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Voronoi-Delaunay analysis of normal modes in a simple model glass
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We combine a conventional harmonic analysis of vibrations in a soft-sphere glass with a Voronoi-Delaunay
geometrical analysis of the structure. “Structure potential&trahedricity, sphericity, or perfectngsare
introduced to describe the shape of the local atomic configuratekunay simplicesas a function of the
atomic coordinates. Apart from the highest and lowest frequencies the amplitude weighted “structure poten-
tial” varies only little with frequency. The movement of atoms in soft vibrational modes causes transitions
between different “perfect” realizations of local structure. As for the potential energy a dynamic matrix can be
defined for the “structure potential.” Its expectation value with respect to the vibrational modes increases
nearly linearly with frequency and shows a clear indication of the boson peak. The structure eigenvectors of
this dynamical matrix are strongly correlated to the vibrational ones. Four subgroups of modes can be
distinguished.

I. INTRODUCTION is typical for such modes, they couple bilinearly to the sound
waves that become damped. This is a purely harmonic inter-
The thermodynamic properties of glasses at low temperaaction. Near the boson peak the interaction is so strong that
tures differ from those of the corresponding crystafg.low  the loffe-Regel limit is reached for the sound waves and the
temperatures the specific heat is strongly enhanced comparetean free path drops to the wavelength. The modes compris-
to the Debye contribution stemming from the sound wavesing the boson peak can, however, still be described by a basis
The excitations underlying this enhancement have beenf sound waves and soft localized modeFhese latter
shown to be two-level systems beldlw=1 K and almost modes are closely related to the local relaxations in the glass
harmonic vibrations above. The vibrational density of statesind have predominantly a chainlike structti® They are
Z(v), plotted asZ(v)/v?> has a maximum, typically near 1 centered at atoms whose structural surrounding differs sub-
THz, the boson peak. stantially from the average but are not simply regions of low
This low-temperature/low-frequency behavior can be dedensity. From low-frequency Raman scattering a one-
scribed by the soft potential modet.In this model one as- dimensional geometry of the boson peak modes was con-
sumes that one common type of structural unit is responsibleluded, in agreement with the above picttitén their simu-
for the excess excitations. An effective potential describindations on amorphous silicon, Fabian and Alierfound
the motion of this unit is introduced. Depending on the pa-anomalously large Gneisen constants of the resonant
rameters this potential is a single or a double well. In the firstnodes, again pointing towards some distinct structural fea-
case it describes a low-frequency localized vibration and, iures causing them.
the second, tunneling through the bariigvo-level systems Quasilocalized low-frequency vibrations have also been
or relaxation over the barrier. For low energies a generabbserved in computer simulations of numerous other materi-
form for the distribution of the parameters describing theals, such as, e.g., Si®°® Sel* Ni-zr,*® Pd-Si'® NiB,'" in
effective potentials can be given. Fitting this model to theamorphous icé® and in amorphous and quasicrystalline
experimental data, one finds that 20—100 atoms or moleculakl-Zn-Mg.*°
units move collectively both in the tunneling and in the lo- However, the above explanation of the boson peak being
calized vibration4:® It should be emphasized that the con- due to the interaction of localizeesonant modes and ex-
cept of low-frequency localized vibrations is an idealization.tended modegsound wavesis not universally accepted.
These modes will always interact with the sound waves ofSome authors ascribe the boson peak to low-lying optic
similar frequency and, therefore, also between each othehands that hybridize with the acoustic stei®sr to low-
This delocalizes the modes and they are only quasilocal dying acoustic branches decorated with a random
resonant. Due to level repulsion, for sufficiently high densi-component® or to spatial damping of sound waves due to
ties of these modes, the interaction will change their densitgensity fluctuationg?
of states fromZ(v) = v* to Z(v)v thus creating the boson At frequencies above the boson peak the vibrational
peak® Such a model does not, however, specify the physicatigenmodes have a rather complicated structure. They are
nature of the localized modes or their origin in different strongly delocalized but not propagating. This behavior is
types of glasses. described by the term “diffusons” introduced by one
In computer simulations of a soft sphere gla&SQ  group? From the dynamic structure factor one can still de-
quasilocalized vibrations centered on ten and more atomine dispersion curves for these modes, both from
have been observédThese quasilocalized modes can beexperimert*?® and from simulatiorf>?® This can also be
seen as the core of resonant modes in an infinite system. Asbserved in the soft-sphere glass studied in this paper
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published resulys The interpretation of these dispersion erogeneous structure containing regions of more “perfect”
curves and especially the damping are still controversial. Fior “imperfect” atomic arrangements. In the regions of per-
nally, at the highest frequencies or near-gaps of the spectrufect structure the elementary packings of four neighboring
truly localized modes are observed. atoms (the Delaunay simplicgsare close to either regular
As seen already from our previous remarks, there is detrahedra or quart-octahedfai.e., quarters of regular octa-
great deal of literature connecting the vibrational propertieshedra. In the regions of imperfect structure the local configu-
and in particular the boson peak, with structural propertiesfations of the neighboring atoms differ markedly from these
The local dynamics in the amorphous state is often conideal shapgs. A part]al spectrum 0}‘ the vibrational states of
nected with the so-called medium-range order in gla&s®s. the atoms in the regions of more “imperfect” structure dis-
In another line of reasoning, soft modes and the bosoRayS an excess of low-frequency modes.

