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Abstract

As a first step towards the interpretation of dynamic light scattering with evanescent
illumination, in order to probe dynamics near walls, we develop a theory for the initial
slope of the intensity auto-correlation function for suspensions of interacting spheres. An
expression for the first cumulant is derived that is valid for arbitrary concentrations, which
generalizes a well-known expression for the short-time, wave-vector dependent collective
diffusion coefficient in bulk to the case where a wall is present. Explicit expressions and
numerical results for the various contributions to the initial slope are obtained within a
leading order virial expansion. The dependence of the initial slope on the components
of the wave vector parallel and perpendicular to the wall, as well as the dependence on
the evanescent-light penetration depth are discussed. For the hydrodynamic interactions
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between colloids and between the wall, which are essential for a correct description of the
near-interface dynamics, we include both far-field and lubrication contributions. Lubri-
cation contributions are essential to capture the dynamics as probed in experiments with
small penetration depths. Simulations have been performed to verify the theory, and to
estimate the extent of the concentration range where the virial expansion is valid. The
computer algorithm developed for this purpose will also be of future importance for the in-
terpretation of experiments, and to develop an understanding of near-interface dynamics,
at high colloid concentrations.

1 Introduction

The understanding of interactions of macromolecules with a solid/liquid interface is important
for many applications of synthetic systems as well as biological processes. Interactions of col-
loids with a solid wall can lead to structure formation at the wall. The static interactions
between colloidal particles and interfaces that underly such near-interface structure forma-
tion are relatively well understood within the framework of established potentials, such as the
DLVO potential resulting from a combination of charge- and van der Waals-interactions, the
depletion potential resulting from polymer depletion in the region between the colloid and the
interface, and steric repulsion between chemically grafted polymer coatings. Besides structural
order, also the dynamics of colloids is affected by the presence of an interface. Contrary to the
near-interface equilibrium structures, the dynamics is determined not only through the above
mentioned static interactions, but also through hydrodynamic interactions. These interactions
are mediated via the solvent, and include interactions of the colloids with the interface and
colloid-colloid interactions. As yet, little is known about near-interface dynamics of concen-
trated suspensions.

The dynamics of sub-micron sized colloids can be probed by evanescent wave dynamic light
scattering (EWDLS), where the intensity auto-correlation function of light that is scattered
from an evanescent wave is measured. The penetration depth of the evanescent wave can be
tuned by the angle of the incident laser beam with respect to the interface. For small penetration
depths, the dynamics of colloids very close to the wall is probed, whereas for larger penetration
depths also particles which are further away from the wall contribute to the measured intensity
correlation function. Contrary to bulk dynamic light scattering, a theory that is necessary for
the interpretation of EWDLS-correlation functions is not yet existing. In a very early attempt
[1], the EWDLS-correlation function for very dilute dispersions has been calculated with the
neglect of hydrodynamic interactions with the wall. Since, however, hydrodynamic interactions
are essential, this theory has limited value for the interpretation of experimental data.

As a first step towards the interpretation of EWDLS-correlations functions, the initial slope
of the correlation function for very dilute dispersions of spherical colloids has been expressed in
terms of single-particle hydrodynamic friction functions [2, 3]. Numerical values for the initial
slope can be obtained, using the semi-analytic predictions for the hydrodynamic functions in
the presence of a wall that have been derived in the sixties by Brenner and coworkers [4, 5],
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and which have been verified experimentally [3, 6, 7, 8, 9, 10]. The theoretically predicted
dependence of the initial slope on the penetration depth and the components of the scattering
wave vector parallel and perpendicular to the wall are in accordance with experiments [3].
These experiments have become possible only recently, by means of EWDLS-equipment that
allows to vary the components of the scattering wave vector parallel and perpendicular to the
wall independently [2, 11].

The capability to vary the parallel and perpendicular components of the scattering wave
vector independently is a necessary requirement for the study of the anisotropic diffusion of
colloids near a wall. To our knowledge, the only experimental study on diffusion of colloidal
spheres at high concentration is Ref.[12]. In this paper, EWDLS data for PMMA particles
close to a wall are discussed for a wide range of volume fractions. Part of the interpretation
of the data relies on the assumption that the expression for the initial slope of the EWDLS-
correlation function has the same form as for very dilute systems [2, 3], where the parallel and
perpendicular ”diffusion coefficients” are now concentration dependent. For particle volume
fractions above φ ≥ 0.35, the observed near wall diffusion coefficients superimpose with the
corresponding bulk diffusion coefficients of the particles. That is, at high concentrations, the
hydrodynamic effect of the wall is small. This indicates that hydrodynamic interactions with
the wall are partly screened.

It is the purpose of this paper to develop a theory for the initial slope of the EWDLS-
correlation function for suspensions of interacting spheres. An exact expression is derived for
the initial slope, for which a leading order virial expansion is derived. Numerical results are
obtained from an additional analysis of the hydrodynamic interactions between two colloidal
spheres and the wall. The calculation of hydrodynamic mobilities, including lubrication contri-
butions, is based on the HYDROMULTIPOLE code implemented according to Ref.[13]. The
multidimensional integrals in the above procedure have been performed numerically. Additional
Monte-Carlo computer simulations are performed that show that the virial expansion for the
initial slope of the EWDLS-correlation function is valid up to quite high concentrations.

This paper is organized as follows. After an introduction, a general expression for the initial
slope of the EWDLS-correlation function for interacting spheres is derived in section 2. This
generalizes the well-known and much studied expression for the short-time collective diffusion
coefficient in bulk to the case where a wall is present. In section3, the various contributions to
the initial slope are expressed in terms of ensemble averages, which are tractable for numerical
evaluation. The virial expansions of the various contributions are discussed in section 4. The
details of the computer simulations for arbitrary concentrations are given in section 5 and
numerical results are discussed in section 6. Section 7 contains a summary, concluding remarks
and suggestions for further work.
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2 Short-time Evanescent Wave Dynamics

