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Abstract 

 

We have applied small angle neutron scattering (SANS), diffusing wave spectroscopy (DWS) 

and static and dynamic light scattering (SLS and DLS) to investigate the phase diagram of a 

sterically stabilized colloidal system consisting of octadecyl grafted silica particles dispersed 

in toluene. This system is known to exhibit gas-liquid phase separation and percolation, 

depending on temperature T, pressure P, and concentration φ. We have determined by DLS 

the pressure dependence of the coexistence temperature and the spinodal temperature to be 

dP/dT=77bar/K. The gel line or percolation limit was measured by DWS under high pressure 

using the condition that the system became non-ergodic when crossing it and we determined 

the coexistence line at higher volume fractions from the DWS-limit of turbid samples. From 

SANS measurements we determined the stickiness parameter B(P,T,) of the Baxter model, 

characterizing a poly-disperse adhesive hard sphere, using a global fit routine on all curves in 

the homogenous regime at various temperatures, pressures and concentrations.  

The phase coexistence and percolation line as predicted from B(P,T,) correspond with the 

determinations by DWS and were used to construct an experimental phase diagram for a poly-

disperse sticky hard sphere model system. A comparison with theory shows good agreement 

especially concerning the predictions for the percolation threshold. From the analysis of the 

forward scattering we find a critical scaling law for the susceptibility corresponding to mean 

field behavior. This finding is also supported by the critical scaling properties of the collective 

diffusion.  
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I. Introduction 

 

In this paper we are concerned with the structure and phase diagram of a polydisperse 

adhesive hard sphere system1-7. This system is known to displays a complex phase behavior. 

Its phase diagram not only shows a gas-liquid phase separation line, but also a percolation or 

gel line, which intersects the coexistence line. Numerous studies have been performed trying 

to shed a light on the structural properties that underlie this phase behavior. These studies can 

be roughly divided into real space studies, using microscopical techniques, probing the real 

space by exploiting the typical colloidal size8-10, rheological techniques11,12, and scattering 

techniques13-15, probing the reciprocal space. Some of these studies accumulated recently in 

the suggestive picture that the formation of percolated networks is directly connected to 

spinodal like phase separation8, though, as we will discuss in this paper, also other scenario 

are conceivable.  

The system of sticky hard colloidal spheres belongs to a class of systems where phase 

separation competes with arrested states like gels or glasses11. Systems where these kind of 

effects are at hand vary between model colloidal systems like highly concentrated hard 

spheres with added depletion interaction16, to biological systems12 to networks of rods17. 

Thus, identifying the structural features underlying such a complex phase behavior for a 

system of sticky hard spheres would not only be of interest for the colloid field, but would 

also shed light on general physical aspects which combine glass physics (and its most 

prominent theoretical approach, the mode coupling theory) with colloidal physics and gel 

phases and demixing phenomena. Thus, knowledge of the connection between gelation and 

phase separation for sticky hard spheres would greatly help also the understanding of other 

arrested systems. 
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The model system we use in this paper, and which was used in our preceding paper18, consists 

of silica spheres grafted with octadecyl chains in toluene at various volume fractions. The 

reason to use exactly this system of sticky hard sphere system as a model system is twofold. 

Firstly, the interaction between the particles, and therefore the phase behavior, can very easily 

be tuned varying the temperature as toluene is a marginal solvent for the grafted polymers. 

This has been elucidated by various experimental techniques19-29. The molecular background 

of this interaction was found by Roke et al.27,28. More interestingly, as we will show in this 

paper, the interaction can equally be tuned with pressure such that a liquid-liquid phase 

transition can be induced also by changing the pressure30. Secondly, sticky hard spheres can 

be theoretically very elegantly modeled within the framework of the Percus-Yevick 

approximation of hard spheres with a square well attractive potential, provided that a certain 

limit is taken in which the range of the well becomes zero and its depth infinite such that the 

second virial coefficient remains finite. This model,, named after its inventor Baxter31, is 

capable to map the interactions between colloidal particles as long as the interaction range is 

small compared to the particle size. The connection to the experimentally measured values 

like the structure factor can be readily made with only one parameter, namely the stickiness 

parameter τB, which is a control parameter within a square well attractive potential, that can be 

thought of a dimensionless temperature (see section II). The stickiness τB measures the change 

from hard sphere behavior (large τB) to sticky behavior (small τB). The only other parameter 

that needs to be accounted for to make the link to the experiments is the polydispersity, for 

which quite recently a numerical algorithm for the structure factor within the Percus-Yevick 

approximation was developed, called the Robertus model32. The clue is now that the full 

phase diagram, including phase coexisting lines and percolation lines, can be predicted 

knowing how the stickiness parameter τB depends on temperature or pressure29. 

This leads us to the goal of this paper. What we set out to do is to get this pressure and 

temperature dependence of τB in the part of the phase diagram where there is one single 
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ergodic phase. For this we determine the structure factor with Small Angle Neutron Scattering 

(SANS) throughout phase space, i.e. for different concentrations, temperatures and pressures. 

We fit all this data with one single global fitting approach which fits all parameters of all 

measured curves simultaneously, using the Baxter model. Already in a previous paper we 

showed that for the same system at high dilution this fit routine could provide all trivial 

parameters like the contrast and the form factor at different pressures18. Probing now the full 

single phase space we obtain an unambiguous hold on the temperature and pressure 

dependence of τB, and therefore also on the location of the percolation and coexistence line. 

Then we actually determine these lines by a combination of experiments: we use the dynamic 

method, diffusing wave spectroscopy (DWS), to correlate the ergodic to non ergodic 

transition with exactly this percolation transition after applying high pressure application, 

which has not been reported so far. The liquid-liquid phase transition or coexistence line (in 

the language of phase separation that is also called the binodal curve) can be determined by 

simple visual inspection or by measuring the turbidity. The pressure derivative of the 

transition temperature was determined by dynamic light scattering (DLS) for a volume 

fraction around φ=0.1 in order to compare our system parameters with those already 

published30 (in the order of 77bar/K). The expected phase diagram will shift with pressure 

according to this value. We sketch that in Fig.1. We will show that the phase diagram as 

calculated with the most recent theoretical approach for the structure factor using the 

experimentally obtained τB(P,T) as an input nicely coincides with our independently 

experimentally determined phase diagram. As such this is the first self-consistent set of data, 

where the phase behavior can be predicted and tested using experimentally obtained 

molecular input of the interaction potential between the particles.  