peak are connected with the concept of frustration and loca| " the present paper we want to verify and substantiate

strains, see, e.g., Ref. 29. It was argued that below the gla% is notion for the SSG and to investigate the correlations
transition the remaining free volume would collapse leavin etween the vibrations in the whole frequency range with

centers of internal strair. These structural defects Cangdifferent parameters characterizing local perfectness. For this
serve as centers of relaxations and soft vibrations. On a simpU'Pose we combine the harmonic analysis of Ref. 7 with the

lar line local pressures were defined that are then related t oronoi-DQIaunay geometrical de;cription of the local struc-
local force constant ture used in Ref. 39. First, we shift the atoms of the model

Going one step further one considers frustration as resul@/°Nd the eigenvector of a low-frequency quasilocalized nor-

ing from a competition between different structures, or penal mode and observe the changes in the local atomic ar-

tween local and global dense packing. For three-dimension ngemepts caused by. the shift. This allows us to visualize
simple sphere models global dense packing results in fcc e specific transformations of the local structure that accom-

hep structures, whereas, locally icosahedral packings are tfnY the motion of the atoms in the vibrations. In a next step
we calculate the atomic perfectness weighted with the

most dense. However, the latter are not space filling. Inves- ) o . .
tigations to find the most dense close packing of hard spheregiuared amplitudes of the vibrational modes. This quantity

are still pursued? It seems that random packings cannot Varies only weakly with frequency. Considering that the vi-

exceed a packing fractiofi,,~0.645 considerably below _bratlons are“ connected with _changes_ 'T the geometry, we
the value for the ordered structurdg,~0.74. This differ- introduce a “structural dynamical matrix.” We will show in
ence is related to the degeneracy between the fcc and hé‘Be followmg that there’!s a strong c_:orrglaﬂon hetween the
structures leading to a geometrical frustration associated wit structural eigenvectors” and their vibrational counterparts.

the impossibility to fill the space with perfect tetrahetfta his correlation divides the vibrations, as regards structure
Frustration of local packings, in particular in binary system,ChangeS’ into separate classes: longitudinal and transverse

have been utilized to derive criteria for the glass transitioneXtended’ high-frequency localized, and low-frequency

and melting, see, Ref. 34, and references therein. As a quaﬂyasnocallzed modes.

titative measure of randomness atomic stresses were intro-
duced. Il. THE SOFT-SPHERE GLASS

.R'elated to this frustration picture is the hypothesis on the \ye yse 55 glassy configurations of 500 atoms each, inter-
origin of the soft mode, that the most active atoms oscillate\acting via a soft-sphere pair potential

between neighboring minima of the potential energy formed
by a cage of surrounding atorfisThese minima correspond
to some more “perfect” local arrangements of the atoms. u(r)=e T
The coupling to the rest of the material changes this double-
well system to one of a soft single well. One example forTo simplify the simulation the potential is cut off alo
such a situation is the interstitial atom in an fcc metal. A= 3.0 and shifted by a polynomial with=2.54x 10" °¢ and
medium-sized interstitial occupies the octahedral site. InB=—3.43x10 e.
creasing the size of the interstitial atom the octahedral site We used the configurations obtained during our earlier
becomes unstable and the interstitial moves to an off-centavork concerning soft quasilocalized modes and local
position. The impeding instability is indicated by low-lying relaxations”'° There, we did a molecular-dynamics simula-
resonance vibration:*” The instability in this example is tion with a fixed atomic densityy/ o= 1, periodic boundary
caused by a local compression that causes the simultaneo@gnditions, using the Verlet algorithm with temperature scal-
occurrence of resonant low-frequency and localized highing, and a time step of 0.04 in units afo?/ €2 The con-
frequency vibrations. In the glass the modes are more exigurations were obtained by a quench from a liquid at about
tended, typically consisting of string-like groups of some 202.5 times the melting temperature to a reduced temperature
atoms® Instead of the single interstitial atom one has to takeof kT=0.04e about 5% of the glass transition temperature.
a group of atoms and, due to the lacking symmetry, the enThe quench rate was about OkIEmo?e)Y2 This rate is
ergy minima will be shifted relative to each other. Keepingclose to the ideal quenching rate for this matefahfter the
this in mind the underlying mechanism can still be true. Thequench, each sample was aged for several 1000 time steps to
simultaneous occurrence of low- and high-frequency localstabilize the potential energy and to avoid spurious minima.
ized modes centered on one atom has indeed been obgervetihe final quench td =0 was done by steepest descent con-
Some of the present authd#s$®recently introduced a pa- jugate gradient minimization of the potential energy. From
rameter of “perfectness” and have shown that a computethe pair correlation one finds a nearest-neighbor distance of
model of amorphous argon has, on a nanometer scale, a hetround 1.&. For more details see Refs. 7 and 10. The small
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size of N=500 has the advantage that the lowest quaS”Oca|Wherei andj designate the edges of the Simp|exy a_nd the

