolic and cardiovascular 

diseases (Lee and Yoon, 2016; Tilokani et al., 2018; Zemirli et al., 2018). 
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1.6.1 Mitochondrial dysfunction induces insulin resistance 

There is a lot of evidence that links mitochondrial dysfunction and insulin 

resistance, many studies have shown a decrease in mitochondrial function and 

an increase in ROS in models of insulin resistance (Filippi et al., 2017; Jheng et 

al., 2012; de Mello et al., 2018; Rovira-Llopis et al., 2017; Wang et al., 2015). 

Generation of excessive ROS induces oxidative damage to DNA, lipids and 

proteins, leading to insulin resistance. An increase in oxidative stress can directly 

interfere with insulin signalling pathways promoting insulin resistance (Anderson 

et al., 2009). Insulin has pivotal role in mitochondrial function, the regulation of 

mitochondria biogenesis and mitophagy. Systemic glucose production fuels the 

majority of the ATP that is generated in mitochondria via oxidative 

phosphorylation (Cheng et al., 2010). High circulating glucose levels can lead to 

mitochondrial dysfunction, as demonstrated by the finding that in T2DM patients 

present with decreased mitochondrial oxidative phosphorylation and lower 

mitochondrial content in skeletal muscle (Szendroedi et al., 2012). In caloric 

excess, a lipid overload activates mitochondrial fission, leading to mitochondrial 

uncoupling and ATP depletion, and ultimately mitochondrial dysfunction (Gao et 

al., 2014). The relationship between mitochondrial dysfunction and insulin 

resistance has been demonstrated in skeletal muscle, liver and the brain (Filippi 

et al., 2017; Jheng et al., 2012; Koves et al., 2008; Raza et al., 2015; 

Schneeberger et al., 2014; Yu et al., 2017). 

1.6.1.1 Mitochondrial dysfunction in the brain 

Diet-induced obesity in rats resulted in increased levels of ROS and mitochondrial 

dysfunction in the brain. In the hypothalamus, ROS levels can affect the 

regulation of neuronal function in POMC and AgRP/NYP neurones (Dietrich et 
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al., 2013; Ramírez et al., 2017). Mutant mice with deletion of MFN2 in POMC 

neurones exhibited hyperglycaemia, hyperinsulinemia and insulin resistance 

after 12 weeks of HFD-feeding, they were also hyperphagic and had reduced 

activity of BAT, leading to obesity (Schneeberger et al., 2013). In addition to this, 

mice with MFN2 knockout in POMC neurones had dysregulation of glucose 

homeostasis due to defective insulin secretion from the pancreas (Ramírez et al., 

2017). Mitochondria in POMC neurones had a greater aspect ratio, the ratio 

between the centreline and width of the mitochondrion, in fed rats compared to 

fasted rats, along with decreased expression of Drp1. Inducible deletion of Drp1 

in POMC neurones resulted in improved glucose responsiveness, increased 

mitochondrial size and decreased ROS production in RC-chow-fed mice (Santoro 

et al., 2017). POMC-Cre-specific inactivation of apoptosis inducing factor (AIF) in 

transgenic mice prevented the effects of a HFD by increasing the firing of POMC 

neurones rather than silencing them, this resulted in an increase in energy 

expenditure, improved glucose metabolism and insulin sensitivity (Timper et al., 

2018). 

Glucose-induced Drp1-dependent mitochondrial fission in the hypothalamus is 

an upstream regulator and key mechanism of glucose sensing in the brain, as 

evidenced in rats with a knockdown of Drp1, by delivering a small interfering RNA 

of Drp1, in the hypothalamus presented with a decrease in food intake and insulin 

secretion in response to glucose (Carneiro et al., 2012). Furthermore, high-fat, 

high-sugar fed rats, presented with an increase in Drp1-dependent mitochondrial 

fission and increased ROS in the hypothalamus, this resulted in alterations in 

glucose sensing and altered vagal activity, leading to T2DM (Desmoulins et al., 

2019). 
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Whilst the relationship between insulin resistance and mitochondrial dysfunction 

in the MBH has been well researched, in the DVC this relationship has not been 

extensively examined. Using electron microscopy, a three-day HFD increased 

mitochondrial fission in the DVC, where mitochondria appeared smaller with 

fewer branches and were less elongated in rats. Chemical inhibition of 

mitochondrial fission via direct infusion of the Drp1 inhibitor, MDIVI-1, in the DVC 

of three-day HFD-fed rats reversed HFD-induced morphological changes in 

mitochondria (Filippi et al., 2017).  

A three-day HFD abolished the glucoregulatory effect of DVC insulin-infusion, 

however co-infusion of insulin and MDIVI-1 during a pancreatic-euglycemic 

clamp restored ability of DVC insulin to regulate glucose (Filippi et al., 2017). 

These data demonstrate that a HFD can increase mitochondrial fission in the 

DVC inducing insulin resistance. In the DVC of HFD-fed rats there were lower 

phosphorylation levels of Ser637, resulting in an increase in the activation of 

Drp1. Three-day HFD-fed insulin resistant rats were protected from HFD-

dependent DVC insulin resistance by molecular inhibition of Drp1 in the DVC (by 

expressing a catalytically inactive mutant of Drp1, Drp1-K38A). Furthermore, the 

expression of an active form of Drp1, using an adenovirus expressing a 

constitutively active form of Drp1, Drp1-S637A, in the DVC of RC-fed rats, was 

sufficient to induce insulin resistance, thus demonstrating that targeting Drp1 in 

the DVC can recapitulate the effects of a HFD on insulin sensitivity (Filippi et al., 

2017). 
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1.6.2 The relationship between mitochondrial dysfunction and ER 

stress 

Mitochondrial dysfunction and ER stress are critical components in the 

development of insulin resistance (Cunarro et al., 2018; Lim et al., 2009). ER 

stress and mitochondria are both major sources of ROS generation which 

promotes insulin resistance and inflammation (Boden, 2009). Mitochondria 

integrate metabolic signals, including, ATP levels, oxidative stress and ER stress 

to maintain key elements in insulin signalling (Lim et al., 2009; Morris et al., 

2018b).  

In the pancreas, activation of Drp1, by treating cells with a constitutively active 

form of Drp1, Drp1-S637A, promoted ER stress-induced b-cell apoptosis and 

resulted in an increase in ROS. Conversely, inhibition of Drp1 in b-cells under ER 

stress conditions prevented apoptosis and ROS in these tissues (Peng et al., 

2011b; Wikstrom et al., 2013). MFN2 plays an important role in the response to 

ER stress. MFN2 knockdown in mice was shown to induce ER stress in the liver 

and in skeletal muscle (Filadi et al., 2018; Sebastián et al., 2012). In addition to 

this, under basal conditions silencing of the UPR arm, PERK in MFN2 ablated 

cells rescued this phenotype, suggesting that MFN2 is a modulator of PERK 

(Muñoz et al., 2013). Furthermore, liver ablation of MFN2 in mice resulted in 

glucose intolerance and impairment of insulin signalling in the liver and muscle. 

Furthermore, disruption of Opa1 in skeletal muscle induced ER stress and 

inflammation (Tezze et al., 2017).  

Rats with deletion of MFN2 in POMC neurones had an increase in food intake 

and a decrease in energy expenditure leading to obesity (Schneeberger et al., 
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2013). These mice also had significant alterations to mitochondrial-ER contact 

sites, changes in mitochondrial morphology, and enhanced ROS and ER stress. 

However, this phenotype was only seen in mice with an MFN2 knockdown not 

MFN1 (Schneeberger et al., 2013). HFD-induced Drp1-dependent mitochondrial 

fission in the DVC increases ER-stress, this effect was reversed with a chemical 

inhibitor of ER stress, 4-phenylbuty-rate. Furthermore, activation of Drp1 in RC-

fed rats increased ER stress and resulted in insulin resistance, thus it can be 

argued that ER stress is a downstream effector of mitochondrial fission which 

subsequently leads to insulin resistance (Filippi et al., 2017). However, the 

mechanisms which link ER stress to insulin resistance in the DVC of the brain 

are currently unknown.  

1.7 Inducible nitric oxide synthase 

It is evident that mitochondrial dysfunction can induce ER stress, leading to 

insulin resistance, however, how mitochondrial dysfunction leads to ER stress is 

not fully understood; a possible mediator of this is inducible nitric oxide synthase 

(iNOS) (Bratic and Trifunovic, 2010; Förstermann and Sessa, 2012). Nitric oxide 

(NO) is the smallest messenger molecule and has many molecular targets. NO 

is ubiquitously expressed and controls regulatory functions such as 

neurotransmission and vascular tone, it can also regulate gene transcription and 

induces post-translational modifications of proteins (Evans and Goldfine, 2013; 

Pautz et al., 2010). NO is highly reactive and can be synthesised rapidly, meaning 

there are multiple regulatory sites for NO to be synthesised intracellularly (Evans 

and Goldfine, 2013; Pautz et al., 2010). NOS reacts with a superoxide anion to 

form the oxidant peroxynitrite (OONO.), a form of reactive nitrogen species 

(RNS), which results in oxidative damage and tyrosine nitration of proteins, lipids 
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and DNA. NO is generated by three different isoforms of the enzyme NO 

synthase (NOS), these are known as neuronal NOS (nNOS or NOS1), 

endothelial NOS (eNOS or NOS3) and iNOS (NOS2) (Förstermann and Sessa, 

2012; Li and Förstermann, 2000).  

NO is generated in by nNOS and eNOS through the interaction of calcium influx 

with calmodulin, a calcium binding protein (Ghasemi et al., 2018). nNOS is 

constitutively expressed in neurones in the central nervous system where it has 

numerous functions, including regulation of synaptic plasticity and central control 

of blood pressure (Figure 1.11) (Förstermann and Sessa, 2012). In the peripheral 

nervous system, NO produced by nNOS acts as a neurotransmitter, in addition, 

nNOS is also involved in learning and memory in the CNS (Förstermann and 

Sessa, 2012). On the other hand, NO produced from eNOS acts as a vasodilator 

and vasoprotector; NO prevents the release of platelet-aggregation and platelet-

derived growth factors to prevent thrombosis and smooth muscle proliferation, 

respectively (Figure 1.11). In addition, eNOS-derived NO can inhibit DNA 

synthesis, mitogenesis, and can reduce influx of low density lipo-proteins to the 

vascular wall aiding in the prevention of atherogenesis (Förstermann and Sessa, 

2012). Unlike, nNOS and eNOS, NO produced by iNOS is independent of calcium 

(Ghasemi et al., 2018). NO is produced by the enzymatic conversion of the 

guanidino nitrogen of L-arginine by iNOS (Pautz et al., 2010; Yun et al., 1997). 

iNOS-derived NO acts as a signalling molecule for synaptic transmission, it can 

cause changes in protein signalling and can be induced by many cells in 

response to inflammatory cytokines (Figure 1.11) (Pautz et al., 2010; Yun et al., 

1997).  
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NO can act as neurotransmitter and is released by neurones, thereby having a 

direct effect on their electrical activity. It has also been hypothesised that NO can 

act as a retrograde messenger between pre- and post-synaptic terminals (Amitai, 

2010; Nakamura et al., 2013). Principally, nNOS is the main isoform that 

produces NO, however there is growing evidence that iNOS is involved in 

modulating neural activity (Amitai, 2010; Ghasemi and Fatemi, 2014; Lee et al., 

2018; Raza et al., 2015; Yu et al., 2019). Astrocytes are a group of major cell 

population in the central nervous system and express all three forms of NOS. 

Release of NO from astrocytes is upregulated by adaptive and immune 

responses, and by proinflammatory cytokines (Saha and Pahan, 2006). In aging, 

astrocytes exhibit an increase in mitochondrial oxidative metabolism and an 

increased response to inflammatory cytokines resulting in increased NO release 

(Jiang and Cadenas, 2014).  

iNOS is largely involved in the pathophysiology of inflammation, after its 

induction, iNOS continuously produces NO until the enzyme is degraded. NO 

produced by iNOS can have many beneficial effects, including being microbicidal, 

antiviral and antiparasitic. However, abnormal levels of iNOS induction of NO can 

result in the development of many diseases, such as neurodegeneration, asthma, 

arthritis and diabetes (Evans and Goldfine, 2013; Förstermann and Sessa, 2012; 

Pautz et al., 2010; Yun et al., 1997). 
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1.7.1 S-nitrosylation and tyrosine nitration 

NO influences physiological status predominantly through post-translational 

modifications, including tyrosine nitration and s-nitrosylation (Figure 1.12) (Anavi 

and Tirosh, 2020; Förstermann and Sessa, 2012; Hess et al., 2005). S-

nitrosylation occurs when a NO group covalently attaches onto a thiol group of a 

cysteine residue. This reversible post-translational modification influences 

protein activity, interaction and location, acting as a redox based signal. Several 

factors depend on protein s-nitrothiols such as hydrophobicity and net charge 

(Rizza et al., 2014). S-nitrosylation also occurs when there is excessive NO, 

causing nitrosative stress affecting cellular homeostasis and signalling pathways. 

Increased oxidative stress and dysregulation of NO production have been 

implicated in the pathogenesis of insulin resistance (Figure 1.12) (Förstermann 

and Sessa, 2012; Hess et al., 2005; Shahani and Sawa, 2012).  

Tyrosine nitration is a chemical process in which a nitro group replaces a 

hydrogen group on the third carbon of a tyrosine (Rizza et al., 2014). Unlike s-

nitrosylation, tyrosine nitration is an irreversible modification and is accountable 

for protein damage due an overproduction of NO. Excessive NO reacts with a 

superoxide anion to form a OONO., inducing tyrosine nitration. Tyrosine nitration 

Figure 1.11 Summary function of the different isoforms of NOS 
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will only occur under nitrosative stress and does not affect signalling, instead, it 

is a marker of damage (Figure 1.12) (Rizza et al., 2014). Increased levels of 

tyrosine nitration has been observed in the pathology of many diseases, including 

neurodegeneration, acute and chronic liver disease, diabetes and obesity 

(Abdelmegeed and Song, 2014; Bandookwala and Sengupta, 2020; Stadler, 

2011).  

1.7.2 Nitrosylation and ER stress 

Protein s-nitrosylation modulates cellular processes such as vasodilation, 

proliferation and apoptosis. The accumulation of misfolded proteins leads to 

activation of the UPR, an increase in NO can s-nitrosylate key stress transducers 

of the UPR, IRE-1a and PERK (Nakato et al., 2015). S-nitrosylation of IRE-1a 

inhibits ribosomal activity, which results in increased cell death during ER stress. 

Furthermore, s-nitrosylation of PERK leads to inhibition of eIF2a and results in 

an increase in cell death, demonstrating the role of s-nitrosylation of ER stress 

transducers in cell death (Nakato et al., 2015).  

Figure 1.12 Schematic representing the chemical process of tyrosine nitration and s-
nitrosylation.  
 An increase in NO reacts with a superoxide anion to form a peroxynitrite resulting in tyrosine 

nitration and protein damage. On the other hand, excessive NO leads to nitrosative stress 
resulting in s-nitrosylation leading to defects in protein signalling. 
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Increased levels of iNOS induce s-nitrosylation of IRE-1a and the insulin 

receptor, resulted in a decrease in splicing of XBP1 in the liver and insulin 

resistance in HFD-fed rats (Yang et al., 2015). In addition, obese mice with a 

nitrosylation-resistant IRE-1a variant in the liver presented improved metabolic 

effects on glucose homeostasis and hepatic insulin sensitivity (Yang et al., 

2015a). In peripheral tissues, genetic inhibition of iNOS resulted in a marked 

decrease in ER stress in adipose tissue and liver of HFD-fed mice which led to 

improved insulin sensitivity (Zanotto et al., 2017).  

1.7.3 Nitrosylation of key insulin signalling molecules induces 

insulin resistance 

iNOS expression is upregulated by key molecules involved in the development of 

insulin resistance, such as pro-inflammatory cytokines, FFA, and in situations 

such as aging and obesity (Anavi and Tirosh, 2020; Förstermann and Sessa, 

2012; Hess et al., 2005). In addition, nitrosylation is a key player in the 

development of ER stress, a process critical in the development of insulin 

resistance. This leads to the question of whether s-nitrosylation associated with 

ER stress induces insulin resistance. Induction of iNOS by proinflammatory 

cytokines is mediated by various signalling pathways, two of these pathways are 

the AKT/PI3K and the ERK1/2 pathway, which are also major signalling pathways 

activated by insulin (Anavi and Tirosh, 2020). Increased intracellular levels of NO, 

which results in nitrosative stress leads to the development of insulin resistance 

in the liver, skeletal muscle, adipose tissue and brain; this is partly due to s-

nitrosylation of key components in the insulin signalling pathway (Carvalho-filho 

et al., 2005; Katashima et al., 2017; Perreault and Marette, 2001; Ropelle et al., 

2013). HFD-feeding in rats resulted in increased levels of iNOS in skeletal muscle 
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which was associated with s-nitrosylation of IRS-1 and AKT, leading to insulin 

resistance. Furthermore, rats with a whole body knockdown of iNOS, fed a HFD 

did not exhibit s-nitrosylation of insulin signalling molecules showing that iNOS 

expression is essential for s-nitrosylation (Carvalho-filho et al., 2005; Carvalho-

Filho et al., 2009). Similarly, in obese diabetic mice, there was increase in iNOS 

levels and nitrosative stress in livers, a chemical inhibitor of iNOS, L-NIL, 

decreased iNOS levels, and reversed hyperglycaemia, with significant increases 

in the expression levels of IRS-1 and -2 (Fujimoto et al., 2005). 

Disruption of the PI3K pathway led to skeletal muscle insulin resistance in HFD-

fed mice which was not seen in HFD-fed mice with a knockdown of iNOS, these 

mice were also prevented from developing diet-induced obesity (Perreault and 

Marette, 2001). iNOS-induced tyrosine nitration of IRS-1 in skeletal muscle 

resulted in insulin resistance and an increase in peroxynitrite, whereas inhibition 

of iNOS restored insulin sensitivity (Pilon et al., 2010). Peroxynitrite treatment in 

skeletal muscle cells altered PI3K activity and glucose uptake, while exposure to 

lipopolysaccharide (LPS) in skeletal muscles cells expressing the ShRNA for the 

iNOS protein prevented insulin resistance (Pilon et al., 2010). Furthermore, in 

aging mice, there were significantly higher levels of iNOS expression and s-

nitrosylation of major insulin signalling proteins. Aged mice with a knockout of 

iNOS were protected from s-nitrosylation and increased NOS levels, highlighting 

that insulin resistance is mediated partly through s-nitrosylation of the insulin 

signalling pathway (Ropelle et al., 2013).  

A hyperinsulinemic-euglycemic clamp demonstrated that infusion of lipids into the 

carotid artery in wild type mice for six hours led to elevated HGP and insulin 

resistance, in the liver (Charbonneau and Marette, 2010). In addition, these mice 
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exhibited high levels of iNOS which was associated with tyrosine nitrosylation of 

the insulin receptor and IRS-1 and -2, and decreased activation of AKT; mice with 

a knockout of iNOS were protected from six hour lipid-induced effects on insulin 

sensing (Charbonneau and Marette, 2010). S-nitroglutathione reductase 

(GSNOR) plays an important role in reversing protein s-nitrosylation, where 

dysfunction of GSNOR activity was seen in the liver of mice fed a HFD (Qian et 

al., 2018; Yang et al., 2015a). Hepatic deletion of GSNOR led to a significant 

decrease in hepatic insulin function, phosphorylation of the b-subunit of the 

insulin receptor and AKT was decreased, and there was also an associated 

increase in lipid accumulation (Qian et al., 2018). Overexpression of GSNOR in 

obese mice restored insulin sensitivity and improved glucose homeostasis. In 

addition, GSNOR levels were decreased in livers of human with T2DM or obesity, 

demonstrating that obesity impairs GSNOR leading to a decrease in protein 

denitrosylation capacity in the liver (Qian et al., 2018). 

Mice overexpressing iNOS in the liver were hyperglycaemic, hyperinsulinemic 

and insulin resistant when compared to wild type mice. In addition, AKT and IRS-

1 were s-nitrosylated, resulting in decreased activation of these signalling 

molecules in the liver (Shinozaki et al., 2011). HFD-fed obese mice displayed an 

increase in iNOS activation in ARC macrophages; inhibition of iNOS in 

macrophages in the hypothalamus decreased macrophage accumulation and 

improved glucose metabolism and insulin sensing (Lee et al., 2018). 

Furthermore, mice fed a HFD had elevated blood pressure and resistance to 

insulin’s actions on blood glucose, these mice also had elevated levels of ROS 

and iNOS. The glucoregulatory effects of insulin were restored in mice with a 

homozygous knockdown of iNOS fed a HFD. However these mice still developed 
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high blood pressure, highlighting that iNOS is an important target in glucose 

regulation and insulin sensitivity but not on blood pressure (Noronha et al., 2005). 

Rats given an ICV injection of S-nitroglutathione (GSNO), a NO donor, into the 

hypothalamus caused development of insulin resistance and increased food 

intake and body weight (Katashima et al., 2017). Furthermore, HFD-feeding 

induced s-nitrosylation of hypothalamic AKT and the insulin receptor, while 

chemical of inhibition of iNOS or inhibition of s-nitrosylation prevented from the 

development of hypothalamic insulin resistance and decrease body weight 

(Katashima et al., 2017). These data highlight the importance of s-nitrosylation 

and iNOS in the development of insulin resistance in the brain.  

1.7.4 Dynamin-related protein 1 is modulated by nitrosylation  

It is apparent that nitrosative stress plays an important role in the development of 

insulin resistance and neurodegenerative diseases. An increase in nitrosative 

stress can result in aberrant s-nitrosylation of Drp1, leading to increased 

enzymatic activity and resulting in higher mitochondrial fragmentation (Cho et al., 

2009; Lee and Kim, 2018). In addition, decreasing GSNOR in mouse neuronal 

primary cells resulted in s-nitrosylation of Drp1 and Parkin, leading to an increase 

in nitrosative stress and mitophagy (Rizza et al., 2018). Higher levels of 

peroxynitrite activated the PINK1/Parkin pathway triggering tyrosine nitration of 

Drp1 and leading to mitophagy in stroke models. It is therefore evident that both 

s-nitrosylation and tyrosine nitration are both important post-translational 

modifications which can alter mitochondrial dynamics (Feng et al., 2018). 

Mitochondrial fission regulates ROS in activated microglial cells, for example, 

LPS-induced mitochondrial fission caused a dephosphorylation of Ser637 in Drp1 
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resulting in an increase in the activation of Drp1. In addition mRNA levels of iNOS 

were decreased in BV2 microglial cells treated with LPS in the presence of an 

inhibitor of Drp1, MDIVI-1 (Park et al., 2013). Inhibition of iNOS in hippocampal 

neurones decreased activated Drp1 resulting in elongation of mitochondria and 

a decrease in neuronal necrosis (Lee and Kim, 2018). In addition to this, 

activation of mitochondrial fission in PC12 cells increased ER stress. A three-day 

HFD increased iNOS levels in the DVC of the brain, this effect was negated with 

an injection MDIVI-1. Furthermore, molecular activation of Drp1 in the DVC 

increased levels of iNOS compared to GFP control, demonstrating that activation 

of Drp1-dependent mitochondrial fission can increase iNOS expression in the 

DVC (Filippi et al., 2017). Together, these data illustrate a clear relationship 

between iNOS levels and mitochondria fission and provide a basis for further 

investigation into the effect mitochondrial dynamics on iNOS in the brain. 

1.8 Aims and Objectives 

Obesity and T2DM are becoming epidemics. In the UK, obesity affects around 

27% of the adult population and accounts for around 44% of type II diabetes 

cases (Zakeri and Batterham, 2018). Being obese or having type II diabetes can 

increase your risk for many other ailments such as cardiovascular disease, 

cancer and Alzheimer’s disease (Ferreira et al., 2018; Han and Boyko, 2018). 

Thus, there is a greater need than ever to explore alternative therapeutic avenues 

for the treatment of obesity and type II diabetes.  

Overnutrition leads to an increase in circulating levels of glucose, FFA and pro-

inflammatory cytokines which ultimately leads to insulin resistance. An increase 

in such circulating levels can induce ER stress and mitochondrial stress, which 

occurs in both the peripheral tissue and in the CNS (Hotamisligil et al., 1996; 
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Tanti et al., 2013; Wilcox, 2005). The CNS is extremely important in the regulation 

of glucose metabolism and food intake, it receives signals from the periphery to 

maintain energy balance (Brüning, 2006; Filippi et al., 2012b; Obici et al., 2002b; 

Pocai et al., 2005). Alterations in this cross talk between the CNS and the 

periphery can lead to metabolic disorders, such as insulin resistance.  

It has previously been demonstrated that the DVC is an important region of the 

brain that regulates glucose metabolism and food intake (Filippi et al., 2012b). 

The NTS of the DVC senses insulin and triggers a cascade of neural events to 

decrease HGP and food intake, though the neural populations involved have not 

yet been determined (Filippi et al., 2012b). Furthermore, a three-day HFD was 

shown to induce insulin resistance and Drp1-dependent mitochondrial fission in 

the DVC (Filippi et al., 2017). In addition to this, injection of a molecular and 

chemical inhibitor of Drp1 into the DVC restored insulin resistance and glucose 

homeostasis in HFD-fed rats, while an injection of a molecular activator of Drp1 

into the DVC induced insulin resistance in RC-fed rats (Filippi et al., 2017). It is 

therefore evident that Drp1 has an important effect on insulin and glucose 

metabolism, however the effect on feeding behaviours and body weight is yet to 

be elucidated. 

HFD-fed rats had an activation of Drp1 and increased levels in ER stress and 

iNOS in the DVC (Filippi et al., 2017). It has been previously demonstrated that 

iNOS can induce s-nitrosylation of key signalling molecules in the insulin 

signalling pathway (Yang et al., 2015b; Yasukawa et al., 2005). Therefore, it 

could be hypothesised that an increase in NO by iNOS expression results in an 

increase in s-nitrosylation that links mitochondrial fission, ER stress and insulin 

resistance in the DVC. Much of the work investigating Drp1-dependent 
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mitochondrial fission has looked into ways to prevent HFD-dependent insulin 

resistance (Filippi et al., 2017), however, whether inhibition of Drp1 in the DVC 

can restore the hypophagic effect of insulin and affect body weight in a diet-

induced obese model is yet to be studied.  