The role of the pressure here is that it is a very clean way to access points in phase space 

because changing pressure renders new points that are homogeneous in pressure and 

temperature. Moreover, the point can be accessed with high precision. We will show that this 
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is important when approaching the critical point, being on the low or high concentration side 

of the percolation line, because then the scaling of the critical structure can be tested. Here we 

also take advantage of testing reciprocal space, because this is the most accurate way to get an 

averaged parameter like the critical structure. Also a very interesting feature is, however, that 

points in phase space can be accessed within seconds or faster. This enables us to access the 

kinetics of phase separation or of the percolation and as such it gives an handle on study of 

the interplay between phase separation and percolation, which is still a puzzle. As such this 

paper reports also a feasibility study for such experiments.  

 

This paper is organized as follows: In section II we will present a theoretical sketch on the 

pressure and temperature dependent interactions in sticky hard sphere systems, in section III 

we will present the experimental methods used: DLS, DWS and SANS. In section IV, we will 

present the results and discuss them in five sub-sections: A, for the determination of the 

pressure dependence of the transition temperatures, B, the DWS results for the determination 

of the gel line, in C, results from the global fit of the SANS data. In sub-section D we will 

discuss the critical scaling laws and in E., we present the experimental phase diagram and 

compare it to the theoretical one. We conclude with section V. 
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II. Theoretical: Pressure and temperature dependence of interactions in 

sticky sphere systems 

 

Adhesive polydisperse core-shell particles are assumed to interact on the pair level through a 

interaction potential given by the Baxter-model21,31 .This pair interaction potential is a square 

well of infinitesimal width and infinite depth which is superimposed on a hard core repulsion. 

The pair-interaction potential between the colloids has the form, 
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where R is the hard core radius of the colloid and Δ is the width of the square well interaction 

potential. For small widths of Δ, being a measure of the length of the grafted chains, the 

scattering behavior only depends on the stickiness parameter B , or attraction parameter, 

which is a function of both, temperature and pressure. B  is often referred to as a 

dimensionless quasi-temperature. To relate the stickiness parameter B  to the real temperature 

T, the model from Flory-Krigbaum, frequently used in describing the interaction between 

polymer chain segments, is used. It relates the depth D  of a square well potential  ( )SWV r
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eq. 2) 

 

to the temperature T  by assuming that the depth D  of the square well potential depends 

linearly on the parameter L, which depends on the overlap volume of the two spheres and the 
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difference between the Θ -temperature and temperature T . The Θ-temperature in this model 

is a measure of the enthalpic and entropic interactions between solvent and solute. 

 
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L T k T

T
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 
 eq. 3) 

 

The Θ -temperature is assumed to vary in first approximation linearly with P according to:  

   0 0

d
P P

dP


     P  eq. 4) 

 

Here, the new term d/dP appears which is proportional to the compressibility. We have 

measured that the volume change of the particles while applying pressure is small33, in the 

order of 10-5, and hence comparable to compressibilities found in polymeric systems from the 

pressure dependence of the Flory-Huggins interaction parameter χ, being proportional to  34. 

Clearly, the depth D  of the interaction potential determines the phase diagram and thus also 

the pressure as it has the linear pressure dependence of the theta temperature and 

dP/d=const. This is shown schematically in Fig.1.  

These two potentials, eq. 1) and eq. 2), are equivalent and can be equated to solve for B . The 

result is:  
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 eq. 5) 
  

 

This expression allows now to correlate the degree of interaction B (with T, P as parameters) 

with details of the potential: R and Δ. As already shown in literature21,31 the exact shape of the 

interaction potential is not significant as long as the width of the attractive well is much 

smaller than the particle diameter, i.e. Δ « 2R.  
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At P=1 bar, Θ(P) is equal to Θ0, and eq. 5) can be rewritten to give T as a function of τB,  
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This relation is used to convert τB into T provided all other parameters are known.  

The knowledge of the theoretical phase diagram for an AHS (adhesive hard sphere) system 

has been a subject of a long discussion. We refer to the recent numerical calculations of Miller 

and Frenkel7 and to the most recent calculations by Fantoni at al.35. These attempts 

circumvent the deficiencies which were present in the oversimplified model by Penders and 

Vrij21 to calculate the spinodal. To cite Miller and Frenkel7b: "A major obstacle in the 

application of the adhesive hard sphere model to the description of experimental data is that 

the model's phase behavior is only known through the approximate and conflicting theoretical 

results of Percus-Yevick theory". However, in the oversimplified model a rather simple 

analytical expression can be given to relate the stickiness to the volume fraction. This 

expression reads: 
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eq. 7) 

 

The model gives for the critical concentration φc=0.1213 at a stickiness τB=0.0976. However, 

the simulation results by Miller and Frenkel7 determined the critical point at φc=0.266 at 

τB=0.1133. This is supported by Fantoni et al.35. The theoretical phase diagram for an AHS 

system is shown in Fig.2. Note that the differences in T reflecting the disparity in  from both 

models is in the order of 0.4K, moreover the coexistence line is rather flat within our volume 
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fraction range. Hence, from an experimental point of view, the differentiation between these 

various theories seems to be difficult. Likewise the differences between the refined models7, 35 

and the simple C1 model, as referred to Fantoni et al.35 is also small for  smaller than 0.1-

0.15. The C1 model is to a good approximation given by eq.7. 

Further, it is known theoretically3 and also confirmed by simulations and experiments5,6,24 that 

in sticky hard sphere systems percolation (kinetic transition) also occurs beneath the liquid-

liquid phase transition. The dynamic percolation line is obtained on the basis of an Ornstein-

Zernike equation in the Perkus-Yevick approximation. In this calculation the so-called pair 

connectedness function is utilized, which relates the probability of simultaneously finding a 

particle in the same cluster at a given distance. The stickiness B , at which the system 

percolates, given in terms of volume fraction, reads3: 
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B
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 eq. 8) 

 

The resulting curve shows a crossing point with the spinodal line at about a volume fraction 

of φ~0.07 in the Penders and Vrij model21. However, the recent simulations7,35 show that the 

intersection between coexistence and percolation line occurs at some higher volume fractions 

at about 12% volume fraction. For φ <0.12 it is found experimentally that the percolation lies 

below the coexistence. For larger volume fractions, the percolation is always above the 

coexistence. The physical interpretation of the region between the spinodal and the 

percolation intersection is under debate, since some authors claim12,36,37 that here the 

nucleation is hindered or frustrated and in a sense the differentiation between percolation and 

nucleation is difficult to make experimentally. It should be noted that in the calculations by 

Miller and Frenkel7 polydispersity corrections have not been implemented. Nevertheless, the 

value for the critical density is shifted towards higher values as compared to the calculation 

along eq. 7). However, it is known experimentally that the phase diagram of polydisperse 

 10



systems differs considerably from its mono-disperse analogue at least for polymeric 

systems38. We see no argument why that should be different for colloidal mixtures. Taking the 

polydispersity into account35, the value for the critical density seems to be even higher (cf. 