ized modes are seen as localized modes since the cutoff inaverage edgelength. This measure was constructed to be zero
values compatible with periodicity excludes the sound wavesor ideal tetrahedron and to increase with distortion. For
of similar frequency. In the previous work we have showncomputational reasons we slightly modify the previous mea-

that these low-frequency localized modes are the resonagire of the deviation from an ideal quart-octahedron,ditve
part of the low-frequency modes in larger samples. tahedricity, using

The inverse sixth-power potential is a well-studied theo-
retical model that mimics many of the structural and thermo- 6 -1
dynamic properties of bcc forming melts including the exis- o:[ gmor;}l} ,
tence, in its bcc crystal form, of very soft shear moteln m=1
the glassy structure one finds a boson peak with a maximum
near v=0.1(e/mo?)*? extending to  about where
=0.4(e/ma?)Y2. The enhancement of the vibrational density _
of states over the Debye value is by a factor of about 2.5. _ e3om/o
(Ref. 8 I3 35-/0, |

As before, the frequencies and eigenvectors of normal izl e
vibrations are calculated by the diagonalization of the force
constant matrix. Imaginary frequencies are absent in thand
spectrum because the system is in an absolute local mini-
mum of potential energy. For the given number of atoms the (Ii=1)? (I, =1, /\2)?
minimal q value for sound waves ignmi,=0.7% ! giving On= =
minimal frequencies of 0.18 and 0.62(mo?)Y? for the

transverse and longitudinal sound waves, respectively. Res?ﬁ a perfect quart-octahedral DS one edge/Zstimes larger

i i 2\1/2
nant modes with frequencies well below 0'&%0 ) than the other edges. In the previously used med¥iireyas
will, therefore, be seen as low-frequency localized modes

This is reflected in th ticinati i : i Ref. 7 assumed that theth edge is the longest. The modified ex-
o IS 'Sf. r((aj ected In Ie pall_r |c(|jpa |0nd ra IOSth]:/en N et "pression Eq(3) weights the six possible valu€y,, in such a

ne fn Zsllzproper ocalized modes al lrequencies way that the smallest one dominates. The octahedricity thus
>2(e/mo©)~= and (quas) localized low-frequency modes

i . tends to zero when the DS is close to a perfect quart-
with »<0.2(e/ma?)Y2. The great majority of modes (0.2 Zero w ! p qu

5 d h Th | des h octahedron. This weighting allows us to avoid the use of
<v<2) exte:‘n_s overi;tse system._ ese latter modes avl?)gical functions for the selection of the maximal edge and
been called “diffusons® due to their nonpropagating char-

. guarantees differentiability that is essential for our investiga-
acter. Nevertheless, for the SSG as for other systems, it y g

ibl broad “oh di > ton. For the relevant low values @, i.e. simplices close to
possible to extract some very broad “phonon dispersions’y e qyart-octahedral shape, our expression reproduces the
via the dynamic structure factdf.

values of the original definition.

th The Ssr? V\;as ustid 'nl exter;sweﬁstgup:juﬁ of th? |3fluetr;]ce of The tetrahedral and quart-octahedral DS can be unified in
€ quench rate on he giass struc -nthese studiesth€ - ,hq class of “perfect,” or “ideal” simplices® We measure

Voronoi method was used to identify pentagonal rings that[he perfectnes®f the DS shape by
can be used as signature of icosahedral packing.

()

1/2

4

i<iihj#m 1012 i#m 512

T)\-1 -11-1
I1l. VORONOI-DELAUNAY DESCRIPTION S= [QT( T_) +go( 02) } , (5)
OF LOCAL STRUCTURE. ¢ ¢
By definition, theVoronoi polyhedror(VVP) of an atom is ~ Where
that region of space that is closer to the given atom than to
any other atom of the system. A dual system spanning space e 3TTe e 30/0c
is formed by theDelaunay simplicegDS). These are tetra- gT:e*3T/Tc+e*3O/Oc’ go:e*3T/Tc+e*30/Oc'

hedra formed by four atoms that lie on the surface of a

sphere that does not contain any other atom. Both VP and o4 1o zero when the simplex takes the shape of an ideal
DS fill the space of the system without gaps and overlaps. 1§ ahedroror quart-octahedron. Contrary to the expression

