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Voronoi-Delaunay analysis of normal modes in a simple model glass
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We combine a conventional harmonic analysis of vibrations in a soft-sphere glass with a Voronoi-Delaunay
geometrical analysis of the structure. ‘‘Structure potentials’’~tetrahedricity, sphericity, or perfectness! are
introduced to describe the shape of the local atomic configurations~Delaunay simplices! as a function of the
atomic coordinates. Apart from the highest and lowest frequencies the amplitude weighted ‘‘structure poten-
tial’’ varies only little with frequency. The movement of atoms in soft vibrational modes causes transitions
between different ‘‘perfect’’ realizations of local structure. As for the potential energy a dynamic matrix can be
defined for the ‘‘structure potential.’’ Its expectation value with respect to the vibrational modes increases
nearly linearly with frequency and shows a clear indication of the boson peak. The structure eigenvectors of
this dynamical matrix are strongly correlated to the vibrational ones. Four subgroups of modes can be
distinguished.
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I. INTRODUCTION

The thermodynamic properties of glasses at low temp
tures differ from those of the corresponding crystals.1 At low
temperatures the specific heat is strongly enhanced comp
to the Debye contribution stemming from the sound wav
The excitations underlying this enhancement have b
shown to be two-level systems belowT'1 K and almost
harmonic vibrations above. The vibrational density of sta
Z(n), plotted asZ(n)/n2 has a maximum, typically near
THz, the boson peak.

This low-temperature/low-frequency behavior can be
scribed by the soft potential model.2,3 In this model one as-
sumes that one common type of structural unit is respons
for the excess excitations. An effective potential describ
the motion of this unit is introduced. Depending on the p
rameters this potential is a single or a double well. In the fi
case it describes a low-frequency localized vibration and
the second, tunneling through the barrier~two-level systems!
or relaxation over the barrier. For low energies a gene
form for the distribution of the parameters describing t
effective potentials can be given. Fitting this model to t
experimental data, one finds that 20–100 atoms or molec
units move collectively both in the tunneling and in the l
calized vibrations.4,5 It should be emphasized that the co
cept of low-frequency localized vibrations is an idealizatio
These modes will always interact with the sound waves
similar frequency and, therefore, also between each ot
This delocalizes the modes and they are only quasiloca
resonant. Due to level repulsion, for sufficiently high den
ties of these modes, the interaction will change their den
of states fromZ(n)}n4 to Z(n)}n thus creating the boso
peak.6 Such a model does not, however, specify the phys
nature of the localized modes or their origin in differe
types of glasses.

In computer simulations of a soft sphere glass~SSG!
quasilocalized vibrations centered on ten and more at
have been observed.7 These quasilocalized modes can
seen as the core of resonant modes in an infinite system
PRB 620163-1829/2000/62~5!/3181~9!/$15.00
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is typical for such modes, they couple bilinearly to the sou
waves that become damped. This is a purely harmonic in
action. Near the boson peak the interaction is so strong
the Ioffe-Regel limit is reached for the sound waves and
mean free path drops to the wavelength. The modes com
ing the boson peak can, however, still be described by a b
of sound waves and soft localized modes.8 These latter
modes are closely related to the local relaxations in the g
and have predominantly a chainlike structure.9,10 They are
centered at atoms whose structural surrounding differs s
stantially from the average but are not simply regions of l
density. From low-frequency Raman scattering a o
dimensional geometry of the boson peak modes was c
cluded, in agreement with the above picture.11 In their simu-
lations on amorphous silicon, Fabian and Allen12 found
anomalously large Gru¨neisen constants of the resona
modes, again pointing towards some distinct structural f
tures causing them.

Quasilocalized low-frequency vibrations have also be
observed in computer simulations of numerous other mat
als, such as, e.g., SiO2,13 Se,14 Ni-Zr,15 Pd-Si,16 NiB,17 in
amorphous ice,18 and in amorphous and quasicrystallin
Al-Zn-Mg.19

However, the above explanation of the boson peak be
due to the interaction of localized~resonant! modes and ex-
tended modes~sound waves! is not universally accepted
Some authors ascribe the boson peak to low-lying op
bands that hybridize with the acoustic states,20 or to low-
lying acoustic branches decorated with a rand
component,21 or to spatial damping of sound waves due
density fluctuations.22

At frequencies above the boson peak the vibratio
eigenmodes have a rather complicated structure. They
strongly delocalized but not propagating. This behavior
described by the term ‘‘diffusons’’ introduced by on
group.23 From the dynamic structure factor one can still d
fine dispersion curves for these modes, both fro
experiment24,25 and from simulation.20,26 This can also be
observed in the soft-sphere glass studied in this paper~un-
3181 ©2000 The American Physical Society
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3182 PRB 62LUCHNIKOV, MEDVEDEV, NABERUKHIN, AND SCHOBER
published results!. The interpretation of these dispersio
curves and especially the damping are still controversial.
nally, at the highest frequencies or near-gaps of the spec
truly localized modes are observed.