Fig.2). Clearly, from the simulations in comparison to simple calculations the critical point is 

found at much higher volume fractions.  

 

We intend to put our experimental results as quantitative as possible into this theoretical phase 

diagram, thereby performing and presenting experiments, which have so far not been applied 

to these systems. We will put much emphasis on the =0.16 sample, since here the interplay 

between percolation and coexistence can be studied best. 

 

 

 

 

 

III. Experimental  

 

 

A. Materials 

 

Silica core particles were prepared according to Stöber39 and then grafted with stearyl alcohol 

following van Helden40 to obtain octadecyl chains chemically anchored onto the surface. All 

samples were mixed from two concentrated colloidal dispersions of the particles; one in fully 

deuterated and one in fully protonated toluene. The analysis of the same particles as shown in 

our previous paper18 gave for the core diameter Rc=32.3nm , for the shell thickness (grafted 
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layer thickness) R=2.3nm and for the size-polydispersity , assuming a Schulz-Zimm 

distribution of the overall radius, =0.124. 

 

 

 

 

 

B. Light scattering  

 

Static and dynamic light scattering was measured either in the SANS high pressure cell at 

PSI41 or in the Jülich high pressure cell42. The intensity time-correlation function G(2)(q,t) was 

calculated in real time by means of a Flex99OEM-12 digital correlator (correlator.com, USA) 

or an ALV 5000E digital correlator (ALV GmbH, Langen, Germany). For the homodyne case 

the intensity autocorrelation function G(2)(q,t)=<I(q,t)I(q,0)> is related to the electric field, 

E(q,t), normalized autocorrelation function g(1)(q,t) via the Siegert relation43 

 2(2) 2 (1)( , ) ( ) 1 ( , )G q t I q f g q t    eq. 9) 

 

where f is an experimental factor and <I(q)> is the mean intensity (also named static 

intensity), and 
4
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  is the length of the scattering vector, n is the refractive index of 

the scattering medium,  the scattering angle and  the wavelength of the incident light in 

vacuum. The field autocorrelation function g(1)(q,t) is related in the simplest case to a 

diffusion coefficient D of the system with equilibrium concentration fluctuations via 
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displacement. Then ln g(1)(q,t) is linear in t, hence ln  (1) ,
t

g q t t


    , where  denotes 

the relaxation rate and τ is the relaxation time, with . To model the field 

autocorrelation function g(1)(q,t) in the case of a distribution of diffusion coefficients or other 

phenomena which lead to a deviation of a single exponential decay (ln  versus t is not 

linear), we used either a so called cumulant expansion or the well established CONTIN 

algorithm which is used in analyzing dynamic light scattering data44. The cumulant expansion 

assumes for the normalized electric field autocorrelation function 

2qD

 tqg ,)1( 

 (1) 22, exp ..
2!

g q t t t
   

 

 , where μ2 is the second order cumulant and is a measure of 

the variance of the distribution. Clearly, for a single exponential decay,μ2 vanishes and the 

simple relation between the rate and decay time emerges. However, in some cases it is better 

to fit with the full expression and allow for a small correction in Γ due to a non-zero μ2. We 

use this algorithm for the DWS data reduction mostly. However, the DLS data is analyzed 

using CONTIN, which gives access to the distribution of relaxation times L(τ) via44 

(1)

0

( ) exp( ) ( )
t

g t L d 




   eq. 10) 

 

and thus to the distribution of diffusion coefficients and concurrently to the size distribution 

of the particles since D is related to size via a Stokes-Einstein relation 
r

kT
D 

6
 with  

being the solvent viscosity and r the particle radius, kT has the usual meaning. Using this set 

of ingredients we have determined G(2)(t) as a function of temperature and pressure for a fixed 

scattering angle.  
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C. Diffusing wave spectroscopy DWS 

 

Light scattering methods are difficult to apply to turbid samples since most methods use a 

single scattering approach. They therefore have to suppress multiply scattered light either with 

technical tricks or an elaborate analysis. Contrary to this, the diffusing wave spectroscopy 

(DWS) technique can take advantage of the multiple scattering in highly turbid samples. 

When a sample is turbid enough to totally randomise the scattering direction of a photon, the 

photon path can be approached as a diffusion process with the according statistical models. 

The correlation function of the scattered light then reflects the (heavily averaged) dynamics of 

the sample and is given for transmission geometry by:  

 
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2
0 *

(1) 2( ) exp
6

L
k

l
g t r t

  
  

    
 
  
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  eq. 11) 

 

where k0 is given by 2πn/λ, L is the sample thickness and l* stands for the transport mean free 

path. With this simplified version of the formula derived in Ref. 45 it is possible to measure 

the mean square displacement inside a turbid sample, which then for example can be used to 

estimate the average particle size of a colloidal system. How to treat not perfectly turbid 

samples is discussed in chapter IV. 

The DWS technique cannot only be used to measure the internal dynamics of a turbid sample, 

but it can quite easily be enhanced such as to characterise samples in dynamically arrested 

states like a glass phase or a gel. The characterisation of non-ergodic samples is only possible 

through a proper ensemble average, as averaging over time represents only a limited part of 

the sample. A simple way to measure the ensemble average is the so-called two-cell 

technique46, where the signal from the sample is led through another (turbid) scattering 

medium, the “second cell”. The second cell ensures the proper averaging of the sample signal 
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and features an ergodic decay which is slower than the one of the sample and therefore 

guarantees a physically correct baseline without distortion of the sample signal. When both 

cells scatter independently i.e. no photons are scattered loop like back and forth between the 

two cells, the correlation function of the sample  can be extracted from the 

measured correlation function G  through division by the separately measured correlation 

function  of the second cell only: 

(2)( , )G t sample
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(2)( , )G t scndcell
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 eq. 12) 

 

In the home built set-up at PSI, we use a rotating de-polished glass as second cell, whose 

correlation function decay time can easily be varied through the rotation speed. 