our calculations we do a Voronoi-Delaunay tessellation Oforoposed in Ref. 38 our measure is differentiable with re-

the glass configurations by the algorithm described in Refgpect 1o the atomic coordinates. The relative weights of tet-
44. . . rahedricity and octahedricityT.=0.016, O,=0.033, are
lt.WaS found earlier .that two Tﬁam types of D.S aré Pré-taken from Ref. 47, where they were proposed as boundary
QOmlnant In monoatomic glass‘é?s,' namely, DS similar to values for perfect tetrahedra and perfect quart-octahedra, re-
ideal tetrahedra and DS resembling a quarter of a regulagye tively. The relation of the valu@sO to the distortion of
octahedron(quart-octahedron Following Ref. 46 we intro- a DS can be seen also from the valigs=0.050 of the

duce as quantitative measure of the deformation from a’f'etrahedricity of an ideal quart-octahedron aBg=0.084
ideal tetrahedron theetrahedricityof a DS octahedricity of an ideal tetrahedron ’

(112 Each atom in the glass is corner of approximately 24 DS.
T= o , 2) The structural environment of an individual atom can be
<) 1512 characterized by the averagerfectnes®f these DS®
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TABLE I. Values of perfectness, tetrahedricity, and sphericity 6.98 7
for an atom in an ideal fcc lattice at the center of an icosahedron ,
and for the glass, averaged according to €. 6.36 ,/

6.94 /
<Sat0mi(> <Tatomi(> (Satomic> E * T = ’
S6.92f N .-

fcc lattice 0.0 0.039 0.346 =
icosahedron 0.095 0.0015 0.325 6.9 //
SSG 0.66-0.17 0.0230.005 0.3580.025 6. 88¥

Nps
Satom:n_DS |=§:1 Si, (6)

wherenpg is the number of DS surrounding the atom.

-1.5-1-0.50 0.5 1 1.5 2
X

FIG. 1. Average potential energy of atoms in a single soft mode

with frequencyr=0.0985, participation ratigp=0.23. Solid line,

(U(X))0t, potential energy averaged ovalt atoms in the system.
Dashed line{U (X)), thepartial potential energy averaged over

Another widely used measure of the atomic neighborhoog; atoms of the core of the mode. Dotted line, least squares fit of

is the sphericityof the Voronoi cell:

1 F8

S= 367 2 (7)
Here F is the surface area of the VP, aiMlis its volume.
This measure is minimal for a sphegs=0, and again in-
creases with distortion.

the partial potential energy by a soft potential polynontigl(x)

=Ax2+Bx3+ Cx*+ (U(0))core-

R"(x)=Rg+x€", (10
whereRy] is the equilibrium position of atom. For simplic-

ity we have not normalized the amplitudeto an effective
atomic amplitude as is usually done in the soft potential

In analogy to the potential energy one can take the totamodel.
tetrahedricity, perfectness, or sphericity to characterize the In Fig. 1 the average potential energy per atdbh(X) )o

structure. We introduce an average ‘“structure potential” by

Nps

> T

DS i=1

1

(M=5 ®

and analogouslyS) and(S), whereNpg is the number of

DS in the system. Since dynamics is concerned with the=0-098(/ma

(solid line), is shown as a function of the displacement along
a single soft eigenmode. This is one of the soft potentials that
are described by the soft potential mo&&kas has been dis-
cussed in the Introduction. The subscript “tot” indicates that
the averaging is over all 500 atoms of the system. Figure 1
corresponds to a very-well-localized soft mode with
)12 participation ratio 0.23. These values

motion of the atoms it is often more useful to average oveMould guarantee a very narrow resonance in the infinite

the atomic quantities defined by Eq. 6,

N
1
<Tatomic>: N ;1 T atomic- 9

However, both definitions give similar values.

In Table | we compare the values of the three measure
for an ideal fcc structure, an icosahedron, and our glass. T
values of the glassy structure clearly deviate from the ones
both ideal configurations. It is, however, not possible to de
fine unambiguously a nearness to either structure using the
measures.

IV. SOFT VIBRATIONS AND LOCAL STRUCTURE

h
0

medium3®

As mentioned in the Introduction, it has been speculated
that the soft modes in glasses originate from some “soft”
atomic configurations where, in the extreme case, the atoms
are stabilized by the embedding matrix in a position lying
between minima of the potential energy given by its near
neighbors. To illustrate this, we show in Fig. 1 by the dashed
fne the average potential energy of the 61 atoms that are
€ N .
[ost active in the given modeél (X)) core- Atoms are con-

sidered as active in a given mode if their amplitye® is at

g%ast 30% of the maximal atomic amplitude in the mode. We

will call these active atoms theore of the mode(subscript
corg. For the modes with participation ratige<0.25 the
average number of atoms in their respective cores is 51. The
results presented below do not depend strongly on the cutoff

Considering the relationship between local structure and/S€d for selecting the active atoms. Tg@tial potential en-

soft vibrations one normally looks for peculiarities of atomic

arrangements that induce the softness of some low-frequendy}

modes. In the following section we study this relationship
from the opposite point of view. Knowing the eigenvector of
a vibration (obtained by diagonalization of the force con-
stants matrixwe analyze how the local structure is affected
by the collective motion of the atoms along the normal co-
ordinate of the vibration.

