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Slow dynamics, aging and crystallization of multiarm star glasses.
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Abstract

Multiarm star polymers are model systems with tunable intermediate colloid to polymer-like

character, exhibiting rich phase behaviour, internal relaxations and flow properties. An important

puzzle for several years has been the lack of clear experimental proof of crystalline states despite

strong theoretical predictions. We present unambiguous evidence, via multispeckle dynamic light

scattering (MSDLS) and small angle neutron scattering (SANS) for such crystallization in a solvent

of intermediate quality. An unexpected speed-up of the short-time star diffusion observed in

MSDLS was attributed by SANS to crystallization, via ageing, of the multiam star glass. This

delayed glass to crystal transition establishes a novel pathway for star crystallization that might

be generic in colloidal glasses.

PACS numbers: 87.70.Nd, 61.25.Hq, 82.70.-y
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The interplay of thermodynamic equilibrium phases with metastable non-ergodic states is

one of the most intriguing and less well-understood phenomena in condensed matter physics.

In a variety of liquids the structural relaxation slows-down dramatically upon reducing tem-

perature or increasing concentration, while beyond the liquid-glass transition crystallization

is suppressed by an intervening glassy state [1–3]. The latter is often aging as evidenced

by intrinsic dynamics slowing down with waiting time [4, 5]. Recent molecular dynamics

simulations in hard spheres suggest that spontaneous crystallization from an ageing glass

with no out-of cage diffusive motion is possible[6]. Multiarm star polymers are established as

a unique model system with tunable interactions spanning the regime between hard spheres

and soft interpenetrable flexible polymers [7–9]. As such they attracted significant theoret-

ical and experimental attention, in an effort to explore effects of interparticle interactions

on a variety phenomena from equilibrium phase behavior and non-ergodic transitions to

microscopic dynamics and macroscopic flow properties.

Star polymer solutions are expected to crystallize near their overlap concentration due

to enhanced osmotic pressure [10]. Although a rich phase diagram containing a variety of

thermodynamically stable crystal phases has been predicted by Monte Carlo simulations

and theory [11, 16] so far there is no unambiguous experimental evidence of any crystal

formation of multiarm stars [8, 12] except for some fragmental SANS data [13] and contrary

to diblock copolymer micelles at rest [17, 18] or after small shear [19]. Instead, at high

concentrations non-ergodic states were often encountered either increasing number density

[14], similarly to hard spheres, or temperature at intermediate-quality solvent [15] due to

an increase of the effective volume fraction via thermal swelling of the polymer arms. Even

for starlike micelles, whose interactions and structure factor largely resemble those of stars,

crystallization was only observed at intermediate functionalities[20]. Brownian dynamics

simulations and mode coupling predictions provided some theoretical understanding of the

observed arrested states [16] while recent simulations indicated a kinetic amorphous-to-

crystal transition in multiarm stars in marginally good solvent[21]. Still the elusive character

of star crystallization remained an open problem introducing debates on the validity of the

theoretical predictions or the quality of samples and thus of a variety of novel experimental

findings. The lack of experimental proof was often attributed to outer blob fluctuations

and finite polydispersity effects that suppress ordering [8, 12] while chain exchange and

functionality variability in polymer micelles was considered to facilitate crystallization [22].
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Here we present MSDLS and SANS measurements of multiarm star glasses in an in-

termediate solvent, probing the time evolution of intrinsic dynamics and structure after a

temperature jump from the liquid state. Such procedure revealed an unexpected pathway

towards crystal formation via a slow aging of the initially frustrated glassy state providing

unambiguous evidence for the long-awaited multiarm star crystallization. It further pro-

vided experimental proof for a glass to crystal transition in the absence of long-time out of

cage motion diffusive motion. Such route to equilibrium may be proven generic in colloidal

glasses, at least with repulsive interactions[6].

