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Molecular Dynamics - Extending the Scale from
Microscopic to Mesoscopic

Godehard Sutmann

Institute for Advanced Simulation (IAS)
Jülich Supercomputing Centre (JSC)

Forschungszentrum Jülich, 52425 Jülich, Germany
E-mail: g.sutmann@fz-juelich.de

An introduction to classical molecular dynamics simulation is presented. In addition to some
historical notes, an overview is given over particle models, integrators and different ensemble
techniques. In the end, methods are presented for parallelisation of short range interaction
potentials. The efficiency and scalability of the algorithms on massively parallel computers is
discussed with an extended version of Amdahl’s law.

1 Introduction

Computer simulation methods have become a powerful tool to solve many-body problems
in statistical physics1, physical chemistry2 and biophysics3. Although both the theoretical
description of complex systems in the framework of statistical physics as well as the ex-
perimental techniques for detailed microscopic information are rather well developed it is
often only possible to study specific aspects of those systems in great detail via simulation.
On the other hand, simulations need specific input parameters that characterize the sys-
tem in question, and which come either from theoretical considerations or are provided by
experimental data. Having characterized a physical systemin terms of model parameters,
simulations are often used both to solve theoretical modelsbeyond certain approximations
and to provide a hint to experimentalists for further investigations. In the case of big exper-
imental facilities it is often even required to prove the potential outcome of an experiment
by computer simulations. In this sense it can be stated that the field of computer simula-
tions has developed into a very important branch of science,which on the one hand helps
theorists and experimentalists to go beyond theirinherent limitationsand on the other hand
is a scientific field on its own. Therefore, simulation science has often been called thethird
pillar of science, complementing theory and experiment.

The traditional simulation methods for many-body systems can be divided into two
classes, i.e. stochastic and deterministic simulations, which are largely represented by the
Monte Carlo (MC) method1, 4 and the molecular dynamics5, 6 (MD) method, respectively.
Monte Carlo simulations probe the configuration space by trial moves of particles. Within
the so-called Metropolis algorithm, the energy change fromstepn to n + 1 is used as
a trigger to accept or reject a new configuration. Paths towards lower energy are always
accepted, those to higher energy are accepted with a probability governed by Boltzmann
statistics. This algorithm ensures the correct limiting distribution and properties of a given
system can be calculated by averaging over all Monte Carlo moves within a given statistical
ensemble (where one move means that every degree of freedom is probed once on aver-
age). In contrast, MD methods are governed by the system Hamiltonian and consequently
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Hamilton’s equations of motion7, 8

ṗi = −∂H
∂qi

, q̇i =
∂H
∂pi

(1)

are integrated to move particles to new positions and to assign new velocities at these new
positions. This is an advantage of MD simulations with respect to MC, since not only the
configuration space is probed but the whole phase space whichgives additional information
about the dynamics of the system. Both methods are complementary in nature but they
lead to the same averages of static quantities, given that the system under consideration is
ergodic and the same statistical ensemble is used.

In order to characterise a given system and to simulate its complex behavior, a model
for interactions between system constituents is required.This model has to be tested
against experimental results, i.e. it should reproduce or approximate experimental find-
ings like distribution functions or phase diagrams, and theoretical constraints, i.e. it should
obey certain fundamental or limiting laws like energy or momentum conservation.

Concerning MD simulations the ingredients for a program arebasically threefold:
(i) As already mentioned, a model for the interaction between system constituents (atoms,
molecules, surfaces etc.) is needed. Often, it is assumed that particles interact only pair-
wise, which is exact e.g. for particles with fixed partial charges. This assumption greatly
reduces the computational effort and the work to implement the model into the program.
(ii) An integrator is needed, which propagates particle positions and velocities from timet
to t + δt. It is a finite difference scheme which propagates trajectories discretely in time.
The time stepδt has properly to be chosen to guarantee stability of the integrator, i.e. there
should be no drift in the system’s energy.
(iii) A statistical ensemble has to be chosen, where thermodynamic quantities like pressure,
temperature or the number of particles are controlled. The natural choice of an ensemble
in MD simulations is the microcanonical ensemble (NVE), since the system’s Hamiltonian
without external potentials is a conserved quantity. Nevertheless, there are extensions to
the Hamiltonian which also allow to simulate different statistical ensembles.