We illustrate this for an example of a quasilocalized soft

ergy of the core atoms is indeed double-well shaped with
inima atx,,~*1.3, which corresponds to maximal dis-
placements of individual atoms bjR"—R{|~0.2-0.3r
from the equilibrium configuration. This maximal atomic
displacement is of the order of the one observed in local
low-temperature relaxatiort§.

To obtain a quantitative analysis of the dependence of the
partial potential energy on the displacemenive did a least-
square fit of{U(x))core bY the soft potential expressiol

mode. The atoms are shifted along the direction of the

3N-dimensional, normalized eigenvect®according to

U* () =Ax?+Bx3+Cx*+(U(0))core (11)
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FIG. 4. Partial perfectness of atomic neighborhoods averaged
FIG. 2. Distribution of the parameter&(eo 2), solid line, over the 93 soft modes. The curve is symmetrized as in Fig. 3.
B(eo3), dotted line,C(eo %), dashed line of the fitting potential
U*(x) for the partial potential energylU(X))core, for the 93 soft

modes with participation ratip<<0.25.

For each value of displacementve repeat the tessellation of
the atomic configuration into the Delaunay simplices and
calculate the structure parameters defined in Sec. Ill. The
(dotted line in Fig. 1 most remarkable effect of the soft vibrations on the local
We find for the soft modes that the double-well behaviorstructure is the marked and systematic increase of the num-
is the rule for the potential energy of the core. This is clearlyber of perfect DS in the vicinity of the most active atoms for
shown in the distribution of the soft potential parametersx~=1. The new perfect simplices form those patterns of
A,B,C, obtained for the 93 low-frequency modes with par-noncrystalline perfect structures, which are specific for the
ticipation ratiosp<0.25 found in our 55 glass configura- dense packings of spherical particles. In particular, we ob-
tions, see Fig. 2. Nearly the entire distributionfof/alues is ~ serve in the shifted configurations new five-fold rings of per-
on the negative side, which corresponds to double-well pofect tetrahedra. These rings are known to be the densest
tentials. The rapid drop of the distribution Affor |[A|—0 is  packings of seven equal spheres. This tendency is even more
in accord with the singularityp(A)=|A|] of the distribution ~ pronounced for the quart-octahedral DS, which form, in the
of the harmonic force constants in the soft potentials. Theshifted positions, new octahedra of almost perfect shape,
corresponding distribution functions for the full potential en-Which are connected to each other and to the tetrahedral DS
ergies of the modes has been given eafli€orresponding SO0 that new patterns of noncrystalline perfect structure ap-
to the soft single wells found for the potential energy,Pear. Those tetrahedra and quart-octahedra, which exist al-
summed over all atomgFig. 1), there the distribution with ready atx=0, also increase their perfectness, i.e., their val-
its singularity was observed on the side of positvealues. uesT and O decrease as the configuration is shifted to the
The partial potential energy, averaged over the 93 soffninima of the potential energy.
modes, is shown in Fig. 3. Note that the mean absolute value As done for the potential energy we calculate the average
of the force constanta of the core potential is much larger atomic perfectneséS,iomidX))core: Ed. (6), of the core, av-
than the force constant for the whole mode, which does nogéraging over the same 93 soft modes. This average is shown
exceed, for the considered 93 modes, the valie in Fig. 4, that displays again a double-well form. Corre-
=0.001%/ 0. This means that there is a very fine equilibra-sponding to Eq(11) we do a least-square fit by a fourth-
tion between the unstable core of a localized mode and therder polynomial,
rest of the system. This equilibrium is very fragile, as can be . o s a
seen from the close correlation between the eigenvectors of  {Satomid X)) core=A"X"+B'X"+ C'X*+(S&0) ) core-
the soft modes and the direction of the relaxation “jumps” (12)
of atoms during annealing of the glass, The distribution of the fitting coefficientd’,B’,C’ is pre-

As a next step we analyze the changes of the local struGsented in Fig. 5. It is very similar to the distribution of the
ture produced by the collective displacements of the atoms.

70
6.98 co
6.96 50
S
=40
$6.94 g
=
56.92 %30
v 2,20
6.9
10
6.88
1.5 -1 -0.5 0 0.5 1 1.5 2 -0.1 ’ 0, ’ 05 0.1
x A.B.C

FIG. 3. Partial potential energylJ (x) ). averaged over the 93

of the normal coordinates.