 

 

 

D. Small angle neutron scattering SANS 

 

The raw SANS data that we have measured with the high-pressure cell set up, was analyzed 

using the BerSANS software package47, which a standard program to analyze SANS data. The 

scattering cross section  q
d

d




 is related to physical properties of our system under study 

via48  

       2 2
0( ) A

W

d N
I q q c b V f q S

d M


  


q  eq. 13) 

 

 15



where  2f q  is the size averaged squared form amplitude (commonly known as form 

factor P(q)) for spherical shells18 which is normalized to 1 for q=0 and  S q is the average 

static structure factor, which has been calculated according to Robertus et al32. which takes 

into account the inter- particle correlations. Only for sufficiently diluted systems S(q) = 1 for 

all q. b is the scattering amplitude (scattering length) of the colloid, V its volume and 0 is 

scattering length density of the solvent. 
Atot

W

NV

NM
c  is the particle concentration in g/cm3 with 

Vtot being the illuminated sample volume, N is the number of particles in the illuminated 

volume, NA the Avogadro number and MW the molar mass.  

We had performed SANS scattering experiments18 at a volume fraction of φ=2x10-3 to 

determine the form factor  2f q . For our core-shell particles the form-factor is known 

analytically. In that study we had measured SANS at volume fractions of 5%, 11.2%, 16% 

and 39.2%. For all these volume fractions we observed a structure factor. A quantitative 

analysis in terms of a sticky hard sphere structure factor for polydisperse systems using a 

numerical algorithm given by Robertus et al.32 had been carried out on the basis of the Baxter 

model, which we showed in our preceding paper18, where only the volume fraction and the 

scattering contrast had been varied. Here in this paper we go one step further by introducing a 

stickiness parameter, which is a measure of the interactions in our colloidal system. The 

stickiness τB is determined applying a global fit routine which simultaneously fits all 

scattering curves taking into account SANS scattering curves at all volume fractions at 

various temperatures and pressures in the homogenous regime. This procedure allows 

extracting reliably the parameters of the Baxter model and will be shown in chapter IV.C.1. 
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IV. Results and discussion 

 

A. Determination of dP/dTtrans and spinodal-binodal using DLS 

 

We have measured with light scattering the pressure dependence of various transition 

temperatures (the coexistence or binodal and the spinodal temperature), i.e. dP/dT. This is 

absolutely essential in our experiments, since the magnitude of its values will influence the 

experimental accessibility of a variety of physically interesting phenomena and further defines 

the necessity of using pressure as a variable. The experiments were performed with a φ=0.1 

solution using a light scattering set-up for high pressure which is described elsewhere42. 

 

In Fig.3a, top, we show an example for the shape of the correlation function obtained from a 

homogenous sample at P=585bar. The corresponding CONTIN analysis gives a narrow 

distribution in agreement with a single exponential decay of g(1)(q,t). Increasing the pressure 

to P=795bar leads to a broadening of the correlation function (cf. Fig.3a, middle) and is 

indicative for crossing the binodal (coexistence line). The additional slower processes at these 

elevated pressures are due to the formation of droplets having another composition and thus 

sufficient index of refraction difference to cause a broadening of the correlation function at 

longer times. Applying the CONTIN algorithm these small traces of nucleated particles can 

be straightforwardly detected, although the corresponding correlation functions differ not 

much in the vicinity of the transition as can be seen from inspecting Fig.3a top and middle. A 

close comparison of these two correlation functions also reveals a small decrease in the 

contrast at higher pressure, which stems from a portion of elastic scattering from the phase 

boundaries acting as local oscillators and thus reducing the contrast. This effect is also 
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indicative for crossing the binodal together with the broadening; however, it is not very 

marked.  

Sticking to our chosen example at T=8.3°C we have further increased the pressure although 

the coexistence was already reached. For pressures up to 900bar the situation is in accord with 

the findings already outlined: a broadening at about 750bar indicating the crossing of the 

binodal. The situation became more complex at an even higher pressure (here P=940bar), 

when again a strong change in shape of the correlation function was observed as is shown in 

Fig.3a, bottom. This change is different from the one described in Fig.3a, middle, because the 

correlation function for P=940bar seems to stay on a level of about 0.35 and is forced to relax 

to zero only because the ALV correlator assumes a zero baseline at long times. Nevertheless, 

in principle we think that what we observe is indicative for either the spinodal or the 

percolated state of the system. Percolation, however, can be very likely ruled out for three 

reasons. i) There is no time dependence in the experiment, since we find that the crossing of 

the binodal and likely spinodal is a reversible effect: It takes the system not much time to 

reach homogeneity after the pressure is released below the coexistence pressure and spinodal 

pressure and ii) from our DWS data (following chapter) we find the percolation threshold 

from the ergodic to non-ergodic transition at higher pressures than 940bar. Last but not least, 

we know iii) that from inspection of the experimental phase diagram shown in our previous 

paper that the gel line is very steep and the temperature difference at 10% volume fraction 

between binodal and gel line is about 4K. That would correspond to about 300bar pressure 

difference and is hence incompatible with our findings. 

In Fig.3b we plot the loci of all transition pressures as function of temperature and find linear 

relations with a slope of dP/dT=77.5bar/K for the binodal line and the spinodal line. The 

extrapolation of the data to give the transition temperature at P=1bar yields T=(-2.50.75)°C 

for the binodal and T=(-3.50.75)°C for the spinodal. Both values are close to each other and 

confirm within the experimental accuracy the result of the already published phase diagram 
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based on a simple test tube experiment18. The experimentally determined coefficient 

dP/dT=77.5bar/K is in agreement with the value reported by De Kruif and Schouten30. They 

find the pressure dependence of the transition temperature at φ=0.13 to be dP/dTtrans=77bar/K, 

although the phase transition temperature of our system differs about 9K from their sample. 