As seen already from our previous remarks, there i
great deal of literature connecting the vibrational propert
and in particular the boson peak, with structural propert
The local dynamics in the amorphous state is often c
nected with the so-called medium-range order in glasses27,28

In another line of reasoning, soft modes and the bo
peak are connected with the concept of frustration and lo
strains, see, e.g., Ref. 29. It was argued that below the g
transition the remaining free volume would collapse leav
centers of internal strains.30 These structural defects ca
serve as centers of relaxations and soft vibrations. On a s
lar line local pressures were defined that are then relate
local force constants.31

Going one step further one considers frustration as res
ing from a competition between different structures, or b
tween local and global dense packing. For three-dimensio
simple sphere models global dense packing results in fc
hcp structures, whereas, locally icosahedral packings are
most dense. However, the latter are not space filling. Inv
tigations to find the most dense close packing of hard sph
are still pursued.32 It seems that random packings cann
exceed a packing fractionf pack'0.645 considerably below
the value for the ordered structures,f pack'0.74. This differ-
ence is related to the degeneracy between the fcc and
structures leading to a geometrical frustration associated
the impossibility to fill the space with perfect tetrahedra33

Frustration of local packings, in particular in binary syste
have been utilized to derive criteria for the glass transit
and melting, see, Ref. 34, and references therein. As a q
titative measure of randomness atomic stresses were i
duced.

Related to this frustration picture is the hypothesis on
origin of the soft mode, that the most active atoms oscill
between neighboring minima of the potential energy form
by a cage of surrounding atoms.35 These minima correspon
to some more ‘‘perfect’’ local arrangements of the atom
The coupling to the rest of the material changes this dou
well system to one of a soft single well. One example
such a situation is the interstitial atom in an fcc metal.
medium-sized interstitial occupies the octahedral site.
creasing the size of the interstitial atom the octahedral
becomes unstable and the interstitial moves to an off-ce
position. The impeding instability is indicated by low-lyin
resonance vibrations.36,37 The instability in this example is
caused by a local compression that causes the simultan
occurrence of resonant low-frequency and localized hi
frequency vibrations. In the glass the modes are more
tended, typically consisting of string-like groups of some
atoms.8 Instead of the single interstitial atom one has to ta
a group of atoms and, due to the lacking symmetry, the
ergy minima will be shifted relative to each other. Keepi
this in mind the underlying mechanism can still be true. T
simultaneous occurrence of low- and high-frequency loc
ized modes centered on one atom has indeed been obse7

Some of the present authors38,39 recently introduced a pa
rameter of ‘‘perfectness’’ and have shown that a compu
model of amorphous argon has, on a nanometer scale, a
i-
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erogeneous structure containing regions of more ‘‘perfe
or ‘‘imperfect’’ atomic arrangements. In the regions of pe
fect structure the elementary packings of four neighbor
atoms ~the Delaunay simplices! are close to either regula
tetrahedra or quart-octahedra,38 i.e., quarters of regular octa
hedra. In the regions of imperfect structure the local confi
rations of the neighboring atoms differ markedly from the
ideal shapes. A partial spectrum of the vibrational states
the atoms in the regions of more ‘‘imperfect’’ structure di
plays an excess of low-frequency modes.39

In the present paper we want to verify and substant
this notion for the SSG and to investigate the correlatio
between the vibrations in the whole frequency range w
different parameters characterizing local perfectness. For
purpose we combine the harmonic analysis of Ref. 7 with
Voronoi-Delaunay geometrical description of the local stru
ture used in Ref. 39. First, we shift the atoms of the mo
along the eigenvector of a low-frequency quasilocalized n
mal mode and observe the changes in the local atomic
rangements caused by the shift. This allows us to visua
the specific transformations of the local structure that acco
pany the motion of the atoms in the vibrations. In a next s
we calculate the atomic perfectness weighted with
squared amplitudes of the vibrational modes. This quan
varies only weakly with frequency. Considering that the
brations are connected with changes in the geometry,
introduce a ‘‘structural dynamical matrix.’’ We will show in
the following that there is a strong correlation between
‘‘structural eigenvectors’’ and their vibrational counterpar
This correlation divides the vibrations, as regards struct
changes, into separate classes: longitudinal and transv
extended, high-frequency localized, and low-frequen
quasilocalized modes.

II. THE SOFT-SPHERE GLASS

We use 55 glassy configurations of 500 atoms each, in
acting via a soft-sphere pair potential

u~r !5eS s

r D 6

1AS r

s D 4

1B. ~1!