In this section we derive an expression for the short-time decay of light scattering correlation
functions as measured by the evanescent-wave scattering from suspensions of mono-disperse
spherical colloids. This expression is a generalization of a well-known result for bulk light
scattering to evanescent wave illumination. For infinite penetration depths, the results for
evanescent wave scattering of course reduce to the well-known expressions for scattering from
bulk samples. In case of the standard dynamic light scattering from bulk samples, the initial
decay of the electric field auto-correlation function ĝ1 is exponential in time,

g1 ≡ < Es(t) E?
s (t = 0) > ∼ exp{−Γ1 t} , (1)

where Es is the instantaneous scattered electric field strength, and Γ1 is the first cumulant,
which is equal to [14],

Γ1 = q2 D0
H(q)

S(q)
, (2)

where q is the scattering vector, D0 is the diffusion coefficient of a free diffusing sphere, H is
the ”hydrodynamic function” and S is the static structure factor. The hydrodynamic function
is related to hydrodynamic interaction mobilities µij as,

H(q) =
1

µ0 N

N∑
i,j

< q̂ · µij · q̂ exp{iq · (ri − rj)} > , (3)

where N is the total number of particles in the volume that is probed in a light scattering
experiment, q̂ is the unit vector in the direction of q, the brackets < · · · > refer to ensemble
averaging, and rk is the position of the center of sphere k. The hydrodynamic mobility connects
the velocities of spheres to the hydrodynamic forces acting on them,

Ui = µij · Fj, (4)

where Ui is the velocity of particle i due to the force Fj applied to particle j. Here, µ0 =
1/6π η0 a is the mobility of a non-interacting sphere, which is connected to the Einstein diffusion
coefficient D0 as kBT µ0 (where η0 is the solvent viscosity, a is the radius of the sphere, kB is
Boltzmann’s constant and T the temperature). Furthermore, the static structure factor is
defined as,

S(q) =
1

N

N∑
i,j

< exp{iq · (ri − rj)} > , (5)

which can in principle be obtained independently from static light scattering experiments.
There are a number of theories devoted to the prediction of the concentration and wave-

vector dependence of H(q). These theories have been verified by experiments on various col-
loidal systems with different pair-interaction potentials [15, 16, 17, 18].
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There are two fundamental differences between standard dynamic light scattering and
evanescent-wave scattering. First of all, the illumination intensity varies on a length scale
comparable to the size of the colloidal particles. When the wall is located at z = 0, the in-
cident intensity varies like ∼ exp{−κz}, where κ−1 is the intensity-penetration depth. The
instantaneous scattered electric field strength Es is now given by,

Es ∼
∑

j

exp
{−1

2
κzj

}
exp {iq · rj} , (6)

where it is assumed that the particles are dielectrically isotropic. Secondly, the hydrodynamic
mobilities µij are affected by the presence of the wall. Two particles near a wall interact
hydrodynamically in a different way as when the particles are far away from the wall, since
shear waves generated by one of the particles are affected by the wall before reaching the other
particle. Hereafter, we shall denote the hydrodynamic mobility in the presence of a wall by µw

ij,
where the superscript ”w ” stands for ”wall”.

The scattered electric field is a Gaussian variable with zero mean, so that Fick’s theorem can
be applied to express the intensity auto-correlation function in terms of ensemble averages of bi-
linear products of the scattered electric field strength. Furthermore, the average < Es(t) Es(t =
0) > is equal to 0, provided that there is translational invariance in directions parallel to the
wall. This implies that the Siegert relation also holds in case of evanescent-wave scattering
[2],[3],

< is(t) is(t = 0) > = I2+ | g1 |2 , (7)

where is is the instantaneous intensity that is scattered by the colloidal spheres, and I =< is > is
the average intensity. Just like for standard dynamic light scattering on bulk samples, it is thus
sufficient to consider the field auto-correlation function. According to eq.(6), this correlation
function is given by,

g1 ∼
N∑

i,j=1

< exp
{−1

2
κ (zi(t)− zj(t = 0))

}
exp {−iq · (ri(t)− rj(t = 0))} > (8)

The short-time behaviour of this correlation function can be calculated, starting from the
general expression for the equilibrium time-correlation function of two phase-functions f and
g,

< f(t) g(t = 0) > =

∫
dR f(R) exp

{
L̂t

} [
g(R) Pw

eq(R)
]

, (9)

where R = {r1, r2, · · · rN} is the 3N -dimensional position in phase space, Pw
eq ∼ exp{−βΦ}

is the Boltzmann probability density function of R, and Φ is the total interaction potential
of the N interacting spheres, including the interactions with the wall. Furthermore, L̂ is the
Smoluchowski operator that describes the temporal evolution of the conditional probability
density function (pdf) P (R, t | R0) of the position R of the colloidal sphere at time t, given
that its position is R0 at time t = 0,

∂P (R, t | R0)

∂t
= L̂P (R, t | R0) . (10)
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The Smoluchowski operator is given by (with h an arbitrary phase function),

L̂h = kBT

N∑
i,j=1

∇i · µw
ij · [∇j h + β h∇jΦ ] . (11)

Note that the hydrodynamic mobilities µw
ij as well as the total potential energy Φ include

both interactions between the colloidal spheres and the wall. Like for the bulk mobilities, the
mobilities in the presence of a wall satisfy the Lorentz symmetry relation [19],[20],

µw
ij =

[
µw

ji

]T
, (12)

where ”T ” stands for ”transpose”. Comparing the general expression (8) with our specific
function shows that,

f(R) =
N∑

i=1

exp
{−1

2
κ zi

}
exp {−iq · ri}

g(R) =
N∑

j=1

exp
{−1

2
κ zj

}
exp {+iq · rj} . (13)

A short-time expansion can now be obtained by approximating the exponential operator to
leading order in time,

exp{L̂t} = Î + L̂ t + ”O(t2)” , (14)

where Î is the identity operator. Substitution of eqs.(13) and (14) into eq.(9) leads to the
short-time expansion of g1. This expression is most conveniently evaluated by noting that,

∫
dR f(R) L̂ [

Pw
eq(R) g(R)

]
= −kBT

N∑
i,j=1

∫
dR Pw

eq(R) [∇i f(R)] · µw
ij · [∇j g(R)] , (15)

where a partial integration has been performed, and it is used that Pw
eq ∼ exp{−β Φ}. The

square brackets [· · · ] are used to indicate that the action of the ∇-operators is limited to the
functions within these brackets. Using this expression together with our specific functions in
eq.(13), readily leads to the following expression for the first cumulant,

