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The impact of temporally correlated dynamics on nonequilibrium condensation is studied using a non-

Markovian zero-range process (ZRP). We find that memory effects can modify the condensation scenario

significantly: (i) For mean-field dynamics, the steady state corresponds to that of a Markovian ZRP, but

with modified hopping rates which can affect condensation; (ii) for nearest-neighbor hopping dynamics in

one dimension, the condensate is found to occupy two adjacent lattice sites and to drift with a finite

velocity. The validity of these results in a more general context is discussed.
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Many nonequilibrium systems are known to exhibit real-
space condensation in which a high density phase con-
denses into a small region in space. Examples include
phase separation in driven diffusive systems [1,2], jam-
ming in traffic flow [3,4], gelation in networks resulting in
a hub with a macroscopic linking number [5,6]. A similar
phenomenon may occur in the clustering of compartmen-
talized shaken granular gasses. Under certain conditions
condensation is observed, whereby most particles accumu-
late in one compartment [7,8].

A paradigmatic model to study condensation in such
nonequilibrium systems is the zero-range process (ZRP)
[9,10]. In this model of mass transfer, particles hop be-
tween boxes with hopping rates uðnÞwhich depend only on
the occupation number n of the departing box. The steady-
state distribution function of the box occupation numbers
factorizes into a product of single-box terms, which makes
this model amenable to theoretical studies. For rates which
for large n are of the form

uðnÞ ¼ �ð1þ b=nÞ; (1)

it has been shown that the model exhibits a condensation
transition at high densities as long as b > 2. At densities
above the condensation transition, one of the boxes is
occupied by a macroscopic number of particles, constitut-
ing a real-space condensate. The parameter � sets the time
scale of the process. By mapping the dynamics of a specific
physical system to that of a ZRP, one can study condensa-
tion phenomena in that system.

In reality, mass transfer processes usually constitute a
coarse-grained description of more complex microscopic
dynamics. This frequently results in temporally correlated
dynamical processes, which are not captured in the
Markovian dynamics of the ZRP [11]. It would thus be
of interest to explore the effect of temporal correlations on
the collective behavior of the ZRP, particularly on the
occurrence of condensation.

In this Letter, we consider a non-Markovian ZRP, where
the hopping processes depend not only on the present

occupation of a site but also on jump events that have
occurred in the past. We find that this has significant impact
on condensation. Specifically, two main results are derived.
The first is that memory effects on steady-state condensa-
tion can be captured by a Markovian ZRP with an effective
hopping parameter beff � b which controls the condensa-
tion transition. The second effect is that in the case of
asymmetric nearest-neighbor hopping on a ring of L sites,
the condensate drifts with a finite velocity which scales as
1=L. These results are based on studies of a particular
temporally correlated dynamics, but we expect them to
be rather generic.
The non-Markovian ZRP introduced in this work con-

sists of L boxes i, each characterized by the particle
number ni and an internal ‘‘clock’’ �i. The total number
of particles is N. The clock proceeds irregularly in integer
steps and is reset to zero each time a particle jumps onto
site i, thus keeping a memory of the history of the process.
A configuration of the system is then given by the set
ðn; �Þ ¼ fðni; �iÞgLi¼1. The hopping rates out of site i are
taken to depend both on the occupation of the site ni and on
the state of the clocks �i, but not on the occupation of any
other site, in accordance with the general approach of the
ZRP.
Here we consider the following dynamics: particles hop

between sites with rate uðn; �Þ. The internal clock on the
target site is reset to zero together with a jump.
Independently of the jump processes, at each site the
internal clock is incremented by one unit with a constant
rate c. For a jump from i to j, these two processes can be
schematically summarized by

ðni; �iÞ; ðnj; �jÞ ���!uðni;�iÞ ðni � 1; �iÞ; ðnj þ 1; �j ¼ 0Þ
ðni; �iÞ ���!c ðni; �i þ 1Þ; (2)

The particle jump process, when taken by itself, is non-
Markovian, since the rate of a jump depends on how much
time has passed since a particle last hopped into the jump
site. Choosing the target site j � i uniformly (i.e., consid-
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ering a fully connected graph) corresponds to mean-field
(MF) dynamics, while restricting the target site to j ¼ iþ
1 corresponds to totally asymmetric nearest-neighbor hop-
ping on a ring.