To simplify the simulation the potential is cut off atr /s
53.0 and shifted by a polynomial withA52.5431025e and
B523.4331023e.

We used the configurations obtained during our ear
work concerning soft quasilocalized modes and lo
relaxations.7,10 There, we did a molecular-dynamics simul
tion with a fixed atomic density,r/s351, periodic boundary
conditions, using the Verlet algorithm with temperature sc
ing, and a time step of 0.04 in units ofms2/e1/2. The con-
figurations were obtained by a quench from a liquid at ab
2.5 times the melting temperature to a reduced tempera
of kT50.04e about 5% of the glass transition temperatu
The quench rate was about 0.15k/(ms2e)1/2. This rate is
close to the ideal quenching rate for this material.40 After the
quench, each sample was aged for several 1000 time ste
stabilize the potential energy and to avoid spurious minim
The final quench toT50 was done by steepest descent co
jugate gradient minimization of the potential energy. Fro
the pair correlation one finds a nearest-neighbor distanc
around 1.1s. For more details see Refs. 7 and 10. The sm
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size ofN5500 has the advantage that the lowest quasilo
ized modes are seen as localized modes since the cutoffq
values compatible with periodicity excludes the sound wa
of similar frequency. In the previous work we have show
that these low-frequency localized modes are the reso
part of the low-frequency modes in larger samples.8

The inverse sixth-power potential is a well-studied the
retical model that mimics many of the structural and therm
dynamic properties of bcc forming melts including the ex
tence, in its bcc crystal form, of very soft shear modes.41 In
the glassy structure one finds a boson peak with a maxim
near n50.1(e/ms2)1/2 extending to about n
50.4(e/ms2)1/2. The enhancement of the vibrational dens
of states over the Debye value is by a factor of about 2
~Ref. 8!

As before, the frequencies and eigenvectors of nor
vibrations are calculated by the diagonalization of the fo
constant matrix. Imaginary frequencies are absent in
spectrum because the system is in an absolute local m
mum of potential energy. For the given number of atoms
minimal q value for sound waves isqmin50.79s21 giving
minimal frequencies of 0.18 and 0.62(e/ms2)1/2 for the
transverse and longitudinal sound waves, respectively. R
nant modes with frequencies well below 0.18(e/ms2)1/2

will, therefore, be seen as low-frequency localized mod
This is reflected in the participation ratios given in Ref.
One finds proper localized modes at frequenciesn
.2(e/ms2)1/2 and ~quasi! localized low-frequency mode
with n,0.2(e/ms2)1/2. The great majority of modes (0.
,n,2) extends over the system. These latter modes h
been called ‘‘diffusons’’23 due to their nonpropagating cha
acter. Nevertheless, for the SSG as for other systems,
possible to extract some very broad ‘‘phonon dispersion
via the dynamic structure factor.42

The SSG was used in extensive studies of the influenc
the quench rate on the glass structure.43,40In these studies the
Voronoi method was used to identify pentagonal rings t
can be used as signature of icosahedral packing.

III. VORONOI-DELAUNAY DESCRIPTION
OF LOCAL STRUCTURE.

By definition, theVoronoi polyhedron~VP! of an atom is
that region of space that is closer to the given atom tha
any other atom of the system. A dual system spanning sp
is formed by theDelaunay simplices~DS!. These are tetra
hedra formed by four atoms that lie on the surface o
sphere that does not contain any other atom. Both VP
DS fill the space of the system without gaps and overlaps
our calculations we do a Voronoi-Delaunay tessellation
the glass configurations by the algorithm described in R
44.

It was found earlier that two main types of DS are p
dominant in monoatomic glasses,45,46 namely, DS similar to
ideal tetrahedra and DS resembling a quarter of a reg
octahedron~quart-octahedron!. Following Ref. 46 we intro-
duce as quantitative measure of the deformation from
ideal tetrahedron thetetrahedricityof a DS

T5(
i , j

~ l i2 l j !
2

15l̄ 2
, ~2!
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wherei andj designate the edges of the simplex, andl̄ is the
average edgelength. This measure was constructed to be
for ideal tetrahedron and to increase with distortion. F
computational reasons we slightly modify the previous m
sure of the deviation from an ideal quart-octahedron, theoc-
tahedricity, using

O5H (
m51

6

gmOm
21J 21

, ~3!

where

gm5
e3dm /s

(
i 51

6

e3d i /s

, dm5
l m2 l̄

l̄
, s5F16 ( dm

2 G1/2

,

and

Om5 (
i , j ; i , j Þm

~ l i2 l j !
2

10l̄ 2
1 (

iÞm

~ l i2 l m /A2!2

5 l̄ 2
. ~4!