Γ1 = D0

[
1
2
κ êz − iq

] · Hw(κ,q)

Sw(κ,q)
· [ 1

2
κ êz + iq

]
, (16)

where êz = (0, 0, 1) is the unit vector normal to the wall pointing into the suspension,

Hw(κ,q) =
κ

µ0 nA

N∑
i,j

< exp
{−1

2
κ ( zi + zj )

}
µw

ij exp {iq · (ri − rj)} > , (17)
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is the hydrodynamic function, and,

Sw(κ,q) =
κ

nA

N∑
i,j

< exp
{−1

2
κ ( zi + zj )

}
exp {iq · (ri − rj)} > , (18)

is the wall structure factor. In eqs.(17,18), nA/κ is the number of particles within the probed
scattering volume, with n the bulk particle number density and A the illuminated area. The
brackets < · · · > in eqs.(17,18) denote the average with respect to Pw

eq.
The above result (16-18) is a generalization of the bulk expressions (2,3) and (5) for the

short-time behaviour of g1. For very large penetration depths (κ → 0), they reduce to these
well-known bulk expressions, as they should.

For very dilute suspensions of spheres, we have,

µw
ij = δij

[
( êxêx + êyêy ) µw

‖ + êzêz µw
⊥

]
, (19)

where δnm is the Kronecker delta, where µw
‖ and µw

⊥ are the scalar mobilities for motion parallel
and perpendicular to the wall, respectively, and êx and êy are two orthogonal unit vectors
parallel to the wall. Furthermore, in case of hard-core interactions between the colloidal sphere
and the wall, we have Φ = 0 for z < a (with a the radius of a colloidal sphere), and Φ = constant
for z > a. The first cumulant in eq.(16) is then easily shown to reduce to,

Γ1 =
(

1
4
κ2 + q2

⊥
)

< D⊥ > + q2
‖ < D‖ > , (20)

where q⊥ and q‖ are the components of the scattering wave vector q perpendicular and parallel
to the wall, respectively, and where,

< D⊥, ‖ > = kBTκ

∫

z>a

dz exp{−κ (z − a)}µw
⊥,‖(z) . (21)

This reproduces the expression that was derived in Ref.[3].
An essential difference between dilute and interacting systems is, that there are contributions

to Γ1 which do not vary with ∼ q2
⊥ , ‖. Due to invariant properties of the system it immediately

follows from eq.(16) that the first cumulant can be written as,

Γ1 =
D0

Sw

[ (
1
4
κ2 + q2

⊥
)

H⊥,⊥ + q2
‖ H‖, ‖ + 1

2
i q‖ κ

(
H⊥, ‖ −H‖,⊥

)
+ q‖ q⊥

(
H⊥, ‖ + H‖,⊥

)]
, (22)

with,

H⊥,⊥(κ, q⊥, q‖) = êz ·Hw(κ,q) · êz ,

H‖, ‖(κ, q⊥, q‖) = q̂‖ ·Hw(κ,q) · q̂‖ ,

H⊥, ‖(κ, q⊥, q‖) = êz ·Hw(κ,q) · q̂‖,
H‖,⊥(κ, q⊥, q‖) = q̂‖ ·Hw(κ,q) · êz , (23)
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and where we decomposed q into horizontal and vertical parts,

q = q‖ + q⊥êz = q‖q̂‖ + q⊥êz . (24)

It follows from the symmetry relation in eq.(12) that H⊥, ‖ = H?
‖,⊥, so that eq.(22) can also be

written as,

Γ1 =
D0

Sw

[ (
1
4
κ2 + q2

⊥
)

H⊥ + q2
‖ H‖ + 1

2
q‖ κHI + q‖ q⊥ HR

]
, (25)

where for brevity we defined,

H⊥(κ, q⊥, q‖) = H⊥,⊥(κ, q⊥, q‖) ,

H‖(κ, q⊥, q‖) = H‖, ‖(κ, q⊥, q‖) ,

HI(κ, q⊥, q‖) = 2=H‖,⊥(κ, q⊥, q‖) ,

HR(κ, q⊥, q‖) = 2<H‖,⊥(κ, q⊥, q‖) , (26)

where = and < stand for ”imaginary” and ”real part of”, respectively. In our previous notation
for dilute systems, we denoted D0H⊥, ‖ as < D⊥, ‖ > (see eqs.(16,20,21)). Note that HI,R are
both equal to 0 for very dilute systems. As will be seen later, for concentrated systems, both
HR and HI vanish when q⊥ is fixed and q‖ → 0, but in case q‖ is fixed and q⊥ → 0 only the
component HR vanishes. The ”off-diagonal contributions” HI,R are generally significant, and
cannot be neglected against the ”diagonal contributions” H⊥,‖. The off-diagonal contributions
also become zero for very large q. The diagonal contributions can be related to self-diffusive
properties for such large wave vectors, as will be seen later.

3 The Wall Structure Factor and Hydrodynamic Tensor

In this section we introduce the basic functions and operators that are used to express the
wall hydrodynamic tensor(17) and the wall structure factor (18) in a form that is tractable for
explicit, numerical evaluation. Furthermore, we will define response operators appropriate for
the present problem, and generalize the notion of self-diffusion to the situation where a wall is
present.

In order to proceed, we first introduce the s-particle distribution functions g(r1, . . . , rs),
which are given by,

nsg(r1, . . . , rs) = lim
∞

N !

(N − s)!

∫
drs+1 . . .