With this in mind, it has led to my main aims for this project (Figure 1.13): 

1. Investigate the effects of mitochondrial dynamics on feeding behaviours, 

body weight gain and the hypophagic effect of insulin 

2. Discover the molecular mechanism that are implicated with insulin 

resistance in the DVC and how it affects feeding behaviours and body 

weight 

3. Assess which different cell type/s in the DVC that are involved in the 

hypophagic effect of insulin 

4. Determine whether a DVC-specific targeted approach to restore the 

hypophagic effect of insulin is sufficient to ameliorate the metabolic status 

of a diet-induced obese model  

 

  

Figure 1.13 Working hypothesis  
 Can an increase in HFD-dependent Drp1 activation lead to hyperphagia, and what are the 

molecular players involved in this pathway? 
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2 General Methods 
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2.1  Materials  

2.1.1 Buffers 

Tris-buffered saline (TBS) 
50 mM Tris base (MP Biomedical TRIS01KG), 150 mM sodium chloride (Fisher 

S/3160/63), pH 7.6 
Tris-buffered saline 
Tween50 mM Tris base, 150 mM sodium chloride, 0.1% Tween 20 (VWR 

Chemicals 6663684B) pH 7.6 
Resolving buffer 
1.5 M Tris base, pH 8.6 

Stacking buffer 
 2 M Tris base, pH 6.8 

Tris-glycine sodium dodecyl sulphate (SDS) electrophoresis buffer  
 25 mM Tris base, 192 mM glycine (Sigma G8790), 0.1% (w/v) SDS (Sigma 

05030) 

Tris-glycine transfer buffer  
48 mM Tris base, 39 mM glycine, 20% methanol (Honeywell 179337) 

5X Sample buffer 
250mM Tris-hydrochloric acid (HCl), pH 6.8, 5% SDS, 50% glycerol (VWR 

356350), 0.1% bromophenol blue (Alfa Aesar A18469), 20% 2-mercaptoethanol 

(Sigma M6250) 

Lysis buffer 
50 mM Tris-HCl pH 7.5, 1 mM ethylene glycol-bis(beta-aminoethyl ether)-

N,N,N’,N’-tetraacetic acid tetrasodium salt (EGTA) (Fisher Scientific 

428570500), 1 mM ethylenediaminetetraacetic acid (EDTA) (Sigma EDS), 1% 

(w/v) octyl phenoxypolethoxylethanol 40 (NP-40) (Biobasics LA60), 1 mM 

sodium orthovanadate (Sigma S6508), 50 mM sodium fluoride (Sigma 

PHR1408), 5 mM sodium pyrophosphate (Sigma 71501), 0.27 M sucrose 

(Sigma S7903), 1 mM dithiothreitol (DTT) (ThermoFisher Scientific R0861), 

Pierce protease inhibitor tablets (ThermoScientific 88266) 
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Hens Buffer 
100mM HEPES, pH 7.8,1mM EDTA, 0.1mM Neocuprione, 1% SDS 

(ThermoScientific 90106) 

Elution Buffer 
ThermoScientific 90104 (TMT Elution Buffer) 

Wash Buffer 
Cell BioLabs Inc. 90002 (Adenovirus purification kit) 

Elution Buffer 
50mM Tris, pH 7.5, 5 mM magnesium chloride, 2 M sodium chloride. Cell 

BioLabs Inc. 90003 (Adenovirus purification kit) 

Phosphate buffered saline (PBS)  
137 mM sodium chloride, 2.7 mM potassium chloride, 10 mM disodium 

phosphate, 1.8 mM monopotassium phosphate (Hyclone SH30256) 

Phosphate buffered saline triton (PBST)  
137 mM sodium chloride, 2.7 mM potassium chloride, 10 mM disodium 

phosphate, 1.8 mM monopotassium phosphate, 0.3% or 0.1% triton (Sigma 

X100) 

Phosphate Buffer (PB) 
0.1M PB in double distilled water 

4% Paraformaldehyde (4% PFA) 
25% 0.1M PB, 50% 8% paraformaldehyde 

30% Sucrose  
Sucrose in distilled water 

Cryoprotectant  
0.1 M PB, 30% EGTA (Flourochem 045172), 1% Polyvinyl-pyrrolidine (PVP-40), 

30% sucrose 
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2.1.2 Antibodies  

Table 2.1 Primary antibodies  

Antibody Application Dilution Species Catalogue 

Number 

Anti-b-Actin Western Blotting 1: 

50,000 

Mouse Cell 

Signalling 

Technology 

3700 

Anti-Flag Immunohistochemistry 

(IHC) 

1:500 Rabbit Sigma 

F7425 

Anti-Flag M2 Western Blotting 1:3000 Mouse Sigma 

F1804 

Anti-Glial 

Fibrillary Acidic 

Protein (GFAP) 

IHC 1:1000 Rabbit AbCam 

ab7260 

Anti-Green 

Fluorescent 

Protein (GFP) 

Western Blotting 1: 

20,000 

Mouse Aviva 

System 

Biology 

OAE00007 

Anti-Hexon AdenoTitre Assay 1:1000 

(PBS) 

Rabbit Cell Biolabs 

VPK-109 

Anti-Huc/D IHC 1:1000 Rabbit ProteinTech 

55047-1-AP 
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Anti-Iba1 IHC 1:1000 Rabbit Wako 

019-19741 

Anti-iNOS Western Blotting 1:50 (2% 

milk/ 

TBST) 

Rabbit 

 

AbCam 

ab15323 

Anti-iNOS  IHC 1:250 Rabbit AbCam 

ab3523 

Anti-Neuronal 

Nuclei 

(NeuN) 

IHC 1:2000 Guinea 

Pig 

MERCK 

Millipore 

ABN90 

Anti-

Phosphorylated - 

Double Stranded 

RNA Activated 

Protein Kinase-

like ER Kinase 

(PERK) 

IHC 1:250 

(0.3% 

PBST) 

Rabbit Biobryt 

obr128012 

Anti-

Phosphorylated- 

PERK 

Western Blotting 1:500 Rabbit Cell 

Signalling 

Technology 

3179 

Anti-Tandem 

Mass Tag (TMT) 

Western Blotting 1:000 Mouse Invitrogen 

90075 
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Anti-Total PERK Western Blotting 1:1000 Rabbit Cell 

Signalling 

Technology 

3192 

 

All primary antibodies for western blotting were made up in 5% bovine serum 

albumin (BSA) (Sigma A7906), unless stated otherwise in the table. IHC primary 

antibodies made up in 0.1% TBST unless stated otherwise in the table. 

Table 2.2 Secondary antibodies  

Secondary Antibody Application Dilution 
Catalogue 

Number 

Donkey anti-mouse IgG Alexa Fluor 

555 

IHC 
1:1000 Invitrogen A-31570 

Donkey anti-rabbit IgG Alexa Fluor 

555 

IHC 
1:1000 Invitrogen A-13572 

Donkey anti-mouse IgG Alexa Fluor 

488 

IHC 
1:1000 Invitrogen A-21202 

Donkey anti-rabbit IgG Alexa Fluor 

488 

IHC 
1:1000 Invitrogen A-21206 

Donkey anti-sheep IgG Alexa Fluor 

488 

IHC 
1:1000 Invitrogen A-11015 

Donkey anti-rabbit IgG Biotin  IHC 1:200 Invitrogen A-16039 
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All antibodies for IHC were made up in PBS. Secondary antibodies for IHC were 

made up in 5% skimmed milk in TBST.   

2.2 Cell Culture 

2.2.1 HEK293AD cells 

The HEK293 cell line is from primary embryonic human kidney transformed with 

a human adenovirus type 5 DNA. The cell line 293AD is derived from the parental 

line HEK293 but specifically selected for adenoviral applications (Cell Biolab Inc., 

AD-100).  Cells were grown in a 37°C, 5% CO2 incubator and kept in Dulbecco’s 

modified eagle medium (DMEM) high glucose (Lonza 12-604F), 10% fetal bovine 

serum (Gibco 2024-01), 0.1mM minimum essential medium (MEM) non-essential 

amino acids (NEAA) (Gibco 11140-035), 1% Penicillin Streptavidin (Sigma 

P0781), known as complete media. Cells were kept at 37°C, 5% carbon dioxide 

(CO2). Cells were detached using 0.05% trypsin-EDTA (Gibco 25300-054) and 

Donkey anti-mouse IgG Biotin IHC 1:200 Invitrogen A-16021 

Donkey anti-guinea pig IgG Biotin IHC 1:200 Invitrogen A18773 

Streptavidin Alexa Fluor 555 IHC 1:1000 Invitrogen S-532355 

Streptavidin Alexa Fluor 448 IHC 1:1000 Invitrogen S-532354 

Donkey anti-rabbit IgG HRP 

conjugate 

Western 

Blotting 
1:5000 Novex A16029 

Donkey anti-mouse IgG HRP 

conjugate 

Western 

Blotting 
1:5000 Novex A16011 
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frozen in 10% dimethyl sulfoxide (DMSO) (G Bioscience BKC-17) in complete 

media.  

2.2.2 PC12 Cells 

PC12 cells are derived from a transplantable rat pheochromocytoma (AddexBio, 

C0032002). Cells were grown in F-12K medium (Gibco 21127-022) with 2.5% 

FBS, 15% horse serum (Gibco 1011-07) and 1% Penicillin Streptavidin, also 

known as complete medium and kept at 37°C, 5% CO2. Cells were detached 

using 0.05% trypsin-EDTA and frozen in 10% DMSO in complete media.  

2.3 Viral Amplification and Purification 

In order to increase mitochondrial fission in the DVC of the brain, an adenoviral 

system was used to deliver a CMV promotor expressing a FLAG-tagged 

constitutively active form of Drp1 in the residue of S637 to A (S637A). This mimics 

Drp1’s non-phosphorylated state, inducing an over-expression of Drp1 and 

causes an increase in mitochondrial fission in the DVC. A CMV promotor 

expressing a FLAG-tagged dominant negative form of Drp1, mutated in the 

residue of K38 to A (K38A), resulting in a defective GTP binding site, resulting in 

inhibition of Drp1-dependent mitochondrial fission. As control, a CMV promoter 

expressing green protein florescent (GFP) virus was utilised (Table 2.3) (Filippi 

et al., 2017). A lentiviral system was used to deliver a ShRNA of the iNOS protein 

(ShiNOS), 3-target specific ShRNA to knockdown gene expression or a control 

scramble ShRNA (ShControl) (Santa Cruz Biotechnology, sc-29417-V and sc-

108080 respectively) was used to decrease iNOS expression in the DVC (Table 

2.3). To inhibit Drp1 specifically in astrocytes of the DVC, Dr Joanne Griffiths in 

the Filippi lab created an adenoviral system under the GFAP promotor to express 
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a FLAG-tagged dominant negative form of Drp1, mutated in the residue of K38 

to A (K38A), Drp1-K38A::GFAP or to express GFP as a control, GFP::GFAP 

(Table 2.3). 

HEK293AD cells were used to amplify the adenoviruses, Drp1-S637A, Drp1-

K38A and GFP. Cells were infected at an 80% confluency, at a multiplicity of 

infection (MOI) of 5 for Drp1-S637A, Drp1-K38A and GFP and were left for up to 

48 hours. When small cell plaques formed in the dishes cells and media were 

collected and spun down at 2000 rotation per minute (RPM) for 5 minutes, the 

pellets were resuspended in a small amount of media collected from the viral 

infected plates. Pellets were subjected to 3 cycles of freezing on dry ice and 

thawing at 37°C, and then spun down at 3000 RPM for 15 minutes, to release the 

virus. The supernatant, viral stock, was collected and cell debris was discarded. 

To determine the concentration of the viral amplification, a viral titration was 

performed using a 3,3’-Diaminobenzidine (DAB) assay (Cell Biolab Inc., VPK-

109). HEK293AD cells were plated on a 24-well plate, 8 hours later cells were 

infected with varying concentrations of both media and virus stock, the plate was 

then left for 48 hours 37°C.  

After 48 hours, cells were fixed with methanol and left at -20°C for 20 minutes, 

excess methanol was washed 3 times with PBS. Wells were blocked with 1% 

BSA in PBS for 1-hour and anti-Hexon primary antibody was made up in PBS 

and left for 1 hour at RT on an orbital shaker. After one-hour wells were washed 

3 times with PBS, followed by a secondary antibody of horseradish peroxidase 

(HRP) (Cell Biolabs 10902) made up in PBS, wells were washed 5 times with 

PBS. A 1X DAB working solution was made to detect immunostaining of infected 

cells.  Positive stained cells were counted at 10X magnification, 4 random areas 
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of each well were counted and averaged to determine the plaque forming unit 

(PFU) of each virus preparation.  

ViraBind adenovirus purification kit (Cell Biolab Inc., VPK-100) was used to purify 

the viruses. The collected supernatants were filtered with a 0.45 µm sterile filter 

to clarify the virus. Wash buffer was added to the purification filter to pre-rinse the 

filter. To ensure that there was maximum recovery of each virus, the viral 

supernatants were passed through the purification filter by gravity flow. Once the 

viruses had been passed through the purification filter, the liquid collected, known 

as the flow-through, was passed back though the same purification filter and 

aliquoted for use in infections. The purification filter was washed 3 times with 1X 

wash buffer using gravity flow. Elution buffer passed through the purification filter 

by gravity flow and pure virus was collected, aliquoted and stored at -80°C for 

viral injection. Another viral titration was performed to determine final viral 

concentration of flow through and elution. 

Table 2.3 Table of viral preps 

Name of virus Type of 
Virus 

Action 

GFP Adenovirus GFP under the CMV promotor (control) 

Drp1-S637A Adenovirus Constitutively active form of Drp1 under the 
CMV promoter 

Drp1-K38A Adenovirus Dominant negative form of Drp1 under the CMV 
promotor 

 
ShiNOS Lentivirus Knocking down iNOS  

ShControl Lentivirus A control used for ShiNOS experiments 

GFAP::Drp1-K38A Adenovirus Dominant negative form of Drp1 under the 
GFAP promotor 

 
GFAP::GFP Adenovirus GFP under the GFAP promotor (control) 
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2.4 Rat Preparation 

All experiments were carried out under the UK animals (Scientific Procedures) 

Act 1986 and in line with the ethical standards set out by the University of Leeds 

Ethical Review Committee. Every effort was made to minimise number of rats 

and their suffering after surgical procedures including administration of 

analgesics, recovering on a warm plate and observations before placing back into 

cage holder. Rats were singly housed and given ad libitum access to food and 

water, with 12-hour light-dark cycle (06:30-18:30). Nine-week-old male Sprague 

Dawley (SD) rats weighing between 270-300 g (Charles River Laboratories) were 

used for experiments.  

Rats were fed on one of three different diets. Diet 1 was a regular chow (RC), 

from BioSystems Cooperation BEEKAY rat and mouse (BK001), total calories of 

3.91 kcal/g and comprised of 4.73% fat, 8.68% protein, 3.48% fibre, 5.38% ash 

and 58.73% carbohydrates. Diet 2 was a control RC from Datesand Group 

(F4031) the composition of this RC had a total calorie content of 3.93 kcal/g, 

which, 7.2% was fat, 20.5% protein, 3.5% ash and 61.6% carbohydrate. Diet 3 

was a high fat diet (HFD), Datesand Group (F3282), differs from the control RC, 

with 36% being fat, 20.5% protein, 3.5% ash, 36.2% carbohydrate and total 

calories of 5.51 kcal/g.  
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2.4.1 Surgery 

Rats were anesthetised by intraperitoneal injection of ketamine (60 mg/kg) 

(Ketamidor) and xylazine (8 mg/kg) (Rompun). Rats were placed in a stereotactic 

frame (75-1086, Elevated U-frame Stereotaxic Instrument, Harvard Apparatus) 

where each rat was implanted with a 26-gauge bilateral catheter (PlasticsOne 

C235G-0.8-SPC) targeting the nucleus of the solitary tract (NTS) within the DVC, 

and an internal dummy was inserted to prevent backflow of injections in future 

experiments (PlasticsOne C235DC-SPC). Measurements of the bregma and 

lambda were used to ensure the skull was levelled, from the lambda the 

measurement of occipital suture was taken (Figure 2.1A). The bilateral cannula 

was implanted at 0.0 mm on the occipital suture, 0.4 mm lateral to the midline 

and 7.9 mm below the skull surface (Filippi et al., 2014), targeting the NTS in the 

DVC (Figure 2.1B). The cannula was glued with Loctiteâ 454 kept in place with 

Unifast TRAD cement and liquid (0990607 and 4160803 respectively). Rats were 

given saline (Hypaclens 202/09) and meloxicam (5 mg/ml) (Metacam), an 

Figure 2.1 Anatomical landmarks used in stereotactic surgery targeting the DVC 

A: Highlighting the landmarks used to target the NTS in the DVC in stereotactic brain 
surgery. Measurements of the Bregma and Lambda are taken before measuring the value of 

the occipital suture 

B: Schematic of a coronal section of the brainstem, highlighting main areas of the DVC, 

including the NTS, area postrema (AP), dorsal motor nucleus (DMX) and central canal (CC) 

Red dots mark position of canula  
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analgesic, as post-operative care. To confirm surgeries were in the correct place, 

during sacrifice, 2 µl of bromophenol blue was infused into each side of the 

canula.  

2.4.2 Viral Injections 

To inject viruses, lines of fine bore polythene tubing (0.58mm inner diameter) 

were cut and a bilateral internal canula inserted on the end (PlasticsOne C2351-

SPC). These lines with the internal canula inserted were attached to 50 µl 

Hamilton’s (80401) and flushed with double distilled water (ddH2O) to ensure no 

bubbles were in the lines. Syringes were pushed to 5 µl and pulled back to 10 µl 

to create a small bubble, preventing dilution of the virus. The virus was loaded 

from the front and syringes were pushed to create a small drop. The internal 

canula was then inserted into the external canula on the head of rats and slowly 

2.5 µl of virus on each side was injected into the NTS. The animal was left with 

the lines with the internal canula attached to its head for 5 minutes to prevent any 

backflow of the virus and ensure proper delivery. Rats were then carefully 

monitored for 10 minutes to make sure there were no adverse reactions.  

2.5 Feeding Studies  

2.5.1 Chronic Feeding Studies 

Rats underwent stereotactic brain surgery on day 0, and viral injections were 

given on day 0, directly after the surgery for ShiNOS and ShControl rats and on 

day 1 for the Drp1-S637A, Drp1-K38A and GFP (Figure 2.2). Food intake and 

body weight were measured at similar times each day to keep consistency in 

measurements. Rats expressing the activator of Drp1 or GFP expressing control, 
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were referred to as cohort 1, these rats received Diet 1, a regular chow. Rats 

expressing either the dominant negative form of Drp1, Drp1-K38A, or the 

knockdown of iNOS, ShiNOS, were given Diet 2, a regular chow until day 3 and 

diets were changed to Diet 3, a HFD until the end of the study (Figure 2.2B).  

2.5.2 Acute Feeding Studies 

These same rats were subjected to an acute feeding study where insulin was 

infused bilaterally into the DVC. On day nine and day 14 an acute feeding study 

Figure 2.2 Experimental designs including feeding study in rats expressing Drp1-
S637A, Drp1-K38A, ShiNOS and Drp1-K38A::GFAP 
 
A: Experimental designs for rats injected with Drp1-S637A and Drp1-K38A::GFAP fed 

a RC diet 
B: Experimental designs for rats either injected with Drp1-K38A, ShiNOS and Drp1-

K38A::GFAP fed a HFD 
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was carried out. At 10am body weight and food intake were measured, rats were 

then fasted with access to water (Figure 2.2). At 4pm rats were bilaterally infused 

with 2mU/µl insulin (Sigma I-5523) or a vehicle into the DVC, a total of 0.2 µl was 

infused over 5 minutes (0.04 µl/minute). Food was returned after infusion, and 

food intake was monitored every half an hour for 4 hours and then again at 12, 

24, 36 hours. Body weight was measured, pre-infusion, at 4pm, then again at 12, 

24 and 36 hours.  

In some instances the cap containing the bilateral cannula was lost before 

feeding studies, these rats were used as a vehicle control for the acute feeding 

study. The rats were handled similarly to as if the rats were to get an infusion, to 

induce mild stress. To ensure this did not skew that data presented, the graph 

below highlights that that there was no difference in food intake in rats which 

received the vehicle injection compared to the rat who lost their caps (Figure 2.3).  

 

Figure 2.3 Comparing average food intake of rats who had their caps and rats who 
had lost their caps prior to the feeding studies 

All data are expressed as mean ± SEM n=101 rats with cap n=21 with rats with no cap. 

Statistical test: unpaired T-test 
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2.5.3 Obese Model 

Six-week-old male SD rats weighing between 170-190 g were used. From day 0 

these rats were subjected to Diet 3, HFD or Diet 2, RC for 28 days (Figure 2.4). 

On day 28 rats were implanted with a bilateral catheter targeting the NTS within 

the DVC (see section 2.4.1). The first cohort used for these experiments were 

injected with the lentivirus expressing the ShRNA for iNOS in order to knockdown 

of iNOS, ShiNOS or its control, ShControl. Viral injection was administered on 

day 28 and the acute feeding studies took place on day 37 and 41 (see section 

2.5.2). The second cohort we used were injected with an adenovirus either 

expressing an inactive form of Drp1, Drp1-K38A or GFP expressing control, on 

day 29, and acute feeding studies were carried out on day 38 and 42 (see section 

2.5.2). Rats were sacrificed on day 43 and the DVC and epididymal, 

retroperitoneal, visceral white adipose tissue and brown adipose tissue were 

weighed and small volumes were taken. 

2.6 Western Blotting  

2.6.1 Sample Preparation 

In order to determine protein expression and phosphorylation of either tissues or 

cell lysates, western blotting techniques were used. Pre-frozen eppendorfs were 

used to weigh tissues, keeping the tissues on dry ice where possible. Samples 

Figure 2.4 Obese model protocol 
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were lysed using lysis buffer (see section 2.1.1), the volume of lysis buffer used 

was determined by the weight of the tissue and multiplied by 7.5, this was the 

volume in microliters required. Tissues were lysed using a Pellet Pestle Mortar 

(Kimble 749540-000) on ice until the tissue had completely broken down. 

Samples were centrifuged at 12,000 RPM for 15 minutes at 4°C, the supernatant 

collected in eppendorfs and the pellet discarded. A Pierce 660nm Protein Assay 

(Thermo 22660) was performed to determine protein concentration and samples 

were made up to at least 2 µg/µl and sample buffer was added. Samples were 

boiled at 90°C for 2 minutes, ready to be run in an SDS page. 

Cells were collected, centrifuged at 2000 RPM for 5 minutes at RT, the 

supernatant was discarded. PBS was added to the pellet, to wash the cells, cells 

were centrifuged at 2000 RPM for 5 minutes and RT and the PBS aspirated off. 

Lysis buffer was added to the cells, the volume of lysis buffer was dependent on 

cell number, and lysed on ice. Samples were centrifuged at 12,000 RPM for 15 

minutes at 4°C, the supernatant collected in eppendorfs and the pellet discarded. 

A Pierce 660nm Protein Assay (Thermo 22660), was performed to determine 

protein concentration and samples were made up to at least 1 µg/µl and 5 X 

sample buffer was added, of which would be one fifth of the sample. Samples 

were boiled at 90°C for 2 minutes, ready to be run in an SDS page. 

2.6.2 SDS Page 

Samples were run on an SDS page, this allowed separation of molecules in an 

electrical field by molecular weight. A Mini-PROTEANâ Tetra Vertical 

Electrophoresis Cell by BioRad was used to run the SDS page. The gel consisted 

of two parts, a resolving gel pH 8.6 and a stacking gel pH 6.6. The resolving gel 
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were made up at either 8% and 10% (Table 2.4), this was dependent on the 

molecular weight of the protein that was to be looked at. Both resolving and 

stacking gels contained acrylamide (Thermo 16110158), SDS, ammonium 

persulphate (APS) (Thermo 17874) which acted as a catalyst for 

tetramethylethylenediamine (TEMED) (VWR 443083G) to polymerise the gel.  

Table 2.4 Composition of resolving and stacking gels  

8% Resolving Gel 10% Resolving Gel Stacking Gel 

8% acrylamide v/v 10% acrylamide v/v 4% Acrylamide v/v 

0.31 M Tris/HCl pH 8.6 0.31 M Tris/HCl pH 8.6 0.5 M Tris/HCl pH 6.6 

0.08% SDS v/v 0.08% SDS v/v 0.4% SDS v/v 

0.08% APS w/v 0.08% APS w/v 0.2% APS w/v 

0.2% TEMED v/v 0.2% TEMED v/v 0.1% TEMED v/v 

 

First, the resolving gel was made, once polymerised, the stacking gel was added. 

Once the stacking gel had polymerised, the comb was removed, wells were 

cleaned with ddH2O and then placed into the cassette.  

The cassette was filled with running buffer, samples were loaded, the volume of 

sample loaded was dependent on the concentration of protein needed that was 

optimal for the antibody to bind. The molecular weight ladder (Badrilla A010-601) 

was loaded at the end of samples. Samples were run at 100 Volts (V) until passed 

the stacking gel and voltage was increased to 120 V and run until dyed had run 

off. Gels were then transferred to a nitrocellulose membrane. The transfer 
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cassette, sponges, 3mm blotting paper (Life Sciences 3030-912) and 0.45 µm 

nitrocellulose membrane (Life Sciences 106002), were soaked in transfer buffer. 

The transfer was run for 2 hours and 30 minutes at constant 0.75 Amps at 4°C.  

Once transfer was complete membranes were stained with Ponceau red to check 

that the samples were transferred homogeneously (Cell Signalling Technology 

598035). Membranes were blocked in 5% BSA in TBST, except for blots for 

antibodies iNOS and TMT which were blocked in 5% skimmed milk in TBST, for 

1 hour on an orbital shaker. Membranes were placed in primary antibodies, to the 

optimal working concentration (Table 2.1). Unless otherwise stated, primary 

antibodies were made up using 5% BSA in TBST. Primary antibodies were left 

on overnight at 4°C on a roller. To remove any excess primary antibody 

membranes were washed in TBST 3 times for 5 minutes on an orbital shaker. To 

visualise protein expression, secondary antibody was added to the membrane 

and left on an orbital shaker for 1 hours at RT. Secondary antibodies were made 

up at a dilution of 1:5000 in 5% skimmed milk (Serva 42590)  in TBST (see Table 

2.3). Membranes were washed 5 times for 5 minutes at RT with TBST. Proteins 

were detected using BioRad Clarity Western enhance chemiluminescence (ECL) 

and imaged on BioRad ChemiDocä MP Imagining System or Genesys G-BOX 

Genesyn.  