Notice that the full process of particle jumps and clock
increments together defines a Markovian process.
Therefore, the model may be implemented by a discrete-
time Monte Carlo version of these dynamics with random
sequential update which is defined as follows: let pmax ¼
maxn;�½uðn; �Þ þ c�. For the Monte Carlo update pick a

pair of sites (i, j) uniformly and attempt to make one of the
following changes: (i) move a particle to the target site j
with probability uðni; �iÞ=pmax and reset the clock on the
target site j to zero, or, (ii) increment the internal clock on
the starting site i with probability c=pmax. A total of L
consecutive updates constitute one Monte Carlo sweep.

Let us first consider the MF dynamics, whereby the
target site j is chosen uniformly. Since the hopping is to
an arbitrary site, no correlation between sites is generated,
and so the steady-state distribution factorizes into a prod-
uct of single-site terms in the thermodynamic limit. The
single-site occupation and clock probability in the steady
state, Pðn; �Þ, can then be found by examining a single site
with a ‘‘mean-field’’ incoming current J generated by all
other sites. This is equivalent to a solution of a single site in
the grand-canonical ensemble. The master equation for the
single-site probability is

dPðn; �Þ
dt

¼ �Pðn; �Þ½J þ cþ uðn; �Þ� þ JPðn� 1Þ��;0

þ cPðn; �� 1Þ þ uðnþ 1; �ÞPðnþ 1; �Þ;
(3)

where the single-site marginal distribution is defined by
PðnÞ � P

�Pðn; �Þ, and J ¼ P
n;�uðn; �ÞPðn; �Þ is the in-

coming current. These equations are valid also for n ¼ 0
and � ¼ 0 by defining Pð�1; �Þ ¼ Pðn;�1Þ ¼ 0 and
uð0; �Þ ¼ 0.

In the steady state, where dPðn; �Þ=dt ¼ 0, one obtains
by summing Eqs. (3) over �

�uðnÞPðnÞ ¼ JPðn� 1Þ: (4)

Here �uðnÞ is the mean hopping rate out of a site with n
particles

�uðnÞ �
P

� Pðn; �Þuðn; �ÞP
� Pðn; �Þ

: (5)

Equation (4) expresses the balance between the probabil-
ities to hop into and out of a site with n particles. The
marginal distribution PðnÞ is therefore the same as that of a
Markovian ZRP [12], but with an effective hopping rate
�uðnÞ. This gives the steady-state distribution

PðnÞ ¼ Pð0ÞJn �fðnÞ with �fðnÞ ¼ Yn
i¼1

�uðiÞ�1: (6)

Here Pð0Þ�1 � 1þP1
n¼1 J

n �fðnÞ ensures proper normal-
ization of PðnÞ. The occurrence of condensation is deter-
mined by the asymptotic behavior of PðnÞ. For PðnÞ � n��

condensation takes place for �> 2 [10]. In the Markovian
case, ones has � ¼ b for hopping rates of the form (1).
To analyze condensation in the non-Markovian case we

proceed by considering, for simplicity, hopping rates of the
form

uðn; �Þ ¼
�
0 � ¼ 0 ð“off state”Þ
uðnÞ � � 1 ð“on state”Þ: (7)

In this case, whenever a particle hops into a site the site is
switched to an ‘‘off’’ state in which no particles can hop
out. Only after its clock reaches � ¼ 1 the site is turned
‘‘on’’ again, in which case particles hop out with a rate
uðnÞ. This special case will be called the on-off model. In
this case, the clock has in effect only two states: � ¼ 0
corresponding to off, and � � 1 corresponding to on.
Correspondingly, the state of the site can be characterized
by PoffðnÞ ¼ Pðn; 0Þ and PonðnÞ ¼

P
��1Pðn; �Þ.