These steps essentially form the essential framework an MD simulation. Having this
tool at hand, it is possible to obtainexactresults within numerical precision. Results are
only correct with respect to the model which enters into the simulation and they have to be
tested against theoretical predictions and experimental findings. If the simulation results
differ from real systemproperties or if they are incompatible withsolid theoretical mani-
festations, the model has to be refined. This procedure can beunderstood as an adaptive
refinement which leads in the end to an approximation of a model of the real worldat least
for certain properties. The model itself may be constructedfrom plausible considerations,
where parameters are chosen from neutron diffraction or NMRmeasurements. It may also
result from first principleab initio calculations. Although the electronic distribution of the
particles is calculated very accurately, this type of modelbuilding contains also some ap-
proximations, since many-body interactions are mostly neglected (this would increase the
parameter space in the model calculation enormously). However, it often provides a good
starting point for a realistic model.

An important issue of simulation studies is the accessible time- and length-scale which
can be covered by microscopic simulations. Fig.1 shows a schematic representation for
different types of simulations. It is clear that the more detailed a simulation technique
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Figure 1. Schematic of different time- and length-scales, occurring from microscopic to
macroscopic dimensions. Due to recent developments of techniques like Stochastic Ro-
tation Dynamics (SRD) or Lattice Boltzmann techniques, which are designed to simulate
the mesoscopic scales, there is the potential to combine different methods in a multiscale
approach to cover a broad spectrum of times and lengths.

operates, the smaller is the accessibility of long times andlarge length scales. Therefore
quantum simulations, where electronic fluctuations are taken into account, are located in
the part of the diagram of very short time and length scales which are typically of the or-
der of Å andps. Classical molecular dynamics approximates electronic distributions in
a rather coarse-grained fashion by putting either fixed partial charges on interaction sites
or by adding an approximate model for polarization effects.In both cases, the time scale
of the system is not dominated by the motion of electrons, butthe time of intermolecular
collision events, rotational motions or intramolecular vibrations, which are orders of mag-
nitude slower than those of electron motions. Consequently, the time step of integration is
larger and trajectory lengths are of orderns and accessible lengths of order10− 100 Å. If
one considers tracer particles in a solvent medium, where one is not interested in a detailed
description of the solvent, one can apply Brownian dynamics, where the effect of the sol-
vent is hidden in average quantities. Since collision timesbetween tracer particles is very
long, one may apply larger timesteps. Furthermore, since the solvent is not simulated ex-
plicitly, the lengthscales may be increased considerably.Finally, if one is interested not in
a microscopic picture of the simulated system but in macroscopic quantities, the concepts
of hydrodynamics may be applied, where the system properties are hidden in effective
numbers, e.g. density, viscosity or sound velocity.

It is clear that the performance of particle simulations strongly depends on the computer
facilities at hand. The first studies using MD simulation techniques were performed in 1957
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by B. J. Alder and T. E. Wainright9 who simulated the phase transition of a system of hard
spheres. The general method, however, was presented only two years later10. In these early
simulations, which were run on an IBM-704, up to 500 particles could be simulated, for
which 500 collisions per hour were calculated. Taking into account 200000 collisions for
a production run, these simulations lasted for more than twoweeks. Since the propagation
of hard spheres in a simulation is event driven, i.e. it is determined by the collision times
between two particles, the propagation is not based on an integration of the equations
of motion, but rather the calculation of the time of the next collision, which results in a
variable time step in the calculations.

The first MD simulation which was applied to atoms interacting via a continuous po-
tential was performed by A. Rahman in 1964. In this case, a model system for Argon was
simulated and not only binary collisions were taken into account but the interactions were
modeled by a Lennard-Jones potential and the equations of motion were integrated with
a finite difference scheme. This work may be considered as seminal for dynamical calcu-
lations. It was the first work where a numerical method was used to calculate dynamical
quantities like autocorrelation functions and transport coefficients like the diffusion coef-
ficient for a realistic system. In addition, more involved characteristic functions like the
dynamic van Hove function and non-Gaussian corrections to diffusion were evaluated. The
calculations were performed for 864 particles on a CDC 3600,where the propagation of
all particles for one time step took≈ 45 s. The calculation of50000 timesteps then took
more than three weeks!a

With the development of faster and bigger massively parallel architectures the accessi-
ble time and length scales are increasing for all-atom simulations. In the case of classical
MD simulations it is a kind of competition to break new world records by carrying out
demonstration runs of larger and larger particle systems11–14. In a recent publication, it was
reported by Germann and Kadau15 that a trillion-atom (1012 particles!) simulation was run
on an IBM BlueGene/L machine at Lawrence Livermore NationalLaboratory with 212992
PowerPC 440 processors with a total of 72 TB memory. This run was performed with the
memory optimised program SPaSM16, 17 (Scalable Parallel Short-range Molecular dynam-
ics) which, in single-precision mode, only used 44 Bytes/particle. With these conditions a
simulation of a Lennard-Jones system ofN = (10000)3 was simulated for 40 time steps,
where each time step used≈ 50secs wall clock time.