2.6.3 Data Analysis 

Total protein expression or phosphorylation levels were analysed using ImageJ 

(Fiji). In brief files were converted to a .tiff file from either a .scn file (BioRad 

ChemiDocä MP Imagining System) or a .sgd file (images taken on Genesys G-

BOX Genesyn). Images were opened in ImageJ (Fiji) and image was inverted. 
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Total protein expression or phosphorylated protein expression was determined 

by the intensity of the band, these were then standardised by using either b-actin 

or the total protein of the phosphorylated protein. All images used to quantify were 

not over saturated signals. Data was transferred to Microsoft Excel for analysis.   

2.6.4 Immunohistochemistry  

At the end of the experiment rats were anesthetised by intraperitoneal injection 

of ketamine (60 mg/kg) and xylazine (8 mg/kg). Once fully anesthetised, the chest 

cavity was opened using blunt scissors, cuts were made along the ribcage to 

expose the heart. With care a cannula was inserted into the left ventricle and a 

small cut was made in the right atrium to allow transcardial perfusion of 0.1 M PB 

to flush the circulatory system, followed by 4% PFA to fix the tissue. The brains 

were carefully dissected out and left in 4% PFA for 48 hours to fix at 4°C. The 4% 

PFA was removed and 30% sucrose was added, once the brains had sunk to the 

bottom of the tube, the brain stem was cut out and frozen in Frozen Section 

Compound (FSC) (Leica, 3801480). Brain stem was left at -80°C overnight. The 

brain stem was cut using the Cryostat, sections were frozen in cryoprotectant in 

preparation for staining.  

The correct anatomical sections for the DVC were selected for staining. The iNOS 

sections was subjected to antigen retrieval, 10 mM of sodium citrate (VWR 

436072K), 6.5 pH was added to each section, sections were left at 80°C for 20 

minutes. All sections were blocked in 10% donkey serum (Sigma D9663) in PBS 

for 1 hour at RT. Following this, all sections were place in primary antibodies, to 

the optimal working concentration (Table 1.1). Unless otherwise stated, primary 

antibodies were made up using 0.1% PBST to enable tissue permeabilization, 
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sections were left overnight on an orbital shaker at 4°C. After primary antibody 

incubation, sections were washed three times in PBS for a total time of 30 

minutes to remove any excess primary antibody. Antigens were visualised with 

the appropriate secondary antibody, Table (1.2), which were left at RT for 2 hours. 

Sections which were stained for iNOS and NeuN antibodies were enhanced using 

Biotin-Streptavidin methods, the biotin was incubated at a dilution of 1:200 for 

two hours, the biotin removed, a conjugated streptavidin antibody was used to 

visualise the biotin-antibody, enhancing signalling. Sections were protected from 

light during secondary antibody incubation to prevent bleaching of the fluorescent 

probes. Sections were washed three times for ten minutes each time on an orbital 

shaker at RT before being mounted on glass slides using a fine paintbrush. Slides 

were left to air dry away from light before adding Vectashield plus 4’,6-diamidino-

2-phenylindole (DAPI) (Vector Laboratories, H-1200) to sections and covering 

with coverslips with a sealing of nail polish around the edges.  

Sections were imaged by Dr. Lauryn New, using the Zeiss LSM880 upright 

confocal laser scanning microscope with Airyscan equipped with argon and He-

Ne lasers and 40x and 63x Fluor oil objective. Each image was taken with the 

same gain and digital offset for each rat to allow fair comparisons. The Carl Zeiss 

Zen Software tile scans were used to image the entire DVC. Images were 

processed and exported using ZEN software, figures presented as a single plane 

image. Images were counted using 3 random tiles of each slice, 3 slices were 

used per rat, an average of all counts were taken demonstrated by quantification 

graphs. No oversaturated signals over exposure images were used in any of the 

quantifications between each rat.  
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2.7 Tandem Mass Tag (TMT) Assay 

2.7.1 Protocol  

Initially, control experiments were performed to optimise how the assay 

conditions. PC12 cells were collected and spun down at 2,000 RPM for 5 minutes, 

the supernatant was collected. The volume of the pellet was measured and four 

times the pellet volume of HENS buffer was added to the pellet to lyse cells. Once 

the HENS buffer was added, the cells were lysed on ice to stop degradation of 

proteins, cell lysates were moved to clean eppendorfs. Cell lysates were 

sonicated for three times for 10 seconds on ice, this was to ensure the samples 

did not overheat. Samples were centrifuged at 10,000 g for 10 minutes at 4°C.  

Two positive controls of 200 µM S-nitroglutathione (GSNO) (Santa Cruz CAS 

57564-91-7) or 5 mM DTT (Forrester et al., 2009) and one negative control of 

200 µM glutathione were added to the cell pellets. DTT is a reducing agent, DTT 

opens all the disulphide bonds, resulting in the sample being fully labelled by 

iodoTMT. One DTT sample was treated with MMTS blocking all of the disulphide 

bonds, this was used as a negative control. GSNO works by increasing the 

number of s-nitrosylated cysteines by increasing the levels of NO, making it a 

positive control. Of note, GNSO is liable to light, samples were kept in the dark to 

prevent denaturing. Glutathione, works as a good negative control as it inhibits 

modifications to cysteine thiols. Sample were treated with either DTT, GSNO or 

glutathione for 90 minutes at room temperature on a shaker. Samples were then 

put through a Zeba Desalting Spin Column (Thermo 89882), three times to 

ensure maximum recovery. A bicinchoninic acid assay (BCA) (Thermo 23227) 

was incubated at 37°C for 30 minutes and protein concentration was determined. 
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When treating the cell lysates with GSNO, there was a significant loss in the 

amount of protein recovered in the Zeba Spin Column. PC12 cells were then 

treated with 250µM GSNO (Kaliyaperumal et al., 2015). Cells were plated at 80% 

confluency, 8 hours later cells were treated with 250µM GSNO, 12 hours later the 

media removed and new complete medium with 250µM of GSNO was left for 

another 12 hours. Cells were collected, spun down at 2000 RPM for 5 minutes 

and washed with PBS ready for the TMT assay.  

Proteins were prepared at 1 mg/ml in 100µl of HENS buffer. To each 100µl of 

sample 0.04 M of MMTS (Chem Cruz sc-211882) was added, this was vortexed 

for at least 1 minute, samples were left for 90 minutes on the shaker at 800 RPM, 

to block any free sulfhydryl bonds. Six volumes of pre-chilled acetone (Fisher 

A10560117) were then added to each sample, and left at -20°C for 30 minutes, 

this removes any excess MMTS. The acetone was discarded and the pellet was 

left to dry in a fume hood. Pellets were resuspended in HENS buffer to give the 

final concentration to 1 µg/µl; to ensure that pellets were fully resuspended the 

samples were centrifuged at 6000 RPM for 3 minutes, to make sure there was 

no precipitate left.  

To every 100 µl of sample, 0.4 mM of iodoTMT labelling reagent (Thermo 90101) 

was added and vortexed for at least one minute and left to sit for one minute. 

Samples were selectively reduced by 0.04 M sodium ascorbate (Sigma 

PHR1279) to each 100 µl of sample, vortexed for one minute, and left at room 

temperature for two hours on a shaker at 1000 RPM. To check that the sodium 

ascorbate selectively reduced part of the sample was taken out before adding the 

sodium ascorbate. Five times sample buffer was added to each sample, boiled 

at 90°C in preparation to run an SDS page. Twenty-five µl of each sample was in 
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a 10% gel (see section 2.6), after transferred membrane was blocked in 5% 

skimmed milk in TBST and then left in the anti-TMT antibody overnight on a 

shaker at 4°C. The membrane was developed in methods stated in section 2.6.  

Once the assay had been optimised, PC12 cells were seeded at 10x106 in a 

10cm2 dish, cells were left overnight at 37°C. The next day the media was 

changed and cells were infected with either GFP virus at a MOI of 50, Drp1-

S637A virus at a MOI of 70 or Drp1-K38A virus at a MOI of 50. After 48 hours, 

cells were collected. The assay was repeated as per the protocol described 

above. A 100 µg of GFP lysate was treated with either 200 µM of GSNO or 200 

µM of glutathione and 5 mM of DTT in addition to a 100 µg of GFP lysate, to give 

positive and negative controls. 

2.7.2 Production of a PC12-ShiNOS Cell Line (ShRNA inducible nitric 

oxide synthase (shiNOS) Transduction)  

In order to determine whether iNOS was involved in Drp1-dependent S-

nitrosylation, a PC12 cell line expressing the ShRNA for iNOS was selectively 

used to knockdown iNOS. A puromycin titration was carried out, to determine 

which concentration was toxic to PC12 cells after a few days. The puromycin 

resistance gene is carried by lentivirus needed to express the shiNOS, once cells 

had taken up the virus they are puromycin resistance.  PC12 cells were plated at 

a 70% confluency in a 12-well plate, once cells were attached, a range of 2-10 

µg/ml of puromycin (Biovision 1860-25) was used to treat the cells. Cells were 

monitored until there was 90% detachment of cells after a few days, it was 

determined that the ideal puromycin concentration was 3.5 µg/ml.  
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PC12 cells were plated in a 12 well plate to ensure that in 24 hours cells would 

be 50% confluent. Twenty-four hours later, medium was removed in each well 

and 1ml of a mixture of complete medium with 5 µg/ml of Polybrene (Santa Cruz, 

sc-134220) and 20 µl of either knockdown iNOS (shiNOS) lentivirus or a control 

scramble ShRNA (shControl) lentivirus (Santa Cruz Biotechnology, sc-29417-V 

and sc-108080 respectively) was added to a well and left for 24 hours. The 

complete medium with Polybrene (Santa Cruz sc-134220) and virus was 

removed and replaced with complete medium and left for 24 hours. Cells were 

passaged 1 in 3 in complete medium for 24 hours to recover. After 24 hours the 

complete medium was removed and complete medium with 3.5 µg/ml puromycin 

was added to the well. Cells were monitored until the well with the control cells 

had detached, once fully detached the viable viral expressing cells were 

passaged into a 6 cm2 dishes and maintained in the complete medium with 

puromycin. After a few passages, cells for both PC12 ShControl and PC12 

ShiNOS were collected and subjected to western blotting to confirm a decrease 

in iNOS levels. Following this the s-nitrosylation assay was repeated with these 

cell lines.  

2.7.2.1 Infection 

To determine if the Drp1-dependent s-nitrosylation is due iNOS, the stable cell 

lines, ShiNOS and ShControl were infected with Drp1-S637A, Drp1-K38A and 

GFP viruses. Initially, cells were infected at a 70% confluency with a MOI of 70 

for Drp1-S637A, a MOI 50 Drp1-K38A and a MOI 50 GFP, however after 24 hours 

cells were detaching across both cell lines infected with GFP and Drp1-K38A. 

Following this, in order to get similar expression in all viruses in both cell lines a 

viral titration or a transfection using plasmids expressing Drp1-S637A, Drp1-



 79 

K38A and GFP proteins was done to determine which was the best way to 

prevent the cells dying.  

Similarly, to the viral infection (section 2.3), PC12 ShControl and PC12 ShiNOS 

cells were plated so that in 24 hours cells would be 80% confluent. 24 hours later 

cells were infected with varying MOI of 10, 20, 30, 50 and 70 for all GFP, Drp1-

S637A and Drp1-K38A. Cells were monitored for 48 hours, cells starting to detach 

before the 48 hours were collected early. At 48 hours samples were collected and 

prepared for western blotting methods as described in 2.7.1.    

2.7.3 Immunoprecipitation  

Immunoprecipitation was used to capture and elute the peptides that were 

labelled with TMT reagent labelled. Protein samples collected from the TMT-

assay were precipitated in six volumes of acetone at -20°C overnight, the 

samples were then centrifuged twice at 4,000 g for 10 minutes at 4°C, the acetone 

was removed and the pellet was left to dry in a fume hood. The 

immunoprecipitation reaction was carried out using Immobilised Anti-TMT Resin 

and TMT Elution Buffer (Thermo Scientific, 90076 and 90104 respectively). 

Pellets were resuspended in lysis buffer to give the final concentration of 1 µg/µl, 

to ensure the whole pellet was resuspended, the samples were briefly centrifuged 

at 6,000 RPM to check for residue pellet. For every 1 mg of sample, 100 µl of 

settled resin was needed, the slurry was made up with 50% settled resin. To 

release the settle resin, the slurry was centrifuged at 3000 RPM for 3 minutes at 

room temperature (RT), the supernatant removed. The pellet was then washed 3 

times with PBS at 3000 RPM for 3 minutes at 4°C. The resin was added to the 1 

µg/µl sample and left on a wheel overnight at 4°C. 
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Samples were then centrifuged at 3000 RPM for 3 minutes at 4°C, the 

supernatant was collected, 5 X sample buffer was added. The pellet was washed 

with lysis buffer without protease inhibitor tablets and DTT, three times at 3000 

RPM at 4°C, the supernatant for the first wash was kept and 5 X sample buffer 

was added to the wash. Elution buffer was added to each sample, the same 

volume as the settled resin and left on a shaker at 1000 RPM at 4°C for 1 hour. 

Samples were centrifuged at 3000 RPM for 3 minutes at 4°C and supernatant 

collected, known as elution 1, 5 X sample buffer was added. The elution was 

repeated two additional times the same volume of elution buffer was added to the 

resin pellet.  To the resin pellet, 1 X sample buffer was added to the sample which 

was equivalent of the elution buffer. All samples were boiled at 90°C, and ran on 

an SDS page. Protein expression was determined by TMT antibody.  

2.8  Statistical Analysis  

All data are expressed as the mean ± SEM. Data were inputted on Microsoft 

Excel and analysed using GraphPad Prism 7 software. A significant difference 

was determined by using multiple T-tests or unpaired T-Test for fat deposition 

and western blot analysis quantification, this test was used to compare the 

average of the different treatments. Statistical significance for acute feeding 

studies was determined by two-way ANOVA (post-hoc test: Sidak or Tukey), this 

test was used to do determine treatment with food intake at either the 4 hr or 12 

hr time point. All chronic data significance was determined by a two-way ANOVA 

(post-hoc test: Tukey or Sidak), this test was used to compare two variable 

treatments with either body weight or food intake each day. n refers to the number 
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of rats used. P < 0.05 was considered to be statistically significant. Significance 

was defined by: (*) P < 0.05; (**) P < 0.01; (***) P < 0.001; (****) P < 0.0001. 
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3 Changes in mitochondrial dynamics can alter 

feeding behaviours, body weight and insulin 

sensitivity in the DVC 
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3.1 Introduction and rationale 

Mitochondria are highly dynamic and can change morphology to meet energy 

demands, via fission and fusion, these two opposing processes are regulated by 

several proteins (Jheng et al., 2012; Ramírez et al., 2017). Mitochondrial fusion 

is regulated by MFN-1, MFN-2 and Opa1 while mitochondrial fission is regulated 

by Drp1, Fis1 and Mff (Jheng et al., 2012). A fine balance of these processes are 

needed to maintain mitochondria functionality (Filippi et al., 2017). 

Mitochondrial dysfunction can lead to insulin resistance, there are many 

mechanisms that link the development of insulin resistance to alterations of 

mitochondrial function (Filippi et al., 2017; Gao et al., 2014; Jheng et al., 2012). 

For example, in adipose tissue, mitochondrial dysfunction can increase oxidative 

stress in tissues, leading to an increase in fat oxidation and lipid accumulation 

which is associated with insulin resistance (Gao et al., 2014). Furthermore an 

increase in active Drp1 can lead to ER stress, and mitochondrial fission in skeletal 

muscle has led to insulin resistance in obese rats (Jheng et al., 2012). In addition 

to this, transgenic mice with the deletion of Drp1 in the liver prevented these mice 

from developing diet induced insulin resistance (Wang et al., 2015). In the DVC  

an increase in mitochondrial fission leads to an increase in ER stress, ultimately 

leading to insulin and impairing its ability to control glucose metabolism (Filippi et 

al., 2017).  

Insulin activates its receptors in the DVC to lower hepatic glucose production 

(Filippi et al., 2012b), and also decrease food intake and body weight in healthy 

male rats (Filippi et al., 2014). In rats a 3-day HFD induces insulin resistance, and 

as a result the DVC loses the ability to regulate hepatic glucose production, 

subsequently leading to an increase food intake (Filippi et al., 2014). This is 
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because a HFD increases the activation of mitochondrial fission protein, Drp1, as 

well as inducing insulin resistance in the DVC (Filippi et al., 2017).  

In rats fed a HFD, mitochondria appear smaller and are present at a higher 

frequency in the DVC than in RC control littermates (Filippi et al., 2017). This 

effect was dependent on the mitochondrial fission protein Drp1, as chemical 

inhibition of mitochondrial fission using MDIVI-1 reversed the effects of a HFD on 

mitochondrial morphology (Filippi et al., 2017). Furthermore, a 3 day HFD 

depleted the glucoregulatory effect of DVC insulin, this effect was negated when 

insulin was infused with MDIVI-1, determining that mitochondrial fission can 

induce insulin resistance in the DVC (Filippi et al., 2012b, 2017). This raises the 

possibility that Drp1-dependent mitochondrial fission is necessary in HFD-

dependent insulin resistance in the DVC. 

Activation of Drp1 in the DVC induced insulin resistance with rats failing to 

maintain euglycemia determined by pancreatic euglycemic clamp, similar to the 

effect a 3-day HFD had on rats (Filippi et al., 2017). In contrast, molecular 

inhibition of mitochondrial fission protected 3-day HFD-fed rats from insulin 

resistance (Filippi et al., 2017). The effects of mitochondrial fission on glucose 

metabolism has been well characterised, however the effect mitochondrial fission 

has on feeding behaviours is not well understood. Previous data has shown that 

Drp1-dependent mitochondrial fission induces insulin resistance, using these 

data as a foundation I hypothesised that activating Drp1-dependent mitochondrial 

fission in the DVC of RC-fed rats would increase food intake and body weight 

gain, as well as inducing insulin resistance. Conversely, according to this 

hypothesis, inhibiting Drp1-dependent mitochondrial fission, would prevent 

insulin resistance in HFD-fed rats.  
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3.1.1 Aims 

Aim 1: Is Drp1-dependent mitochondrial fission in the DVC sufficient to induce 

insulin resistance and affect feeding behaviours and body weight in RC-fed rats? 

Aim 2: Can inhibiting Drp1-dependent mitochondrial fission in the DVC protect 

HFD-fed rats from developing insulin resistance and decrease food intake?  
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3.2 Results  

3.2.1 Targeting NTS using an adenoviral delivery system 

To the effects of mitochondrial dynamics, an adenoviral delivery system was used 

to target the NTS of the DVC. An adenovirus expressing a constitutively active 

form of Drp1 in the residue of S637 to A (S637A), which mimics its non-

phosphorylated state, resulting in an over expression of Drp1. An adenovirus 

expressing a dominant negative form of Drp1, mutated in the residue of K38 to A 

(K38A), resulting in a defective GTP binding site, causing a decrease Drp1 

dependent mitochondrial fission, and finally a control of GFP. The adenoviral 

systems expressing the different forms of Drp1 were tagged with the FLAG 

protein to allow specific labelling for IHC and western blotting.  

To characterise cell populations which expressed Drp1-S637A, Drp1-K38A and 

GFP, IHC was performed as detailed in section 2.71. Rats underwent brain 

surgery on day 0 to specifically target the NTS. On day 1 rats were either injected 

with adenoviruses expressing Drp1-S637A or GFP and were given Diet 1 RC for 

14 days, or were injected with Drp1-K38A or GFP and were given Diet 2 RC for 

3 days post-surgery and followed by Diet 3 HFD on day three (Figure 3.1). These 

                                            

1 IHC was done in collaboration with Dr. Lauryn E New in the Filippi Las 

Figure 3.1 Perfusion protocol for rats to investigate expression of Drp1-S637A, Drp1-
K38A and GFP 

Rats underwent surgery on day 0 and were injected with either Drp1-K38A, Drp1-S637A or 

GFP the following day, food intake and body weight were observed every day for 14 days, on 

day 14 rats underwent perfusion 



 87 

rats were monitored daily and were perfused on day 14 as described in section 

2.6.4. Sections obtained from these rats were used to confirm that the NTS was 

specifically targeted (Figure 3.2A) and also to characterise cell types that were 

co-localised with the viruses. The IHC confirms the accuracy of the surgery, in 

rats expressing GFP (Figure 3.2B), Drp1-S637A (Figure 3.2C) and Drp1-K38A 

(Figure 3.2D). 

 

 

Figure 3.2 IHC demonstrating successful targeting of the NTS 

A: Schematic of the DVC highlighting the NTS targeted in surgery 

B: GFP expression in the NTS of DVC, green, dual-labelled with GFAP to label 

astrocytes, red 

C: The constitutively active form of Drp1, Drp1-S637A FLAG tagged expression in the 

NTS, red 

D: The dominant negative form of Drp1, Drp1-K38A FLAG tagged expression in the 

NTS, red 
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3.2.2 GFP is expressed in astrocytes and oligodendrocytes 

In order to characterise the cell populations targeted by the adenoviruses Drp1-

S637A, Drp1-K38A and GFP, IHC was carried out in collaboration with Dr Lauryn 

New as described in section 2.7. GFP staining was used to characterise the 

dominant cell population infected by the adenoviral system, GFP expression is 

cytosolic unlike the Drp1-S637A and Drp1-K38A staining meaning it is difficult to 

accurately determine the frequency of co-localisation of markers with FLAG 

expression. The GFP adenovirus has the same CMV promoter as both the Drp1-

S636A and Drp1-K38A adenoviruses, therefore infection of neurones, astrocytes 

and oligodendrocytes would likely occur at the same frequency as that of the GFP 

control expression.  

We determined that the cell types expressing GFP within the DVC were 

neurones, astrocytes and oligodendrocytes. Dual staining with NeuN to label 

mature neurones showed that 22.1% of GFP expressing cells were neurones (n 

= 3 rats, Figure 3.3A-Aii). Co-labelling with the astrocytic antibody against GFAP 

with GFP expression, showed that 39.1% of GFP labelled cells were astrocytes 

(n = 4 rats, Figure 3.3B-Bii). In addition to neurones and astrocytes, myelin 

forming oligodendrocytes are also present within the central nervous system. To 

determine the expression of oligodendrocytes in the DVC, an antibody against 

PanQKi was used in GFP expressing sections, it was found that, 36.2% of GFP 

stained cells were co-localised with PanQKi (n = 3 rats, Figure 3.3C-Cii). 
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A-Aii: Representative confocal images illustrating 

labelling of GFP expression in (A), NeuN (Ai) and 

dual labelling for both (A-Ai) in the DVC  

B-Bii: Representative confocal images illustrating 
labelling of GFP expression in (B), GFAP (Bi) and 

dual labelling for both (B-Bi) in the DVC 

C-Cii: Representative confocal images illustrating 

labelling of GFP expression in (C), PanQKi (Ci) and 

dual labelling for both (C-Ci) in the DVC 

Closed arrows denote colocalised cells (n= 3 for 

NeuN and PanQKi, n= 4 for GFAP, n = number of 
rats, per rat 3 tiles of each image were counted of 3 

slices) 

Figure 3.3 GFP expression in neural cell types 
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3.2.2.1 Drp1-S637A and Drp1-K38A are expressed in multiple cell types in 

the DVC 

As mentioned previously as the GFP adenovirus possess the same CMV 

promoter as Drp1-S637A and Drp1-K38A viruses, the types of cells infected by 

these Drp1-expressing adenoviruses is likely to be similar. The Drp1-expressing 

adenoviruses are tagged with FLAG, therefore expression of Drp1-S637A and 

Drp1-K38A could be seen using an anti-FLAG antibody However, due to the 

nature of the staining of the Drp1-S637A-FLAG and Drp1-K38A-FLAG, 

quantification of the number of cells with FLAG tagged Drp1-S637A and Drp1-

K38A with cell markers was not possible. Nevertheless, IHC performed on 

sections confirmed that there was co-localisation of Drp1-S637A or Drp1-K38A 

with different neural markers (Figure 3.4). 

Unlike GFP staining which can be nuclear and cytoplasmic, Drp1-S637A staining 

was more diffuse along fibres and Drp1-K38A expression appearing more 

punctate (Figure 3.4). Similarly, with the GFP staining, there is co-localisation 

with mature neuronal cell marker, NeuN, we demonstrated that Drp1-S637A and 

Drp1-K38A are expressed around NeuN positive cell bodies (Figure 3.4A-

Aii,Figure 3.4B-Bii). Double labelling with anti-GFAP, to label astrocytes, has also 

shown that there is co-localisation of Drp1-S637A staining with GFAP positive 

astrocytes in the DVC (Figure 3.4C-Cii), this was also seen in Drp1-K38A 

expressing cells (Figure 3.4D-Dii). Staining for microglial cells, using an antibody 

against Iba1, demonstrated expression with Drp1-S637A and Drp1-K38A in 

microglia processes (Figure 3.4E-Eii, Figure 3.4F-Fii).  
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Figure 3.4 Expression of the constitutively active form of Drp1, Drp1-S637A and 
the dominant negative form of Drp1, Drp1-K38A  
 
 
A-Aii: Representative confocal images illustrating the expression Drp1-S637A (A), 

NeuN (Ai) and dual labelling for both (A-Ai) in the DVC  
B-Bii: Representative confocal images illustrating the expression of Drp1-K38A (B), 

NeuN (Bi) and dual labelling for both (B-Bi) in the DVC 

C-Cii: Representative confocal images illustrating the expression of Drp1-S637A (C), 

GFAP (Ci) and dual labelling for both (C-Ci) in the DVC 

Open arrows denote non-colocalised cells 

D-Dii: Representative confocal images illustrating the expression of Drp1-K38A (D), 

GFAP (Di) and dual labelling for both (D-Di) in the DVC  
E-Eii: Representative confocal images illustrating the expression of Drp1-S637A (E), 

Iba1 (Ei) and dual labelling for both (E-Ei) in the DVC 

F-Fii: Representative confocal images illustrating the expression Drp1-K38A (F), 

Iba1 (Fi) and dual labelling for both (F-Fi) in the DVC 

Closed arrows denote colocalised cells 



 93 

3.2.3 Activation of Drp1 in the DVC induces insulin resistance, 

hyperphagia and increases body weight in RC-fed rats 

3.2.3.1 Activation of Drp1 in the DVC induces insulin resistance 

To investigate whether Drp1-dependpent mitochondrial fission affected insulin 

sensitivity in the DVC, I performed stereotactic brain surgery in rats to insert a 

bilateral cannula into the NTS of the DVC (as described in section 2.4.1). On the 

day after surgery (day one), an adenovirus expressing Drp1-S637A or GFP was 

injected into the DVC of rats (Filippi et al., 2017). On day nine and day 14 an 

acute feeding study was carried out, where insulin was infused bilaterally into the 

DVC of fasted rats and feeding behaviours were monitored for four hours (as 

detailed in section 2.5.2). Rats were sacrificed on day 16, the experimental 

paradigm is highlighted in Figure 3.5 below. 