∫
drn Pw

eq(R), s = 1, 2, . . . , (27)

and Pw
eq is, as before, the equilibrium distribution function for the system of N particles in a

presence of wall. Here, lim∞ denotes the thermodynamic limit, which is also understood to be
taken in the definitions in eqs.(17,18) for the hydrodynamic function and wall structure factor,
respectively. In order to carry out the thermodynamic limit, lim∞, we select the cuboidal
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shape of the system with volume V = LxLyLz and go with Lx, Ly and Lz uniformly to infinity
keeping the bulk density n constant. From below the system is bounded by a hard wall at
z = 0, with a surface area A = LxLy. Considering the symmetry of the system, the 1-particle
distribution function depends only on the distance from the wall, i.e. g(r) =g(z). Due to the
same symmetry, for the 2-particle distribution function we have,

g(r, r′) = g(z, z′, ρ) , (28)

where the symbol ρ denotes the length of the vector ρ, which is defined as,

r− r′ = ρ+(z − z′)ez . (29)

Employing the one and two particle distribution functions, the wall structure factor (18) can
be written as,

Sw(κ,q) = κ

∫ ∞

0

dz e−κzg(z) +

2πnκ

∫ ∞

0

dz

∫ ∞

0

dz′ e−κ(z+z′)/2 cos [q⊥(z − z′)]
∫ ∞

0

dρρ h(z, z′, ρ)J0(q‖ρ) , (30)

where,
h (z, z′, ρ) = g (z, z′, ρ)− g(z)g(z′) . (31a)

In addition, the integration over the angle ϕ, defined by the relation q̂‖ · ρ̂ = cos ϕ, has been
carried out. The Bessel function J0 in eq.(30) enters due to the relation [21]

∫ 2π

0

eiqρ cos ϕdϕ = 2πJ0(qρ) . (32)

In the limit of large penetrations depths, where κ = 0, the eq.(30) for the wall structure
factor reduces to,

S(q) = 1 + 4 π n

∫ ∞

0

dr r2 h(r)
sin{q r}

q r
, (33)

where h is then total bulk correlation function. This corresponds to the expression for the
structure factor in eq.(5)

The tensor Hw(κ, q⊥, q‖) is similarly given in terms of one and two-particle-integrals as,

Hw(κ, q⊥, q‖) = κ

∫ ∞

0

dz e−κzA(z) +

nκ

∫ ∞

0

dz

∫ ∞

0

dz′e−κ z+z′
2 eiq⊥(z−z′)

∫
dρ eiq‖·ρB(z, z′,ρ) , (34)

where the kernel operators A and B are defined as,

A(z) =
1

nµ0

lim
∞

〈
N∑

i=1

δ(r− ri)µ
w
ii(R)

〉
, (35)
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B(z, z′,ρ) =
1

n2µ0

lim
∞

〈
N∑

i6=j

δ(r− ri)δ(r
′−rj)µ

w
ij(R)

〉
. (36)

Due to the invariant properties, the tensors A and B have the following representations,

A(z) = A⊥(z)êzêz + A‖(z)1‖ , (37)

and,

B(z, z′,ρ) = Ba(z, z
′, ρ)êzêz + Bb(z, z

′, ρ)(1‖ − ρ̂ρ̂)+

Bc(z, z
′, ρ)ρ̂ρ̂ + Bd(z, z

′, ρ)ρ̂êz+Be(z, z
′, ρ)êzρ̂ , (38)

where,
1‖ = 1− êzêz . (39)

Since the tensor B obeys the Lorentz symmetry (see eq.(12)),

B(z′, z,−ρ) = BT(z, z′, ρ) , (40)

its elements have the following properties,

Bα(z′, z, ρ) = Bα(z, z′, ρ), α = a, b, c,

Bd(z
′, z, ρ) = −Be(z, z

′, ρ) . (41)

We can thus write the hydrodynamic factors (26) as,

H⊥(κ, q⊥, q‖) = κ

∫ ∞

0

dz e−κzA⊥(z) +

2πnκ

∫ ∞

0

dz

∫ ∞

0

dz′ e−κ(z+z′)/2 cos [q⊥(z − z′)]×
∫ ∞

0

dρ ρBa(z, z
′, ρ)J0(q‖ρ) , (42)

H‖(κ, q⊥, q‖) = κ

∫ ∞

0

dz e−κzA‖(z) +

πnκ

∫ ∞

0

dz

∫ ∞

0

dz′ e−κ(z+z′)/2 cos [q⊥(z − z′)]
∫ ∞

0

dρ ρ

[
Bb(z, z

′, ρ)
(
J0(q‖ρ) + J2(q‖ρ)

)
+ Bc(z, z

′, ρ)
(
J0(q‖ρ)− J2(q‖ρ)

)]
, (43)

HR(κ, q⊥, q‖) = −4πnκ

∫ ∞

0

dz

∫ ∞

0

dz′ e−κ(z+z′)/2 sin [q⊥(z − z′)]
∫ ∞

0

dρ ρ Bd(z, z
′, ρ)J1(q‖ρ) ,

(44)
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and,

HI(κ, q⊥, q‖) = 4πnκ

∫ ∞

0

dz

∫ ∞

0

dz′ e−κ(z+z′)/2 cos [q⊥(z − z′)]
∫ ∞

0

dρ ρ Bd(z, z
′, ρ)J1(q‖ρ) .

(45)
To arrive at the above expressions, the following recurrence relation has been used for the Bessel
function Jn [21],

J ′n(x) =
1

2
[Jn−1(x)− Jn+1(x)] . (46)

In the limit κ → 0 the first cumulant (25) with the H-components (42-45) reduces to the
cumulant in eq.(2) for bulk samples.

Just like for the bulk hydrodynamic function in eq.(3), the corresponding wall-hydrodynamic
function can be written as a sum of a self- and distinct-part. The self part is the q-independent
contribution containing the operator A, and the q-dependent distinct part involves the operator
B. The self part is the only remaining contribution for large wave vectors. Contrary to the
static structure factor (5) in bulk, there is a non-trivial self part to the wall structure factor
Sw(κ,q), which is equal to,

Sself
w (κ) = κ

∫ ∞

0

dz e−κzg(z) . (47)

In bulk, the self part of the structure factor is simply equal to unity.
In analogy with bulk response functions Ref.[22], we define response functions that relate

forces with currents in the presence of a wall. These response functions can be expressed in
terms of the above defined operators A and B. Namely, consider a force field F (r), where
F (ri) is the force acting on a particle located at ri. Following the reasoning in Ref.[22], the
resulting mean particle current 〈j (r)〉 can be written as,

〈j (r)〉 =

∫
dr′Y (r, r′) · F (r′) , (48)

where the response function Y, for the case of a suspension in the presence of a wall, is given
by,

Y (r, r′) = nµ0δ (r− r′)A(z) + n2µ0B(z, z′,ρ) . (49)