FIG. 5. Distribution of the parametess (solid line), B’ (dotted
soft modes. The curve is symmetrized because of the arbitrary sigime), C’ (dashed ling for the fitting potentialS},,{X) of the
partial perfectness of the atomic neighborhoods.
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TABLE Il. Average number of atoms in the core of the modes and average values of the parameters of the
fitting potentialU* (x) for the partial potential energy. The mean square deviations are given in parentheses.

r=0.11 r=1.0 v=1.85

(Ngore) 52 310 55

A (ec?) —0.040(0.068) 0.096.005 1.620.53

Bl (ec?) 0.0120.022 0.00230.0021) 0.190.09

C (ec™® 0.0300.056 0.00150.0003 0.540.40
soft potential parameters for the partial potential en€Fdy. We propose the following interpretation of our results. In
2), and shows also a double-well behavior for the great mathe glass of spherical soft particles, the landscape of the par-
jority of the fitting potentials. tial potential energy, calculated for the neighboring atoms,

Since the perfectness is given by a weighted sum of tetstrongly correlates with such local structural parameter as the
rahedricity, Eq.(2), and octahedricity, E¢(3), it is interest-  perfectness of the atomic packing. This gives a hint of the
ing to repeat the above procedure for both components sepgpndition on the local structure where a soft vibration can
rately. Doing this one finds in the representation of Fig. 4 forgrise. The core of the soft modes should consist of atoms that
the tetrahedricity a single well and for the octahedricity aare in an intermediate position between two different realiza-
more pronounced double-well behavior. The perfectness folgong of |ocal perfect packing. This is in agreement with cal-
lows the potential energy more closely. We will meet this ¢, ations using random force constants in a coherent poten-

ber\}s\e"oézfngaégmt;ze :zaen):zsergtpl)?géentation for the atomi éial approximation where it was found that the boson peak
stresseé® We find for both the hydrostatic pressyrand the appears as a precursor of instabifitBut the perfectness of

von Mises shearr, very flat wells with perhaps a hint of a the atomic neighborhood is a purely geometrical characteris-

double minimum. However. the absolute values of both thesgc' The statistics of the perfect and imperfect configurations,
quantities forx=0 do not7 indicate so strongly the low- efined in terms of the tetrahedral and quart-octahedral De-

frequency quasilocalized modes. We get for these modes al@Un@y simplices, should be, in principle, universal for all

erage frequency modes£ 1) and high-frequency localized close ranQom packings of spherical p.articles, irreleyant to
modes as average valugs=7.21, 7.17, 7.44 andr their phyS|caI'nature. Thus we establlsh a connection be-
—0.485, 0.454, and 0.558, respectively. This shows that th@Veen the universal geometrical properties of a system of
high-frequency localized modes are clearly centered in higi§Pherical atoms and the peculiarities of its low-frequency
stress regions. For their low-frequency counterparts this iglynamics. However, this conclusion is preliminary and has
true to a much lesser extent. to be checked by further research.

We emphasize that the found double-well behavior, both
for the core potential energy and the perfectness of the neigh-
borhood of the active atoms, is specific to the quasilocalized V. CORRELATION BETWEEN STRUCTURE
low-frequency modes. For comparison, we have analyzed 70 AND VIBRATION
modes in the middle-frequency and the high-frequency bands ) ] .
of the energy spectrum. The middle-frequency modes are We have seen that low-frequency quasilocalized vibra-
delocalized: the average number of atoms that beldag tions have a specific impact on the structure surrounding the
our definition to the core of the mode is 310 (62% of all most active atoms of the vibration. We will now investigate
atoms. The high-frequency modes are again strongly localhow far a general relationship between structural measures
ized, with the number of atoms in the core equal to 55. Theand dynamics can be seen. We will concentrate here on tet-
average values of the fitting parameters for the partial poten-ahedricity, Eq.(2). Qualitatively, we find the same trends
tial energy and partial atomic perfectness are collected imlso for perfectness, E¢5), and sphericity, Eq(7).
Table Il and Table Il for the three types of modédew-, As a first possible relation between structural measures
middle-, and high-frequency mode3he small negative val- and vibrations one can take the atomic tetrahedricity
ues of the coefficient<C’ for the partial perfectness of weighted by the amplitudes on the atoms. This would show
medium- and high-frequency modes are an artifact of thavhether e.g., atoms with low values ©f;,, participate par-
fitting procedure. Their smallness reflects the dominance dificularly strongly in vibrations in some frequency range. We
the harmonic term. define

TABLE lll. Average number of atoms in the core of the modes and average values of the parameters of
the fitting potentialSa* (x) for the partial perfectness of atomic neighborhood.

r=<0.11 v=1.0 v=1.85
A’ —0.035(0.025) 0.078.009 0.390.14
|B'| 0.0030.003 0.001@0.0007% 0.0520.038

c’ 0.0130.01) —0.0005(0.0004) —0.22(0.20)
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FIG. 6. Amplitude weighted atomic tetrahedricity as function of ~ FIG. 7. Expectation value of tetrahedricity with respect to vibra-
vibrational frequency mean valgdashed lingand equidistant con-  tion modes versus frequency.
tour lines.