In a perfect quart-octahedral DS one edge isA2 times larger
than the other edges. In the previously used measure,47 it was
assumed that themth edge is the longest. The modified e
pression Eq.~3! weights the six possible valuesOm in such a
way that the smallest one dominates. The octahedricity t
tends to zero when the DS is close to a perfect qu
octahedron. This weighting allows us to avoid the use
logical functions for the selection of the maximal edge a
guarantees differentiability that is essential for our investi
tion. For the relevant low values ofO, i.e. simplices close to
the quart-octahedral shape, our expression reproduces
values of the original definition.

The tetrahedral and quart-octahedral DS can be unifie
one class of ‘‘perfect,’’ or ‘‘ideal’’ simplices.38 We measure
the perfectnessof the DS shape by

S5FgTS T

Tc
D 21

1gOS O

Oc
D 21G21

, ~5!

where

gT5
e23T/Tc

e23T/Tc1e23O/Oc
, gO5

e23O/Oc

e23T/Tc1e23O/Oc
.

S tends to zero when the simplex takes the shape of an i
tetrahedronor quart-octahedron. Contrary to the expressi
proposed in Ref. 38 our measure is differentiable with
spect to the atomic coordinates. The relative weights of
rahedricity and octahedricity,Tc50.016, Oc50.033, are
taken from Ref. 47, where they were proposed as bound
values for perfect tetrahedra and perfect quart-octahedra
spectively. The relation of the valuesT, O to the distortion of
a DS can be seen also from the valuesTO.0.050 of the
tetrahedricity of an ideal quart-octahedron andOT.0.084
octahedricity of an ideal tetrahedron.

Each atom in the glass is corner of approximately 24 D
The structural environment of an individual atom can
characterized by the averageperfectnessof these DS:39
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Satom5
1

nDS
(
i 51

nDS

Si , ~6!

wherenDS is the number of DS surrounding the atom.
Another widely used measure of the atomic neighborho

is thesphericityof the Voronoi cell:

S5
1

36p

F3

V2
21. ~7!

Here F is the surface area of the VP, andV is its volume.
This measure is minimal for a sphere,S50, and again in-
creases with distortion.

In analogy to the potential energy one can take the t
tetrahedricity, perfectness, or sphericity to characterize
structure. We introduce an average ‘‘structure potential’’

^T&5
1

NDS
(
i 51

NDS

Ti , ~8!

and analogouslŷS& and ^S&, whereNDS is the number of
DS in the system. Since dynamics is concerned with
motion of the atoms it is often more useful to average o
the atomic quantities defined by Eq. 6,

^Tatomic&5
1

N (
i 51

N

Tatomic. ~9!

However, both definitions give similar values.
In Table I we compare the values of the three measu

for an ideal fcc structure, an icosahedron, and our glass.
values of the glassy structure clearly deviate from the one
both ideal configurations. It is, however, not possible to
fine unambiguously a nearness to either structure using t
measures.

IV. SOFT VIBRATIONS AND LOCAL STRUCTURE

Considering the relationship between local structure
soft vibrations one normally looks for peculiarities of atom
arrangements that induce the softness of some low-frequ
modes. In the following section we study this relationsh
from the opposite point of view. Knowing the eigenvector
a vibration ~obtained by diagonalization of the force co
stants matrix! we analyze how the local structure is affect
by the collective motion of the atoms along the normal c
ordinate of the vibration.

We illustrate this for an example of a quasilocalized s
mode. The atoms are shifted along the direction of
3N-dimensional, normalized eigenvectore according to

TABLE I. Values of perfectness, tetrahedricity, and spheric
for an atom in an ideal fcc lattice at the center of an icosahed
and for the glass, averaged according to Eq.~9!.

^Satomic& ^Tatomic& ^Satomic&

fcc lattice 0.0 0.039 0.346
icosahedron 0.095 0.0015 0.325
SSG 0.6660.17 0.02360.005 0.35860.025
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Rn~x!5R0
n1xen, ~10!

whereR0
n is the equilibrium position of atomn. For simplic-

ity we have not normalized the amplitudex to an effective
atomic amplitude as is usually done in the soft poten
model.