Concerning the accessible time scales of all-atom simulations, a numerical study, car-
ried out by Y. Duan and P. A. Kollman in 1998 still may be considered as a milestone in
simulation science. In this work the protein folding process of the subdomain HP-36 from
the villin headpiece18, 19 was simulated up to1 µs. The protein was modelled with a 596
interaction site model dissolved in a system of 3000 water molecules. Using a timestep of
integration of2 × 10−15s, the program was run for5 × 108 steps. In order to perform this
type of calculation, it was necessary to run the program several months on a CRAY T3D
and CRAY T3E with 256 processors. It is clear that such kind ofa simulation is excep-
tional due to the large amount of computer resources needed,but it was nonetheless a kind
of milestone pointing to future simulation practices, which are nowadays still not standard,
but nevertheless exceptionally applied20.

Classical molecular dynamics methods are nowadays appliedto a huge class of prob-

aOn a standard PC this calculation may be done within less thanone hour nowadays!
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lems, e.g. properties of liquids, defects in solids, fracture, surface properties, friction,
molecular clusters, polyelectrolytes and biomolecules. Due to the large area of applica-
bility, simulation codes for molecular dynamics were developed by many groups. On the
internet homepage of the Collaborative Computational Project No.5 (CCP5)21 a number
of computer codes are assembled for condensed phase dynamics. During the last years
several programs were designed for parallel computers. Among them, which are partly
available free of charge, are, e.g., Amber/Sander22, CHARMM23, NAMD24, NWCHEM25,
GROMACS26 and LAMMPS27.

Although, with the development of massively parallel architectures and highly scalable
molecular dynamics codes, it has become feasible to extend the time and length scales to
relativelylarge scales, a lot of processes are still beyond technical capabilities. In addition,
the time and effort for running these simulations is enormous and it is certainly still far
beyond of standard. A way out of this dilemma is the inventionof new simulation of
methodological approaches. A method which has attracted a lot of interest recently is
to coarse grain all-atom simulations and to approximate interactions between individual
atoms by interactions between whole groups of atoms, which leads to a smaller number
of degrees of freedom and at the same time to a smoother energysurface, which on the
one hand side increases the computation between particle interactions and on the other
hand side allows for a larger time step, which opens the way for simulations on larger
time and length scales of physical processes28. Using this approach, time scales of more
than1 µsecs can now be accessed in a fast way29, 30, although it has to be pointed out that
coarse grained force fields have a very much more limited range of application than all-
atom force fields. In principle, the coarse graining procedure has to be outlined for every
different thermodynamic state point, which is to be considered in a simulation and from
that point of view coarse grain potentials are not transferable in a straight forward way as
it is the case for a wide range of all-atom force field parameters.

2 Models for Particle Interactions

A system is completely determined through it’s HamiltonianH = H0 + H1, whereH0 is
the internalpart of the Hamiltonian, given as

H0 =

N∑

i=1

p2
i

2mi
+

N∑

i<j

u(ri, rj) +

N∑

i<j

u(3)(ri, rj , rk) + . . . (2)

wherep is the momentum,m the mass of the particles andu andu(3) are pair and three-
body interaction potentials.H1 is an external part, which can include time dependent
effects or external sources for a force. All simulated objects are defined within a model
description. Often a precise knowledge of the interaction between atoms, molecules or sur-
faces are not known and the model is constructed in order to describe the main features of
some observables. Besides boundary conditions, which are imposed, it is the model which
completely determines the system from the physical point ofview. In classical simulations
theobjectsare most often described by point-like centers which interact through pair- or
multibody interaction potentials. In that way the highly complex description of electron
dynamics is abandoned and an effective picture is adopted where the main features like the
hard core of a particle, electric multipoles or internal degrees of freedom of a molecules are
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modeled by a set of parameters and (most often) analytical functions which depend on the
mutual position of particles in the configuration. Since theparameters and functions give
a complete information of the system’s energy as well as the force acting on each parti-
cle throughF = −∇U , the combination of parameters and functions is also calleda force
field31. Different types of force field were developed during the last ten years. Among them
are e.g. MM332, MM433, Dreiding34, SHARP35, VALBON36, UFF37, CFF9538, AMBER39

CHARMM40, OPLS41 and MMFF42.
There are major differences to be noticed for the potential forms. The first distinction

is to be made between pair- and multibody potentials. In systems with no constraints, the
interaction is most often described by pair potentials, which is simple to implement into a
program. In the case where multibody potentials come into play, the counting of interaction
partners becomes increasingly more complex and dramatically slows down the execution
of the program. Only for the case where interaction partnersare known in advance, e.g.
in the case of torsional or bending motions of a molecule can the interaction be calculated
efficiently by using neighbor lists or by an intelligent way of indexing the molecular sites.