Rats underwent a feeding study as detailed in Figure 3.5, rats were fasted for 6 

hours and then infused bilaterally into the DVC with a total 0.2 µl of 2 mU insulin 

or a vehicle over 5 minutes. Food was then returned and food intake was 

observed every half hour for 4 hours and a final reading was taken at 12 hours. 

Figure 3.5 Drp1-S367A feeding study protocol 
On day 0 rats underwent brain surgery to inset a double cannula, on day one, these rats 

were injected with Drp1-S637A or GFP. On day 9 and 14 an acute feeding study was 

performed to observe feeding behaviour. These rats were sacrificed on day 16. 
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GFP expressing rats infused with insulin in the DVC had a significant decrease 

in food intake compared to their vehicle infused controls. At the four-hour point 

insulin treated GFP expressing rats had a 50.6% decrease in food intake 

compared to vehicle treated rats (Figure 3.6A). These results therefore show that 

these rats were insulin sensitive. At 12-hours, the effect of insulin on feeding 

behaviours was lost in GFP expressing rats (Figure 3.6B). 

RC-fed rats expressing the constitutively active form of Drp1, Drp1-S637A, who 

were treated with insulin, had similar food intake to vehicle treated littermates at 

four hours (Figure 3.6A). The average food intake of Drp1-S637A expressing rats 

A: Total food intake taken at the 4 hour time point, as there was no difference in the food 
intake in the feeding studies performed on day nine and fourteen, the figure shows the 

average food intake over both feeding studies 

B: Total food intake taken at the 12 hour time point, as there was no difference in the food 

intake in the feeding studies performed on day nine and fourteen, the figure shows the 

average food intake over both feeding studies  

Data are expressed as a mean± SEM of n=13 for GFP vehicle, n=12 for GFP insulin, n=8 for 

Drp1-S637A vehicle, n=6 for Drp1-S637A insulin. Orange dots represent data gained from 

day 9, green dots represent data gained from day 14.  

Statistical Test: Two Way Anova (post-hoc test: Sidak) [*** p<0.001] 

Figure 3.6 Food intake during acute feeding study in rats expressing Drp1-S637A and 
GFP  
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infused with the vehicle was 4.45g compared to Drp1-S637A expressing insulin 

treated food intake which was 4.9g, therefore insulin had no effect on feeding 

behaviours in rats expressing Drp1-S637A in the DVC (Figure 3.6A). There was 

no difference in food intake at 12 hours in both insulin and vehicle treated groups 

(Figure 3.6B).  This cohort has confirmed that rats expressing the active form 

Drp1 in the DVC are insulin resistant in line with previous research which has 

shown that activation of Drp1 in the DVC can induce insulin resistance2i (Filippi 

et al., 2017). 

  

                                            

2  Referring to the loss of insulin-induced hypophagia when stating rats are insulin resistant in 
data 
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3.2.3.2 Chronic activation of Drp1 in DVC induced hyperphagia and 

increased in body weight in RC-fed rats 

The effects of chronic activation of Drp1 on food intake and body weight were 

also investigated. Each rat had their food intake (to the nearest g) and body 

weight taken at a 9 am of each day to keep data as consistent as possible. Rats 

expressing Drp1-S637A had an increase in food intake over the two-week period, 

with data becoming significant from day 10 (Figure 3.7A). Furthermore, activation 

of Drp1 in the DVC resulted in an increase in body weight gain compared to GFP 

expressing controls (Figure 3.7B), this difference was statistically significant from 

day 7. In summary, activation of Drp1 in the DVC induces insulin resistance and 

increases in food intake and body weight gain. 

Figure 3.7 Cumulative food intake and body weight increases during the study 
in Drp1-S637A-expressing rats  
 

 

 

A: Cumulative food intake in GFP and Drp1-S637A-expressing rats from day of viral 

injection (day 1) 

B: Body weight increase in GFP and Drp1-S637A-expressing rats from day of viral 

injection (day 1) 
All data are expressed as mean ± SEM n=8 for both GFP and Drp1-S637A.  

Statistical Test: two-way ANOVA (post-hoc test: Tukey) [*p < 0.05, **p <0.01]  
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3.2.3.3 Activation of Drp1 in the DVC results in an increase in the total 

amount of WAT in rats 

I have demonstrated that activation of Drp1 in the DVC causes an increase in 

body weight gain, next, I wanted to investigate the effect of chronic activation of 

Drp1 on WAT. On the day of sacrifice, day 16, tissues were collected for analysis. 

Along with the DVC, different types of WAT were dissected and weighed to see 

if there was a difference in WAT deposition in rats expressing GFP and Drp1-

S637A. The types of adipose tissue collected included; epididymal fat from the 

groin area in male rats, retroperitoneal fat, from around the kidney and visceral 

fat which surrounds the intestines. All fat was collected and weighed to the 

nearest 0.01 g. Rats expressing Drp1-S637A in the DVC had a significant 

increase in the total WAT compared to GFP expressing controls (Figure 3.8). The 

Drp1-expressing rats also had a significantly higher level of visceral fat compared 

to the GFP expressing rats (Figure 3.8).  

All data are expressed as mean ± SEM n=8 for both GFP and Drp1-S637A cohorts. 

Statistical test: multiple T-test [*p < 0.05] 

Figure 3.8 Weight of white adipose tissue in Drp1-S637A  rats compared to 
GFP  control rats 
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3.2.3.4 Activation of Drp1 increases ER-stress and iNOS levels in the DVC 

On the day of sacrifice the DVC was collected and snap frozen, DVC tissue was 

lysed in preparation for western blotting (as described in section 2.6). An increase 

in active Drp1 has been associated with inflammation and ER stress (Filippi et 

al., 2017; Gao et al., 2014; Santoro et al., 2017). In order to establish the 

successful delivery Drp1-S637A, the Drp1 protein was tagged with FLAG (Figure 

3.9). An increase in phosphorylation levels of PERK is an indicator of ER stress, 

here I have shown that an over expression of Drp1 in the DVC increased ER-

stress indicated by phosphorylation levels of PERK compared to their GFP-

expressing controls (Figure 3.9A). This confirms previous data demonstrating 

that Drp1 activation increase ER-stress levels in the DVC (Filippi et al., 2017).  

A: A representative western blot showing changes in phosphorylation levels of the ER stress 
marker PERK in the DVC in rats  Drp1-S637A compared to control GFP  rats (Data were 

analysed using fiji ImageJ) 

B: A representative western blot show levels of iNOS levels in the DVC in rats  Drp1-S636A 

compared to GFP controls (Data were analysed using fiji ImageJ)  
All data are expressed as mean ± SEM n=8 for both GFP and Drp1-S637A (P-PERK: 

phosphorylated PERK, T-PERK: total-PERK) Fold increase from control. 

Figure 3.9 Activation of Drp1 leads to an increase in ER stress and iNOS levels in 
the DVC 
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iNOS is a mediator of inflammation, higher levels of iNOS results in an increase 

in the release of nitric oxide (Fujimoto et al., 2005). It has previously been 

demonstrated that an increase in iNOS levels have been associated with Drp1-

dependent mitochondrial fission, next, I wanted to investigate if there was an 

upregulation in iNOS levels (Filippi et al., 2017; Park et al., 2013). I have found 

rats expressing Drp1-S637A had a significant increase in iNOS levels compared 

to their GFP expressing counterparts (Figure 3.9B). 

In conclusion, over expression of Drp1 in the DVC of the brain can induce insulin 

resistance (Figure 3.6), cause an increase in food intake, body weight gain 

(Figure 3.7) and WAT deposition (Figure 3.8), leading to an increase in ER stress 

and iNOS in the DVC (Figure 3.9). 
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3.2.4 Inhibition of mitochondrial fission in the DVC prevents insulin 

resistance, hyperphagia and body weight gain in HFD-fed rats  

3.2.4.1 Inhibition of Drp1 in the DVC prevents the development of insulin 

resistance in HFD-fed rats 

The data I have presented demonstrates that an activation of Drp1 leads to insulin 

resistance. Next, I wanted to determine whether inhibition of Drp1-dependent 

mitochondria fission, using an adenovirus expressing the dominant negative form 

of Drp1, Drp1-K38A, could prevent the development of insulin resistance in HFD-

fed rats. Similarly to Drp1-S637A viral delivery, Drp1-K38A was injected a day 

after surgery (day one) (Filippi et al., 2017), on day three post-brain surgery 

(Figure 3.10) rats were given HFD for the remainder of the study.  

Drp1-K38A and GFP expressing rats were subjected to feeding studies on day 

nine and day 14 (as previously described in section 2.5). I have found that at 4 

hours the HFD-fed GFP-expressing rats failed to decrease food intake when 

infused with insulin in the DVC compared with vehicle treated GFP controls, 

average GFP-expressing vehicle food intake 4.2g vs GFP-expressing insulin 

treated food intake 3.8g (Figure 3.11A). This effect was also seen at the 12-hour 

time point (average GFP expressing vehicle food intake 15.8g vs GFP expressing 

Figure 3.10 Drp1-K38A study timeline.  

Rats underwent brain surgery on day 0, on day 1 each rat was injected with Drp1-K38A or 

GFP, on day 3 rats were put on a HFD. Acute feeding study was done on day 9 and 14. 
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insulin treated food intake 14.2g) (Figure 3.11B), therefore determining that a 

HFD can induce insulin resistance.  

On the contrary, the rats expressing the dominant negative form of Drp1, Drp1-

K38A, exhibited a 59.1% decrease in food intake at the 4-hour point when treated 

with insulin compared to Drp1-K38A-expressing vehicle treated littermates 

(Figure 3.11A). At the 12-hour time point, effect of insulin on feeding behaviours 

was lost in Drp1-K38A expressing insulin treated rats (Figure 3.11B). This is in 

contrast to the effect of insulin against vehicle treatment in the GFP expressing 

Figure 3.11 Acute feeding study in Drp1-K38A and GFP rats  

 

 

Rats were fasted for 6 hours and then infused bilaterally into the DVC with a total 

0.2ul of insulin (total 2mU) or a vehicle over 5 minutes. Food was returned and food 

intake was measured every half of an hour for 4 hours, a final reading was taken at 

12 hours.  

A: Total food intake taken at the 4 hour time point, since there was no difference in 

the food intake in the feeding studies performed on day nine and fourteen, the figure 

shows the average food intake over both feeding studies 
B: Total food intake taken at the 12 hour time point, from feeding studies, since there 

was no difference in the food intake in the feeding studies performed on day nine 

and fourteen, the figure shows the average food intake over both feeding studies 

Data are expressed as a mean± SEM of n=11 for GFP vehicle, n=8 for GFP insulin, 

n=9 for Drp1-K38A vehicle, n=8 for Drp1-K38A insulin. Orange dots represent data 

gained from day 9, green dots represent data gained from day 14. 
Statistical Test: Two-way ANOVA (post-hoc test: Tukey) [*p<0.05] 
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control rats upon food intake at 12 hours. Overall, these data highlights that 

inhibiting mitochondrial fission in the DVC can prevent insulin resistance3 in HFD-

fed rats. 

3.2.5 Chronic inhibition of Drp1 in the DVC prevents hyperphagia and 

a decrease in food intake 

I have shown that a decrease in the expression of Drp1 in the DVC can prevent 

insulin resistance from occurring in HFD-fed rats (Figure 3.11). I next wanted to 

understand the effect of chronic inhibition of Drp1 on food intake and body weight 

gain. A significant decrease in the cumulative food intake in the rats expressing 

the dominant negative form of Drp1, Drp1-K38A, compared with GFP-expressing 

HFD-fed controls from day 8 (Figure 3.12A). Drp1-K38A expressing rats also had 

                                            

3 Referring to the loss of insulin-induced hypophagia when stating rats are insulin resistant in  
data 

Figure 3.12 Cumulative food intake and body weight in the HFD-fed Drp1-K38A and GFP  
rats 
 A: Cumulative food intake in Drp1-K38A  and GFP- control rats over the 14-day study, 

where day 1 is the day of viral injection 
B: Body weight increase in Drp1-K38A  and GFP- control rats over the 14-day period, where 

day 1 is the day of viral injection 

All data are expressed as mean ± SEM n=8 for both GFP and Drp1-K38A  

Statistical test: Two way ANOVA (post-hoc test: Sidak) [*p < 0.05, **p <0.01, *** p<0.001] 
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an overall lower body weight gain compared to the GFP-expressing rats (Figure 

3.12). 

3.2.5.1 Chronic inhibition of Drp1 in the DVC results in a decrease in the 

total weight of WAT in rats 

As inhibition of Drp1 in the DVC can decrease body weight gain in HFD-fed rats, 

I wanted to determine if this had an effect on fat deposition. The weight of the 

WAT was measured on the day of sacrifice (as previously described in section 

3.2.2). Drp1-K38A-expressing rats had significantly less total amount of WAT 

compared to their GFP-expressing controls, there was also significantly lower 

amounts of retroperitoneal fat in these rats (Figure 3.13). These data highlight 

that inhibiting mitochondrial fission in HFD rats is sufficient to prevent the loss of 

insulin-induced hypophagia, leading to a decrease body weight gain, thus leading 

to a decrease in WAT deposition compared to HFD-fed controls.  

Figure 3.13 White adipose tissue deposition in Drp1-K38A and GFP  rats 
 All data are expressed as mean ± SEM n=8 for both GFP and Drp1-K38A  

Statistical Test: multiple T-test[*p < 0.05, **p <0.01, *** p<0.001] 
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3.2.5.2 Inhibition of Drp1 resulted in lower levels of ER-stress and iNOS in 

the DVC 

Inhibition of Drp1 prevents insulin resistance and hyperphagia in HFD-fed rats. 

To understand what was happening on a molecular level, the DVC of the rats 

were lysed and a western blot was run to determine if there were changes in ER 

stress and iNOS levels (as detailed in section 2.6). Rats expressing Drp1-K38A 

had a decrease in ER stress as determined by phosphorylation levels of PERK 

compared to GFP expressing control littermates (Figure 3.14A). In addition, Drp1-

K38A expressing rats also had a significant decrease in iNOS levels compared 

to GFP expressing controls (Figure 3.14B). The data presented highlights that 

inhibiting Drp1-dependent mitochondrial fission in the DVC can lower ER stress 

in HFD-fed rats. Furthermore, inhibition of mitochondrial fission can decrease 

iNOS levels in HFD-fed rats.  

Figure 3.14 Inhibition of Drp1 in the DVC decrease ER-stress and iNOS in HFD-fed rats in 
the DVC 
 A: A representative western blot showing ER stress levels determined by phosphorylation 

levels of PERK in Drp1-K38A-expressing and GFP-expressing rats 

B: A representative western blot of iNOS levels in rats expressing GFP or a dominant 
negative form of Drp1  

All data are expressed as mean ± SEM n=8 for both GFP and Drp1-K38A (P-PERK: 

phosphorylated PERK, T-PERK: total-PERK) Statistical test: unpaired T-test [*p < 0.05, **p 

<0.01, *** p<0.001]  Fold increase compared to control. 
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In summary, it is evident that inhibiting mitochondrial fission in the DVC can 

prevent insulin resistance (Figure 3.11), decrease cumulative food intake (Figure 

3.12A), body weight (Figure 3.12B) and WAT deposition (Figure 3.13) in HFD-

fed rats. In addition, inhibiting Drp1 can lower ER stress and iNOS levels (Figure 

3.14). 

3.3 Discussion  

The data I have presented has demonstrated that an activation of Drp1-

dependent mitochondrial fission in the DVC induces insulin resistance, 

hyperphagia and body weight gain in RC-fed rats. Previous work has shown that 

Drp1-dependent mitochondrial fission results in a decrease in ATP production 

and higher levels of mitochondrial fragmentation, which leads to reduced insulin 

mediated glucose uptake in muscles (Touvier et al., 2015). In genetic and diet 

induced obese mouse models, there is an increase in Drp1 dependent 

mitochondrial fission which includes insulin resistance in skeletal muscle (Jheng 

et al., 2012). Such results illustrate that mitochondrial dynamics are important in 

energy metabolism and insulin sensitivity (Bratic and Trifunovic, 2010; Maechler, 

2013). For example overexpression of Drp1 in transmitochondrial cybrid cells 

decreased the mitochondrial network and increased mitochondrial ROS, which 

led to a decrease in the activation of the insulin signalling pathway (Lin et al., 

2018). In addition, a decrease in the mitochondrial network has also been seen 

in the skeletal muscle of insulin resistant obese Zucker rats, highlighting the 

importance of mitochondrial dynamics in the development of insulin resistance 

(Bach et al., 2003).  

In this study I have shown that inhibition of Drp1 in the DVC prevented the 

development of insulin resistance in HFD-fed rats. Previously it has been shown 
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that in an obese Zucker rat (fa/fa) model, which exhibit insulin resistance, 

hyperphagia and hyperlipidaemia, there is a decrease in glucose uptake and 

lower levels of mitochondrial fusion proteins such as MFN-2 in skeletal muscle 

(Putti et al., 2015). In the hypothalamus loss of the MFN-1 in POMC neurons 

impaired glucose sensing and insulin release, furthermore, in POMC neurones 

with the selective deletion of MFN-1 exhibit defective insulin sensing and an 

increase in ROS (Santoro et al., 2017; Schneeberger et al., 2013). On the other 

hand, deletion of Drp1 in POMC neurons was found to improve glucose 

metabolism (Santoro et al., 2017; Schneeberger et al., 2013).  

Inhibition of MFN1 and -2 in Agrp neurons in the hypothalamus prevented diet 

induced obesity in rats fed a HFD (Dietrich et al., 2013), demonstrating that 

alterations that change mitochondrial dynamics in the hypothalamus can affect 

feeding behaviours. Inducible deletion of Drp1 in POMC neurons showed a 

significant increase in mitochondrial size, and resulted in better responsiveness 

to glucose (Santoro et al., 2017). Mitochondrial uncoupling protein 2 (UCP2) 

impairs glucose stimulated ATP production, where UCP2 negatively regulates 

glucose sensing in POMC neurones (Zhang et al., 2001). Genetic knockdown of 

UCP2 can prevent diet induced obesity and restore insulin sensitivity in ob/ob 

mice (Parton et al., 2007; Zhang et al., 2001), highlighting the importance of 

mitochondria in glucose sensing. 

Much of the data regarding mitochondria dynamics and metabolism have been 

produced in the MBH, however, the DVC is also an important centre in the 

regulation of glucose metabolism, feeding behaviours and insulin sensing (Dash 

et al., 2015; Filippi et al., 2012b, 2014; MacDonald et al., 2019). It has been 

previously shown that a HFD can induce Drp1-dependent mitochondrial fission 
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resulting in insulin resistance, while activation of Drp1 recapitulates these effects 

in RC-fed rats (Filippi et al., 2017), emphasising the role that mitochondria has in 

the regulation of insulin sensitivity in the DVC. However, the effects of 

mitochondrial dynamics on feeding behaviours was not shown. Here for the first 

time I have shown that over expression of Drp1-S637A in the DVC can induce 

hyperphagia in the RC-fed rats. Furthermore, inhibiting Drp1-dependent 

mitochondrial fission in the DVC in HFD-fed rats prevents hyperphagia when 

compared to HFD-fed control littermates.  

There are many cell types which may be involved in the pathophysiology of Drp1-

dependent mitochondrial fission in the development of insulin resistance. In our 

experiments glial cells, such as astrocytes and microglia, as well as neurones 

were infected with the Drp1-expressing and GFP expressing adenoviruses. Glial 

cells play a key role in energy balance. acyl-CoA-binding protein-derived (ACBP-

derived) endozepines bind to the GABAA receptor, in the hypothalamus, a 

knockdown of ACBP in astrocytes resulted in hyperphagia and body weight gain 

in rats, where viral rescue of ACBP restored these effects, these data suggest 

the feeding behaviours could be regulated by astrocytes (Bouyakdan et al., 

2019). Astrocytes express iNOS and help control the brains microenvironment 

(Saha and Pahan, 2006). A ten day HFD was sufficient to induce an increase in 

astrocytes in the hypothalamus, these rats also had a significant increase in body 

weight and in fat content (Balland and Cowley, 2017). In addition to this, HFD-fed 

mice had a higher morphological complexity of GFAP labelled cells within the 

NTS compared to controls, furthermore, activation of astrocytes in the DVC 

resulted in a decrease of food intake, due to activation of distant and local, 
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neuronal circuits determining that astrocytes are involved in the homeostatic 

response to changes in food intake and energy balance (MacDonald et al., 2019). 

Inhibition of NF-kB signalling in astrocytes resulted in a decrease in food intake 

in the first 24 hours (Buckman et al., 2015). Disrupted insulin signalling in 

astrocytes in the hypothalamus has also been shown to increase in blood glucose 

levels and appetite (García-Cáceres et al., 2016). A potential mechanism could 

be that changes in mitochondrial dynamics in astrocytes could affect the 

neuronal-glial cross-talk which is important in nutrient sensing. A possible way to 

test this is to target changes in mitochondria within the astrocytes specifically, by 

expressing Drp1-S637A or Drp1-K38A under the GFAP promoter, I will address 

this hypothesis in Chapter 5.  

I have shown in the DVC changes in mitochondrial dynamics in the DVC can 

affect food intake and body weight gain. In mammalian cells, nutrient excess 

impairs autophagic degradation by inhibiting lysosomes and increases 

mitochondrial fragmentation, leading to mitochondrial dysfunction and resulting 

in an increase in ROS (Lee et al., 2004). In mice, a decrease in Drp1 expression 

in muscles resulted in a decrease in body weight in HFD-fed rats compared to 

controls (Jheng et al., 2012), which is consistent with the data I have presented. 

Drp1-dependent mitochondrial fission in the DVC leads to an increase in the total 

amount of WAT deposition in RC-fed rats, while inhibition of Drp1-dependent 

mitochondrial fission in HFD-fed rats resulted in a decrease the total amount of 

WAT deposition compared to HFD-fed control rats. Muscle specific knockout of 

Drp1 also results in a decrease in the amount of WAT (Favaro et al., 2019). An 

increase in FFA, increases the oxidation of adipose tissue leading to an 

accumulation of lipids and mitochondrial dysfunction (Slawik and Vidal-Puig, 
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2006). Mitochondria dysfunction increases oxidative stress in tissues, leading to 

an increase in fat oxidation and lipid accumulation which is associated with insulin 

resistance (Gao et al., 2014). An increase in FFA leads to increased levels of 

ROS resulting in mitochondrial dysfunction and an increase in body weight 

(Jheng et al., 2012). These data suggest that rats with an activation of Drp1 in 

the DVC results in an increase in WAT which could increase in ROS, leading to 

an increase in fat oxidation. Additionally, an increase in WAT can cause a rise in 

blood glucose levels; high glucose levels can induce oxidative stress resulting in 

mitochondrial fragmentation mediated by Drp1 (Smirnova et al., 2001; Sparrow 

et al., 1986), it would have been interesting to see how inhibition or activation of 

Drp1 effected blood sugars in these experiments. 

The data I have presented demonstrates that inhibiting Drp1-dependent 

mitochondrial fission in the DVC can reduce ER stress in HFD-fed rats. ER-stress 

is mediated by ER-resident transmembrane proteins, such as IRE1a and PERK, 

where an increase in these markers has been associated with metabolic 

disorders (Schröder and Kaufman, 2005). Mitochondrial dysfunction has been 

directly linked to ER stress response which can cause disruption to insulin 

signalling (Lim et al., 2009). In this chapter I have shown that an activation of 

Drp1 in the DVC of RC-fed rats increased ER stress levels which is in accordance 

with Filippi et al. 2017. It is well known that a HFD can lead to an increase in ER-

stress (Filippi et al., 2017; Wang et al., 2015; Yang et al., 2015a; Zanotto et al., 

2017).  

An increase in unfolded proteins in the ER causes an increase in ROS leading to 

higher levels of ER stress, causing an increase in mitochondrial radicals 

upregulating inflammatory responses (Chaudhari et al., 2014; Green et al., 2004; 
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Li et al., 2016). A marker of inflammation is iNOS (Fujimoto et al., 2005; Soskić 

et al., 2011), and I have demonstrated here that an activation of Drp1 in the DVC 

leads to an increase in iNOS levels. Rats expressing a constitutively active form 

of Drp1 in the DVC had higher iNOS levels compared to their control littermates.  

Rats given a HFD had higher levels of iNOS in the muscles leading to insulin 

resistance (Perreault and Marette, 2001). In addition, mRNA levels of iNOS were 

decreased in BV2 microglial cells when treated with LPS in the presence of an 

inhibitor of Drp1, MDIVI-1 (Park et al., 2013). Altogether these data indicate that 

iNOS levels are decreased when mitochondrial fission is inhibited. In addition to 

this, previous work has shown that infusion of nitric oxide, to mimic the effect of 

iNOS in the hypothalamus resulted in insulin resistance and an increase in food 

intake (Katashima et al., 2017). Such findings are consistent with the data I have 

presented here that inhibition of Drp1-dependent mitochondrial fission decreases 

iNOS levels to protect HFD-fed rats for insulin resistance.  

A potential mechanism that could link Drp1-dependent mitochondria fission, ER-

stress and insulin resistance is an increase in iNOS levels which increases the 

release of NO, leading to S-nitrosylation of molecular players involved in ER 

stress inducing thereby insulin resistance. For example, in muscle, exogenous 

NO induced s-nitrosylation of the insulin receptor b subunit and IRS-1, induced 

insulin resistance. In muscle chemical reversal of s-nitrosylation resulted in an 

improvement in insulin signalling (Carvalho-filho et al., 2005). An increase in  

hepatic iNOS levels resulted in s-nitrosylation of a key UPR regulator, IRE1a, 

which increased ER-stress levels resulting in insulin resistance (Yang et al., 

2015a). In addition, Drp1 can be s-nitrosylated under high oxidative stress which 

can increase the rate of mitochondrial fission and cause changes in energy 
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imbalance (Morris et al., 2018b; Nakamura et al., 2010). Collectively, it is evident 

that increasing mitochondrial fission results in higher levels of iNOS which 

induces s-nitrosylation of different markers involved in the insulin signalling 

pathway. It is yet to be determined if the iNOS induces s-nitrosylation inducing 

insulin resistance in the DVC. 