In addition, the operator A is related to the self-diffusion matrix Ds(z). The latter is defined
by the initial slope of the mean square displacement of a particle, say particle 1, located at a
height z at t = 0,

Ds,αβ(z) =
1

2

d

dt
〈∆x1α(t)∆x1β(t)〉|t=0 , (50)

where the indices α, β = 1, 2, 3 describe Cartesian components, and ∆x1α(t) is the displacement
of particle 1 in the direction α during the time t. It can be shown from the Smoluchowski
equation (10,11) that,

g(z)Ds(z) = D0A(z) . (51)
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Since the matrix Ds(z) has the same invariant property as A(z) (see eq.(37)), one can introduce
the vertical self-diffusion coefficients Ds,⊥ and the parallel one Ds,‖ by,

Ds(z) = Ds,⊥(z)êzêz + Ds,‖(z)1‖ . (52)

In the limit q‖ → +∞ or q⊥ → +∞, only the self parts of Hw and Sw survive. Thus, for
sufficiently large q‖ or q⊥, the first cumulant may be approximated by,

Γ1 ≈ q2
‖ < Ds,‖ >κ +

(
1
4
κ2 + q2

⊥
)

< Ds,⊥ >κ , (53)

where,

< Ds,⊥,‖ >κ=

∫∞
0

dz e−κzg(z)Ds,⊥,‖(z)∫∞
0

dz e−κzg(z)
. (54)

Note that for a dilute system, where interactions between the colloids can be neglected, this
reduces to the formula (21). Like for bulk systems, there is no distinction between self diffusion
and collective diffusion at infinite dilution.

When q⊥is fixed and q‖ → 0, both HR and HI vanish. One can show this directly from the
the Eqs.(44) and (45) or on bases of invariant properties of the system. However, if q‖ is fixed
and q⊥ → 0, only the component HR vanishes.

4 Virial Expansion

For moderately concentrated systems we can perform calculations of the wall structure factor Sw

and components of the wall-hydrodynamic tensor Hw by expanding them in terms of powers
of bulk-particle concentration n far from the wall. To this end we expand the distribution
functions in eq.(27) as,

g(r1, . . . , rs) = g(0)(r1, . . . , rs) + ng(1)(r1, . . . , rs) + ... . s = 1, 2, ... . (55)

By substituting eq.(55) with s = 1 and 2 into (30) one easily obtains the form of the virial
expansion for the factor Sw,

Sw(κ,q) =
∞∑

s=1

ns−1S(s)
w (κ,q) , (56)

where the two first terms are given by,

S(1)
w (κ,q) = κ

∫ ∞

0

dz e−κzg(0)(z) , (57)

and,

S(2)
w (κ,q) = κ

∫ ∞

0

dz e−κzg(1)(z) +

2πκ

∫ ∞

0

dz

∫ ∞

0

dz′ e−κ(z+z′)/2 cos [q⊥(z − z′)]
∫ ∞

0

dρρh(0)(z, z′, ρ)J0(q‖ρ) , (58)
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with,
h(0)(z, z′, ρ) = g(0)(z, z′, ρ)− g(0)(z)g(0)(z) . (59)

For a similar expansion of the hydrodynamic tensor we must first introduce the cluster decom-
position of mobility tensors,

µw
11(R) = µ0

[
m

(1)
11 (r1) +

∑

i6=1

m
(2)
11 (r1, ri) +

∑
1<i<j

m
(3)
11 (r1, ri, rj) + . . .

]
, (60)

µw
12(R) = µ0

[
m

(2)
12 (r1, r2) +

∑
2<i

m
(3)
12 (r1, r2, ri) +

∑
2<i,j

m
(4)
12 (r1, r2, ri, rj) + . . . .

]
. (61)

The cluster components m(i) describe hydrodynamic interactions within the corresponding
cluster of i particles. With the above, the kernels A(z) and B(z, z′,ρ) are thus given by the
series expansion,

A(z) =
∞∑

s=1

ns−1 1

(s− 1)!

∫
d2 . . .

∫
ds g(1, . . . , s) m

(s)
11 (1, 2, . . . , s) , (62)

B(z, z′,ρ) =
∞∑

s=2

ns−2 1

(s− 2)!

∫
d3 . . .

∫
ds g(1, . . . , s) m

(s)
12 (1, 2, . . . , s) . (63)

To make formulas more compact we have employed here the shorthand notation,

i ≡ ri and

∫
di . . . ≡

∫
dri . . . . (64)

By substituting eq.(55) into eqs.(62) and (63), we arrive at the following expansions of the
tensors A and B,

A(z) =
∞∑

s=1

ns−1A(s)(z) , (65)

B(z, z′,ρ) =
∞∑

s=2

ns−2B(s)(z, z′, ρ) , (66)

which, with the help of eqs.(42)-(45), lead directly to the virial expansions of the hydrodynam-
ical tensor components. These expansions start with terms of the order n0 which contain only
the ”self” part given by,

A(1)(z) = g(0)(z)m
(1)
11 (z) . (67)

This is the expression for A at infinite dilution. The tensor B is zero at infinite dilution. The
first order corrections due to interactions between the colloids are equal to,

A(2)(z) = g(1)(z)m
(1)
11 (z) +

∫
d2 g(0)(1, 2)m

(2)
11 (1, 2) , (68)
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B(2)(z, z′,ρ) = g(0)(1, 2)m
(2)
12 (z, z′,ρ) . (69)

In order to obtain numerical results for the first-order corrections, explicit expression for the
distribution functions to zeroth and first order (see eq.(27)), and the appropriate hydrodynamic
one- and two-particle cluster components (see eqs.(60,61)) must be found.

From this point on, we will consider hard-core interactions both for the colloid-colloid and
the colloid-wall interactions. These are interactions where the potential is zero when there
is no overlap of the colloid- and wall-material, and the potential is infinite on overlap. We
also assume that the colloidal spheres are perfect spheres and that the wall is smooth, so
that hydrodynamic interactions on very close colloid-colloid and colloid-wall approach can be
described by lubrication forces.