In Fig. 1 the average potential energy per atom,^U(x)& tot
~solid line!, is shown as a function of the displacement alo
a single soft eigenmode. This is one of the soft potentials
are described by the soft potential model,2,3 as has been dis
cussed in the Introduction. The subscript ‘‘tot’’ indicates th
the averaging is over all 500 atoms of the system. Figur
corresponds to a very-well-localized soft mode withn
50.098(e/ms2)1/2, participation ratio 0.23. These value
would guarantee a very narrow resonance in the infin
medium.36

As mentioned in the Introduction, it has been specula
that the soft modes in glasses originate from some ‘‘so
atomic configurations where, in the extreme case, the at
are stabilized by the embedding matrix in a position lyi
between minima of the potential energy given by its ne
neighbors. To illustrate this, we show in Fig. 1 by the dash
line the average potential energy of the 61 atoms that
most active in the given mode,^U(x)&core. Atoms are con-
sidered as active in a given mode if their amplitudeuenu is at
least 30% of the maximal atomic amplitude in the mode. W
will call these active atoms thecore of the mode~subscript
core!. For the modes with participation ratiosp,0.25 the
average number of atoms in their respective cores is 51.
results presented below do not depend strongly on the cu
used for selecting the active atoms. Thepartial potential en-
ergy of the core atoms is indeed double-well shaped w
minima at xm'61.3, which corresponds to maximal dis
placements of individual atoms byuRn2R0

nu'0.2–0.3s
from the equilibrium configuration. This maximal atom
displacement is of the order of the one observed in lo
low-temperature relaxations.10

To obtain a quantitative analysis of the dependence of
partial potential energy on the displacementx, we did a least-
square fit of̂ U(x)&core by the soft potential expression2–4

U* ~x!5Ax21Bx31Cx41^U~0!&core ~11!

n

FIG. 1. Average potential energy of atoms in a single soft mo
with frequencyn50.0985, participation ratiop50.23. Solid line,
^U(x)& tot , potential energy averaged overall atoms in the system
Dashed line,̂ U(x)&core, thepartial potential energy averaged ove
61 atoms of the core of the mode. Dotted line, least squares fi
the partial potential energy by a soft potential polynomialU* (x)
5Ax21Bx31Cx41^U(0)&core.
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~dotted line in Fig. 1!.
We find for the soft modes that the double-well behav

is the rule for the potential energy of the core. This is clea
shown in the distribution of the soft potential paramet
A,B,C, obtained for the 93 low-frequency modes with pa
ticipation ratiosp,0.25 found in our 55 glass configura
tions, see Fig. 2. Nearly the entire distribution ofA values is
on the negative side, which corresponds to double-well
tentials. The rapid drop of the distribution ofA for uAu→0 is
in accord with the singularity@p(A)}uAu# of the distribution
of the harmonic force constants in the soft potentials. T
corresponding distribution functions for the full potential e
ergies of the modes has been given earlier.8 Corresponding
to the soft single wells found for the potential energ
summed over all atoms~Fig. 1!, there the distribution with
its singularity was observed on the side of positiveA values.
The partial potential energy, averaged over the 93 s
modes, is shown in Fig. 3. Note that the mean absolute v
of the force constantsA of the core potential is much large
than the force constant for the whole mode, which does
exceed, for the considered 93 modes, the valueA
.0.0015e/s2. This means that there is a very fine equilibr
tion between the unstable core of a localized mode and
rest of the system. This equilibrium is very fragile, as can
seen from the close correlation between the eigenvector
the soft modes and the direction of the relaxation ‘‘jump
of atoms during annealing of the glass.9,10

As a next step we analyze the changes of the local st
ture produced by the collective displacements of the ato

FIG. 2. Distribution of the parametersA(es22), solid line,
B(es23), dotted line,C(es24), dashed line of the fitting potentia
U* (x) for the partial potential energy,^U(x)&core, for the 93 soft
modes with participation ratiop,0.25.

FIG. 3. Partial potential energy,^U(x)&coreaveraged over the 93
soft modes. The curve is symmetrized because of the arbitrary
of the normal coordinates.
r
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For each value of displacementx we repeat the tessellation o
the atomic configuration into the Delaunay simplices a
calculate the structure parameters defined in Sec. III.
most remarkable effect of the soft vibrations on the lo
structure is the marked and systematic increase of the n
ber of perfect DS in the vicinity of the most active atoms f
x'61. The new perfect simplices form those patterns
noncrystalline perfect structures, which are specific for
dense packings of spherical particles. In particular, we
serve in the shifted configurations new five-fold rings of p
fect tetrahedra. These rings are known to be the den
packings of seven equal spheres. This tendency is even m
pronounced for the quart-octahedral DS, which form, in
shifted positions, new octahedra of almost perfect sha
which are connected to each other and to the tetrahedra
so that new patterns of noncrystalline perfect structure
pear. Those tetrahedra and quart-octahedra, which exis
ready atx50, also increase their perfectness, i.e., their v
uesT and O decrease as the configuration is shifted to
minima of the potential energy.

As done for the potential energy we calculate the aver
atomic perfectnesŝSatomic(x)&core, Eq. ~6!, of the core, av-
eraging over the same 93 soft modes. This average is sh
in Fig. 4, that displays again a double-well form. Corr
sponding to Eq.~11! we do a least-square fit by a fourth
order polynomial,

^Satomic* ~x!&core5A8x21B8x31C8x41^Sa~0!&core.
~12!