The experiments presented in this chapter have shown that mitochondrial fission 

is a key player in the development of insulin resistance, and data has 

demonstrated that it is highly important in feeding behaviours and body weight 

gain. In summary, an increase in Drp1-dependent mitochondrial fission increases 

ER stress and iNOS levels inducing insulin resistance resulting in hyperphagia. 

It is still unclear the molecular mechanism that links the changes in mitochondria 

dynamics to ER stress and insulin resistance (Figure 3.15). This will be 

investigated in the next chapter.  

 

  

Figure 3.15 Summary of chapter and working hypothesis: Activation of Drp1 in DVC 
induces insulin resistance and hyperphagia  
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4 Knocking down iNOS in the DVC of the brain 

prevents HFD-dependent insulin resistance and 

hyperphagia 
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4.1 Introduction  

iNOS is a mediator of inflammation and plays an important role in the 

pathophysiology of insulin resistance (Evans and Goldfine, 2013; Fujimoto et al., 

2005). In the DVC, an increase in mitochondrial fission led to an increase in iNOS 

levels in HFD-fed rats (Filippi et al., 2017), in addition to this, I have previously 

demonstrated that activation of Drp1 can significantly increase the levels of iNOS 

in the DVC. However, it is yet to be determined if iNOS is one of the key links 

between mitochondrial fission and ER stress which leads to hyperphagia and 

insulin resistance (Figure 4.1). I aim to investigate the effects of iNOS on insulin 

sensitivity in the DVC. 

iNOS is a calcium independent enzyme, which aids in synaptic transmission and 

can induce inflammation. NO is a small messenger molecule and can control 

regulatory functions, such as neuronal activation and vasodilation. NO is highly 

reactive and is synthesised very rapidly, aberrant levels of NO can lead to 

oxidative damage and tyrosine nitration (Förstermann and Sessa, 2012). NO can 

also react with sulfhydryl groups on proteins which leads to s-nitrosothiol groups, 

this reaction is referred to as s-nitrosylation (Hess et al., 2005; Lee and Kim, 

2018; Nakamura et al., 2013). S-nitrosylation can change the enzymatic activity 

of proteins by modulating the cysteine residues (Lee and Kim, 2018). An excess 

of NO can result in s-nitrosylation of Drp1 and increases GTPase activity, in turn 

causing excessive mitochondrial fragmentation which has been linked to 

neurodegenerative diseases (Cho et al., 2009; Soonpaa et al., 2009). 

Increased iNOS levels induces S-nitrosylation of key UPR regulators altering ER 

homeostasis (Yang et al., 2015a). There is growing evidence associating 

inflammation and ER stress in obesity which can result in the onset of insulin 



 114 

resistance (Lee and Ozcan, 2014; Yang et al., 2015a; Zanotto et al., 2017). In 

both obese and HFD-fed mice increased levels of UPR regulators, PERK and 

IRE-1a were observed in both the liver and adipose tissue (Boden, 2009; 

Nakatani et al., 2005; Özcan et al., 2006). XBP1, a transcription factor which 

modulates ER stress. Mice deficient in XBP1 developed insulin resistance and 

had an increase body weight compared to controls, highlighting the key role ER 

stress plays in the development of insulin resistance (Özcan et al., 2004; Park 

and Ozcan, 2013). 

In addition to this, an excess of NO can cause aberrant mitochondrial fission and 

cell death in cortical neurones, however the mechanisms by which this happens 

is not fully understood (Barsoum et al., 2006; Knott and Bossy-Wetzel, 2009). 

Protein disulphide isomerase (PDI) is a chaperone in the ER, it can induce s-

nitrosylation of Drp1 which alters mitochondrial dynamics in neuronal 

degeneration. Inhibition of NO or PDI in CA1 neurones significantly improved 

mitochondrial dynamics in models of epilepsy, however whether s-nitrosylation of 

Drp1 can induce insulin resistance by a similar mechanism is not well understood 

(Lee and Kim, 2018). In this chapter, I aim to study whether alterations in 

mitochondrial dynamics in PC12 cells can induce changes in s-nitrosylation 

levels, to this aim, I developed an assay which specifically isolated nitrosylated 

proteins from neuronal cell lysates.  

There is evidence to suggest that links increases in NO production and insulin 

resistance leading to type II diabetes (Foster et al., 2009). This is thought to be 

due to iNOS dependent s-nitrosylation of key signalling protein of the insulin 

signalling pathway, such as AKT, the insulin receptor b subunit and IRS-1 as has 

been demonstrated in diabetic murine models (Carvalho-filho et al., 2005; 
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Yasukawa et al., 2005). Aging can increase iNOS expression, which in turn can 

lead to an increase in s-nitrosylation induced insulin resistance, furthermore, 

when iNOS was inhibited in old mice, mice were protected from iNOS induced s-

nitrosylation mediated insulin resistance (Ropelle et al., 2013). In addition to this, 

iNOS deficiency in skeletal muscle and genetic inhibition of iNOS in adipose 

tissue and in the liver prevented HFD-induced insulin resistance in mice (Fujimoto 

et al., 2005; Zanotto et al., 2017). Furthermore, knocking down iNOS in mice 

(Nos2-/-) prevented diet-induced obesity and insulin resistance and preserved 

skeletal muscle insulin sensitivity in HFD-fed mice (Perreault and Marette, 2001). 

Infusion of NO into the hypothalamus resulted in insulin resistance and an 

increase in food intake, where inhibition of NO significantly improved insulin 

sensitivity and food regulation in HFD-fed rats (Katashima et al., 2017). In this 

chapter I wanted to investigate the role iNOS in the DVC has on insulin sensing, 

feeding behaviours and body weight gain in HFD-fed rats.  

 

 

Figure 4.1 Over expression of Drp1 in the DVC can prevent insulin-induced hypophagia, 
my next aim is to determine if iNOS is the link inducing this? 
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4.1.1 Aims and objectives  

Aim 1: Does over expression of mitochondrial fission protein, Drp1, in PC12 cells 

increase iNOS levels thus affecting NO production and nitrosylation levels? 

Aim 2: Can inhibition of iNOS in the DVC prevent HFD-dependent effects on 

insulin sensitivity, food intake and body weight gain? 
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4.2 Results  

4.2.1 Determining the correct multiplicity of infection (MOI) to infect 

PC12 cells  

MOI is defined as the number of virions that are added per cell during infection, 

this ratio can be determined by the concentration of the virus and the number of 

cells (Thomas, 2001). Firstly, I aimed to examine the expression of each of the 

Drp1-mutant-FLAG viruses and GFP using western blotting methods (as 

described in section 2.6), to determine if I had equal expression. PC12 cells, a 

rat neuronal call line, were infected with varying MOI’s of 30, 40, 50 and 70 of 

Drp1-S637A, Drp1-K38A or GFP and left for 48 hours, to determine protein 

expression. I found that when treated at a MOI of 30 and 40, the expression in 

Drp1-mutants determined by FLAG or GFP was not similar to one another (Figure 

4.2). From this, I established that I would need a higher MOI for Drp1-S637A than 

for both Drp1-K38A and GFP. Following this, I decided to infect PC12 cells with 

a MOI for 70 for Drp1-S637A and a MOI of 50 for both Drp1-K38A and GFP 

Figure 4.2 Determining the correct MOI to infect PC12 cells 
PC12 cells were infected at varying MOIs of either GFP, Drp1-K38A or Drp1-S637A for 48 

hours, samples were run on a western blot to determine the expression of the protein (using 

FLAG) in each sample. Data are shown as a representative western blot 
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(Figure 4.2). The western blots highlighted a similar expression, it therefore was 

decided PC12 cells would be infected at these MOI’s (Figure 4.2).  

4.2.2 Activation of Drp1 in PC12 cells increases iNOS levels  

I have previously demonstrated that rats expressing a constitutively active form 

of Drp1 in the DVC had higher levels of iNOS in the DVC (see section 3.2.3.4). 

Following on from this, I wanted to understand whether changes in iNOS levels 

due to Drp1-dependent mitochondrial fission can affect NO production and 

consequently nitrosylation levels. To replicate the data I found in rats, PC12 cells, 

were infected with the adenoviruses expressing the constitutively active form of 

Drp1, Drp1-S637A, the dominant negative form of Drp1, Drp1-K38A or a control 

of GFP, for 48 hours. Cells were collected, lysed and prepared for western 

blotting (see section 2.6). PC12 cells expressing Drp1-S637A had a higher level 

of both iNOS (Figure 4.3) when compared with PC12 cells expressing with 

catalytically inactive form of Drp1, Drp1-K38A or a control of GFP.  

Figure 4.3 Representative western blots for iNOS expression in PC12  
 Cells infected with either the constitutively active form of Drp1, Drp1-S637A; the dominant 
negative form of Drp1, Drp1-K38A or a control of GFP iNOS expression of PC12 cells 

infected with GFP; Drp1-S637A or Drp1-K38A (n=7 for GFP; n=5 Drp1-S637A and n=6 

Drp1-K38A). Statistical test: unpaired T-test [*p<0.05] 
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4.2.3 Development of the S-nitrosylation TMT assay 

Activation of Drp1 increased iNOS levels in PC12 cells, furthermore, it has been 

well established that an increase in iNOS levels can induce s-nitrosylation of thiol 

groups on cysteine residues (Anavi and Tirosh, 2020; Förstermann and Sessa, 

2012; Hess et al., 2005). S-nitrosylation results in nitrosative stress which as a 

result affect cellular homeostasis and signalling pathways, thereby altering 

protein activity (Anavi and Tirosh, 2020). Increased levels of iNOS induce s-

nitrosylation of key players in the insulin signalling pathway such as AKT and the 

insulin receptor, resulting in insulin resistance (Anavi and Tirosh, 2020). I set out 

to look into the effect of Drp1 had on s-nitrosylation levels in PC12 cells and by 

performing an iodoTMT assay (see section 2.7). In the initial trial of the assay I 

came across a few problems with the effectiveness and replicability of the assay, 

to enable maximum capture of nitrosylated proteins, the assay went through 

troubleshooting. The assay principally has three main steps, the first step is to 

block any free nitro groups with MMTS, next to selectively reduce s-nitroso 

groups with sodium ascorbate and finally to selectively label these s-nitroso 

groups with iodoTMT (Figure 4.4). 

Figure 4.4 IodoTMT S-nitrosylation assay protocol 

Samples are blocked with MMTS to block any free sulfhydryl groups, next, s-nitrocysteine groups 

are selectively reduced using sodium ascorbate and labelling with iodoTMT. iodoTMT can then 

be examined using western blotting methods with an antibody against TMT to see s-nitrosylated 

proteins 
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DTT is a reducing agent that can open all the disulphide bonds, DTT was used 

as a negative and a positive control to determine the efficacy of iodoTMT 

labelling. One sample was treated with DTT and blocked with MMTS to act as a 

negative control and another sample was treated with DTT, but was not blocked 

with MMTS to allow full labelling by iodoTMT. In addition to this. collected cell 

lysates were treated with 200 µM of s-nitroglutathione (GSNO) to increase the 

levels of s-nitroso groups or treated with 200 µM of glutathione (GSH) to inhibit 

modifications to the cysteines on the thiol groups. As discussed previously, one 

of the main steps is to selectively reduce s-nitroso groups with sodium ascorbate, 

to ensure the material that was captured was specifically s-nitrosylated, each 

sample was split in half and only half was treated with sodium ascorbate for the 

remaining half nothing was added, to give an additional negative control.  

The s-nitrosylation assay demonstrates that treating cell lysates with DTT labels 

all bonds, while treating cells with DTT and blocking with MMTS successfully 

managed to block labelling (Figure 4.5). In addition, the data shows that treating 

cell lysates with GSNO resulted in a small increase in the level of nitrosylated 

proteins compared to GSH treated cells (Figure 4.5). Furthermore, samples 

which were not reduced with sodium ascorbate showed no staining, determining 

that the reduction with sodium ascorbate is essential for the assay to work. In 

summary, I successfully established the s-nitrosylation assay, next I aimed to 

apply this assay to assess the nitrosylation levels in PC12 cells expressing the 

constitutively active form or the dominant negative form of Drp1, Drp1-S637A and 

Drp1-K38A respectively.  
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4.2.4 Immunoprecipitation captures s-nitrosylated proteins  

I have demonstrated that the TMT assay labels s-nitrosylated proteins. In order 

to determine if I could specifically isolate and label s-nitrosylated proteins, I ran 

an immunoprecipitation experiment (as detailed 2.7.4). Levels of eluted iodoTMT 

labelled s-nitrosylated proteins were seen using western blotting methods (as 

described in section 2.6). Samples used were all selectively reduced with sodium 

ascorbate. The supernatant was collected from the flow through, elution 1 and 2 

(Figure 4.6). The results demonstrate that as expected, that largest amount of 

nitrosylated protein was found in the sample treated with DTT. More interestingly, 

TMT labelled proteins eluted in the cell lysates treated with GSNO were higher 

than the GSH TMT labelled proteins eluted (Figure 4.6). In comparison to the 

Figure 4.5 A representative western blot of the S-nitrosylation TMT assay levels in 
initial troubleshooting methods.  

Cells treated with GSNO (positive control) had higher nitrosylation levels when compared 

to cells treated with GSH (negative control). Sodium ascorbate is essential for the reduction 

of the samples to be specifically labelled by iodoTMT 
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initial lysate that had been through the Pierce S-nitrosylated assay, I have 

successfully managed to enhance the expression of s-nitrosylated proteins using 

concentration (Figure 4.6). 

Figure 4.6 Immunoprecipitation specifically isolates iodoTMT labelled s-nitrosylated 
proteins. 

Cells were treated with GSNO, GSH or DTT and a nitrosylation assay was run and samples 

were labelled with iodoTMT. Following this, immunoprecipitation was carried out using the anti 

TMT antibody with labelled samples. The immunoprecipitation determined by Elution 1 and 2 
demonstrate that cells treated with GSNO had higher levels of s-nitrosylated proteins 

compared with GSH treated samples. 



 123 

4.2.5 Activation of Drp1 increases s-nitrosylation levels in PC12 cells  

I have successfully troubleshooted the TMT assay to capture and label s-

nitrosylated proteins. Using these same methods, I wanted to investigate the 

effect that mitochondrial fission had on nitrosylation levels. PC12 cells were 

infected at a MOI of 70 for Drp1-S637A or 50 for Drp1-K38A and GFP, cells were 

left for 48 hours and then collected. The TMT s-nitrosylated assay was carried 

out as described in section 2.7. Using western blotting methods to look into s-

nitrosylation levels, it is evident that when cell lysates were treated with GSNO, 

there was a higher level of nitrosylation levels compared to cell lysates which 

were treated with GSH. More interestingly, cells infected with Drp1-S637A (the 

constitutively active from of Drp1) had higher levels of nitrosylation levels when 

Figure 4.7 The effect changes in mitochondrial dynamics have on nitrosylation levels in 
PC12 cells 
 PC12 cells were infected with Drp1-S637A, Drp1-K38A or GFP for 48 hours and were 

collected to run a nitrosylation assay to determine levels of nitrosylation using western blotting 

methods. Activation of Drp1 in PC12 cells, using Drp1-S637A adenovirus, increased 

nitrosylation levels when compared to PC12 cells infected with Drp1-K38A or GFP. GSNO 
and GSH were used as positive and negative control, respectively.  
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compared with cells infected with both Drp1-K38A (the catalytically inactive form 

of Drp1) and GFP (Figure 4.7). These data highlights that activation of Drp1 can 

increase the levels of s-nitrosylation in PC12 cells. 

4.2.6 Knocking down iNOS in the PC12 cells decreases levels of S-

nitrosylation 

Activating Drp1 in PC12 cells increased levels of s-nitrosylation, next I wanted to 

confirm whether these changes in nitrosylation were due to changes in iNOS 

levels. To this aim, I decided to knock down iNOS in PC12 cells. I created a stable 

PC12 cell line expressing ShRNA for iNOS to selectively knockdown iNOS 

(ShiNOS) or a control of a scrambled ShRNA (ShControl) (as described in section 

2.7.3). There was a significant decrease of 58% in iNOS protein levels in the 

PC12 cells expressing ShiNOS when compared to the control cell line (Figure 

4.8). 

 

Figure 4.8 A representative western blot to show successful knockdown of iNOS in PC12 
cells.  

All data are expressed as mean ± SEM n=3 for ShControl and ShiNOS-expressing cells  

Statistical Test: Unpaired T-test [*p < 0.05] 
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From the literature, it is evident that iNOS can induce the post-translational 

modification, s-nitrosylation (Förstermann and Sessa, 2012). The nitrosylation 

assay was repeated with cell lysates of PC12 cells expressing the knockdown of 

iNOS, ShiNOS or the control, ShControl. The western blot shows that ShiNOS-

expressing PC12 cells had a decrease in s-nitrosylation levels compared with 

ShControl-expressing PC12 cells, supporting literature that decreasing iNOS 

levels can reduce s-nitrosylation levels (Figure 4.9). 

Figure 4.9 Decreasing iNOS expression in PC12 cells decreased the levels of s-
nitrosylation  

Representative western blot of S-nitrosylation iodoTMT assay in PC12 cells expressing 

ShiNOS or ShControl. Cell lysates were either selectively reduced with sodium 

ascorbate or without to act as a negative control. 
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4.2.7 Knocking down iNOS in the DVC prevents HFD dependent 

insulin resistance 

In previous chapters I have demonstrated that activation of Drp1 can increase 

iNOS levels in the DVC of rats and in addition to this, an increase s-nitrosylation 

levels in-vitro were seen in cells infected with Drp1-S637A. Following this, I 

wanted to investigate the effect decreasing iNOS levels in the DVC had on 

feeding behaviours, body weight gain and insulin sensitivity in HFD-fed rats. 

Stereotactic surgery was performed where a bilateral cannula was inserted into 

the NTS of the DVC, at the same time, a lentiviral system was used to deliver a 

ShRNA against iNOS mRNA to knockdown the protein (ShiNOS) or a control 

(ShControl) (day 0) (Figure 4.10). An acute feeding study was carried out on day 

nine and 16 where insulin was infused into the DVC of fasted rats, food intake 

was measured every half an hour for four hours (Figure 4.10). 

Figure 4.10 Feeding protocol for ShiNOS and ShControl cohort 

Rats were implanted with bilateral cannula and injected with either ShiNOS or ShControl on 

day 0, these rats were then changed to HFD on day 3. On day 9 and 16 these rats underwent 

a feeding studying to monitor acute feeding behaviours. On day 16 these rats were sacrificed. 



 127 

To determine I had successful delivery of the lentiviral system to knockdown 

iNOS in the DVC, both western blot (as detailed in section 2.4) and IHC (as 

detailed in 2.7) were used to confirm a decrease in iNOS expression. The data 

shows a significant 52% decrease in iNOS levels in the rats expressing ShiNOS, 

compared to ShControl expressing littermates (Figure 4.11A). Furthermore, using 

IHC, I have also demonstrated that there is a decrease in the staining of iNOS in 

the NTS of DVC. These data highlight the specificity of the surgery and lentiviral 

delivery (Figure 4.11B). 

On day nine and 14 I carried out an acute feeding study where insulin or a vehicle 

were infused into the bilateral cannula targeting the NTS of DVC in fasted rats. 

Their food intake was observed every half an hour for four hours. The data I 

obtained shows rats expressing ShControl, failed to decrease their food intake 

when treated with insulin (insulin treated ShControl ate an average of 3.94g 

compared to vehicle treated ShControl who on average ate 4.10g), 

demonstrating that these rats are insulin resistant (Figure 4.12A). On the other 

Figure 4.11 Confirmation of decreased iNOS expression in the DVC of rats injected with 
ShiNOS or ShControl in the NTS 
 A: A representation of the successful knockdown of iNOS in the DVC. n=10 for control, n=8 

for shiNOS.  

B: A representative confocal image of iNOS labelling in rats expressing the knockdown of 
iNOS (ShiNOS) or the control (shControl) in the NTS of the DVC. 

[*p < 0.05, **p <0.01, *** p<0.001, ****p<0.0001] 
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hand, rats expressing ShiNOS in the DVC, were still sensitive to insulin and 

demonstrated a significant 53% decrease in food intake compared to their vehicle 

treated littermates. These data show that decreasing iNOS levels in the DVC is 

sufficient to protect rats from developing HFD-dependent insulin resistance4 

(Figure 4.12A). ShiNOS-expressing rats also had a significant 30% decrease in 

food intake at 12 hours (Figure 4.12B).  

                                            

4 Referring to the loss of insulin-induced hypophagia when stating rats are insulin resistant in 
data 

Figure 4.12 Food intake during acute feeding studies in rats expressing ShiNOS versus 
a control, ShControl  

Rats were fasted for 6 hours and then infused bilaterally into the DVC with a total 0.2ul of 

2mU insulin or a vehicle over 5 minutes. Food was then returned and food intake was 

observed every half hour for 4 hours and a final reading was taken at 12 hours. 
A: Total food intake taken at the 4 hour time point, since there was no difference in the 

food intake in the feeding studies performed on day nine and fourteen, the figure shows 

the average food intake over both feeding studies 

B: Total food intake taken at the 12 hour time point, since there was no difference in the 

food intake in the feeding studies performed on day nine and fourteen, the figure shows 

the average food intake over both feeding studies 

Data are expressed as a mean ± SEM n=10 for control vehicle, n=7 control insulin, n=11 

for shiNOS vehicle, n=7 for shiNOS insulin. Orange dots represent data gained from day 9, 

purple dots represent data gained from day 14. 

Statistical test: two-way ANOVA (post-hoc test: Sidak) [*p < 0.05] 
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4.2.8 Decreasing iNOS expression in the DVC can decrease food 

intake and body weight in HFD-fed rats 

Knocking down iNOS in the DVC was sufficient to prevent insulin resistance in 

HFD-fed rats. Next, I wanted to determine the effect that knocking down iNOS 

had on food intake and body weight. Rats had their body weight and food intake 

taken at a similar time each day, to keep data consistent. The ShiNOS-expressing 

rats ate less food when compared with control littermates, where significance was 

reached at day 7 (Figure 4.13A). In addition, ShiNOS-expressing rats had an 

overall decrease in body weight, which is significant from day 12 (Figure 4.13B). 

Overall, I have demonstrated that knocking down iNOS in the NTS of the DVC 

can decrease food intake and body weight increase in HFD-fed rats. 

 

A: Cumulative food intake in ShiNOS and ShControl-expressing rats from day of viral 

injection (day 0) 

B: Body weight increase in ShiNOS and ShControl-expressing rats from day of viral 

injection (day 0) 

All data are expressed as mean ± SEM n=10 for ShControl-expressing rats and n=8 

ShiNOS-expressing rats  

Statistical Test: two way ANOVA (post-hoc test: Sidak) [*p < 0.05, **p <0.01] 

Figure 4.13 Cumulative food intake and body weight increase during the study in 
ShControl-expressing rats compared to ShiNOS-expressing rats 
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4.2.9 Decreasing iNOS expression in the DVC of the brain decreases 

total WAT in HFD-fed rats 

Decreasing iNOS expression in the DVC resulted in a decrease in food intake 

and body weight gain in HFD-fed rats, following from this, I wanted to investigate 

the effect of iNOS on WAT distribution. On day 18, the day of sacrifice, 

epididymal, retroperitoneal and visceral fats were collected and weighed. 

Knocking down iNOS in the DVC significantly decreased the total weight of the 

WAT and visceral fat, in addition, there was a significant decrease in the weight 

of epididymal and retroperitoneal fat specifically when compared to HFD-fed 

ShControl-expressing rats (Figure 4.14A). BAT energy expenditure is regulated 

by neural circuitry, vagal nerve stimulation has helped decrease weight gain in 

humans, to this end, BAT was weight from this cohort (Berthoud, 2008; Morrison 

Figure 4.14 Weight of white adipose tissue and brown adipose tissue  
 

A: Weight of white adipose tissue expressing a knockdown of iNOS, ShiNOS or a control, 
ShControl 

B: Weight of brown adipose tissue in rats expressing a knockdown of iNOS, ShiNOS, or a 

control, ShControl 

Body weight was divided by the weight of fat to establish fat distribution (g/kg). All data are 

expressed as mean ± SEM n=10 for ShControl expressing rats and n=8 ShiNOS-

expressing rats  
Statistical Test: multiple T-test [*p < 0.05, **p <0.01] 
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and Madden, 2014). Rats expressing ShiNOS had no changes in  BAT compared 

to HFD-fed controls, ShControl-expressing rats (Figure 4.14B). 

4.2.10 Knocking down iNOS in HFD-fed rats decreases levels of 

ER-stress in the DVC 

I have demonstrated that knocking down iNOS in the DVC can prevent HFD-

dependent loss of insulin-induced hypophagia  and can also decrease food 

intake, body weight gain and WAT deposition. Since it has been previously 

demonstrated that HFD-fed rats had increased levels of ER-stress in the DVC 

(Filippi et al., 2017), next, I wanted to investigate the effects of iNOS levels on 

ER stress. On the day of sacrifice the DVC of rats was collected and snap frozen, 

and ER stress levels were analysed using western blotting methods (as 

described in section 2.4). Decreasing iNOS expression in the DVC of ShiNOS-

expressing rats significantly decreased the levels of ER stress levels determined 

by the phosphorylation levels of PERK compared to HFD-fed rats (Figure 4.15).  

Figure 4.15 Knocking down iNOS in the DVC of HFD-fed rats decreases 
phosphorylation levels of PERK 
All data are expressed as mean ± SEM n=10 for ShControl expressing rats and n=8 

ShiNOS-expressing rats. (P-PERK: phosphorylated PERK, T-PERK: total-PERK) 

Statistical test: unpaired T-test [****p<0.0001] 
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In summary, I have demonstrated the knocking down iNOS in HFD-fed rats can 

decrease ER stress levels, fat mass, food intake and body weight gain and can 

also prevent HFD-dependent insulin resistance compared to HFD-fed controls.  

4.3 Discussion 

I have previously shown that an over expression in Drp1 increased iNOS levels 

in the DVC, where inhibition of Drp1 in HFD-fed rats decreased the levels of 

iNOS. These data led me to investigate the effects of iNOS on insulin sensing 

and feeding behaviours. My data demonstrates that knocking down iNOS in the 

DVC prevented the development in insulin resistance in HFD-fed rats. This is in 

agreement with previous work which shows that subcutaneous injections of L-

arginine, which increase NO, increased food intake in fasted mice, where 

inhibition of NO, decreased food intake in these mice (Morley and Flood, 1991). 