The value for dP/dTtrans=77.5bar/K for the spinodal transition is identical to the one for the 

coexistence transition and has not been reported before. The value of the experimentally 

determined derivative seems to be independent of , at least between =10-13%, however, 

according to Fig.2 variations of B in the volume fraction range between =5-16% are at most 

10%, which corresponds to about 0.3K in temperature, cf. Fig.7. Thus, this variation is far 

beyond our experimental resolution. 

The so obtained phase boundaries are considered to be our reference states, because the data 

are clear, reproducible and confirming earlier results. In the following, we extend the pressure 

range, provide a dynamic analysis (cf. Fig.3a) and present data obtained from several 

temperatures and volume fractions. 

 

 

 

 

B. Characterization of the gel line using DWS results  

 

In the last paragraph we determined the spinodal and binodal. Now we turn to the 

determination of the ergodic/non-ergodic transition. Since turbidity plays a role, a very 

convenient way to characterise turbid samples is to use the two-cell diffusing wave 

spectroscopy technique described in chapter III.C. We applied it to a home built high pressure 

cell in Jülich42 which allows for measuring the scattered light at a scattering angle of 45 
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degrees as well as to measure the transmitted light by the means of a diode. Our sample is 

investigated at volume fractions of 1, 5, 11.2, 16 and 39.5% and at a temperature of T=14°C. 

The collected data does not only allow distinguishing between ergodic and non-ergodic states, 

but can also be analysed for the internal dynamics of the system, as described in the following 

two subchapters. 

 

 

 

 

 

 

 

1. Ergodic to non-ergodic transition 

 

The transition from an ergodic to a non-ergodic state is clearly observable when phase space 

averaged correlation functions of the system can be measured. This is easily done using the 

two-cell DWS technique, which was developed for this purpose. The normalised raw data for 

a volume fraction of 16% is shown exemplarily on the left side of Fig.4. With increasing 

pressure, the measured correlation functions decay at larger lag times and eventually start to 

build up a plateau with a second decay, whereby the latter can easily be identified as the 

decay of the second cell. For better illustration, the decay of only the second cell is shown as 

well, which is separately measured by replacing the sample with a static scatterer such as a 

piece of Teflon or paper. The correlation functions of only the sample can be calculated using 

eq. 12), by dividing the respective measured correlation functions by the second cell decay 

(when the system is still ergodic, the correlation functions can be measured without the use of 

the second cell). The resulting correlation functions are shown on the right side of Fig.4. 
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Clearly the correlation functions decay to zero for all pressures up to 1065bar and start to 

exhibit a plateau at 1113bar and above. The development of such a plateau is characteristic 

for a non-ergodic behaviour, whereas the de-correlation to zero is a sign of ergodicity. Thus, 

the ergodic to non-ergodic transition for a volume fraction of 16% takes place at a pressure 

between 1065 and 1113bar. Although the two-cell technique limits the range of detectable 

correlation times for non-ergodic systems, it is nevertheless possible to clearly distinguish 

ergodic and arrested states. Furthermore, if only qualitative information (i.e. the non-ergodic 

transition) is of interest, also samples with turbidity well below the DWS regime can be 

characterised since the second cell acts only as a device which averages the scattered light in 

phase space. 

 

 

2. Internal dynamics 

 

 

The correlation functions as shown above in the right part of Fig.4 contain much more 

information than only the possibility to distinguish ergodic and non-ergodic states. Corrected 

properly, they can be used for a quantitative analysis of the samples internal dynamics if the 

sample is turbid enough to apply the DWS theory (approx. l*  5L). In our case, only a 

relatively small part of the investigated phase diagram allows for the application of the DWS 

theory. So, in order to discuss all our measurements, we restrict ourselves to a qualitative 

analysis of the sample dynamics. Therefore, we fit the decay of the correlation functions with 

the cumulant expansion (as described in III.B.). The first cumulant  is a characteristic 

quantity describing the dynamics of the sample and is strongly influenced by the multiple 

scattering in the sample. To correct for the multiple scattering, we divide  by the 

characteristic number of random-walk steps nc≈(L/l*)2 of the photon on its way through the 
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sample and get the multiple scattering corrected coefficient corr which represents the 

dynamics of one scattering particle of the sample. This correction is strictly only valid when 

the photon trajectory in the sample can be described using a diffusion approach, as it is used 

in the DWS theory (it therefore also appears in eq. 11)). But we find it reasonable to correct 

all our data points for multiple scattering using this approach since the interesting part of the 

analysis fulfils the condition of a diffusing photon transport or is very close to it. The 

corrections for the points relatively far away from this condition are small and the values stay 

nearly constant in that region of the phase diagram, so they illustrate that the system is not 

changing drastically and therefore mainly have a function as a guide to the eye. 

 

The parameters needed for the calculation of corr are easily accessible: while the sample 

thickness L is a given constant, the transport mean free path l* depends on the optical 

properties of the sample and varies strongly during the experiment. For ambient pressure, l* is 

calculated using Mie theory and compared to calibration samples via transmission 

measurements. Since L/l* is inversely proportional to the sample transmission (in the case of 

strong multiple scattering), the value of l* for all pressures can easily be calculated using the 

transmission values measured with our set-up. The values of corr calculated in such a manner 

are plotted against pressure in Fig.5.  

 

The sharp decrease of corr for the samples with volume fractions 1, 5 and 11.2% can be 

interpreted as phase separation, where the growth of the different phases is reflected in the 

slowing down of the dynamics of the scattered light. Like expected, the 39% sample does not 

show such a steep decrease, while the 16% sample combines both trends. Indicating the 

transition from ergodic to non-ergodic behavior (measured as described in the preceding 

subchapter) in form of arrows to the graph, we can clearly see that the percolation can either 

drastically slow down the phase separation as for 16% or completely prevent it as for 39%. 
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This result is completely in agreement with the phase diagram from the simple test tube 

experiments18 and nicely shows that the percolation line crosses the phase separation line, 

effectively hindering the phase separation.  