The master equation for the stationary probability dis-
tribution (3) is then

PoffðnÞ½J þ c� ¼ JPðn� 1Þ; (8a)

PonðnÞ½J þ uðnÞ� ¼ cPoffðnÞ þ Ponðnþ 1Þuðnþ 1Þ: (8b)

First we study the probability Poff to find a site in the off
state. By summing over n, Eq. (8a) yields

Poff ¼ J

cþ J
: (9)

Further, from Eqs. (4), (8a), and (9) we find

PoffðnÞ ¼ �uðnÞPðnÞ
J þ c

¼ Poff

J
�uðnÞPðnÞ: (10)

In addition, for uðn; �Þ of the form (7), Eq. (5) gives

PonðnÞ ¼ �uðnÞ
uðnÞPðnÞ: (11)

The occurrence of condensation depends only on the
asymptotic behavior of the effective hopping rate, �uðnÞ.
This rate follows from (10) and (11) using PoffðnÞ þ
PonðnÞ ¼ PðnÞ, and is given by

1

�uðnÞ ¼ Poff

J
þ 1

uðnÞ : (12)

This states that the mean time between hops from a site
with n particles is equal to the mean time this site is in an
off state plus the time it takes a particle to hop out once the
system is already on. The current can be computed self-
consistently from J ¼ P

n �uðnÞPðnÞ.
In the case of uðnÞ of the form (1), it can be seen from

(12) that to leading order in 1=n the effective hopping rates
are again of the form (1), given by
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�uðnÞ � cþ J

cþ J þ 1

�
1þ beff

n

�
; (13)

with

beff ¼ cþ J

cþ J þ 1
b < b: (14)

From (6), we then have

PðnÞ �
�
JðJ þ cþ 1Þ

J þ c

�
n
n�beff : (15)

To analyze the condensation transition we note that for
JðJ þ cþ 1Þ=ðJ þ cÞ< 1, the distribution decays expo-
nentially with n and the system is in a subcritical homoge-
neous phase. For a critical current given by
Jc ¼ ðcþ JcÞ=ðcþ Jc þ 1Þ, the decay is algebraic, and
one has condensation for beff > 2. For the critical current
we find

Jc ¼ c

2

� ffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4

c

s
� 1

�
; (16)

which allows us to write

beff ¼ Jcb: (17)

Therefore, condensation takes place for hopping parameter

b > 4
c ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4=c

p � 1Þ�1 which is larger than 2, in contrast

with the Markovian case for which the critical value for
condensation is b ¼ 2. This means that for densities � ¼
N=L above a critical density �c, the average number of
particles in the condensate is Ncond ¼ Lð�� �cÞ. All other
sites have an average ‘‘background’’ density �c.

We now turn to a ring geometry with nearest-neighbor
hopping and fully asymmetric dynamics. In this case, the
stationary distribution does not factorize. Simulations in
the condensed phase of the on-off model with uðnÞ given
by Eq. (1) indicate that the condensate drifts with a finite
velocity. In addition, we find that in contrast to previously
known condensation phenomena, the condensate typically
occupies two adjacent sites i and iþ 1. These observations
can be explained by a more detailed microscopic inves-
tigation of the dynamics. It turns out that the drift takes
place via a ‘‘slinky’’ motion where particles hop from site i
to iþ 1 at a rate uðniÞ which is approximately constant at
large ni, leaving site iþ 1 in a predominantly off-state.
Thus particles accumulate at site iþ 1 until site i is emp-
tied, giving the clock at iþ 1 the chance to reach the on-
state for durations of time sufficiently long to allow par-
ticles to escape. Then particles start to hop from site iþ 1
to site iþ 2 in the same fashion.