In the brain, infusion of NO into the hypothalamus resulted in insulin resistance 

and an increase in food intake (Katashima et al., 2017). Similarly, ICV 

administration of s-nitroglutathione increased s-nitrosylation in the hypothalamus, 

but also inhibited hypothalamic insulin signalling in rats, leading to insulin 

resistance (Katashima et al., 2017). 

Higher levels of iNOS in the liver have been associated with insulin resistance, in 

obese mice, where inhibition of iNOS in the liver, increased protein expression of 

IRS-1 and -2 by 2-fold, and significantly improved insulin sensitivity and 

decreased food intake (Fujimoto et al., 2005). In muscle, induction of iNOS is an 

essential mechanism in the development of insulin resistance, where inhibition of 

iNOS in the muscle significantly improved insulin signalling in HFD-fed mice 

(Zanotto et al., 2017). Furthermore, an increase in s-nitrosylation of the insulin 

signalling pathway has been seen in obese rats, where ICV injection of an 



 133 

inhibitor of iNOS restored hypothalamic insulin sensitivity in HFD-fed rats 

(Katashima et al., 2017). It is therefore apparent that iNOS is a key player in the 

development of insulin resistance. 

I have shown that decreasing iNOS expression in the DVC can prevent HFD-

dependent insulin resistance. Knocking down iNOS in HFD-fed mice (Nos2-/-) 

protected them from diet induced obesity and insulin resistance, and preserved 

skeletal muscle insulin sensitivity (Perreault and Marette, 2001). This was due to 

disruption of the PI3K pathway leading to skeletal muscle insulin resistance in 

HFD-fed mice which was not seen in HFD-fed Nos2-/- mice (Perreault and 

Marette, 2001). mRNA levels of iNOS were decreased in BV2 microglial cells 

when treated with lipopolysaccharide (LPS) in the presence of an inhibitor of 

Drp1, Mdivi-1 (Park et al., 2013). In addition to this ICV injection of streptozotocin 

(a toxic drug which impairs insulin receptor and glucose uptake in the brain), in 

rats, induced insulin resistance by inactivating Akt by S-nitrosylation, which in 

turn upregulated ROS and induced neurotoxicity in the hypothalamus (Crunfli et 

al., 2018). Together with this, and the data I have presented, it could be deduced 

that inhibiting iNOS in the DVC prevents the underlying effect of HFD dependent 

nitrosative stress, which in turns prevents s-nitrosylation of key players in the 

insulin signalling pathway, thus preventing the development of insulin resistance. 

HFD control rats displayed high levels of ER stress compared with rats 

expressing the knockdown of iNOS. Obesity is widely associated with ER stress, 

this plays an integral role in the development of insulin resistance by activation of 

IRE-1a and inhibition of insulin signalling, suggesting that there is a causal 

relationship between the status of the ER and insulin resistance (Ozcan, 2004; 

Özcan et al., 2006). Treatment with small chemical chaperones which reduce ER 
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stress in cells, in obese and diabetic mice resulted in normalisation of glycemia 

and insulin sensitivity in muscle, liver and adipose tissue (Özcan et al., 2006). 

Furthermore, activation of Drp1 in the DVC resulted in insulin resistance and ER 

stress, inhibition of ER stress via the inhibitor 4-phenylbuty rate into the DVC 

alleviated the effects of HFD-dependent insulin resistance, demonstrating that 

ER stress is a downstream effector of Drp1-dependent insulin resistance (Filippi 

et al., 2017). Chronic activation of the UPR has been seen in the liver and adipose 

tissue of obese rats (Pagliassotti et al., 2017). In peripheral tissues, genetic 

inhibition of iNOS showed marked decrease in ER stress in adipose tissue and 

liver of HFD-fed mice (Zanotto et al., 2017). 

Elevated levels of nitrosative stress in the liver and skeletal muscle have been 

associated with obesity and insulin resistance in both murine and human models 

(Qian et al., 2018; Zahedi Asl et al., 2008). Interestingly, mice fed a HFD had 

lower levels of s-nitroglutathione reductase, a protein denitrosylase, which has 

provided a link between inflammation and type II diabetes (Qian et al., 2018). In 

the liver, overexpression of s-nitroglutathione reductase in obese mice enhanced 

autophagy and improved insulin actions and glucose homeostasis (Qian et al., 

2018). My data has shown rats expressing ShiNOS had a significant decrease in 

ER stress levels, furthermore PC12 cells treated with the ShRNA of iNOS had 

lower levels of s-nitrosylation. It would therefore be interesting to look into the 

levels of s-nitroglutathione reductase in the DVC to see if these levels correlate 

with insulin sensitivity in the brain as is seen in the liver. 

An increase in nitrosative stress can causes S-nitrosylation of Drp1 leading to 

excessive mitochondrial fragmentation; in this chapter I have demonstrated 

activation of Drp1 in PC12 cells can increase the levels of s-nitrosylation. (Cho et 
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al., 2010). It has been well demonstrated that s-nitrosylation of Drp1 is essential 

in the pathophysiology of neurodegenerative diseases, such as Parkinson’s and 

Alzheimer’s disease (Cho et al., 2009; Ghasemi et al., 2018; Lee and Kim, 2018; 

Zorzano and Claret, 2015). NO in excess can lead to s-nitrosylation of Drp1, 

resulting in neurotoxicity and neurodegenerative diseases (Cho et al., 2010). 

Taking this into consideration and the data I have presented, a potential negative 

feedback mechanism may exist to increase s-nitrosylation, due to an increase in 

mitochondrial fission, which lead to a surge in the s-nitrosylation of Drp1 

exacerbating the insulin resistant phenotype. It would be interesting to look into 

nitrosylation levels Drp1 and insulin signalling molecules in the DVC of insulin 

resistant rats. 

ER stress and inflammation are associated with many diseases, the UPR alters 

ER homeostasis. In obesity, iNOS can cause s-nitrosylation of key UPR 

regulator, IRE1a, which increased ER-stress and induced insulin resistance 

(Yang et al., 2015a). Furthermore, in both genetic and dietary models of obesity, 

rats had a decrease in hepatic IRE1a (Yang et al., 2015a). In vitro I have shown 

an increase in s-nitrosylation levels in PC12 cells expressing Drp1-S637A and a 

decrease in s-nitrosylation levels in PC12 expressing ShiNOS. It would have 

been interesting however to see which potential markers underwent change in s-

nitrosylation, such as IRE1a. 

There is growing evidence to suggest a link between NO and protein nitrosylation 

with insulin resistance in type II diabetes. For example marked levels of iNOS 

were seen in mouse models of diabetes, while knockout of iNOS in HFD-fed mice 

had improved glucose tolerance and insulin sensitivity in skeletal muscle (Foster 

et al., 2009; Perreault and Marette, 2001). iNOS dependent S-nitrosylation of 
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AKT and IRS-1 abolishes the action of insulin upon its signalling pathway, in 

addition, following an excess of iNOS, s-nitrosylation of the insulin receptor b 

subunit can decrease the tyrosine kinase activity (Carvalho-filho et al., 2005; 

Sugita et al., 2005; Yasukawa et al., 2005). An increase in s-nitrosylation of these 

key players in insulin signalling have been seen in diabetic mouse models 

(Carvalho-filho et al., 2005; Perreault and Marette, 2001; Sugita et al., 2005; 

Yasukawa et al., 2005). Whether the aforementioned signalling molecules were 

nitrosylated in this system and if decreasing iNOS levels could prevent it still 

warrants further investigation. 

Increasing the activity of Drp1 in PC12 cells caused significantly higher levels of 

iNOS and s-nitrosylation, these preliminary data are a good indication that an 

increase in s-nitrosylation is involved in the development of Drp1-dependent 

insulin resistance. However further investigation is needed to confirm this. If time 

permitted, I would have carried out an immunoprecipitation on Drp1-expressing 

samples, to isolate nitrosylated proteins, next, mass spectrometry would be 

carried out on these samples to find specific target molecules which were s-

nitrosylated. With these target proteins, I could further investigate the effects of 

these nitrosylated proteins on the insulin resistant phenotype. 

In the brain, basal levels of iNOS are low, where certain stimuli such as 

inflammation or infection can increase iNOS expression in astrocytes and 

microglia (Ghasemi and Fatemi, 2014). I have shown that decreasing the 

expression of iNOS in the DVC can significantly decrease levels of ER stress; 

furthermore, infecting PC12 cells with the ShiNOS-expressing virus, decreased 

the levels of ER-stress compared to control cells expressing ShControl. These 

data highlight the importance of iNOS in the ER-stress and the development of 
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insulin resistance. It has been previously determined that a HFD can induce 

hypothalamic inflammation, where hypothalamic microglia are activated following 

exposure to a HFD (Lee et al., 2018; Perry et al., 2010). Furthermore, iNOS 

activation in macrophages can contribute to hypothalamic inflammation in HFD-

fed rats, where ICV injection of an inhibitor of iNOS decreased macrophage 

activation and improved glucose metabolism in HFD mice (Lee et al., 2018). 

Ablation of the insulin receptors in astrocytes reduced the activation of POMC 

neurones and impaired glucose availability, determining that insulin signalling in 

astrocytes controls central glucose sensing and glucose uptake (García-Cáceres 

et al., 2016).  

In conclusion, I have demonstrated that mitochondrial fission can increase s-

nitrosylation in PC12 cells, and inhibition of iNOS can decrease levels of s-

nitrosylation. Furthermore, I have shown that knocking down iNOS in the DVC of 

HFD-fed rats can prevent the development of insulin resistance, decrease food 

intake and body weight gain. Together with these data, I propose a hypothesis 

by a HFD can induce mitochondrial fission which increases iNOS release which 

in turn results in ER stress and insulin resistance (Figure 4.16).  

  

Figure 4.16 In summary, an increase in HFD can induce Drp1-dependent mitochondrial 
fission, leading to an increase in iNOS levels resulting in insulin resistance 
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5 Inhibition of mitochondrial fission specifically in 

astrocytes of the DVC prevents HFD-dependent 

insulin resistance, body weight gain and 

hyperphagia 
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5.1 Introduction 

Activation of Drp1 in the DVC induced insulin resistance and increases iNOS 

expression (see section 3.2.3.4). In addition to this inhibition of iNOS in the DVC 

was sufficient to prevent HFD-dependent insulin resistance (see section 4.2.8). It 

is still unclear which neural cell populations in the DVC are involved in insulin 

sensing and in the development of insulin resistance. My approach up until now 

was to target all the cell populations in the DVC by expressing Drp1 under a CMV 

promoter. When I analysed the cellular localisation of the adenovirus, I could see 

that we preferentially targeted astrocytes at 39.1% and oligodendrocytes 36.2% 

of infected cells (see section 3.2.2). Considering astrocytes are important in the 

maintenance of the microenvironment and have also been implicated with 

feeding, I aimed to look into the effect of inhibition of mitochondrial fission in 

astrocytes specifically (Buckman et al., 2015; García-Cáceres et al., 2012; 

MacDonald et al., 2019; Saha and Pahan, 2006). 

Astrocytes are the most abundant neural cell type in the brain, they regulate many 

aspects of neuronal function, including synaptic plasticity, survival, metabolism 

and neurotransmission (García-Cáceres et al., 2012). Astrocytes are responsible 

for synthesising and releasing NO, and in this way they can communicate with 

surrounding neurones (Amitai, 2010). Aberrant levels of iNOS in astrocytes, 

leading to astrogliosis, has shown to increase levels of neuroinflammation and 

neurotoxicity (Liberatore et al., 1999). Astrogliosis, an abnormal level of 

astrocytes, is a result from CNS damage, from situations such as immune 

responses, stroke or infection (Sofroniew, 2015). Astrogliosis has been seen in 

the hypothalamus of diet induce or genetically modified models of obesity, 

however the exact mechanism of this is not well understood (Buckman et al., 
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2013; Horvath et al., 2010). In the ARC nucleus of diet induced obesity there was 

a significant astrogliosis, interestingly, treatment with an iNOS inhibitor, L-NIL, by 

ICV injection, inhibited HFD-induced astrogliosis, suggesting that iNOS activation 

may induce hypothalamic inflammation (Lee et al., 2018).  

Astrocytes can respond to levels of nutrients, thereby acting as metabolic 

sensors, their location between vessels and neurones put them in good stead to 

control glucose changes within the CNS and the periphery (García-Cáceres et 

al., 2012). Astrocytes in the NTS of the DVC respond to acute nutritional overload, 

by increasing their network to integrate peripheral satiety signals to decrease 

food intake (MacDonald et al., 2019). In addition to this, astrocytes are involved 

in the regulation of feeding and glucose homeostasis (Buckman et al., 2015; 

García-Cáceres et al., 2016; MacDonald et al., 2019). Altogether these data lead 

me to hypothesise that the effects of mitochondrial dynamics in the DVC could 

be largely due to the effect on astrocytes. 

Therefore, I aimed to specifically inhibit mitochondrial fission in astrocytes in 

order to determine whether the effects seen on insulin sensitivity, food intake, 

body weight gain and fat deposition were due to astrocyte mediated mechanisms. 

To this end, we produced adenoviruses5 expressing GFP or Drp1-K38A under 

the control of the GFAP promoter (GFP::GFAP and Drp1-K38A::GFAP, 

respectively). 

                                            

5 Adenoviruses were engineered and produced by Dr Joanne Parkes in the Filippi Lab 
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5.1.1 Aims and objectives 

Aim 1: Can inhibiting mitochondrial fission specifically in astrocytes in the DVC 

prevent HFD-induced insulin resistance, body weight gain and food intake? 

 

Aim 2: Can inhibiting mitochondrial fission specifically in astrocytes in the DVC 

improve insulin sensitivity and decrease body weight and food intake in RC-fed 

rats? 
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5.2 Results 

5.2.1 Inhibition of Drp1 in astrocytes of the DVC prevents HFD-

dependent insulin resistance 

On day 0 rats underwent stereotactic surgery where a bilateral canula was 

inserted into the NTS of DVC of the brain, on day one rats were injected with 

GFP::GFAP or Drp1-K38A::GFAP. On day three these rats were given HFD (Diet 

3). To confirm that the adenovirus specifically targets astrocytes, IHC6 was 

performed (as described in section 2.7), where we analysed the extent of co-

localisation between GFP::GFAP or Drp1-K38A::GFAP expression with either an 

astrocytic marker (GFAP) or a neuronal marker (NeuN). Both GFP::GFAP and 

Drp1-K38A::GFAP proteins are tagged with FLAG, therefore expression could be 

determined using an anti-FLAG antibody (Figure 5.1A-Aii and Figure 5.1B-Bii, 

respectively). Dual labelling using anti-GFAP to label astrocytes demonstrates 

that there is co-localisation with both GFP::GFAP and Drp1-K38A::GFAP 

expressing cells in the DVC (Figure 5.1C-Cii and Figure 5.1D-Dii, respectively). 

Double staining against NeuN showed that there was no co-localisation with both 

GFP::GFAP and Drp1-K38A::GFAP expressing cells, determining the specificity 

of this adenoviral delivery system. 

                                            

6 All IHC experiments were performed in collaboration with Dr Lauryn New in the Filippi Lab 
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Figure 5.1 GFP::GFAP and Drp1-K38A::GFAP expression astrocytes and neurones 
 A-Aii: Representative confocal images illustrating expression of GFP::GFAP (A), GFAP (Ai) 

and dual labelling for both in the DVC 

B-Bii: Representative confocal images illustrating expression of GFP:Drp1-K38A::GFAP (B), 

GFAP (Bi) and dual labelling for both (Bii) in the DVC 

C-Cii: Representative confocal images illustrating expression of GFP::GFAP (C), NeuN (Ci) 
and dual labelling for both (Cii) in the DVC 

D-Dii: Representative confocal images illustrating expression of Drp1-K38A::GFAP (D), NeuN 

(Di) and dual labelling for both (Dii) in the DVC 
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The feeding study was performed on day nine and 14, fasted rats were injected 

with insulin or a vehicle bilaterally into the DVC, and food intake was taken every 

half an hour for four hours. The data shows that rats expressing Drp1-

K38A::GFAP had a significant 43% decrease in food intake compared to 

GFP::GFAP-expressing rats (Figure 5.2A). At the 12 hour point however the 

effect of insulin on food intake is lost (Figure 5.2B).  

 

Figure 5.2 Food intake during acute feeding study in HFD-fed rats expressing GFP::GFAP 
or Drp1-K38A::GFAP  

 
Rats were fasted for 6 hours and then infused bilaterally into the DVC with a total 0.2ul of 

2mU insulin or a vehicle over 5 minutes. Food was then returned and food intake was 

observed every half hour for 4 hours and a final reading was taken at 12 hours. 

A: Total food intake taken at the 4 hour time point, since there was no difference in the food 

intake in the feeding studies performed on day nine and fourteen, the figure shows the 
average food intake over both feeding studies 

B: Total food intake taken at the 12 hour time point, since there was no difference in the food 

intake in the feeding studies performed on day nine and fourteen, the figure shows the 

average food intake over both feeding studies total food intake at 4 hours comparing rats 

treated with insulin or a vehicle in the DVC.  

Data are expressed as a mean ± SEM n=11 for GFP::GFAP vehicle, n=8 GFP::GFAP insulin, 

n= 7 for Drp1-K38A::GFAP vehicle, n=5 for Drp1-K38A::GFAP insulin. Orange dots represent 

data gained from day 9, green dots represent data gained from day 14. 

Statistical test: two way ANOVA (post-hoc test: Tukey) [*p < 0.05] 
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5.2.2  Inhibiting Drp1 in astrocytes of the DVC decreases food intake 

and body weight in HFD-fed rats 

Inhibiting Drp1 in astrocytes of the DVC in HFD-fed rats had a significant acute 

effect on feeding behaviours, over a four-hour period. Next, I wanted to 

investigate whether inhibiting Drp1-dependent mitochondrial fission in astrocytes 

had an effect on chronic feeding behaviours and body weight gain. Rats had their 

body weight and food intake taken at a similar time each day. The data shows 

that rats expressing Drp1-K38A::GFAP had a decrease in food intake, with data 

becoming significant from day 4, when compared with GFP::GFAP-expressing 

rats (Figure 5.3A). In addition to this, Drp1-K38A::GFAP-expressing rats also had 

a significant decrease in body weight, which was significant from day 3 (Figure 

5.3B). These data show that inhibiting Drp1 in the astrocytes of DVC can have a 

significant effect on food intake and body weight gain in HFD-fed rats. 

 

Figure 5.3 Cumulative food intake and body weight increase in the during of the study in 
HFD-fed Drp1-K38A::GFAP expressing rats compared to GFP::GFAP expressing rats 
 
A: Cumulative food intake in Drp1-K38A::GFAP and GFP::GFAP expressing rats from day of 

viral injection (day 1) 

B: Body weight increase in Drp1-K38A::GFAP and GFP::GFAP expressing rats from day of 

viral injection (day 1) 

All data are expressed as mean ± SEM n=12 for GFP::GFAP expressing rats and n= 12 Drp1-

K38A::GFAP expressing rats Statistical test: Two way ANOVA (post-hoc test: Tukey) [*p < 

0.05, **p <0.01, *** p<0.001, **** p<0.0001]] 
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5.2.3 Inhibiting Drp1 in the astrocytes of the DVC in HFD-fed rats 

decreases fat deposition 

Inhibition of Drp1 in astrocytes can decrease food intake and body weight gain in 

HFD-fed rats, next I wanted to look into the effect this had on fat deposition. On 

the day of sacrifice, day 17, rats WAT and BAT were collected and weighed (as 

described in section 3.2.3.3). Rats expressing the catalytically inactive form of 

Drp1, Drp1-K38A, under the GFAP promoter, had significantly lower levels of 

epididymal and total WAT tissue compared to GFP::GFAP-expressing control 

rats (Figure 5.4A). In addition to WAT, BAT was also collected, where data shows 

that there was no significant difference in the weight of BAT in the Drp1-

K38A::GFAP-expressing rats compared to control GFP::GFAP-expressing 

littermates (Figure 5.4B).  

 

A: Weight of white adipose tissue expressing Drp1-K38A::GFAP and GFP::GFAP  

B: Weight of brown adipose tissue in rats Drp1-K38A::GFAP and GFP::GFAP  

Body weight was divided by the weight of fat to establish fat distribution (g/kg). All data are 

expressed as mean ± SEM n=12 for GFP::GFAP expressing rats and n=12 Drp1-K38A::GFAP 

expressing rats  
Statistical test: multiple T-test [*p < 0.05] 

Figure 5.4 Weight of white adipose tissue and brown adipose tissue  
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5.2.4 Inhibition of Drp1 in astrocytes decreases iNOS levels in the 

DVC of HFD-fed rats 

On the day of sacrifice, day 17, the DVC was collected and snap frozen, in 

preparation for western blotting (as described in section 2.6). Astrocytes are 

important in the synthesis and the release of NO, where an increase of iNOS 

dependent release of NO can lead to neurotoxicity and inflammation (Liberatore 

et al., 1999). Here I have shown that an inhibition of Drp1 in astrocytes of the 

DVC significantly decreases iNOS levels compared to controls (Figure 5.5). 

In summary, my data shows that inhibiting Drp1 in astrocytes of the DVC 

specifically prevents HFD-dependent insulin resistance7 as well as decreasing 

body weight gain, food intake, WAT deposition and iNOS levels. 

                                            

7 Referring to loss of insulin-induced hypophagia when stating rats are insulin resistant in data 

Figure 5.5 Inhibition of Drp1 in the astrocytes in the DVC decreases iNOS levels 
 

 

A representative western blot show iNOS levels in the DVC of HFD-fed rats expressing 
Drp1-K38A::GFAP compared to GFP::GFAP  
All data are expressed as mean ± SEM n=12 for both GFP::GFAP and Drp1-K38A::GFAP 

Statistical test: unpaired test [*p < 0.05] 
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5.2.5 Inhibition of Drp1-dependent mitochondrial fission in 

astrocytes in the DVC moderately improves insulin sensitivity 

in RC-fed rats 

I have shown that inhibiting mitochondrial fission in the DVC and specifically 

within astrocytes of the DVC, prevented HFD-dependent insulin resistance. I next 

wanted to see if inhibiting mitochondrial fission in astrocytes of the DVC of RC-

fed rats could improve insulin sensing and have an effect on feeding behaviours. 

Rats underwent stereotactic surgery to implant a bilateral cannula targeting the 

NTS in the DVC, on day one, rats were injected with either an adenovirus to 

express Drp1-K38A::GFAP or GFP::GFAP in the DVC (Figure 5.6). These rats 

were fed with RC (Diet 1).  

Figure 5.6 Protocol used in feeding study Drp1-K38A::GFAP and GFP::GFAP RC-fed 
rats.  
On day 0 rats underwent brain surgery where a bilateral cannula was inserted into the 
NTS of the DVC. On day one rats were injected with an adenoviral system to deliver 

GFP::GFAP or Drp1-K38A::GFAP. On day nine and 15 rats were subjected to a feeding 

study where acute food intake was recorded. Rats were sacrificed on day 17 
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On day nine and 14 rats were subjected to a feeding study as previously 

described above. RC-fed rats expressing GFP::GFAP who were infused with 

insulin had a significant 29.1% decrease in food intake over four hours compared 

with vehicle infused littermates (Figure 5.7A). Similarly, Drp1-K38A::GFAP-

expressing rats infused with insulin had a significant 41.1% decrease in food 

intake over four hours compared to Drp1-K38A::GFAP-expressing vehicle 

infused rats. The Drp1-K38A::GFAP treated with insulin ate 10% less than 

GFP::GFAP controls who were treated with insulin, the difference between these 

amounts eaten is not significant (Figure 5.7A). At 12 hours the effect of insulin 

Figure 5.7 Food intake during acute feeding study in RC-fed rats either expressing 
GFP::GFAP or Drp1-K38A::GFAP  

 
Rats were fasted for 6 hours and then infused bilaterally into the DVC with a total 0.2ul of 

2mU insulin or a vehicle over 5 minutes. Food was then returned and food intake was 

observed every half hour for 4 hours and a final reading was taken at 12 hours. 

A: Total food intake taken at the 4 hour time point, since there was no difference in the food 
intake in the feeding studies performed on day nine and fourteen, the figure shows the 

average food intake over both feeding studies 

B: Total food intake taken at the 12 hour time point, since there was no difference in the 

food intake in the feeding studies performed on day nine and fourteen, the figure shows the 

average food intake over both feeding studies total food intake at 4 hours comparing rats 

treated with insulin or a vehicle in the DVC.  

Data are expressed as a mean ± SEM n=8 for GFP::GFAP vehicle, n=11 GFP::GFAP 

insulin, n= 5 for Drp1-K38A::GFAP vehicle, n=9 for Drp1-K38A::GFAP insulin. Orange dots 

represent data gained from day 9, green dots represent data gained from day 14. Statistical 

test: Two way ANOVA (post-hoc test: Tukey) [*p < 0.05] 
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was lost in both Drp1-K38A::GFAP and GFP::GFAP-expressing rats (Figure 

5.7B). 

5.2.6 Inhibition of Drp1 in astrocytes of the DVC decreases food 

intake and body weight in RC-fed rats 

Inhibition of Drp1 in the astrocytes of the DVC resulted had little improvement on 

insulin sensing in RC-fed rats. I next wanted to look at the effect that inhibition of 

Drp1 in astrocytes had on food intake and body weight in RC-fed rats. Each rat’s 

food intake and body weight were taken at a similar time each day. These data 

demonstrate that inhibition of mitochondrial fission in astrocytes of the DVC can 

decrease food intake and body weight where data for both becomes significant 

from day two (Figure 5.8A and Figure 5.8B, respectively). 

Figure 5.8 Cumulative food intake and body weight increase in the during of the study RC-
fed rats expressing Drp1-K38A::GFAP compared to GFP::GFAP expressing  RC-fed rats  
 

A: Cumulative food intake in Drp1-K38A::GFAP and GFP::GFAP expressing rats from day of 

viral injection (day 1) 
B: Body weight increase in Drp1-K38A::GFAP and GFP::GFAP expressing rats from day of 

viral injection (day 1) 

All data are expressed as mean ± SEM n=12 for GFP::GFAP expressing rats and n= 12 Drp1-

K38A::GFAP expressing rats  

Statistical test: two way ANOVA (post-hoc test: Tukey) [*p < 0.05, **p <0.01] 
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5.2.7 Inhibition of Drp1 in astrocytes in the DVC has no effect on WAT 

and BAT deposition  

I have found that inhibition of Drp1 in astrocytes can decrease food intake and 

body weight compared to RC-fed controls, I next wanted to investigate the effect 

on fat deposition. On the day of sacrifice WAT and BAT was collected from each 

rat and weighed. There was no difference in the weight and the different types of 

WAT between Drp1-K38A::GFAP and GFP::GFAP-expressing rats (Figure 5.9A). 