The small dimensionless parameter in a density expansion is the bulk volume fraction,

φ =
4π

3
a3n , (70)

instead of the concentration n. With Mayer-graph techniques, where the wall is treated as a
very large particle, explicit expressions for the zeroth- and first-order distribution functions are
obtained [23]. To zeroth order it is found that,

g(0) (z) = Θ (z − a) =

{
1 for z > a

0 for z 6 a

}
, (71)

and,
g(0)(1, 2) = g(0) (z1) g(0) (z2) W (1, 2) , (72)

where W (1, 2) is the characteristic function for non-overlap configurations of two spheres, that
is, W (1, 2) = 1 when the distance of the sphere centers r12 is larger than d = 2a, and 0
otherwise (with d the diameter and a the radius of the spheres). We should recall here that
the location of the wall has been chosen as z = 0 reference level. In the next order, it is found
that,

ng(1) (z) =
φ

4
Θ (z − a) Θ (3a− z)

(
3− z

a

)2 (
3 +

z

a

)
. (73)

The above expressions (71-73) suffice to calculate the two first terms in the virial expansion
for the wall structure factor. The integrations in eqs.(57) and for the self part in (58) may be
performed analytically. This leads to,

S(1)
w (κ) = e−κa , (74)

and,

Sself (2)
w (κ) =

2e−κa

(κd)3

[
6− 3 (κd)2 + 2 (κd)3 − 6e−κd (1 + κd)

]
. (75)

The distinct part in eq.(58) must be done numerically.
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In the case of the wall hydrodynamic tensor we need in addition to eqs.(71-73) the one and
two particle cluster components of the mobility matrix. To calculate them, the HYDROMUL-
TIPOLE code implemented according to Ref.[13] has been used. The main idea in this scheme
is based on the image representation of a sphere near a hard wall proposed by Cichocki and
Jones in Ref.[24]. The latter is a generalization of the result for Stokeslet derived by Blake [25].
In the code the multipole part, which takes care of the longdistance hydrodynamic interactions
between spheres is combined with the lubrication corrections accounting for the short-range
behavior. The corrections are constructed according to the idea of Durlofsky, Brady and Bossis
[26] with the improvements introduced in Ref.[27].

Using the HYDROMULTIPOLE code we generated the one and two particle mobility ten-
sors which appear in the integrands defining the first two virial coefficients for the wall hydro-
dynamic tensor. Then the one-dimensional integrals over z in these coefficients were evaluated
using the Gauss quadrature method. The three-dimensional integrals over z, z′ and ρ appear-
ing in the definition of the second virial coefficients were evaluated by means of averaging the
integrand over a large sequence (typically eight million) of random triplets z, z′,ρ, where z and
z′ were sampled from the distribution (κ/2)e−κz/2 and ρ was distributed uniformly on the in-
terval of length 30d. The remaining part of integral over ρ, i.e. from 30d to ∞, was carried out
analytically using the known asymptotic form of the mobility tensors, which decay as inverse
powers of the lateral distance ρ. It is worthwhile to mention that the averaging procedure is
specific for given intensity-penetration depth, so it had to be repeated for each κ.

5 Details of Numerical Simulations

The initial slope of the EWDLS-correlation functions for arbitrary concentrations is also eval-
uated by means of Monte Carlo (MC) simulations of an equilibrium ensemble of hydrodynam-
ically coupled spheres in a wall bounded domain. To avoid modeling of an infinite suspension
in a half-space bounded by a single wall, our calculations were performed for a system confined
by two parallel walls, and periodic conditions were applied in the lateral directions (i.e., the
directions parallel to the confining surfaces).

To reduce calculation cost, sample simulations were first performed for channels with dif-
ferent widths. Using these sample calculations, we determined the minimal wall separation for
which converged results can be obtained (as discussed below).

Our numerical procedure for the evaluation of the cumulant Γ involves the following three
main steps: (i) preparation of an equilibrium ensemble of configurations corresponding to a
given bulk particle density n, (ii) evaluation of the structure factor (18), and (iii) evaluation of
the hydrodynamic tensor (17). These three steps are separately discussed below.

Preparation of the equilibrium ensemble – To obtain the equilibrium particle configu-
ration for a given particle number N and specific geometry of the periodic simulation cell, we
start from a system with a random particle configuration at a low volume fraction. Then we
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perform a sequence of MC Brownian dynamics equilibration processes, followed by rescaling
of the particles to increase the volume fraction without creating particle overlaps. By repeat-
ing these steps we obtain a system with a gradually increasing density. When the desired
density is achieved, a set of independent equilibrium configurations is obtained via additional
Brownian-dynamics process.

Due to formation of a short-ranged layering microstructure in the near-wall regions, the
average volume fraction in a two-wall system may significantly differ from the bulk value.
Thus, proper adjustment of the average density is required to obtain a matching near-wall
particle distribution in systems with different channel widths. To this end we first construct
the equilibrium ensemble for a system with a large wall separation h = h0 and the required
density n in the middle region of the channel. Then we determine the excess particle number
per unit area wall ne, using the formula

N = Ah n + 2 A ne , (76)

where N is the number of particles in the periodic cell, A is the wall area, and h = h0 is the wall
separation in the reference system. Having determined the excess surface density of particles
in the near-wall regions for a given bulk concentration n, the particle number N = N(h) for
channels with different width h is obtained from expression (76), with the known values of n
and ne. Application of this procedure significantly accelerates the convergence of the results to
the single-wall limit h →∞.

Evaluation of the equilibrium structure factor – For sufficiently large values of the
evanescent-wave penetration depth κ−1 and wave vector q, evaluation of the equilibrium struc-
ture factor (18) in the wall presence is straightforward. However, to obtain a good numerical
convergence (especially at low volume fractions), averaging over a large number of configurations
is necessary, because of cancelation of negative and positive contributions. In our simulations
we have used 4× 104 configurations for φ = 0.10 and 104 configurations for φ = 0.25.

Evaluation of the hydrodynamic tensor – The hydrodynamic tensor H is determined
using the periodic version [28] of the Cartesian-representation algorithm [29, 30, 31] for evalu-
ation of the motion of spherical particles in Stokes flow in a parallel-wall channel. Our method
combines spherical and Cartesian representations of Stokes flow in the system. The Cartesian
representation is used to describe the interaction of the flow with planar walls, and the spherical
representation for the flow interaction with the particles. The combined expansion in two sets
of basic fields takes into consideration the spherical particle shape and the planar shape of the
interface.