We used a regular protonated or deuterated 1,4-polybutadiene (PB) star [23] with f = 122

arms dissolved in an intermediate quality solvent (protonated tetradecane). The weight-

average molar mass of the star arm was Ma = 72000 g/mol and its hydrodynamic radius

and radius of gyration, measured by DLS and SANS at T = 20oC, were RH = 45nm and

Rg = 38nm, respectively, while both increase with T towards their athermal values [25].

At a concentration of 6.3% by wt. (c/c∗ = 1.26, with c∗ = 3fMa/(4NAπR3
H) calculated at

20oC) the sample exhibits a liquid to glass transition at T ≃ 20oC [25]. The dilute Rg value

gives a dimensionless packing fraction, η = (π/6)ρσ3 = 0.218 (with σ = 1.32Rg [7]) while

the measured by SANS at c=6.3%, Rg = 27.3nm, yields η = 0.081. We follow aging of such

glassy state as a function of waiting time, tw, after a temperature jump from the liquid state

at 15oC to 20o (or 25oC) by monitoring the slow dynamics and structure via MSDLS and

SANS, respectively.

Dynamic light scattering was performed to calculate the time-autocorrelation function

[2], g(2)(q, τ) = 〈I(q, t + τ)I(q, t)〉 / 〈I(t)〉2 of the scattered intensity, I(t), at several wave

vectors, q (= (4πn2/λ0) sin(θ/2)), where n2 (= 1.497) the suspension refractive index, λ0

(= 532 nm) the laser wavelength and θ the scattering angle. For the slow relaxation we

utilized a home made MSDLS set-up with a multipixel CCD camera detector(80x300 pixels

at 2 or 20fr/s). The fast part of g(2)(q, τ), was measured with a single-mode fibre and a

PMT on a continuous, slowly rotating sample averaging over a large number of speckles.

After cutting-off the decay due to sample rotation, the two parts were linked (fig. 1). SANS

measurements were performed at the Swiss spallation neutron source, SINQ. The raw data

were corrected for detector efficiency, incoherent background scattering, and transmission

and converted into absolute units using water as a standard.

We first present the dynamic light scattering data following a temperature jump from
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FIG. 1: Time evolution of the correlation function in a 6.3% wt. (1.26c∗) solution of multiarm

stars in tetradecane after a temperature jump from T = 15oC to 25oC measured at q = 0.024nm−1

(θ = 90o). The arrows indicate the initial slowing-down and subsequent speed-up of the dynamics.

Inset: Corresponding degree of correlation for few sample times, as indicated, as a function of

waiting time.

the liquid (15oC) to the glass (25oC). The degree of correlation between speckle patterns

at time tw and tw + τ given by c
I
(tw, τ) =

〈Ip(tw)Ip(tw+τ)〉
p

〈Ip(tw)〉
p
〈Ip(tw+τ)〉

p

− 1, with Ip(tw) the time

dependent intensity of the pth pixel and 〈...〉p the average over all CCD pixels, monitors

temporal changes of intensity correlations [26]. Averages of c
I
(tw, τ) over a short time

window, with stationary dynamics, provide the two-time correlation function, g(2)(tw, τ)−1,

representing the evolution of ageing dynamics (over longer times) with waiting time tw. The

time evolution of c
I
(tw, τ) and g(2)(tw, τ) immediately after jumping into the glassy state

(at T = 25oC) is shown in fig. 1. For all delay times, τ , c
I
(tw, τ) exhibits an initial fast

increase reaching a first plateau at tw ∼ 103s resulting into a rapid slowing-down of the

slow relaxation mode in g(2)(tw, τ) by about three decades, while the fast process, linked to

the cooperative diffusion of the star polymer arms [14], is unaffected. Note that the sample

at 25oC exhibits a rheological solid-like behavior with no indication of terminal relaxation

[25]. Yet, the existence of a slow relaxation process indicates the activated type of ultra-slow
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dynamics present in a wide range of frustrated systems [5, 27]. Although the existence of

such ageing, slow modes is expected in glassy materials, a surprising observation is revealed

for waiting times longer than about 105s: the degree of correlation starts to decrease towards

a second steady state plateau leading to a speed-up of the slow dynamics, that eventually

splits into two modes. Such unprecedented behavior signifies a novel path of this soft glass

towards a new steady state.