Interestingly, rats expressing Drp1-K38A::GFAP had a higher weight of BAT 

compared to control GFP::GFAP expressing littermates (Figure 5.9B).  

 

In summary, I have found that inhibiting mitochondrial fission in astrocytes of the 

DVC of RC-fed rats had a significantly improved body weight gain and a decrease 

in food intake but no effect was seen in insulin sensitivity or fat deposition. 

Figure 5.9 Weight of white adipose tissue and brown adipose tissue 
 

A: Weight of white adipose tissue from rats expressing Drp1-K38A::GFAP and GFP::GFAP  

B: Weight of brown adipose tissue in rats Drp1-K38A::GFAP and GFP::GFAP  
The weight of fat was divided by the body weight to establish fat distribution (g/kg). All data 

are expressed as mean ± SEM n=9 for GFP::GFAP expressing rats and n=8 Drp1-

K38A::GFAP expressing rats.  

Statistical test: multiple T-test 



 152 

5.3 Discussion 

Altogether the data suggest that specific inhibition of Drp1 in the astrocytes of the 

DVC can significantly decrease body weight gain and food intake in HFD-fed rats. 

In addition to this I have shown inhibition of Drp1 in the astrocytes can prevent 

HFD-dependent insulin resistance compared to HFD controls. Previously it has 

been shown that astrocytic insulin signalling is involved in glucose sensing in the 

hypothalamus; ablation of the insulin receptor in astrocytes resulted in alteration 

in glial morphology, mitochondrial function in astrocytes and connectivity of 

astrocytes in the hypothalamus (García-Cáceres et al., 2016). In addition to this, 

mice with a knockdown of the insulin receptor in astrocytes, failed to respond to 

elevated glucose levels, as a result, astrocytes elevated mitochondrial in b-

oxidation as a compensatory mechanism. The mitochondria in these astrocytes 

had reduced aspect ratio and fewer elongated mitochondria compared to 

controls, favouring mitochondrial fission (García-Cáceres et al., 2016). 

It has been previously demonstrated that 10 days of HFD-feeding can increase 

astrocyte complexity in the ARC nucleus, which was sufficient to induce 

astrogliosis, which is thought to be due to metabolic changes in fat content and 

body mass, leading to an increase in inflammatory factors such as IL-6 and TNF-

a (Balland and Cowley, 2017). In addition to this, astrocytes play an important 

role in the hypothalamic response to insulin, where ablation of the insulin receptor 

in astrocytes resulted in impairment of physiological changes to glucose 

availability (García-Cáceres et al., 2016). An increased nutritional overload 

resulted in upregulation of GFAP expression and morphological complexity 

astrocytes in the DVC, which in turn resulted in a decrease in food intake 

(MacDonald et al., 2019). 
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Astrocytes have been shown to induce iNOS in response to inflammation, 

however the exact pathway leading to this are not well understood, it has been 

suggested that an increase in NO leads to ROS which in turn causes defects in. 

signalling pathways (Liberatore et al., 1999). Previously I have demonstrated that 

an activation of Drp1 increase iNOS levels in the DVC, and here, I have shown 

that inhibition of Drp1 in astrocytes of the DVC decreased iNOS levels 

determining the relationship between iNOS and astrocytic Drp1 in the 

pathogenesis of insulin resistance. 

Astrocytes provide metabolic and structural support to neurones and play an 

active role in neurotransmission which may be involved in energy balance. For 

example, chemogenetic activation of astrocytes in the DVC of mice led to the 

recruitment of local downstream neuronal circuits which in turn maintained 

energy homeostasis (MacDonald et al., 2019). There are distinct neuronal 

population which are involved in feeding, some of which include POMC and 

cholecystokinin receptor (cholecystokinin is a hormone which is produced in the 

gut) expressing neurones, it has been proposed that activation of astrocytes 

through feeding recruit such neurones to inhibit feeding (D’Agostino et al., 2016; 

MacDonald et al., 2019). In addition to this, inflammatory responses generated 

by astrocytes can affect neuronal function by imposing on intercellular signals 

from NO. It has also been demonstrated that NO can act as an intracellular 

mediator in neuronal function (Jiang and Cadenas, 2014). Here, I have shown 

that inhibition of mitochondrial fission in the astrocytes of the DVC reduced food 

intake and body weight in both HFD and RC-fed rats, perhaps there is a neuronal 

glial cross talk in which astrocytes sense changes within the network and 
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communicate to feeding related neurones to regulate energy homeostasis, which 

could be mediated by the release of iNOS dependent NO.  

In conclusion, I have demonstrated that mitochondrial dynamics specifically in 

astrocytes in the DVC have a central role in energy homeostasis and insulin 

sensitivity. From these data I propose two potential mechanisms by which HFD-

dependent Drp1-activation induces insulin resistance in the DVC:  

1. Astrocytes directly act by increasing iNOS dependent NO which increases ER 

stress inducing insulin resistance.  

2. Alternatively an increase in iNOS dependent NO from astrocytes acts as a 

gaseous neurotransmitter to neurones inducing insulin resistance  

or if these work in tandem, is still yet to be determined (Figure 5.10).  

 

Figure 5.10 Two potential mechanisms by which HFD dependent Drp1 activated insulin 
resistance in the DVC may occur 
 1. An increase in Drp1 activity in the astrocytes results in an increase in iNOS produced NO 

which in turn leads to ER-stress leading to insulin resistance 

2. Drp1 activation in astrocytes results in an increase in NO produced by iNOS which acts as 

a neurotransmitter to signal to neurones inducing ER stress and insulin resistance. 
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6 Inhibition of Drp1-dependent mitochondrial fission 

or a decrease in iNOS expression in the DVC 

restores insulin sensitivity in overweight and 

hyperphagic rats 
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6.1 Introduction  

Short term HFD-feeding dysregulates glucose metabolism and induces insulin 

resistance in rats (Balland and Cowley, 2017; Filippi et al., 2017; Maurer et al., 

2017). Furthermore, three-day HFD-feeding can increase Drp1-dependent 

mitochondrial fission in the DVC, leading to changes in mitochondrial morphology 

which in turn induces insulin resistance (Filippi et al., 2017). I have demonstrated 

in previous chapters that inhibiting Drp1 in the DVC is a preventative method in 

the development of HFD-dependent insulin resistance, hyperphagia and body 

weight gain. In addition to this, I have presented data that confirms that knocking 

down iNOS in the DVC can decrease body weight gain and food intake, and also 

the development of HFD-induced insulin resistance in rats.  

Following chronic HFD-feeding (16 weeks), mice presented with larger pancreatic 

islet size, as well as greater mass gain, insulin resistance and hepatic liver 

disease (Fraulob et al., 2010). Mice given a HFD for 12 months had significantly 

higher levels of blood glucose, with increased circulating blood glucose levels, 

which presented within the first weeks of the study (Winzell and Ahren, 2004). In 

both human and rat models of HFD-feeding an increase in WAT mass can lead 

to adipose tissue inflammation which has been associated with glucose 

metabolism dysfunction and insulin resistance (Burhans et al., 2019). HFD-

feeding can cause primary hyperinsulinemia through activation of the b-cells of 

the pancreas, this in turn raises FFA levels (Czech, 2017). When insulin secretion 

cannot compensate for insulin resistance and high blood glucose levels, this 

ultimately leads to type two diabetes (Czech, 2017; Yang et al., 2018).  
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In the pathology of obesity, nutritional intake is greater than energy output, this 

can be referred to as metabolic flexibility, whereby metabolism changes to meet 

needs of substrate availability (Smith et al., 2018; Yang et al., 2018). Given the 

crucial role of mitochondria in energy metabolism, mitochondrial dysfunction acts 

as a key regulator in the pathophysiology of obesity (Chan, 2012; Dai and Jiang, 

2019). Metabolic flexibility is linked to mitochondria and their ability to change to 

meet metabolic needs, in situation of caloric excess mitochondria change their 

morphology, favouring fission, as there is no need for energy utilisation from 

glucose, fatty acids or amino acids instead substances are stored, which can lead 

to an increase in inflammation and ER stress (Muoio, 2014; Smith et al., 2018; 

Yang et al., 2018).  

I have previously demonstrated that activation of Drp1 can increase iNOS levels 

in RC-fed rats (see figure 3.13). It has previously been demonstrated that HFD 

can lead to an increase in ER stress and increase iNOS levels in adipose tissue 

(Kawasaki et al., 2012). In addition to this, knocking down iNOS in muscle can 

restore insulin sensitivity in HFD-fed rats (Perreault and Marette, 2001). 

Furthermore, I have demonstrated that inhibiting Drp1 or knocking down iNOS in 

the DVC, can prevent the loss of insulin-induced hypophagia I HFD-fed rats  (see 

section 3.2.4.1 and 4.2.7). 

A four-week HFD-feeding can induce a significant 9-15% increase in body weight, 

higher blood glucose levels and hyperinsulinemia compared with RC-fed 

littermates (Maurer et al., 2017; Yue et al., 2016). In addition a 28 day HFD-

feeding increases body weight, adiposity and peripheral insulin resistance in rats 

compared to control RC-fed rats, (Côté et al., 2015). Together with these data, I 

determined that a 28-day HFD was an effective model to induce hyperphagia and 
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insulin resistance in rats. As 28 days of HFD-feeding can induce insulin 

resistance and body weight gain, and the fact that inhibition of Drp1 or a 

knockdown of iNOS can prevent HFD-dependent insulin resistance, I wanted to 

investigate if inhibition of Drp1 or iNOS in the DVC could restore insulin sensitivity 

in 28-day HFD-fed rats. 

6.1.1 Aims and objectives 

Aim 1: Can inhibiting mitochondrial fission in the DVC restore insulin sensitivity 

and change feeding behaviours in HFD-fed overweight and hyperphagic rats? 

Aim 2: Can decreasing expression of iNOS in the DVC restore insulin sensitivity, 

decrease food intake and body weight gain in overweight and hyperphagic HFD-

fed rats? 
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6.2 Results  

6.2.1 Rats given HFD for 28 days had an increase in food intake, body 

weight gain and blood glucose levels  

The aim of this chapter was to understand if I could restore insulin sensitivity in 

overweight and hyperphagic HFD-fed rats by inhibiting Drp1 or decreasing iNOS 

levels in the DVC. Rats were given either Diet 2 RC or Diet 3 HFD for 28 days 

(Figure 6.1A). Daily monitoring was carried out at a similar time each morning, to 

keep data consistent. These data show that rats fed a HFD for 28 days had a 

significant 7% increase in cumulative food intake at day 28 compared to RC-fed 

rats (Figure 6.1B) and a significant 9.4% increase in body weight gain at day 28 

compared to RC-fed rats (Figure 6.1C). At day 28, the body weight increase was 

Figure 6.1 Cumulative food intake and body weight gain in 28-days prior to brain surgery 
in rats either given a HFD or RC 
 
 
A: 28-day HFD study protocol  
B: Cumulative food intake (in calories) in rats fed either a HFD or RC 
C: Body weight increase in rats fed either a HFD or RC  
(B-C Data are expressed as mean ± SEM, n=10 RC, n=24) 
Statistical test: two way ANOVA (post-hoc test: Tukey)[*p <0.05, **p <0.01, *** p<0.001, 
****p<0.0001] 
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greater than 9% compared to RC-fed rats, I will therefore refer to this model from 

now on as the obese model as detailed in Maurer et al. 2017. 

On the morning of surgery on day 28, blood glucose measurements were taken 

from each rat. A small prick was applied to the tail and a small amount of blood 

was taken from the rat to compare glucose levels in the RC and HFD cohorts. 

Rats fed a HFD had a significant increase in blood glucose levels compared to 

RC-fed controls over 28 days, HFD-fed rats had an average of 5.9 mmol/L 

compared to RC-fed rats who had an average blood glucose of 5.4 mmol ( Figure 

6.2).  

 

  

 Figure 6.2 Average blood sugar of RC-fed versus HFD-fed rats on day 28 
 Data are expressed as mean ± SEM, n=6 RC, n=16, Statistical test: unpaired T-test 
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6.2.2 Inhibition of mitochondrial fission in the DVC restored insulin 

sensitivity and decreases body weight in obese rats 

6.2.2.1 Inhibition of mitochondrial fission in the DVC restores insulin 

sensitivity in HFD-fed obese rats 

Previously, I have demonstrated that inhibiting Drp1 in the DVC could prevent 

HFD-dependent insulin resistance from occurring in rats. Next, I wanted to 

investigate whether inhibiting mitochondrial fission in overweight rats could 

restore insulin sensitivity. Rats underwent stereotactic brain surgery on day 28 

where a bilateral canula was inserted into the DVC (detailed in section 2.4). On 

day 29 rats received a viral injection in the DVC where either a dominant negative 

form of Drp1, mutated in the residue of K38 to A (K38A), resulting in a decrease 

in Drp1 dependent mitochondrial fission or a control of GFP was delivered (Filippi 

et al., 2017). Rats were subjected to acute feeding studies on day 38 and 42, 

where insulin was infused into the DVC of fasted rats and food intake was taken 

every half an hour for four hours (as described in section 2.5.2).  

GFP-expressing RC-fed rats infused with insulin exhibited a significant 59% 

decrease in food intake at 4 hours compared to their vehicle infused GFP-

expressing RC controls (Figure 6.3A). However, the HFD-fed GFP-expressing 

rats did not decrease food intake when infused with insulin at the four-hour point 

compared to their vehicle infused controls (Figure 6.3A), determining that insulin 

did not have an effect on feeding behaviours as demonstrated in the RC-fed 

littermates. Interestingly, HFD-fed rats expressing the catalytically inactive form 

of Drp1, Drp1-K38A, who were infused with insulin, had a significant 62% 

reduction in food intake at four hours compared with vehicle infused controls. This 

effect is similar to the effect seen in GFP-expressing RC insulin infused rats 
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(Figure 6.3A). These data highlight that inhibiting Drp1 in HFD-fed hyperphagic 

rats can restore insulin sensitivity8. 

At the 12 hours, the effect of insulin was lost in both RC-fed and HFD-fed GFP-

expressing rats, however there is still a significant decrease in food intake effect 

                                            

8 Restoration of insulin sensitivity refers to restoring insulin-induced hypophagia 

Figure 6.3 Food intake during acute feeding study in 28-day RC or HFD-fed rats 
expressing Drp1-K38A and GFP  

 
Rats were fasted for 6 hours and then infused bilaterally into the DVC with a total 0.2ul of 

2mU insulin or a vehicle over 5 minutes. Food was then returned and food intake was 

observed every half hour for 4 hours and a final reading was taken at 12 hours. 
A: Total food intake taken at the 4 hour time point, as there was no difference in the food 

intake in the feeding studies performed on day 38 and 42, the figure shows the average food 

intake over both feeding studies 

B: Total food intake taken at the 12 hour time point, as there was no difference in the food 
intake in the feeding studies performed on day 38 and 42, the figure shows the average food 

intake over both feeding studies  

Data are expressed as a mean ± SEM n=5 for RC GFP vehicle, n=5 RC GFP insulin, n=9 for 

HFD GFP vehicle, n=6 for HFD GFP insulin, n=8 for HFD Drp1-K38A vehicle, n=6 for HFD 

Drp1-K38A insulin. Orange dots represent data gained from day 9, blue dots represent data 
gained from day 14. Statistical test: Two way ANOVA (post-hoc test: Tukey)[*p <0.05, **p 

<0.01] 
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seen in Drp1-K38A-expressing rats infused with insulin (Figure 6.3B). In 

summary, inhibition of Drp1 in hyperphagic HFD rats can restore insulin 

sensitivity.  

6.2.2.2 Inhibition of Drp1 in the DVC decreased food intake, body weight 

gain and blood glucose levels in obese HFD-fed rats 

Inhibiting Drp1 in the DVC restored insulin sensitivity in HFD-fed obese rats 

(Figure 6.3). Next, I wanted to understand the effects that inhibiting Drp1 had on 

food intake, body weight and blood glucose levels in HFD-fed rats. Each rat’s 

food intake and body weight were taken each morning at a similar time. Blood 

glucose of each rats was taken before each feeding study and on the day of 

sacrifice, blood glucose levels are shown as an average of each time point as 

blood glucose levels did not differ. 

Over the 14-day experiment HFD-fed rats expressing GFP in the DVC 

cumulatively ate more food in calories than both GFP-expressing RC-fed rats and 

Drp1-K38A-expressing HFD-fed rats (Figure 6.4A). From day 13, GFP-

expressing-HFD-fed rats had a significant increase in food intake compared to 

Drp1-K38A-expressing rats (Figure 6.4A). In summary, I have shown that 

inhibiting Drp1 in the DVC decreases hyperphagia compared to HFD-fed 

controls. 
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There was variability in body weight gain within each cohort, initially, GFP-

expressing RC-fed rats recovered better from surgery and viral injection when 

compared to both HFD-fed groups (Figure 6.4B). GFP-expressing and Drp1-

K38A-expressing HFD-fed rats cohorts did not reach pre-surgical body weight 

until day four unlike the GFP-expressing RC-fed rats who reached pre-surgical 

body weight at day two (Figure 6.4B). By the end of the study, day 14 after 

surgery, GFP RC-fed and GFP HFD-fed rats had overall gained the same amount 

of body weight (Figure 6.4B). From day seven, Drp1-K38A-expressing rats and 

GFP-HFD-fed expressing rats, had reached pre-surgical body weight. From this 

IAs mentioned previously, the blood glucose levels of rats were taken before each 

acute feeding study and on the day of sacrifice. There was no changes in bloody 

glucose levels across the three cohorts (Figure 6.5).  

 

Figure 6.4 Cumulative food intake and body weight increase over the 14 days post-
surgery in rats expressing Drp1-K38A and GFP 
 A: Cumulative food intake (in calories) in RC-fed GFP-expressing, HFD-fed GFP- expressing 

and Drp10K38A-expressing rats from day of viral injection 

B: Body weight increase in RC-fed GFP-expressing, HFD-fed GFP-expressing and Drp1-K38A-

expressing rats from day of viral injection 

Data are expressed as mean ± SEM, n=5 GFP RC, n=6 GFP HFD, n=10 Drp1-K38A HFD 

[*p <0.05, **p <0.01] Significance is shown between Drp1-K38A-expressing and GFP-

expressing HFD cohorts. Statistical test: TWO way ANOVA (post-hoc test: Tukey) 
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6.2.2.3 Inhibition of Drp1 in the DVC decreased the total white adipose 

tissue and increases the weight of brown fat in obese HFD-fed rats 

I have demonstrated that inhibition of Drp1 in hyperphagic rats can restore insulin 

sensitivity to a similar level of a RC-fed rats. On the day of sacrifice, day 44, WAT 

and BAT were collected and weighed to look into the effect that inhibiting 

mitochondrial fission in the DVC has on fat distribution in obese rats. 

HFD-fed rats expressing the catalytically inactive form of Drp1, Drp1-K38A, had 

significantly lower levels of visceral fat and total WAT and less epididymal and 

visceral fat than GFP-expressing HFD-fed controls (Figure 6.6A). RC-fed GFP-

expressing rats had significantly lower level of epididymal fat, and lower levels of 

retroperitoneal and visceral fat compared to GFP-expressing HFD-fed rats 

(Figure 6.6A) 

Figure 6.5 Average blood glucose during the study post-surgery 
 
Data are an average of readings taken before feeding studies and day of sacrifice. Data are 

expressed as mean ± SEM, n=6 GFP RC, n=15 GFP HFD, n=12 Drp1-K38A HFD. Statistical 

Test: unpaired T-test 
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In this cohort the BAT was also collected as I wanted to investigate whether 

altering mitochondrial fission in the DVC could have an effect on BAT. 

Intrascapular BAT was collected from between the shoulder blades and weighed. 

Rats expressing Drp1-K38A had a significant 43% and 33% greater volumes of 

BAT than both HFD-fed and RC-fed expressing rats, respectively (Figure 6.6).  

It is evident that inhibiting Drp1 in the DVC of obese rats can decrease the 

volumes of WAT, and can significantly increase the volume of BAT.  

Figure 6.6 Weight of white adipose tissue and brown adipose tissue on the day of 
sacrifice in Drp1-K38A and GFP-expressing rats 
 
 
A: Weight of epididymal, retroperitoneal, visceral and total WAT in rats expressing GFP or 

Drp1-K38A  

B: Weight of BAT in rats expressing GFP or Drp1-K38A  

Data are expressed as mean ± SEM, n=5 GFP RC, n=6 GFP HFD, n=10 Drp1-K38A HFD 

Statistical test: multiple T-test  [*p <0.05, **p <0.01, *** p<0.001] 
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6.2.3 Inhibition of iNOS in the DVC restores insulin sensitivity and 

decreased body weight in obese HFD-fed rats 

6.2.3.1 Inhibition of iNOS in the DVC restored insulin sensitivity in HFD-fed 

rats 

Previously I have shown that knocking down iNOS in the DVC prevented the 

development of HFD-dependent insulin resistance and that inhibiting Drp1 in the 

DVC can decrease iNOS levels in obese rats following chronic HFD-feeding. 

Next, I wanted to investigate whether knocking down iNOS in the DVC could 

restore insulin sensitivity in obese-insulin resistant rats. On day 28 (Figure 6.1A), 

rats underwent stereotactic brain surgery where a bilateral canula was inserted 

into the NTS of the DVC, on the same day a lentiviral system was used to deliver 

a ShRNA for the mRNA of the iNOS protein (ShiNOS) or a control scrambled 

ShRNA (ShControl) (as described in section 2.4). Rats were subjected to feeding 

studies on day 37 and 41 (Figure 6.1A), where they were fasted for six hours, 

and then given an injection of insulin or a vehicle into the DVC. Food intake was 

measured every half an hour for four hours (as describe in section 2.5.2). 

RC-fed ShControl-expressing rats infused with insulin had a significant 60% 

decrease in food intake at four hours compared to their RC-fed vehicle infused 

controls (Figure 6.7A). On the contrary, ShControl-expressing HFD-fed rats who 

were treated with insulin had a no effect on food intake at the four-hour time point 

(Figure 6.7A). HFD-fed rats expressing ShiNOS in the DVC who were treated 

with insulin had a significant 54% decrease in food intake at four hours, similar to 

RC-fed ShControl littermates (Figure 6.7A) 
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The effect of insulin at 12 hours had been diminished in HFD-fed and RC-fed 

ShControl expressing and in ShiNOS expressing rats (Figure 6.7B). In summary, 

it is evident that decreasing iNOS expression in the DVC can restore insulin 

sensitivity9 in HFD-fed hyperphagic rats. 

                                            

9 Restoration of insulin sensitivity refers to insulin-induced hypophagia 

Figure 6.7 Food intake during acute feeding studies in 28-day RC or HFD-fed rats 
expressing ShiNOS and ShControl  

Rats were fasted for 6 hours and then infused bilaterally into the DVC with a total 0.2ul of 

2mU insulin or a vehicle over 5 minutes. Food was then returned and food intake was 

observed every half hour for 4 hours and a final reading was taken at 12 hours. 

A: Total food intake taken at the 4 hour time point, since there was no difference in the food 

intake in the feeding studies performed on day 37 and 41, the figure shows the average food 

intake over both feeding studies 

B: Total food intake taken at the 12 hour time point, since there was no difference in the food 
intake in the feeding studies performed on day 37 and 41, the figure shows the average food 

intake over both feeding studies  

Data are expressed as a mean ± SEM n=6 for RC ShControl vehicle, n=6 RC ShControl 

insulin, n=6 for HFD ShControl vehicle, n=5 for HFD ShControl insulin, n=7 for HFD ShiNOS 

vehicle, n=5 for HFD ShiNOS insulin Orange dots represent data gained from day 9, purple 

dots represent data gained from day 14. Statistical test: two way ANOVA (post-hoc test: 
Tukey)  [*p <0.05] 
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6.2.3.2 Decreased iNOS expression in DVC reduces food intake and body 

weight gain in HFD-fed obese rats 

The data above demonstrates that knocking down iNOS can restore insulin 

sensitivity in the DVC in HFD-fed rats compared to HFD-fed ShControl-

expressing rats. Chronic daily monitoring was carried out to monitor changes in 

food intake and body weight. From day 12, we start to see a significant difference 

in the food intake in ShiNOS-expressing rats and ShControl-expressing HFD-fed 

rats (Figure 6.8A). ShiNOS-expressing rats ate less than ShControl-expressing 

RC rats, where there is a significant difference from day 15 (Figure 6.8A). Over 

the 14 days post-surgery, ShControl-expressing HFD-fed rats had consumed the 

largest number of calories (Figure 6.8A). To determine whether the changes in 

body weight were due to the treatment and due to with the welfare of the rats, 

daily checks were carried out to look for any signs of distress. Overall, knocking 

down iNOS in the DVC can decrease food intake in hyperphagic HFD-fed rats.  

HFD-fed ShiNOS-expressing rats had similar pattern body weight gain to RC-fed 

ShControl-expressing rats (Figure 6.8B). From day six, the body weight gained 

per day in ShiNOS-expressing rats started to plateau slowly much like RC-fed 

ShControl expressing rats (Figure 6.8B). Comparing the body weight gain in the 

ShControl expressing HFD-fed and RC-fed cohorts, there is a more noticeable 

trend in the changes in body weight gain over the 14 days post-surgery, HFD-fed 

ShControl-expressing rats gained weight more rapidly over the study period, 

however there is no significant difference between the ShiNOS-expressing HFD-

fed and the ShControl-expressing RC-fed (Figure 6.8B) Overall, the ShControl 

expressing HFD-fed cohort gained the most body weight over the 14-day period, 

there is a clear difference in body weight gained being seen from day three 
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comparatively with ShiNOS expressing rats (Figure 6.8B). There is quite high 

variance within cohorts, resulting in a lack of significant difference between these 

data. 

 

 

On the day of each feeding study, day 37 and 41, and on the day of sacrifice day 

43, the blood glucose of each rat was taken. During the study there was a 

significantly lower blood glucose levels in the RC-fed ShControl expressing rats 

compared with the HFD-fed ShControl expressing rats (Figure 6.9). There was 

no difference in blood glucose in ShiNOS-expressing rats compared to 

ShControl-expressing HFD-fed rats (Figure 6.9). 