The distribution of the fitting coefficientsA8,B8,C8 is pre-
sented in Fig. 5. It is very similar to the distribution of th

gn

FIG. 4. Partial perfectness of atomic neighborhoods avera
over the 93 soft modes. The curve is symmetrized as in Fig. 3.

FIG. 5. Distribution of the parametersA8~solid line!, B8 ~dotted
line!, C8 ~dashed line!, for the fitting potentialSatomic* (x) of the
partial perfectness of the atomic neighborhoods.



s of the
heses.

3186 PRB 62LUCHNIKOV, MEDVEDEV, NABERUKHIN, AND SCHOBER
TABLE II. Average number of atoms in the core of the modes and average values of the parameter
fitting potentialU* (x) for the partial potential energy. The mean square deviations are given in parent

n<0.11 n.1.0 n>1.85

^Ncore& 52 310 55
A (es22) 20.040(0.068) 0.095~0.005! 1.62~0.53!
uBu (es23) 0.012~0.022! 0.0023~0.0021! 0.19~0.09!
C (es24) 0.030~0.056! 0.0015~0.0003! 0.54~0.40!
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soft potential parameters for the partial potential energy~Fig.
2!, and shows also a double-well behavior for the great m
jority of the fitting potentials.

Since the perfectness is given by a weighted sum of
rahedricity, Eq.~2!, and octahedricity, Eq.~3!, it is interest-
ing to repeat the above procedure for both components s
rately. Doing this one finds in the representation of Fig. 4
the tetrahedricity a single well and for the octahedricity
more pronounced double-well behavior. The perfectness
lows the potential energy more closely. We will meet th
behavior again in the next section.

We can do the same representation for the ato
stresses.48 We find for both the hydrostatic pressurep and the
von Mises shear,t, very flat wells with perhaps a hint of
double minimum. However, the absolute values of both th
quantities for x50 do not indicate so strongly the low
frequency quasilocalized modes. We get for these modes
erage frequency modes (n'1) and high-frequency localize
modes as average valuesp57.21, 7.17, 7.44 andt
50.485, 0.454, and 0.558, respectively. This shows that
high-frequency localized modes are clearly centered in h
stress regions. For their low-frequency counterparts thi
true to a much lesser extent.

We emphasize that the found double-well behavior, b
for the core potential energy and the perfectness of the ne
borhood of the active atoms, is specific to the quasilocali
low-frequency modes. For comparison, we have analyzed
modes in the middle-frequency and the high-frequency ba
of the energy spectrum. The middle-frequency modes
delocalized: the average number of atoms that belong~for
our definition! to the core of the mode is 310 (62% of a
atoms!. The high-frequency modes are again strongly loc
ized, with the number of atoms in the core equal to 55. T
average values of the fitting parameters for the partial po
tial energy and partial atomic perfectness are collected
Table II and Table III for the three types of modes~low-,
middle-, and high-frequency modes!. The small negative val-
ues of the coefficientsC8 for the partial perfectness o
medium- and high-frequency modes are an artifact of
fitting procedure. Their smallness reflects the dominance
the harmonic term.
-
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We propose the following interpretation of our results.
the glass of spherical soft particles, the landscape of the
tial potential energy, calculated for the neighboring atom
strongly correlates with such local structural parameter as
perfectness of the atomic packing. This gives a hint of
condition on the local structure where a soft vibration c
arise. The core of the soft modes should consist of atoms
are in an intermediate position between two different reali
tions of local perfect packing. This is in agreement with c
culations using random force constants in a coherent po
tial approximation where it was found that the boson pe
appears as a precursor of instability.49 But the perfectness o
the atomic neighborhood is a purely geometrical characte
tic. The statistics of the perfect and imperfect configuratio
defined in terms of the tetrahedral and quart-octahedral
launay simplices, should be, in principle, universal for
close random packings of spherical particles, irrelevant
their physical nature. Thus we establish a connection
tween the universal geometrical properties of a system
spherical atoms and the peculiarities of its low-frequen
dynamics. However, this conclusion is preliminary and h
to be checked by further research.

V. CORRELATION BETWEEN STRUCTURE
AND VIBRATION

We have seen that low-frequency quasilocalized vib
tions have a specific impact on the structure surrounding
most active atoms of the vibration. We will now investiga
how far a general relationship between structural meas
and dynamics can be seen. We will concentrate here on
rahedricity, Eq.~2!. Qualitatively, we find the same trend
also for perfectness, Eq.~5!, and sphericity, Eq.~7!.