After ∼105s the faster of the two slow processes speeds-up whereas the slower one is

stationary. The evaluation of the corresponding relaxation times is feasible via an Inverse

Laplace Transform (ILT) assuming a superposition of single exponential decays, g(2)(τ)−1 =
∫

L(ln t) exp(−τ/t)d ln t, common in polymeric systems. The angular dependence of the

decay rate, Γ(= 1/t) [28], for these two modes is shown in the inset of figure 2. The

intermediate mode with Γself ∝ q2, has been identified with the star short-time self-diffusion

which is tractable by light scattering at low qR due to finite star polydispersity giving rise

to incoherent scattering [2, 8, 14]. The slow one however reveals Γslow ∝ q indicative of

non-diffusive ultra-slow dynamics, commonly observed in a large variety of frustrated soft

matter systems and attributed to the relaxation of internal stresses [5]. Note that the larger

lengthscale probed (qRg = 0.35 at the lowest q) is ˜3 particle radii corresponding to distances

of about one to two cages. The lack of a non-ergodic plateau proves that concentration

fluctuations relax totally over this length scale via the observed three modes; hence there is

no long-time out of cage diffusion over the distance of a couple of cages. Figure 2 depicts

the time evolution of the self-diffusion with the initial slowing-down after temperature jump

into the glass regime followed by a gradual speed-up, leading to a final steady state at long

times.

The speed-up of slow dynamics as the multiarm star glass ages brings forward the generic

question of the underlying mechanism that drives aging in colloidal glasses and the re-

lated structural changes. The picture of an energy landscape evolving with time towards

metastable states with deeper local minima where it is trapped for longer times [29] gives rise

to progressively slower dynamics, in accordance with experimental observations in various

glassy systems. To the contrary, the speed-up observed here can only be rationalized with

the conjecture that the star glass eventually evolves towards a crystal at long times. In this

case ordering leads on average to locally enhanced free volume resulting in faster particle

dynamics. To test such hypothesis, we performed SANS measurements following exactly the
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FIG. 2: Relaxation time of the self-diffusion mode at θ = 90o as a function of waiting time. Inset:

q-dependence of the decay rates for the intermediate (self-) and ultraslow relaxation (black) process.

same experimental protocol.

In fig. 3 we show the time evolution of the structure factor, S(q), and the corresponding

2D SANS images for a 6.3% (c/c∗ = 1.26) sample at T = 25oC after a fast temperature

jump from the liquid state at 15oC. S(q) was calculated from the radially averaged SANS

intensity of the concentrated deuterated star after subtraction of the incoherent scattering

and then normalized by the form factor. The latter was measured in a concentrated solution

of protonated star with 0.1% deuterated star (total c = 6.3%) in protonated tetradecane.

In agreement with DLS (fig. 1) and rheology [25] the sample at T = 15oC is liquid as

suggested from the radially symmetric 2D SANS (image A) and S(qpeak) < 2. After the

temperature is increased to T = 25oC the amorphous ring of the 2D SANS image slowly

disappears, while two distinct Bragg spots are formed in few thousand seconds (image B,

fig. 3) with S(qpeak) ∼ 3 and higher order peaks appearing. Subsequently, a slow evolution

with time is observed with the first-neighbor ring in the 2D Bragg image gaining in intensity

and decreasing in radial width (image C) suggestive of bigger and better crystallites. The

main peak increases towards a steady state value of S(qpeak) ∼ 5 after almost 50 hrs (fig 3d).
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FIG. 3: Time evolution of SANS data from a 6.3% multiarm star solution in tetradecane at

T = 25◦C after temperature jump from 15oC. On the left: Structure factor taken at 15oC (a) and

at 25oC at different waiting times (b,c). The corresponding 2D SANS images are shown at the

top. Clear evidence of Bragg reflections is seen after 3 hours. (d) Amplitude and position of the

structure factor peak.