Figure 6.8 Cumulative food intake and body weight increase in ShiNOS and ShControl 
expressing rats 
 
 
A: Cumulative food intake (in calories) in RC-fed ShControl expressing, HFD-fed ShControl 

expressing and ShiNOS expressing rats from day of viral injection 

B: Body weight increase in RC-fed ShControl expressing, HFD-fed ShControl expressing and 

ShiNOS expressing rats from day of viral injection 

Data are expressed as mean ± SEM, n=8 ShControl RC, n=8 ShControl HFD, n=7 ShiNOS 

HFD. Significance is shown between ShControl expressing HFD-fed and ShiNOS expressing 

cohorts in black, and ShControl expressing RC-fed and ShiNOS expressing cohorts in red. 

Statistical test: two way ANOVA (post-hoc test: Tukey) [*p <0.05, **p <0.01] 
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In conclusion, I have demonstrated that knocking down iNOS in the DVC can 

decrease feeding behaviours and in turn reduce body weight gain comparatively 

against HFD-fed controls. 

Figure 6.9 Average blood glucose during the study post-surgery in ShiNOS expressing 
and ShControl rats 
 Data are an average of readings taken before feeding studies (day 37 and 41) and day on 

sacrifice (day 43). Data are expressed as mean ± SEM, n=9 for ShControl RC, ShControl 

HFD, ShiNOS HFD. Statistical test: unpaired T-test [*p <0.05] 
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6.2.3.3 Decreasing expression of iNOS in the DVC had no effect on WAT 

and BAT deposition in obese rats 

Previously, I have shown that knocking down iNOS in the DVC can decrease 

WAT deposition in 14 days compared to controls, next, I wanted to investigate 

the effect knocking down iNOS had on fat distribution in obese rats. The 

ShControl-expressing RC-fed rats, had significant decrease in the weight of 

epididymal and retroperitoneal fat compared to the HFD-fed ShControl-

expressing rats (Figure 6.10A). However, there was no difference in the WAT 

deposition when comparing ShiNOS-expressing rats and ShControl-expressing 

HFD-fed rats (Figure 6.10A). There was no effect on BAT in rats expressing 

ShiNOS in the DVC compared to both HFD and RC-fed ShControl-expressing 

rats (Figure 6.10B).  

Figure 6.10 Weight of white adipose tissue and brown adipose tissue on the day of 
sacrifice in ShControl expressing RC and HFD-fed rats and in ShiNOS expressing rats  
 

A: Weight of epididymal, retroperitoneal, visceral and total WAT in RC and HFD-fed 
ShControl or ShiNOS-expressing rats 

B: Weight of BAT in RC and HFD-fed ShControl or ShiNOS-expressing rats 

Data are expressed as mean ± SEM, n=8 ShControl RC, n=8 ShControl HFD, n=7 ShiNOS 

HFD. Statistical test: multiple T-test [*p <0.05] 
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6.3 Discussion 

Studies have shown that obesity is associated with mitochondrial dysfunction 

which can lead to insulin resistance in the brain (Anderson et al., 2009; Jheng et 

al., 2012; Koves et al., 2008; Raza et al., 2015), here I have demonstrated that 

inhibiting mitochondrial fission in the DVC in obese rats, can successfully 

decrease food intake and body weight gain. It has been previously shown that 

HFD consumption increased levels of Drp1 by 50%, while decreasing fusion 

regulatory proteins such as Opa1 by 20%, furthermore ob/ob leptin deficient mice 

presented with significantly higher levels of Drp1 (Jheng et al., 2012; Liu et al., 

2014). In addition to this, the data I have presented highlights that inhibiting 

mitochondria fission in the DVC can restore insulin sensitivity in HFD-fed 

hyperphagic rats, a possible mechanism by which this happens by decreasing 

levels of ROS and inflammation in the DVC (Filippi et al., 2017).  

Increased caloric consumption caused impairment of mitochondrial function in 

the brain, and as a result increased ROS production and activation of UPR 

(Pipatpiboon et al., 2012; Pratchayasakul et al., 2015). Zucker rats have reduced 

functionality of their mitochondria which correlated with a decrease in ATP 

production and an increase in fission proteins, Drp1 (Raza et al., 2015). By 

knocking down iNOS in the DVC, I have successfully managed to restore insulin 

sensitivity in 28-day HFD-fed rats. A similar effect has also been seen in obese 

mice with a whole body knockout of iNOS, these rats exhibited improved glucose 

homeostasis and were more sensitive to insulin than their obese control 

counterparts (Perreault and Marette, 2001). Obese rats had an increase in s-

nitrosylation of key insulin signalling pathways, AKT and IRS-1, in the 

hypothalamus (Katashima et al., 2017). These data demonstrate that iNOS plays 
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an important factor in the development of insulin resistance, a possible 

mechanism this may be due to an increase in s-nitrosylation of insulin signalling 

molecules.  

Inhibition of iNOS in the hypothalamus in leptin deficient (ob/ob) rats resulted in 

a decreased body weight, as well as changes in feeding behaviours and energy 

homeostasis (Katashima et al., 2017). Obese iNOS knockout mice were 

protected from HFD-dependent insulin resistance and glucose homeostasis. In 

addition, these rats also had less NO in the vasculature (Noronha et al., 2005). 

Furthermore ob/ob mice which received an intraperitoneal injection of a chemical 

inhibitor of iNOS had improved insulin sensitivity and increase in IRS-1 in the 

livers compared to controls, suggesting that iNOS plays an important role in the 

development of insulin resistance (Fujimoto et al., 2005). Here, I have shown 

knocking down iNOS in the DVC can improve the hypophagic effect of insulin in 

obese rats. It has been previously demonstrated that intraperitoneal injection of 

an iNOS inhibitor, L-NIL, increased nodose ganglion excitability which in turn 

restored afferent sensitivity to satiety signalling, reduced food intake and lower 

levels of epididymal fat (Yu et al., 2019). It would be interesting to investigate the 

effect of inhibiting iNOS in the DVC and the relationship with afferent signals via 

the nodose ganglion in the regulation of body weight gain.  

Chronic consumption of HFD increases the macrophage pool in the ARC in the 

hypothalamus, where the increase in macrophages was due to an higher levels 

of iNOS in obese rats (Lee et al., 2018). iNOS inhibition in the ARC abolished 

macrophage accumulation, inflammatory cytokines and astrogliosis, suggesting 

the critical role of iNOS in the hypothalamic inflammation (Lee et al., 2018). It 

would be interesting to look into the levels of ER-stress in the model and nitrite 
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levels in DVC to see if there is any more release of NO in the control HFD-fed 

hyperphagic rats, which could be an indicator of nitrosylation of proteins.  

Inhibition of Drp1 in the DVC of obese rats caused a significant decrease in fat 

deposition, to levels similar to a RC-fed rat, however there was not a significant 

difference in body weight. This discrepancy may be due to high energy 

expenditure in the rats, which may be related to an increase in muscle mass in 

the rats expressing the inhibitor of Drp1, a finding which has been previously 

reported (Bach et al., 2003; Liesa and Shirihai, 2013). Using metabolic cages 

would allow a better understanding of how inhibition of mitochondrial fission 

effects energy expenditure. HFD-fed rats present with marked increased levels 

of ER stress in adipose tissue, which is induced by FFA ROS which results in an 

increase in inflammatory cytokines causing chronic inflammation (Kawasaki et 

al., 2012). Chemical treatment with chemical chaperones decreased the levels of 

ER stress in the obese adipose tissues (Kawasaki et al., 2012). Considering there 

is a significant decrease in the total volume of WAT in rats expressing the inhibitor 

of Drp1, it would be interesting to further investigate ER stress markers in the 

WAT specifically. 

It would appear that BAT plays an important role in preventing obesity related 

complications. When HFD-fed rats were given a BAT transplant from healthy RC-

fed rats and immune cell profiled four weeks later, HFD-fed BAT transplanted rats 

had a decrease in many different proinflammatory macrophages in the 

epididymal WAT. In addition, these rats also had a decrease in food intake and 

increase insulin sensitivity (Shankar et al., 2019; Stanford et al., 2013). I have 

demonstrated that decreasing mitochondrial fission in the DVC can increase the 

total weight of BAT. Interestingly, there is a significant increase in BAT mass in 
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rats expressing the inhibitor of Drp1, Drp1-K38A, it would therefore be interesting 

to look into the activity of BAT and the mitochondria morphology in these rats. It 

could be possible that inhibiting mitochondrial fission in the DVC improves insulin 

sensitivity, which in turn increases BAT activity due to the increase in caloric 

intake in HFD-feeding. 

Ablation of iNOS in leptin deficient (ob/ob) mice resulted in a decrease in food 

intake and increased expression of BAT adipogenesis transcriptional regulators 

as well as uncoupling proteins 1 and 3, enabling the recovery of the BAT 

phenotype (Becerril et al., 2010). Furthermore, rats with a leptin deficiency 

(ob/ob) and a knockout of iNOS had improved insulin sensitivity, decreased 

adipose tissue inflammation and also a down-regulation in proinflammatory 

genes (Becerril et al., 2018). Although there was no effect on the weight of the 

BAT tissue collected from the ShiNOS expressing rats, it would be interesting to 

investigate the activity of the BAT and to see if any regulators of adiposity are 

upregulated in this model. 

While there was a clear restoration of insulin sensitivity following either inhibition 

of Drp1 or knockdown of iNOS in the DVC of HFD-fed overweight and insulin 

resistant rats, I could not see a clear effect on food intake and body weight. A 

possible reason that this could be due to poor recovery from both surgery and 

viral injection when rats are fed a HFD. In both cases, the Drp1-expressing cohort 

and ShiNOS-expressing cohort, it is apparent that the recovery is not as fast as 

their RC-fed littermates; where I saw faster recovery in previous experiments, 

when HFD was given after the viral injections (see section 3.2.4.2 and 4.2.6). 

However, from day 8 in both cohorts, there is a clear trend in the body weight 

gain in HFD control rats versus HFD experimental treated counterparts (those 
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injected with either Drp1-K38A or ShiNOS). Since the study concluded 2 weeks 

after the viral treatment, it would be interesting to see whether the trend we see 

becomes significant after a longer period.  

In conclusion it is evident that inhibiting Drp1 or decreasing the expression of 

iNOS in the DVC can restore insulin sensitivity in hyperphagic rats. Inhibiting Drp1 

decreased WAT deposition and increased the amount of BAT compared to their 

HFD-fed controls (Figure 6.11). 

 

  

Figure 6.11 Inhibition of Drp1 (a) and knocking down iNOS (b) in the DVC can 
restore insulin-induced hypophagia in HFD-fed rats  
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7 General Discussion 
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7.1 Summary of findings 

It has been well established that the brain plays an important role in central 

metabolism, in particular the MBH has been extensively researched in its 

contribution to the essential function of energy homeostasis. At the beginning of 

my project, I aimed to look into another region of the brain which is known to play 

an important role in central regulation of metabolism, the DVC. It has been well 

defined that the DVC helps regulate food intake and HGP through activation of 

the ERK1/2 pathway. In addition to this, three days of HFD-feeding is sufficient 

to induce insulin resistance and change mitochondrial morphology in the DVC 

(Filippi et al., 2017). This led to my first aim to understand how mitochondrial 

dynamics in the DVC affect feeding behaviour and body weight gain in rats.  

My data has demonstrated that over expression of Drp1 in the DVC prevented 

hypophagia induced by insulin and increased body weight and food intake in RC-

fed rats, in addition to this, expression of the dominant negative form of Drp1 in 

the DVC prevented loss of insulin induced-hypophagia and decreased body 

weight gain and food intake compared to controls. It has been previously shown 

that an increase in the activation of Drp1 in muscle, liver and adipose tissue can 

induce insulin resistance (Bach et al., 2003; Favaro et al., 2019; Gao et al., 2014; 

Jheng et al., 2012). These results therefore highlight the importance of Drp1 in 

the development of insulin resistance. 

Furthermore, activation of Drp1 in vitro has been shown to increase ROS and 

decrease activation of insulin signalling pathway molecules such as AKT and the 

insulin receptor (Lin et al., 2018). In support of this, my data demonstrates that 

not only does an activation of Drp1 in the DVC induce insulin resistance, it also 

increases iNOS levels. iNOS is a mediator of inflammation and has been 
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associated with insulin resistance (Carvalho-Filho et al., 2006). I have presented 

data which shows that inhibiting mitochondrial fission in rats fed HFD reduced 

iNOS levels in the DVC of rats. This led to my next aim which was to determine 

if iNOS plays a role in the pathway linking Drp1-dependent mitochondrial fission, 

ER stress and insulin resistance.  

Excessive endogenous NO can induce S-nitrosylation which is an important 

chemical process, involving an addition of an NO group onto the cysteine residue 

of a thiol group, this in turn affects signalling pathways, such as insulin signalling 

(Rizza et al., 2014). It has previously been demonstrated that aberrant NO 

induces s-nitrosylation of the insulin receptor and IRS-1 which in turn causes 

insulin resistance in skeletal muscle, where chemical reversal of s-nitrosylation 

improved insulin signalling (Carvalho-Filho et al., 2006). In addition to this, Drp1 

activity is modulated by s-nitrosylation, leading to increase in mitochondrial 

fragmentation (Cho et al., 2009). To this end, I first wanted to look into the effects 

mitochondrial fission had on nitrosylation levels in PC12 cells by establishing a 

nitrosylation assay. I managed to successfully determine that activation of Drp1 

in PC12 cells increased iNOS levels as well as levels of s-nitrosylation. My data 

supports previous research which has shown that activation of Drp1 increased 

the mRNA levels of iNOS in microglial cells, emphasising that the cross talk 

between iNOS and Drp1 is involved in the development of insulin resistance, 

while inhibition of iNOS decreased Drp1 activity, perhaps there is a feeding back 

loop where Drp1 control iNOS levels which modulates activity levels of Drp1 (Lee 

and Kim, 2018; Park et al., 2013).  

My data thus far, had shown that activation of Drp1 in the DVC increased iNOS 

levels in RC-fed rats, while inhibition of Drp1 in the DVC in HFD-fed rats 
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decreased iNOS, which led to investigate the effect of knocking down iNOS in 

the DVC of HFD-fed rats had on feeding behaviours, body weight gain and insulin 

sensitivity. My data demonstrated that decreasing iNOS levels in the DVC 

prevented HFD-dependent insulin resistance and decreased food intake and 

body weight gain. These data are in agreement with previous work where 

inhibition of iNOS via subcutaneous injection of an iNOS inhibitor, L-nitro 

arginine, decreased food intake mice (Morley and Flood, 1991). Furthermore, 

mice with a specific iNOS knockdown in skeletal muscle were protected from 

HFD-dependent diet induced obesity and insulin resistance (Perreault and 

Marette, 2001). Indeed, in the hypothalamus, ICV injection of GSNO induced s-

nitrosylation of insulin signalling molecules leading to inhibition of insulin 

signalling, leading to an increase in food intake (Katashima et al., 2017). Together 

with these data, it could be deduced that iNOS plays a critical role in energy 

metabolism and insulin sensing, which is most likely to be due to nitrosylation of 

key components of the insulin signalling pathway. Thus far, I had found that 

activation of Drp1 in the DVC in RC-fed rats increased iNOS levels, furthermore, 

inhibition of iNOS in the DVC in HFD-fed rats prevented HFD-dependent insulin 

resistance.   

My next aim was to identify what neural populations are involved in this pathway, 

by identifying the neural population involved and their target aids in the 

understanding of the pathogenesis of insulin resistance. Using an adenovirus 

expressing recombinant protein under a CMV promoter, we could not distinguish 

between the cell population that could be involved in the development of insulin 

resistance in the DVC. With a detailed analysis we could see that roughly 40% of 

the cells we could target were astrocytes. Since astrocytes are an important cells 
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for the production of NO and can increase iNOS levels are seen with an activation 

of mitochondrial fission, I tested the hypothesis that by specifically inhibiting 

mitochondrial fission in astrocytes of the DVC I could protect the rats from the 

HFD-dependent insulin resistance. To this end an adenoviral system was created 

to specifically target mitochondrial fission in astrocytes. Drp1-K38A was 

expressed under the GFAP promoter, to specifically target GFAP positive 

astrocytes in the DVC in order to understand the effect inhibiting mitochondrial 

fission in astrocytes had on feeding behaviours, body weight gain and insulin 

resistance in HFD-fed rats.  

I found that inhibition of Drp1 in astrocytes of the DVC decreased food intake, 

body weight, iNOS levels and also prevented HFD-dependent insulin resistance. 

It has previously been demonstrated that in astrocytes knocked down of the 

insulin receptor, mitochondria failed to respond to an increase in glucose uptake, 

in addition these mitochondria appeared smaller, suggesting mitochondrial 

fission (García-Cáceres et al., 2016). More specifically, in the DVC, HFD-feeding 

initiated an upregulation of GFAP expression and an increase in the 

morphological complexity of astrocytes, which in turn inhibited food intake 

(MacDonald et al., 2019). Thus, suggesting that astrocytes play an integral role 

in the regulation of feeding behaviours in the DVC. Here I propose a novel 

mechanism in which changes in mitochondria dynamics in astrocytes can induce 

insulin resistance and affect the ability of the DVC to control metabolic functions. 

A potential mechanism could involve neuronal glial cross talk which allows 

astrocytes to sense metabolic changes within their network and communicate 

such information to neurones of the DVC to regulate energy homeostasis. 
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All the data thus far have investigated methods for the prevention of HFD-

dependent insulin resistance. I next wanted to determine if these preventative 

methods could be used as a means to restore insulin sensitivity in obese rats. 

Obesity leads to the plethora of problems, I aimed to understand if altering a 

consequence in the development of obesity, such as mitochondrial fission or 

iNOS induced inflammation could alleviate some of these problems including 

insulin resistance and hyperphagia. My data has shown that both cohorts were 

able to acutely decrease food intake when treated with insulin compared to their 

HFD-fed controls.  A similar effect has been seen previously, where a whole body 

knockout of iNOS improved glucose uptake and these rats were insulin sensitive 

compared to their obese control counterparts (Perreault and Marette, 2001). Rats 

expressing Drp1-K38A also successfully managed to acutely decrease food 

intake, however the chronic effects seen in both cohorts were not significant.  

7.2 Future work 

The data I have presented demonstrates that both inhibition of Drp1-dependent 

mitochondrial fission and decreasing iNOS in the DVC can prevent HFD-induced 

insulin resistance and metabolic changes. My work has provided a foundation 

that will help aid future research toward a deeper understanding of the pivotal 

role of the DVC in energy regulation and insulin sensing. If time permitted during 

my research project, I would have finished off the molecular analysis for the 

obese model cohorts, by running western blots to look into changes in certain 

molecular markers. My data shows a clear effect on restoration of insulin sensing 

after 28 days of HFD-feeding in both Drp1-K38A and ShiNOS-expressing cohorts 

compared to their HFD controls, however, whether there were changes in iNOS 

levels and ER-stress is yet to be determined. From previous research, there is 
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clear evidence that a decrease in iNOS in obese rats can decrease ER-stress 

levels and improve insulin sensing (Fujimoto et al., 2005; Perreault and Marette, 

2001). Furthermore, an increase in mitochondrial fission has been associated 

with obesity (Dai and Jiang, 2019). While there was a clear restoration of insulin 

sensitivity with both inhibition of Drp1 or knockdown of iNOS in HFD-fed 

overweight and insulin resistant rats, I could not see a clear effect on food intake 

and body weight. 

In this project I established an assay to specifically label s-nitrosylated proteins. 

In addition to this, I demonstrated that an activation of Drp1 in PC12 cells resulted 

in an increase in s-nitrosylation in cells. Following on from this, it would have been 

interesting to immunoprecipitate these samples to isolate and capture s-

nitrosylated proteins. Using this assay in the future, using mass spectrometry, I 

would be able to identify specific molecular markers which are s-nitrosylated due 

to changes in mitochondrial dynamics. In particular, previously it has been 

demonstrated that an accumulation of misfolded proteins due to high levels of ER 

stress results in s-nitrosylation of key stress transducers of the UPR; PERK and 

IRE-1 (Nakato et al., 2015; Yang et al., 2015a). In addition to this, it has been 

well described that changes in iNOS levels can induce s-nitrosylation of key 

molecules in the insulin signalling pathway (Carvalho-Filho et al., 2006; Qian et 

al., 2018; Yasukawa et al., 2005). It could therefore be hypothesised that a 

potential relationship exists between activation of Drp1 and induction of insulin 

resistance which is due to an increase in nitrosylation of ER stress transducers 

and insulin signalling pathway molecules. S-nitrosylation is a reversible reaction 

leading to defects in signalling pathways, another form of nitrosylation is tyrosine 

nitration, which causes irreversible protein damage (Rizza et al., 2014). It would 
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be interesting to look into the effect of activation of Drp1 on tyrosine nitration in 

both in vivo, using the tissue samples from all of the cohort, and in vivo, using 

neuronal cell lysates. Following on from this to investigate the effect of iNOS-

mediated tyrosine nitration of key insulin signalling molecules in the DVC on 

insulin sensing. 

Inhibition of Drp1 in astrocytes of the DVC prevented the effect of HFD-

dependent insulin resistance, body weight gain and hyperphagia. If time 

permitted, it would have been interesting to investigate the effect of activation of 

Drp1 in astrocytes of the DVC, by using an adenoviruses expressing Drp1-S637A 

under the GFAP promotor, to see if the effect on food intake, body weight gain 

and insulin is greater than targeting all neural populations of the DVC, as I saw 

with Drp1-K38A::GFAP expressing rats. At the end of chapter 5, I proposed two 

hypotheses, one of which was that an increase of Drp1 in astrocytes results in an 

iNOS-dependent increase in NO which acts as a neurotransmitter to neurones to 

induce insulin resistance in the DVC.  

By using live slices of the DVC with altered mitochondrial dynamics in astrocytes 

we could look into the levels of NO using a fluorescent NO dye compared to 

controls. In addition to this, another important mechanism that needs to exploring 

is whether effecting astrocytes effects the way neurones respond to insulin, to 

this end, acute slices of the DVC where mitochondrial dynamics in astrocytes are 

altered, could be used to record neuronal activity in response to insulin  

It would be interesting to explore the effects of mitochondrial dynamics in 

oligodendrocytes and neurones on feeding behaviours and insulin sensing 

furthermore to understand the pathways in the DVC which induce these 

behavioural changes. A possible way investigate the neuronal pathway would be 
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to specifically target mitochondrial dynamics in the neurones themselves, by 

expressing Drp1-K38A or Drp1-S637A under the synapsin I promotor (SYN), 

which is a neurone specific promotor (Hioki et al., 2007), in the DVC. If the SYN 

promotor demonstrated a clear effect of feeding and insulin sensing, I could go 

even further to specifically target certain types of neurones, whether inhibitory or 

excitatory. The future work I have proposed would help provide a better 

understanding to bridge the gap between mitochondrial fission and insulin 

resistance in the DVC. 

7.3 How is my data clinically relevant? 

Obesity and T2DM are epidemics with cases around the world rising at 

exponential rates, both conditions are also a risk factor for many other ailments. 

According to Public Health England, 7 out of 10 males and 6 out of 10 females in 

the United Kingdom are overweight or obese, while costing the National Health 

Service over £6.1 billion to treat obesity related illnesses (NHS Digital, 2019; 

Public Health England, 2017); now more than ever we need new therapeutic 

avenues in the prevention and treatment of obesity and T2DM. The CNS receives 

and processes signals in the periphery to maintain energy balance, making it an 

important area to research to gain a better understanding of the pathogenesis of 

these metabolic disorders (Hotamisligil et al., 1996; Tanti et al., 2013; Wilcox, 

2005). My data has highlighted the importance of Drp1-dependent mitochondrial 

fission in DVC in the development of insulin resistance and hyperphagia. These 

findings are in line with much of the literature which demonstrates an increase of 

Drp1 is associated with insulin resistance in models of obesity (Jheng et al., 2012; 

Kelley et al., 2002; Wang et al., 2015). It could be proposed that a way to 

potentially prevent the onset of these metabolic diseases is by specifically 
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targeting mitochondrial dynamics to enhance mitochondrial fusion, or inhibit 

mitochondrial fission proteins, to reduce ER stress and mitophagy.  

More specifically, my data has created a foundation for future research to look 

into the neural populations which are involved in the central action of insulin and 

the markers involved in the progression of insulin resistance in the brain. 

Intranasal drug delivery is a novel treatment an effective and non-invasive way to 

deliver drugs to CNS. By unveiling the potential molecular markers involved, it 

would allow for the generation of an intranasal drug delivery system to possibly 

inhibit said markers to restore insulin sensitivity in the brain and effectively the 

periphery. The DVC plays a critical role in the regulation of energy metabolism, 

in this project I have delved into molecular mechanisms involved in Drp1-

dependent insulin resistance, and for the first time the effect of Drp1 in the DVC 

has on feeding behaviours has been reported, thereby laying a foundation for 

future research and novel therapies.  

7.4 Final conclusions 

In conclusion, my project has validated the role Drp1 in the DVC has on feeding 

behaviours, where a key molecular player of this mechanism is iNOS. In addition 

to this, I have determined for the first time that astrocytes are an important neural 

cell population in the pathogenesis of Drp1-dependent mechanisms of insulin 

resistance in the DVC. Finally, not only have I demonstrated that expressing a 

dominant negative form of Drp1 or knocking down iNOS in the DVC prevented 

the development of HFD-induced insulin resistance, I have shown that these 

methods are able to restore insulin sensitivity and reverse the effects of HFD-

induced loss of insulin-induced hypophaia. 
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1. Activation of Drp1, (a) Drp1-S637A, increases iNOS levels which in turn induces ER stress 

leading to insulin resistance in the DVC and hyperphagia. Inhibition of Drp1, using an 

adenovirus expressing a catalytically inactive form of Drp1, (b) Drp1-K38A or (c) inhibition of 

iNOS, using a lentiviral system to deliver a ShRNA of the mRNA of the iNOS proteins, 

ShiNOS, prevents HFD induced ER stress leading to insulin resistance in the DVC 
2. Inhibition of Drp1 in the astrocytes of, Drp1-K38A::GFAP decreased iNOS levels and 

prevented HFD-dependent insulin resistance and hyperphagia 
3. Inhibition of Drp1(d) or iNOS (e) in the DVC in 28-day HFD-fed rats restored insulin 

sensitivity and decreased food intake 

Figure 7.1 Summary figure of the main findings  
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