As a first possible relation between structural measu
and vibrations one can take the atomic tetrahedric
weighted by the amplitudes on the atoms. This would sh
whether e.g., atoms with low values ofTatom participate par-
ticularly strongly in vibrations in some frequency range. W
define
ters of
TABLE III. Average number of atoms in the core of the modes and average values of the parame
the fitting potentialSa* (x) for the partial perfectness of atomic neighborhood.

n<0.11 n.1.0 n>1.85

A8 20.035(0.025) 0.073~0.004! 0.39~0.14!
uB8u 0.003~0.003! 0.0010~0.0007! 0.052~0.038!
C8 0.013~0.011! 20.0005(0.0004) 20.22(0.20)
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T~n!5K 1

N (
n

Tatomic
n en~n!en~n!L , ~13!

whereen(n) stands for the three components, on atomn, of a
vibrational eigenvector to frequencyn and ^•••& denotes
averaging over configurations and eigenvectors to sim
frequencies. Taking the average value, the dashed line in
6, one observes only a slight variation with frequency. O
at the smallest frequencies is a small upturn found. The c
tour plot shows that theT(n) values fall in general into a
narrow band. This is different for the high-frequency loc
ized modes@n.2(e/ms)1/2#. These modes have a larg
spread ofT(n) values without a clear preference for large
low atomic tetrahedricities. This large spread is a direct c
sequence of the strong localization, even to single ato
The low-frequency modes always involve larger numbers
atoms, from 10 upwards, and, therefore, average over m
different atomic tetrahedricities.

In the previous section we noted a connection betw
low-frequency vibrations and changes of structural eleme
In order to quantify this notion we will now treat the avera
tetrahedricity, Eq.~8!, as a structural potential and in analog
to the usual dynamic matrix define atetrahedricity matrix

T ab
mn5

]2^T&

]Ra
m]Rb

n
. ~14!

Diagonalization of this matrix gives the eigenmodes of t
rahedricity change and the corresponding eigenvalues, w
we will denote byeT andlT , respectively. To keep in line
with the vibrations we use a tetrahedricity frequencynT

5AlT/2p.
In analogy to Eq.~13!, where we defined an amplitud

weighted tetrahedricity as function of frequency, we calc
late the expectation value of the tetrahedricity matrix w
respect to the vibrations, i.e., an amplitude weighted str
tural curvature,

^e~n!Te~n!&5K (
ab

mn

ea
m~n!T ab

mneb
n~n!L . ~15!

This expectation value shows several interesting featu
~Fig. 7!. Most obviously there is a clear more or less line
increase with frequency. This linearity breaks down at
lowest frequenciesn,0.2(e/ms)1/2, i.e., in the frequency
range of the boson peak, where we find a distinct uptu

FIG. 6. Amplitude weighted atomic tetrahedricity as function
vibrational frequency mean value~dashed line! and equidistant con-
tour lines.
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This upturn corresponds to the one in Fig. 6 but is mu
more pronounced. It clearly indicates a structural differen
of the excess modes in the boson peak. It should be rem
bered that translational invariance requires^e(n)Te(n)&
→0 for n→0. For a pure translation we get of course ze
Due to the limited system size, sound waves belown
,0.2(e/ms)1/2 were eliminated and we do not see the i
crease towards this ‘‘structural boson peak’’ on the lo
frequency side. The small dips of the curve f
n(e/ms)21/2'0.62,0.88, . . . . coincide with the frequencies
of the longitudinal sound waves in the SSG.

To get some deeper insight into the interplay of vibrati
and structure change we calculate the correlation matrix
tween the vibrational eigenmodes and their tetrahedri
counterparts

^e~n!eT~nT!&5K (
na

~ea
n~n!eTa

n~nT!!2L . ~16!

The resulting correlation, Fig. 8, shows several interest
features. First there is a clear overall correlation as expe
from Fig. 7. The correlation is highest for the highes
frequency modes. From the participation ratios7 on can see
that both vibrational and tetrahedricity modes are localiz
for the highest frequencies. For the great majority of mod
two groups can be distinguished. The largest contribut

FIG. 7. Expectation value of tetrahedricity with respect to vib
tion modes versus frequency.

FIG. 8. Correlation of vibrational eigenvectorse and the eigen-
vectorseT of the tetrahedricity matrix as function of vibrationa
frequencyn and tetrahedricity frequencynT .
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stems from a broad band stretching from the lowestn values
to the peak at the maximaln values. In front of this band
~highern values! there is a smaller one that can be identifi
as being due to longitudinal phonons that are well separ
from the other vibrations in the SSG. A third group is seen
a narrow ridge at lown covering a major part of thenT
range. This last feature shows again the difference betw
the quasilocalized low-frequency modes and the rest of
spectrum. In a larger system interaction will of course m
these features. This does not, however, change the und
ing nature of the ‘‘naked’’ modes.8 Figure 8 does not only
shows separate peaks for the longitudinal phonons perm
by the system size, but also in thenT direction separate
‘‘phonons’’ are seen, both transversal and longitudin
Checking the participation ratios ofeT , one finds all modes
with low nT extended and, therefore, no low-frequency
calized modes are seen. The observed correlation is ins
cient to predict localization at low frequencies. This is n
too surprising as it has been observed earlier7 that these
modes are produced by a subtle interplay of local comp
sion and in addition a resulting soft direction in configur
tional space involving several atoms. The tetrahedricity
produces the first feature seen in the high-frequency mo
but not the second one.