This upturn corresponds to the one in Fig. 6 but is much
1 more pronounced. It clearly indicates a structural difference
T={y > Toom& (M) ), (13)  of the excess modes in the boson peak. It should be remem-
" bered that translational invariance requirés(v)7e(v))
where€e"(v) stands for the three components, on amgmofa  —0 for v—0. For a pure translation we get of course zero.
vibrational eigenvector to frequency and (- --) denotes Due to the limited system size, sound waves below
averaging over configurations and eigenvectors to similar<0.2(e/mo)*2 were eliminated and we do not see the in-
frequencies. Taking the average value, the dashed line in Figrease towards this “structural boson peak” on the low-
6, one observes only a slight variation with frequency. Onlyfrequency side. The small dips of the curve for
at the smallest frequencies is a small upturn found. The conv(e/mo) ~2~0.62,0.88. . . . coincide with the frequencies
tour plot shows that th@(») values fall in general into a of the longitudinal sound waves in the SSG.
narrow band. This is different for the high-frequency local- To get some deeper insight into the interplay of vibration
ized modes[ »>2(e/mo)Y?]. These modes have a large and structure change we calculate the correlation matrix be-
spread ofT (v) values without a clear preference for large ortween the vibrational eigenmodes and their tetrahedricity
low atomic tetrahedricities. This large spread is a direct concounterparts
sequence of the strong localization, even to single atoms.
The low-frequency modes always involve larger numbers of _ n n 5
atoms, fromq 10 ugwards, and, tﬁerefore, avegrage over many (e(v)er(vr))= % (€a(¥)ery(v1)7). (16
different atomic tetrahedricities.

In the previous section we noted a connection betweerd he resulting correlation, Fig. 8, shows several interesting
low-frequency vibrations and changes of structural elementdeatures. First there is a clear overall correlation as expected
In order to quantify this notion we will now treat the averagefrom Fig. 7. The correlation is highest for the highest-
tetrahedricity, Eq(8), as a structural potential and in analogy frequency modes. From the participation rafios can see
to the usual dynamic matrix definetetrahedricity matrix that both vibrational and tetrahedricity modes are localized

for the highest frequencies. For the great majority of modes

. (92<T> two groups can be distinguished. The largest contribution
wf~ omon (14
IR, IR 9
Diagonalization of this matrix gives the eigenmodes of tet- < ( e(u)eT(UT) ) >

rahedricity change and the corresponding eigenvalues, which 0,20
we will denote byer and\ 1, respectively. To keep in line

with the vibrations we use a tetrahedricity frequency 15/
= \q/27. 0- *

In analogy to Eq.(13), where we defined an amplitude 0
weighted tetrahedricity as function of frequency, we calcu- O.1 !

late the expectation value of the tetrahedricity matrix with
respect to the vibrations, i.e., an amplitude weighted struc- 0005 ’
tural curvature,

mn

(e(v)Te(v))= < > el(n) TIRel( v>> . @

ap % .
_ _ _ . [(5/ M .2 2 ]
This expectation value shows several interesting features ) ) 1/9 V [O
. . ; ! 1
(Fig. 7). Most obviously there is a clear more or less linear ]
increase with frequency. This linearity breaks down at the
lowest frequencies/<0.2(e/ma)*?, i.e.,_ in the_fr(_aquency FIG. 8. Correlation of vibrational eigenvectcesand the eigen-
range of the boson peak, where we find a distinct upturnvectorse; of the tetrahedricity matrix as function of vibrational

frequencyr and tetrahedricity frequency; .
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stems from a broad band stretching from the lowesalues  one of geometrical frustratiotf.Similar effects have recently

to the peak at the maximal values. In front of this band been reported in a Lennard-Jones-type glass where it has
(higher v values there is a smaller one that can be identifiedbeen shown that there is a cancellation of positive and nega-
as being due to longitudinal phonons that are well separatedve energy changes of the atoms along the nidéis is in

from the other vibrations in the SSG. A third group is seen aggreement with model calculations where the soft %yasilocal—
a narrow ridge at lowr covering a major part of the;  1z€d modes were seen as precursors of instalityhe _
range. This last feature shows again the difference betweedoMIC stresséS averaged over the core of the modes give

the quasilocalized low-frequency modes and the rest of th&&"Y ﬂg‘t sin%le-well pr(])tentialsﬁ Tgef_e_x_act s?aﬁe will, h?wr;
spectrum. In a larger system interaction will of course mixCVer, depend somewhat on the definition of the core of the

these features. This does not, however, change the unolerlvibration. For the higher-frequency modes no such unstable

ing nature of the “naked” mode3 Figure 8 does not only dore was observed for our geometrical measures.