To describe interactions between particles with the lateral distance larger than several wall
separations h, we also use simplifications associated with the quasi-two-dimensional Hele-Shaw
character of the far-field flow scattered from the particles [31, 32]. The periodic boundary
conditions are implemented by using periodic expressions for the Hele-Shaw far-field flow.
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The numerical results presented in this paper were obtained for the channel width h = 13d.
By performing simulations at different channel widths we have verified that this wall separation
is sufficiently large to yield results with the accuracy within the statistical uncertainty. We find
that the convergence of the results is exponential in h, because the hydrodynamic field resulting
from periodic forcing decays on the length scale l ∼ q−1

‖ away from the wall, and there is an

exponential damping factor in eq.(17).
The hydrodynamic tensor H was determined as an average over M independent MC trials.

To obtain statistical accuracy of the order of 2 %, we have used M in the range from M = 30
for large systems with N ≈ 103 particles to M = 400 for N ≈ 200 particles.

6 Results and Discussion

Numerical results for the two leading order contributions S
(1)
w (see eq.(57)) and S

(2)
w (see eq.(58))

to the virial expansion for the wall structure factor are shown in Fig.1. In Figs.1a and b,
the wall-structure factor contributions are given as functions of q⊥ for fixed q‖d = 1.64, and
q‖ for fixed q⊥d = 2.94, respectively, both for a penetration depth with κ d = 0.96. These
values are typical for experiments that are presently performed. Clearly, the leading-order
contribution S

(1)
w is independent of the wave vector. Notice, however, that its constant value is

not unity, as for the bulk structure factor. This value depends on the penetration depth as is
clear from eqs.(57,72). The oscillatory behaviour in Fig.1a is due to layer-structure formation
perpendicular to the wall. The oscillatory behaviour is Fig.1b has the same origin as for the bulk
structure factor, and is due to ordering that exists around a colloidal sphere due to excluded
volume interactions. The dashed horizontal lines in Fig.1 mark the asymptotic value of S

(2)
w

for large wave vectors, which, contrary to the bulk structure factor, is different from unity.
Again, this value depends on the penetration depth. There is thus a non-trivial dependence
of the initial slope of EWDLS-correlation functions on the penetration depth through the wall
structure factor.

Using the virial expansions of the hydrodynamic tensors A and B together with the virial
expansion of the distribution function, as discussed in section 4, leads to the following form for
the wall hydrodynamic functions,

H⊥ = H
(1)
⊥ + φ H

(2)
⊥ +O(φ2) , (77)

and similarly for H‖, HR and HI . The various coefficients H(2) that describe the interaction
contributions to the initial slope of the EWDLS-correlation function are given in Figs.2a and b,
as a function of q⊥ and q‖, respectively, for the same fixed values of q‖, q⊥ and κd as for the wall
structure factor. Like for the bulk hydrodynamic function, the wall-hydrodynamic functions
exhibit an oscillatory behaviour as a function of the wave vector, where the peak positions
are at about the same wave vectors where the wall-structure factor has its peaks, both for the
parallel and the perpendicular wave-vector contributions. The ”off-diagonal contribution” HI

is seen to be relatively small. The contribution HR, however, is of a similar magnitude as the
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Figure 1: The wall structure factor versus q⊥ (a), and q‖ (b). In (a) q‖d = 1.64 is fixed, and in

(b) q⊥d = 2.94. In both plots, κ d = 0.96. The functions S
(1)
w refer to infinite dilution while the

functions S
(2)
w describe the leading order interaction contributions (see eqs.(57,58)).
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Figure 2: The various components of the hydrodynamic function versus q⊥ (a), and q‖ (b).
In (a) q‖d = 1.64 is fixed, and in (b) q⊥d = 2.94. In both plots, κ d = 0.96. The functions
H(1) refer to infinite dilution while the functions H(2) describe the leading order interaction
contributions (see eq.(77)).
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Figure 3: The self-diffusion contributions to the initial slope as defined in eq.(78), as a function
of κ d. The two dots • at κ d = 0 are the limiting values for the infinite dilution contributions
(G(1) = 1) and for the leading order interaction contributions G(2) = −1.831 · · · ).

”diagonal contributions” H⊥ and H‖, and will be essential when comparing with experimental
results.

Using the virial expansion coefficients (67,68), the vertical- and parallel-self diffusion coef-
ficients can be written as,

< Ds,⊥, ‖ >κ

D0

= G
(1)
⊥, ‖(κ d) + φ G

(2)
⊥, ‖(κ d) +O(φ2) . (78)

Numerical results for the virial expansion coefficients as a function of the inverse penetration
depth are given in Fig.3. For infinite penetration depths (where κd = 0), the leading coefficients
tend to unity, as they should, since for large penetration depths bulk diffusion is probed. The
coefficients G

(2)
⊥, ‖ must become equal to the coefficient α = −1.831 in the well-known virial

expansion for the short-time bulk self-diffusion coefficient Ds [33],[34],

Ds = D0

[
1 + α φ +O(φ2)

]
. (79)

The lower data point • at κd = 0 corresponds to this limiting value for α. The data for
both coefficients G

(2)
⊥, ‖ indeed seem to converge to this bulk value. At infinite dilution, the self

diffusion coefficient in the presence of a wall diminishes for smaller penetration depths due to
the hydrodynamic effect of the wall. More interestingly, the concentration dependence of the
self-diffusion coefficients weakens for smaller penetration depths.
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Figure 4: The initial slope as a function of the parallel wave-vector component for q⊥ = 2.94,
and κ d = 0.96. Figure (b) is a blow up of figure (a) in order to emphasize the small-wave
vector region. The dashed line is for infinite dilution, the middle set of lines is for a volume
fraction of φ = 0.10 and the lower set of curves for 0.25. The solid lines are numerical results
from the virial expansion, the data points are from simulations, and the dotted lines are the
self-diffusion contributions.
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Figure 5: The initial slope as a function of the perpendicular wave-vector component for q‖ =
1.64, and κ d = 0.96. Figure (b) is a blow up of figure (a) in order to emphasize the small-wave
vector region. The dashed line is for infinite dilution, the middle set of lines is for a volume
fraction of φ = 0.10 and the lower set of curves for 0.25. The solid lines are numerical results
from the virial expansion, the data points are from simulations, and the dotted lines are the
self-diffusion contributions.
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As follows from lubrication theory for a single particle, the component D⊥, vertical to hard
wall, vanishes when z → a as (see Ref.[13]),