We repeated the above calculation for the other meas
introduced in Sec. III. The strong correlation between
vibrational and the ‘‘structural’’ eigenvectors proves to
stable against the choice of structural measure. The ‘‘st
tural frequencies,’’ on the other hand, vary quite strongly.
particular taking the ‘‘perfectness’’ defined by Eq.~5! some
eigenvalues of the perfectness matrix, analogous to Eq.~14!,
become negative. One can tune the weights of tetrahedr
and octahedricity in Eq.~5! to move the smallest eigenvalue
to positive values. This way one can produce also lo
frequency localized structural modes that are correlated
their vibrational counterparts. Without an independent ar
ment for such a weighting, this would, however, be a pur
ad hocdefinition.

VI. CONCLUSION

We have shown that the Voronoi-Delaunay geometri
approach gives an insight into the geometrical effects un
lying the vibrations in the glass. For this purpose we int
duced different measures to quantify the local environme
tetrahedricity, octahedricity, sphericity, and perfectness,
rived from the first two. The idea of this perfectness is to
space by distorted tetrahedra and octahedra. Perfectne
zero for the perfect shapes.

In real space the lowest-frequency quasilocalized vib
tions can be envisaged as being caused by an instabilit
the local geometry that is stabilized by the embedding latt
A group of atoms is trapped between two configurations t
can be considered as more perfect using the above mea
Using the different measures one gets qualitatively the s
picture. Instead of a double-well situation one frequen
finds very flat single wells. For the higher-frequency mod
we do not see such geometrically unstable cores. All
geometrical measures give single wells getting steeper
increasing frequency of the vibrations.

This picture of geometrical instabilities is related to t
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one of geometrical frustration.34 Similar effects have recently
been reported in a Lennard-Jones-type glass where it
been shown that there is a cancellation of positive and ne
tive energy changes of the atoms along the mode.50 This is in
agreement with model calculations where the soft quasilo
ized modes were seen as precursors of instability.49 The
atomic stresses48 averaged over the core of the modes gi
very flat single-well potentials. The exact shape will, ho
ever, depend somewhat on the definition of the core of
vibration. For the higher-frequency modes no such unsta
core was observed for our geometrical measures.

For the great majority of modes there is only a we
correlation between the amplitude they have on a single a
and the perfectness of this atom. This reflects the deloca
tion of the modes. The high-frequency localized modes t
are concentrated on one or two atoms show a large scatt
their geometrical parameters, which indicates that they
caused by different local distortions. At the low-frequen
side there is a small increase of tetrahedricity or perfectn
that is, however, masked by the width of the distribution.

Clear correlations can be found between the curvature
our structural landscapes and the vibrations. To show this
introduced structural dynamic matrices and calculated fi
the expectation values of these matrices with the vibratio
eigenvectors. These values increase clearly with freque
and show some indication of a boson peak. In a second
we calculated the correlation between the structural and
brational eigenvectors. These correlations divide the vib
tions clearly into four different groups. First there are tw
bands of extended modes, longitudinal and transverse.
clear separation of these two bands is due to the large di
ence in longitudinal and transverse sound velocity for
considered soft-sphere glass. The high-frequencies local
vibrations are distinguished by the maximal correlation
the high-frequency structural modes. At the lowest frequ
cies, the region of the boson peak, the vibrations show ag
a distinctly different correlation behavior, indicating the
structural origin. These modes are, for all geometrical m
sures we used, clearly separated from the bands of exte
modes. This is a strong indication that they are to be con
ered as a separate species and not as some low-lying bra

The qualitative picture is independent of the geometri
measure used~perfectness, tetrahedricity, or sphericity!. Lo-
calization of low-frequency modes in structure space, ho
ever, is a much more subtle question. As in real space,
calization of a resonant mode strongly depends on
frequency and so it does in our ‘‘structural space.’’ Th
frequency depends strongly on fine details as can be sh
by changing the weights in the structural measure used.
ing a suitable weighting of octahedricity and tetrahedric
one can define low-frequency structural modes that are
related to the low-frequency quasilocalized~resonant!
modes. This shows that these modes result from a very
interplay of the structural entities involved in soft close
packed random systems. A slight change can destab
resonant modes or push them into the frequency band w
they merge with the extended modes.
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