These high S(qpeak) values exceed significantly 2.85, the empirical Hansen-Verlet criterion

[30] for crystallization confirmed by theory and simulations for multiarm stars [7]. Moreover,

qpeak is virtually unaffected by the glass-crystal transition since the average distance between

first neighbors depends only on number concentration.

The Bragg spots in the 2D image and the high S(qpeak) values provide unambiguous

proof of crystallization through slow aging of the initial glassy state of multiarm stars. Note

that at the final steady state, S(q) data at high q (not shown) cannot clearly distinguish

between an FCC and BCC structure. The asymmetric Bragg spots (image B, figure 3) which
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FIG. 4: Time evolution of the dynamics and structure in a 6.3% multiarm star solution after a

temperature jump from T = 15oC to T = 20oC: (a) Slow part of the correlation function at various

waiting times and (b) Amplitude (solid red) and position (open black) of the structure factor peak

along with 2D images at tw = 0, 17, 30 and 100 hrs. Arrows denote the times when 2D SANS data

were collected.

may be attributed to incomplete averaging over few randomly oriented crystallites become

stronger (image C, figure 3) while the azimuthal width, which is a measure for orientation

distribution, broadens.

We further investigated the behavior closer to the liquid-solid transition [25]. MSDLS

and SANS experiments at T = 20oC, after jumping from the liquid (15oC) (fig. 4), reveal

qualitatively the same mechanism. The slow modes in g(2)(tw, τ) initially grow in strength

and become slower but after few thousand seconds they start speeding-up and reach a steady

state in several days (fig 4a,b). Compared to 25oC, SANS data reveal a much longer-lived
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glassy state before crystallization commences, with the first weak crystalline spots appearing

after a day and the peak of S(q) exceeding 3 after more than 2 days (fig 4) suggesting a

weaker driving force closer to the transition . However whether such behavior persists at

even higher temperatures (well into the glass regime) or whether the system is trapped

in a stronger glassy state remains an unresolved question. Note that earlier preliminary

measurements on a similar star (same f but smaller Ma = 7000) showed symmetric Bragg

peaks when concentrated athermal solutions where presheared [13] confirming the shear

induced crystallization but not addressing the connection between aging and crystallization

close but above vitrification. Moreover here a temperature drop to 15oC leads to crystal

re-melting providing an efficient way to re-homogenize the system, avoiding shear.

Summarizing, we have presented clear experimental evidence for the crystallization of

multiarm stars via a well-controlled pathway in an intermediate quality solvent were the

effective volume fraction is tuned by temperature. Crystallization emerges through aging of

a glassy state in which the system is trapped immediately after a temperature jump from a

liquid state. During crystallization, the slow relaxation of g(2)(tw, τ) related to star short-

time, in cage, diffusion progressively speeds-up due to creation, locally, of larger free volume

via ordering of the stars. Moreover, long-time diffusion over distances of one to few cages is

absent and replaced by an ultraslow non-diffusive relaxation typical in soft matter glasses.

Hence, we have identified experimentally a novel pathway to star crystallization through

an intriguing aging of the glass in the absence of simple long-time diffusion, reminiscent of

recent computer simulations in hard spheres[6] that might be generic in glasses with repulsive

interactions and possibly even broader[31]. In fact, the softness of the particles here (arms

fluctuations) maybe experimentally beneficial in observing the glass-to-crystal transition

faster compared to the hard sphere case proposed in [6]. Crystallization is slower closer

to the liquid-solid transition, revealing a longer-lived glassy state. The detailed effects of

concentration, proximity to melting temperature and shear on the kinetic pathway towards

crystallization will be the subject of future work.
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