D⊥(z)

D0

= ε + o(ε) , (80)

where ε = z/a − 1. Corrections are of the order ε2 ln ε. Now taking into account that for
κ → +∞ (see Ref.[35]),

∫ +∞

a

dz e−κzf(z) ∼ e−κa
[
κ−1f(a) + κ−2f ′(a) + · · · ] ,

one can show that,
G

(1)
⊥, ‖(κ d) = 2 (κ d)−1 + o((κ d)−1) . (81)

Similar behaviour, but with a different coefficient in front of κ−1, is expected for two- and more
body contributions to the vertical component for self diffusion near a wall. The asymptotic
behaviour ∼ 2/(κ d) of the single-particle perpendicular self diffusion coefficient is given by the
dotted line in Fig.3. The convergence to the asymptotic values 2/(κ d) is very slow, due to
the logarithmic corrections to eq.(81). The interaction contribution to the perpendicular self
diffusion coefficient varies likewise but with an as yet unknown coefficient. The lubrication
contributions to the parallel components of the self diffusion coefficients have a much more
complicated form as compared to the perpendicular parts in eq.(80). Hence the asymptotic
formula for large κ is not so simple as in eq.(81).

The initial slope Γ of the EWDLS-correlation function is plotted in Figs.4 and 5 a function
of q‖ and q⊥ respectively, for the two volume fractions 0.10 and 0.25. The data points are
from the simulations, and the solid lines refer to the virial expansion (the middle curves are for
φ = 0.10 and the lower curves for 0.25). The dashed line is the initial slope at infinite dilution,
which can be calculated also from Brenner’s hydrodynamic friction functions [4]. The figures on
the right are blow-ups for small wave vectors in order to emphasize the oscillatory behaviour.
The dotted lines are the curves extrapolated from very high q’s, that is, the corresponding
self contributions. The leading order virial expansion is surprisingly accurate up to quite high
concentration. It should be noted, however, that the oscillatory behaviour at smaller wave
vectors, shown in Figs.4b and 5b, is not captured by the virial expansion. These are effects
from higher order interactions. The differences will be larger when the overall wave vector
is smaller. In the plots in Figs.4,5, the respective wave vector components q⊥d = 2.94 and
q‖d = 1.64 are fixed. For smaller values of these fixed values for the wave vectors, the oscillatory
behaviour will be more pronounced and the deviation from the virial expansion is more severe.
The situation is similar to the bulk initial slope, where the agreement of the self diffusive
part at higher concentrations with a leading order virial expansion is better as compared to
the collective q-dependent part. The experiments in Ref.[12] reveal that the effect of the wall
diminishes at very high concentration. The interpretation of this result could be that particles
very close to the wall screen the wall-hydrodynamic interactions of particles further away from
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the wall. On the other hand, however, the wall structure factor will be quite pronounced for
these high concentrations, so that the diminished effect on the initial slope hints to an equally
pronounced hydrodynamic function. The behaviour of the evanescent wave intensity auto-
correlation function at high concentrations, beyond the validity of the virial expansion, is still
unexplored.

7 Summary and Concluding Remarks

The interpretation of dynamic light scattering data for evanescent wave scattering is quite more
complicated as compared to bulk scattering. The reason for this is that structure develops near
the wall and that hydrodynamic interactions mediated through the wall are important. As a first
step towards the understanding of evanescent wave scattering, we considered the initial slope of
intensity auto-correlation functions. An expression for the wall-analogue of the short-time, q-
dependent collective diffusion coefficient is derived. This formal expression is valid for arbitrary
concentrations of spherical colloids. The formal expression is written in an integral form that is
tractable for numerical evaluation, and explicit expressions for the various contributions to the
initial slope are derived within a leading order virial expansion in concentration. In addition, a
computer code has been developed with which the initial slope can be calculated for arbitrary
concentration. Although numerical results given in this study are for hard-core interactions,
the entire formalism is easily extended to include other types of interactions, both between the
colloidal particles and between the colloids and the wall.

The main difference between the initial decay of the correlation function for very dilute sys-
tems and systems where interactions play a role is that ”off-diagonal contributions” contribute,
which are not simply proportional to q2

⊥ and q2
‖. Even within a leading order virial expansion,

these ”off-diagonal contributions” can be as important as the ”diagonal contributions” due to
inter-colloidal interactions. An additional feature of interactions is that structure builds up
near the wall that affects near-wall dynamics. The corresponding wall structure factor does
not asymptote to unity for large wave vectors like the bulk structure factor, which is an im-
portant feature for a quantitative interpretation of correlation functions. The wall structure
factor and the hydrodynamic function are oscillating functions of the wave vector, similar to
bulk systems. An distinction can be made between self-diffusive and distinct contributions to
the wall diffusion coefficient. The first virial coefficient for the self part decreases monotonically
with decreasing penetration depth, and thus a weaker concentration dependence is predicted as
compared to the short-time bulk self diffusion coefficient. Especially for relatively large wave
vectors, a good agreement between predictions for the initial slope based on the leading virial
expansion and simulations that are valid for arbitrary concentrations is found. The agreement
is semi-quantitative at least up to a volume fraction of 0.25. The concentration-range where the
virial expansion is a good approximation, however, becomes smaller for smaller wave vectors,
similar to bulk systems.

Preliminary experiments indicate that there is good agreement with the virial expansion
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up to volume fractions of 0.25 (for the same wave-vector range for which numerical results are
given in section 6) [36]. A more extended experimental test of our theory, and experiments
and simulations at very high concentrations, will be published in a separate paper. An under-
standing of the entire time dependence of the intensity auto-correlation functions also requires
further experiments and simulations. In particular, evanescent wave correlation functions ex-
hibit a very slow decay, even for dilute systems [36], the origin of which is not yet understood.
Rod-like colloids have the additional complication that orientational order exists near the wall.
Virtually nothing is known yet about the dynamics of rod-like colloids near a wall, even for
very dilute systems where rod-rod interactions can be neglected. These will be topics for future
work.
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