This mechanism suggests that the drift velocity vcond is
inversely proportional to the number of particles in the
condensate Ncond, i.e.,

v�1
cond � N � Nc ¼ Lð�� �cÞ: (18)

In the thermodynamic limit, the velocity of the condensate
vanishes. Superimposed on this motion, the condensate can
melt and reappear at some other site of the lattice, similar
to what happens in the Markovian case. This happens on a
characteristic time which scales with the system size to a
power larger than 2 [13–15].
In Fig. 1 we present snapshots at different times of the

on-off model with totally asymmetric nearest-neighbor
hopping for L ¼ 1000. One clearly sees that the conden-
sate occupies two adjacent sites with varying relative oc-
cupation of the two sites, consistent with the slinky motion
described above. The drift of the condensate is evident in
the figure. In order to demonstrate the slinky motion in
more detail, we present in Fig. 2 a plot showing the
position of the most occupied site imax and its occupation
number, nmax, as a function of time. The occupation num-
ber nmax oscillates in time with approximately constant
frequency. Typically it decreases linearly until it reaches
its minimal value, when imax increases by 1 and nmax starts
increasing.
In Fig. 3 we present the single-site occupation probabil-

ity distribution PðnÞ for various densities. At high densities
the distribution exhibits a plateau which reflects the parti-
cle distribution among the two sites which constitute the
condensate. This is in contrast with a Markovian ZRP
where the condensate is supported by a single site, which
results in a sharp peak in PðnÞ. The value of PðnÞ at the
plateau in the non-Markovian case may be estimated for �
above the critical density and large L using the slinky
motion of the condensate. The probability that a given
site carries the condensate is 2=L, and in such a site there
is an approximately uniform probability to find any occu-
pation 0< n< Ncond ¼ Lð�� �cÞ. Thus,
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FIG. 1 (color online). Snapshots of the on-off model with
totally asymmetric nearest-neighbor hopping on a ring, showing
the occupation numbers ni at and in the vicinity of the conden-
sate at four points in time. Here, L ¼ 1000 sites, � ¼ 10, b ¼
5:5, and c ¼ 1. The condensate occupies two sites and drifts with
a constant mean velocity.
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Pplateau � 2

L

1

Lð�� �cÞ : (19)

This estimate agrees well with the plateau value in Fig. 3.
For small densities, PðnÞ decays exponentially, indicating
the absence of a condensate. For the system size studied in
this figure, the distribution at small values of n does not
allow to extract a power law decay as expected for the

condensation transition. At density � ¼ 4:1 there is a range
of n for which PðnÞ seems to follow a power law with
beff � 4. This value differs significantly from b ¼ 5:5, the
expected value for Markovian ZRP.
So far, we discussed in detail a simple on-off model

which has been used to demonstrate the effect of non-
Markovian dynamics on the steady-state distribution and
on condensation. For MF dynamics, the asymptotic behav-
ior of the effective rates can be obtained for the more
general class of models with rates of the form uðn; �Þ ¼
uðnÞvð�Þ. Generally, beff may be larger or smaller than the
‘‘bare’’ value of b. Interestingly, one can introduce an on-
off model with nearest-neighbor hopping for which the
stationary distribution factorizes strictly even on finite
lattices and where the effective hopping rates can be com-
puted exactly. In this model particles jump with rates (7)
but the advancement of the clock depends on the clock
states of neighboring sites [16].
The findings of this work suggest that the temporal

correlations may significantly alter the condensation tran-
sition and the nature of the condensate in general driven
systems. While this result is based on studies of a particular
dynamical process, we believe it is rather generic and
applies to a wide class of temporally correlated processes.
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FIG. 3 (color online). The occupation probability PðnÞ of a
single-site in a ring with totally-asymmetric nearest-neighbor
hopping and different densities, as obtained from Monte Carlo
simulations. Here L ¼ 1000, and curves for subcritical density
(� ¼ 3), supercritical density (� ¼ 10) and at the critical region
(� ¼ 4:1) are presented. The horizontal line indicates Pplateau of

(19), where �c was obtained from the simulation. The inset
shows a similar plot of PðnÞ for a Markovian ZRP of L ¼
1000 sites with b ¼ 5, in the subcritical (� ¼ 0:5), critical (� ¼
1), and supercritical (� ¼ 4) phases.
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FIG. 2 (color online). The position of the most occupied site
imax and its occupation number nmax as a function of time, on a
ring of size L ¼ 1000 with totally asymmetric nearest-neighbor
hopping. Simulation parameters: � ¼ 10, b ¼ 5:5, and c ¼ 1.
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