 

 

C. Global fit of SANS data  

 

Using the global fit formalism, as shortly described in section III D, and more 

comprehensively described in our previous paper18, but now including stickiness as described 

in chapter II, we were able to describe all measured SANS curves for all volume fractions, 

temperatures and pressure in the homogenous phase. The result is shown in Fig.6. We have 

calculated I(q) along eq. 13) thereby fixing the parameters for the form-factor P(q), which we 

know already from our previous study18: the radius R=34.2nm, the thickness of the shell 

R=2.3nm and the width of the size distribution =0.124. S(q) is described by the Robertus 

model of a polydisperse sticky hard sphere interaction, cf. eqs. 1)-4). Using these equations in 

the global fit routine means that we have to fix some parameters, especially the value for 

d/dP =1/77.5 Kbar-1, which was determined using DLS, cf. chapter IV.A. Further 

parameters being fixed are P0=1bar and =0.5nm. The value for Δ is taken from De Kruif and 

Schouten30. However, also a value of =0.3nm has been reported24. There it is claimed that 

the fit results for L and  do not change significantly although  differs by a factor of two. In 

the global fit routine, the scattering length densities have to be corrected for pressure 

dependence due to compressibility. In order to do so, the particle’s core compressibility was 

estimated by a contrast variation experiment under high pressure33; it was found to be in the 

order of 2x10-5 bar-1, thus the particle is almost incompressible. Furthermore, the pressure 

dependence of the volume fraction, the number densities and the temperature dependencies of 
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the scattering length densities (thermal expansion) were also taken into account. Finally, the 

following parameters have been determined from the global fit: L=107 and 0=282K. 

Verduin and Dhont24 report for a similar system in benzene L=112 and 0 =304K. 

We are interested to obtain the percolation threshold from our global fit, in addition to the 

DWS data, and correlate it with the stickiness parameter  ,B P T . In this fit routine, 

 is related to the square well potential using   ,B P T 
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eq. 14) 

 

We assumed here that the scattering curve will not change anymore with pressure as soon as 

the percolation line is reached. The percolation occurs for a specific stickiness ,perc (vol%)B , 

which depends only on the volume fraction. Therefore the stickiness parameter, determined 

by SANS, stays constant for pressures above the percolation transition. We found from our 

global fit: B,perc(39.2%)=3.05, B,perc(16%)=0.131, B,perc(11.2%)=0.122, and B,perc(5%)=0.08. 

It turns out that for the 5% sample we may have not reached the percolation line, hence we 

had to fix the value for B,perc. This finding is in agreement with the theoretical phase diagram 

shown in Fig.2. 

 

On the basis of these results a plot of the inverse stickiness vs. pressure for the different 

temperatures of measurements can be calculated. We rather have plotted 1/τB because then the 

intersections with the percolation value are better visible. It is shown in Fig.7. We will use 

these results together with all other data on the loci of transition lines in the chapter IV when 

we discuss the phase diagram in comparison with theoretical predictions. 
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D. Critical scaling law 

 

From an inspection of the data shown in Fig.6, it seems evident that the pressure mainly 

affects the forward scattering properties of the system. To analyze the small q behavior we 

have performed a Guinier expansion to obtain I(q=0)=I0  

2 2

ln ( ) ln ( 0)
3

gR q
I q I q    eq. 15) 

 

where Rg is the radius of gyration. Using I0 and the transition pressures at a given T, we can 

go a step further and use the notation well known in the physics of critical phenomena49 that 

the intensity scattered in forward direction diverges upon approaching the critical point by 

variation of temperature as 0
c

T
I

T


 

  
 

, with ΔT= cTT   and γ being the critical exponent 

for the susceptibility. We can formulate a similar expression for the ΔP= cPP   behavior of 

the inverse intensity, thereby introducing the new reduced variable = 






 

cP

P
 

0
c

P
I

P


 

  
 

 eq. 16) 

 

Some remarks concerning the choice of Pc are important to make. Most of our data are taken 

for the 16% sample. The respective transition pressure is the spinodal pressure, which we can 

read from Fig.3b for a temperature of T=15.1°C. This value is Pc=1364bar. Then a plot of 

= 






 

cP

P
 versus the intensity in a double log plot shown in Fig.8 should result in a linear 

relation.  
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We find that the data are consistent with a mean field exponent of γ =–1, which is expected 

for the temperature variation of the susceptibility in liquid-liquid phase transitions of i.e. 

polymers belonging to the H2 group according to the Hohenberg-Halperin classification49. A 

similar mean field type of behavior had also been observed by Lenstra and Dhont50 in sheared 

colloidal systems. However, adhesive hard-sphere systems are usually considered to be model 

systems for short range order thus exhibiting 3D Ising like critical behavior. Our data is not 

consistent with this assumption.  

 

All data shown in Fig.8 are taken in the homogenous regime before transient effects show up. 

The percolation threshold, i.e. determined via DWS, would lie at a reduced pressure of about 

log = –0.95. If we nevertheless calculate data points in the transient regime then these points 

would not follow the observed straight line behavior. How to treat critical scaling behavior in 

the vicinity of percolation effects is still an open question. The intensities I0 used in Fig.8 

where obtained via eq. 15), however, without any correction for the change in intensity due to 

the change in contrast through the changes in pressure. A rough estimation of the expected 

change in forward intensity using a P of about 350bar (between log = –0.4 and –0.8) on the 

basis of the density changes of toluene33 at the given contrast of measurement for the 16% 

sample gives a 20% change in I0. In Fig.8 this corresponds to an upturn of the points for large 

negative log-values, however, the mean field assignment is still valid.  

Another possibility of rationalizing the type of critical scaling behaviour stems from the 

analysis of the dynamic measurements depicted in Fig.5. According to theory51, the decay rate 

Γ(q) is given by 

   
 

2L q
q q

S q
   eq. 17) 

where L(q) is the Onsager coefficient being related to the short time diffusion behavior of the 

colloids and S(q) is the structure factor. Usually, as T approaches the critical temperature or, 
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as in our case, the pressure P approaches the critical pressure, the structure factor diverges and 

hence the rate Γ(q) goes to zero. This feature is commonly known as critical slowing down. 

The scaling function for the rate is simply given by inserting the scaling function for the 

intensity, eq. 16), for S(q) into eq. 17). Then for pressures not too close to the critical 

pressures a scaling relation with the mean field exponent γ=1 should emerge52. This is shown 

in Fig.9 using the DLS data shown in Fig.5 and holds true for the 5% sample. The other two 

higher volume fractions show larger slopes.  

 

For data in the proximity of the critical point, i.e. q  1, the q2 scaling has to be replaced by a 

Γ~qα scaling, where α goes from 2→3 for P→Pc. This comes from the fact that in the Stokes-

Einstein relation, upon approaching the critical point, the radius of the particle is replaced by 

the only relevant length scale close to criticality, namely the correlation length ξ, which is 

proportional to q-1. Then the above given proportionality between Γ and q emerges53. 