Lo . For the great majority of modes there is only a weak
shows separate peaks for the longitudinal phonons permltte(Ejorrelation between the amplitude they have on a single atom
by the system size, but also in the direction separate

. . e and the perfectness of this atom. This reflects the delocaliza-
phonons” are seen, both transversal and longitudinaljon of the modes. The high-frequency localized modes that
Checking the participation ratios efr, one finds all modes 4re concentrated on one or two atoms show a large scatter of
with low v; extended and, therefore, no low-frequency lo-their geometrical parameters, which indicates that they are

calized modes are seen. The observed correlation is insuffcaused by different local distortions. At the low-frequency
cient to predict localization at low frequencies. This is notside there is a small increase of tetrahedricity or perfectness
too surprising as it has been observed edrlibat these that is, however, masked by the width of the distribution.
modes are produced by a subtle interplay of local compres- Clear correlations can be found between the curvatures in
sion and in addition a resulting soft direction in configura-our structural landscapes and the vibrations. To show this we
tional space involving several atoms. The tetrahedricity reintroduced structural dynamic matrices and calculated first
produces the first feature seen in the high-frequency mode#)e expectation values of these matrices with the vibrational
but not the second one. eigenvectors. These values increase clearly with frequency
We repeated the above calculation for the other measureand show some indication of a boson peak. In a second step
introduced in Sec. lll. The strong correlation between thewe calculated the correlation between the structural and vi-
vibrational and the “structural” eigenvectors proves to bebrational eigenvectors. These correlations divide the vibra-
stable against the choice of structural measure. The “strudions clearly into four different groups. First there are two
tural frequencies,” on the other hand, vary quite strongly. Inbands of extended modes, longitudinal and transverse. The
particular taking the “perfectness” defined by E&) some clear separation of these two bands is due to the large differ-
eigenvalues of the perfectness matrix, analogous tq’Ey. ~ ence in longitudinal and transverse sound velocity for the
become negative. One can tune the weights of tetrahedricitgonsidered soft-sphere glass. The high-frequencies localized
and octahedricity in Eq5) to move the smallest eigenvalues Vibrations are distinguished by the maximal correlation to
to positive values. This way one can produce also lowthe high-frequency structural modes. At the lowest frequen-
frequency localized structural modes that are correlated teies, the region of the boson peak, the vibrations show again
their vibrational counterparts. Without an independent argua distinctly different correlation behavior, indicating their
ment for such a weighting, this would, however, be a purelystructural origin. These modes are, for all geometrical mea-
ad hocdefinition. sures we used, clearly separated from the bands of extended
modes. This is a strong indication that they are to be consid-
ered as a separate species and not as some low-lying branch.
VI. CONCLUSION The qualitative picture is independent of the geometrical

We have shown that the Voronoi-Delaunay geometricaf“e_asu_re use(perfectness, tetrahedr_icity, or spherigiti.o-
approach gives an insight into the geometrical effects undergahza'[Ion of low-frequency modes in structure space, how-

lying the vibrations in the glass. For this purpose we intro-EVer: 1S & much more subtle question. As in real space, lo-

duced different measures to quantify the local environmentsS@lization of a resonant mode strongly depends on its

tetrahedricity, octahedricity, sphericity, and perfectness, def_requency and so it does in our “structural space.” This

rived from the first two. The idea of this perfectness is to fill frequency depends strongly on fine details as can be shown

space by distorted tetrahedra and octahedra. Perfectness_b?é changing the V\_/eig_hts in the struct_ural measure used_. .US'
zero for the perfect shapes. ing a swtab]e weighting of octahedricity and tetrahedricity
In real space the lowest-frequency quasilocalized vibrane can define low-frequency structurql modes that are cor-
tions can be envisaged as being caused by an instability &aladted _Fﬁ thﬁ Iovx;:rttecg#ency qduasnocalllzfedesonarbt f
the local geometry that is stabilized by the embedding lattice0dES- ThIS Shows that these modes result from a very fine
terplay of the structural entities involved in soft closed-

A group of atoms is trapped between two configurations thal ) e
group Pp g cked random systems. A slight change can destabilize

can be considered as more perfect using the above measu 5 t mod h them into the f band wh
Using the different measures one gets qualitatively the samigSonant modes or push them into the frequency band where

picture. Instead of a double-well situation one frequentlyt ey merge with the extended modes.

finds very flat single wells. For_ the higher-frequency modes ACKNOWLEDGMENTS
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