However, we have no possibility to take q-dependent data with DLS under high pressures yet. 

A multi-angle high pressure cell to overcome this deficiency is under construction. We will 

address this issue in future work to test our hypothesis. 

Also we find deviations at small , which are due to the proximity of the percolation threshold 

in a similar fashion as already argued in connection with Fig.8.  

In the foregoing sentences we have mentioned the correlation length ξ, which can be obtained 

from an Ornstein-Zernike approach to the q-dependent SANS data as the slope  from a plot 

I(q=0)/I(q) vs.q2 . A tentative analysis of the 16% SANS data yields a mean field type of 

behavior and a value of ξ 30nm for a ε  0.15. In analogy to a polymer blend system we 

expect a cross over to 3d-Ising behavior at about that ε value at which the Debye cut-off, 

marking the onset of the mode coupling corrections, is in the order of the particle size52.  

A possible argument why instead of the entirely expected Ising scaling, typical for systems 

with short range interactions, we find a mean field type of behavior, lies in the polydispersity 
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of the system. It acts similar as an extended structure and increases virtually the interaction 

range. This situation is then reminiscent to a polymeric system, which also shows mean field 

type critical behavior52. Although Miller and Frenkel7 have explicitly found Ising scaling in 

their paper, we should note that they have performed the calculations for a mono-disperse 

case, which is not applicable here. 

 

 

E. Phase diagram 

 

Our principal goal was to construct a phase diagram of a poly-disperse sticky hard sphere 

system based upon experimental techniques which have not been used so far (pressure 

techniques and DWS). Our knowledge is mainly based on two different kinds of experimental 

tools, namely SANS and DWS, where both techniques were applied under high pressure 

conditions. Putting all data together we find our experimentally determined phase diagram. It 

is shown in Fig.10, referenced to T=14°C. Obviously we find a difference in the locus of our 

DWS gel-line with the gel-line from visual observation of a tilted test tube18. This is not 

surprising as the gel-line in the phase diagram obtained by visual inspection corresponds to a 

gel that resists to flow on applying a finite force or stress, whereas the DWS percolation 

threshold corresponds to a (gel) structure which is probably not able to resist a finite force. 

Indeed, the position of the gel-line depends on the force or stress applied to the system as 

shown by Trappe et al.11. Or to cite these authors explicitly: ”In general, a sufficiently large 

stress will cause a jammed solid sample to yield and flow; thus the yield stress y defines the 

phase boundary.” Therefore, DWS and SANS percolation can be compared to theoretical and 

simulation results, whereas the gelation observed by tilting the sample is found at lower B as 

expected (the gel line is shifted to lower B but exhibits the same shape). Our percolation 

results are compared to theoretical21, cf. eqs. 7) and 8), and simulation results7,35 in Fig.11 
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showing excellent agreement. We have measured that for the first time via DWS which gives 

access to the ergodic to non-ergodic transition directly. 

On the other hand the data for the coexistence line is found to lie rather consistent within the 

old visually inspected phase diagram, see Fig.10. We have tried to find a criterion for the 

respective transition pressures and thus temperatures on the basis of equal transmissions 

obtained at different volume fractions. Specifically, during the DWS measurements, the 

intensity of the transmitted light was permanently recorded. Since the phase separation of the 

sample is reflected in increased turbidity, the turbid line can in principle be deduced from the 

transmission values. To do so, the measurements of dP/dTtrans in chapter IV.A were used to 

estimate a correct value for phase separation. From Fig.3b we deduce Pc=1364 bar for the 

sample with φ=0.10 at T=15.1°C. The variation of Pc is negligible at volume fractions around 

0.10 (according to visual inspection), and therefore it is reasonable to assume the same Pc for 

a sample with φ=0.11 at the same temperature. The transmission value at this point then 

defines the coexistence line for all samples during the DWS measurements, shown as a dotted 

line in Fig.10 (converted to the according temperature for a constant pressure of 1bar). It 

nicely overlays with the results from the visual inspection except for the case of φ=0.16. This 

is not surprising since at this temperature, the sample is already deep in the non-ergodic 

regime, where all dynamic processes are arrested at short length scales (see Fig.5). We have 

therefore added a differently measured data point (p critical) for the φ=0.16 sample, which 

confirms the expected behavior of a rather flat coexistence curve for not too high values of φ, 

see Fig.2 and Fig.11. The problem on how to deduce phase coexistence under the action of 

percolation from our (DWS, DLS) transmission data is still open to debate. 

Our next concern is the influence of percolation on the demixing by performing transient 

experiments. Without going into detail concerning that issue, which will be a subject of a 

pending publication54, we show in Fig.10 only data in the final stage, after all transient effects 

have relaxed. We believe that this is possible without affecting our argumentation. With 
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regard to meta-stable and non-stable no clear differentiation could be made, except that we 

know from our DLS data that binodal and spinodal are very close to each other in the order of 

1K, see Fig.3b. 

 

We observe almost no differences between theoretical and experimentally observed phase 

diagram as shown in Fig.11, based upon the experimental parameters from the global fit 

applying the formalism from chapter IV.C.. However, if we would have let the global fit be 

free in all parameters, then for dP/dTtrans a value of 67bar/K would come out. This in turn 

would shift the experimental phase diagram 2.5K higher. That on the other hand corresponds 

to roughly a factor of 2 in τB as calculated from eq. 6). This seemingly large difference is put 

into perspective through a rather large number of different values found for τB with respect to 

percolation and coexistence depending on which model is used and which approximation is 

chosen. However, what always agrees is the form of the curves. What does this mean? 

Obviously the details of the potential influence the exact loci of lines in Fig.11 and 

specifically the degree of overlap between adjacent spheres, which allows shifting the curves 

vertically. Hence our agreement might be fortuitous. Our results support the simulations by 

Miller and Frenkel7 and by Fantoni et al.35 at least with respect to the percolation limit. The 

value for the critical volume fraction from their simulation is, however, difficult to verify with 

our experiments. The reason is the proximity between binodal and spinodal curves in the 

volume fraction range studied which makes it practically impossible to differentiate between 

spinodal decomposition and phase separation via a nucleation and growth mechanism. 

However, please note that the scaling properties refer for theoretical reasons to the spinodal. 

For our purpose taking the volume fraction range we studied into account, we find that the C1 

model taken from the paper by Fantoni et al.35 is in close agreement with Penders and Vrij21 

and thus the approximate equations for the phase diagram as given by eqs. 7) and 8). From an 
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experimental point of view it is not possible to distinguish between the various 

approximations.  

 

 

 

 

 

V. Conclusions 

 

We presented in this paper a combination of light scattering techniques (dynamic light 

scattering and diffusing wave spectroscopy) with small angle neutron scattering under high 

pressure. The data from the latter was analyzed using a global fit routine with a model taking 

into account the structure factor of a polydisperse sticky hard sphere system using the 

Robertus model32. The parameters obtained from this fit routine can be utilized to predict the 

phase diagram of a polydisperse sticky hard sphere colloidal system including the percolation 

transition. We have confirmed this ergodic to non-ergodic transition by from DWS under high 

pressures. Pressure was also used for the first time as the leading variable for the dynamic 

measurements, which facilitated probing the phase diagram. From dynamic light scattering 

experiments characteristic signatures for binodal and spinodal points could be found. The 

agreement between our experimentally determined phase diagram with theoretical ones is 

good concerning the absolute values for the stickiness and shape. By using the Robertus 

model, our data provide for the first time a full account of the realistically modeled scattering 

curves including polydispersity. Other theoretical models assume mono-disperse systems 

using a simplified expression for the structure factor of which we know that it gives wrong 

results at low q18. Furthermore, polydispersity is likely the reason why we find a mean field 
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type of critical scaling behavior contrary to the expectation and a calculation by Miller and 

Frenkel7 suggesting 3d-Ising scaling. 
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Fig. 1: Schematic phase diagram of adhesive hard sphere system. Shown is the action of 

pressure on the loci of coexistence and percolation lines. The observed temperature shift 

under the action of 1kbar pressure amounts to about ΔT=13K. 

 

Fig. 2: Theoretical phase diagram of an adhesive hard sphere model taken from Fantoni et 

al.35. Their new data (dotted lines) is denoted as PY and is in this plot compared with MC 

simulations from Miller and Frenkel7, which are shown as full lines and filled squares. 

Dashed lines denote the model C1 according to Fantoni et al.35. In this model, the value for φc 

is to a good approximation given by eq. 7). 

 

Fig. 3a: The transition is determined by the pressure at which the correlation functions clearly 

deviate from a narrowly distributed CONTIN distribution. Here as an example measurements 

at T=8.3°C. The single exponential decay gives a narrow CONTIN peak, top at P=585bar, and 

broadening indicating crossing the coexistence, middle at P=795bar. Correlation function at 

the bottom at P=940bar indicates a transition to the spinodal region. No CONTIN analysis 

possible. 

 

Fig. 3b: Phase transition pressures at a volume fraction of φ=0.10 as a function of 

temperature. The two straight lines in the figure have a slope of dP/dTtrans=77.52.5 bar/K as 

determined by linear fits to the data. 

 

Fig. 4: Normalized raw data of the two-cell DWS setup for a volume fraction of 16% is 

shown on the left side. On the right side, the same data is corrected for the decay of the 

second cell. With increasing pressure, the correlation functions decay at later lag times and 

eventually build up a plateau, which is a clear sign of a non-ergodic state. Temperature of 

measurement is T=14°C. 
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Fig. 5: The cumulant fit coefficient corr is corrected for multiple scattering and plotted 

against pressure at a temperature of measurement of T=14°C. The arrows indicate the first 

non-ergodic file measured as described in subchapter III.C. The samples with a volume 

fraction of 1% and 5% remain ergodic. 

 

Fig. 6: I(q) versus q for different volume fractions (top: 5%, 11.2% and 39.2%; bottom: 16%) 

and temperatures as given in the figures (plotted with an offset). In each data set the pressure 

is varied and values are indicated in the figures. Full lines are calculated according to eq. 13) 

with P(q) according to Ref. 18. The S(q) was calculated on the basis of the Robertus model 

with sticky hard sphere interactions. Deviations of fit from data at intermediate q are due to 

not taking the experimental resolution into account. This was proven not to influence the 

analysis of the stickiness at small q. For details of fit see text. 

 

Fig. 7: Plot of inverse stickiness vs. pressure calculated from parameters of the global fit for 

volume fraction 16% using eq. 6). 

 

Fig. 8: The forward intensity plotted versus the reduced pressure according to eq. 16). We 

used Pc=1364bar for the φ=0.16 SANS data (filled circles) and LS (filled triangles) at 

T=15.1°C. SANS data (filled squares) at T=0°C and φ=0.112 with Pc=287bar (pressure value 

from Fig.3b). The straight line through the data points has the slope of –1 suggesting a mean 

field type of behavior. All curves are vertically shifted to the 15.1°C SANS data to show the 

general critical behavior irrespective of the chosen temperature of measurement. The other, 

steeper straight line shown in the figure has a slope of -1.24, which would correspond to a 

scaling behavior of the 3-d Ising case. Clearly, our data is not in agreement with this 

expectation. 
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Fig. 9: The relaxation rates divided by q2 vs. the reduced pressure for the 5, 11, and 16% 

samples. The straight line has the slope of 1 suggesting mean field type of behaviour. We 

have used the value for the critical pressure of Pc=1364bar from =0.1, as deduced from 

Fig.3b. The same Pc was used in Fig.8. From the measured transmissions of our samples we 

have then determined the transmission at the =0.11 sample at that pressure and have used 

this value to determine the Pc for the =0.05 sample. 

 

Fig. 10: Final experimental phase diagram. Lines are guides to the eye. Dotted line: DWS 

coexistence line. Solid line: DWS percolation line. Dashed line: SANS percolation line. The 

phrase “visual inspection” in the inset refers to the phase diagram given in ref. 18. All other 

symbols are explained in the inset. 

 

Fig. 11: Comparison between theoretical phase diagram and our data (triangles). Data is 

converted into temperature using our global fit parameters and eq. 6). Also shown is 

experimental percolation data from Kranendonk et al.6 and Seaton et al.5. MC is data from 

Miller and Frenkel7 which is similar to the data of Fantoni et al.5, see Fig. 2). The PY model is 

given by eqs. 7) and 8), respectively.  
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