A second important difference between interactions is the spatial extent of the potential,
classifying it into short and long range interactions. If the potential drops down to zero
faster thanr−d, wherer is the separation between two particles andd the dimension of
the problem, it is called short ranged, otherwise it is long ranged. This becomes clear by
considering the integral

I =

∫
drd

rn
=

{
∞ : n ≤ d

finite : n > d
(3)

i.e. a particles’ potential energy gets contributions fromall particles of the universeif
n ≤ d, otherwise the interaction is bound to a certain region, which is often modeled
by a spherical interaction range. The long range nature of the interaction becomes most
important for potentials which only have potential parameters of the same sign, like the
gravitational potential where no screening can occur. For Coulomb energies, where posi-
tive and negative charges may compensate each other, long range effects may be of minor
importance in some systems like molten salts.

There may be different terms contributing to the interaction potential between particles,
i.e. there is no universal expression, as one can imagine forfirst principles calculations.
In fact, contributions to interactions depend on the model which is used and this is the re-
sult of collecting various contributions into different terms, coarse graining interactions or
imposing constraints, to name a few. Generally one can distinguish between bonded and
non-bonded terms, or intra- and inter-molecular terms. Thefirst class denotes all contribu-
tions originating between particles which are closely related to each other by constraints or
potentials which guaranty defined particles as close neighbors. The second class denotes
interactions between particles which canfreelymove, i.e. there are no defined neighbors,
but interactions simply depend on distances.

A typical form for a (so called) force field (e.g. AMBER22) looks as follows

U =
∑

bonds

Kr(r − req)
2 +

∑

angles

Kθ(θ − θeq)
2 +

∑

dihedrals

Vn

2
[1 + cos(nφ − γ)] (4)

+
∑

i<j

[

Aij

r12
ij

− Bij

r6
ij

]

+
∑

H−bonds

[

Cij

r12
ij

− Dij

r10
ij

]

+
∑

i<j

qiqj

rij

6



In the following, short- and long-range interaction potentials and methods are briefly
described in order to show differences in their algorithmical treatment.

In the following two examples shall illustrate the different treatment of short- and long
range interactions.

2.1 Short Range Interactions

Short range interactions offer the possibility to take intoaccount only neighbored particles
up to a certain distance for the calculation of interactions. In that way a cutoff radius
is introduced beyond of which mutual interactions between particles are neglected. As
an approximation one may introducelong range correctionsto the potential in order to
compensate for the neglect of explicit calculations. The whole short range potential may
then be written as

U =

N∑

i<j

u(rij |rij < Rc) + Ulrc (5)

The long-range correction is thereby given as

Ulrc = 2πNρ0

∫ ∞

Rc

dr r2g(r)u(r) (6)

whereρ0 is the number density of the particles in the system andg(r) = ρ(r)/ρ0 is the
radial distribution function. For computational reasons,g(r) is most often only calculated
up toRc, so that in practice it is assumed thatg(r) = 1 for r > Rc, which makes it possible
for many types of potentials to calculateUlrc analytically.

Besides internal degrees of freedom of molecules, which maybe modeled with short
range interaction potentials, it is first of all the excludedvolume of a particle which is
of importance. A finite diameter of a particle may be represented by a steep repulsive
potential acting at short distances. This is either described by an exponential function or
an algebraic form,∝ r−n, wheren ≥ 9. Another source of short range interaction is the
van der Waals interaction. For neutral particles these are the London forces arising from
induced dipole interactions. Fluctuations of the electrondistribution of a particle give rise
to fluctuating dipole moments, which on average compensate to zero. But the instantaneous
created dipoles induce also dipoles on neighbored particles which attract each other∝ r−6.
Two common forms of the resulting interactions are the Buckingham potential

uB
αβ(rij) = Aαβe−Bαβrij − Dαβ

r6
ij

(7)

and the Lennard-Jones potential

uLJ
αβ (rij) = 4ǫαβ

((
σαβ

rij

)12

−
(

σαβ

rij

)6
)

(8)

which are compared in Fig.2. In Eqs.7,8 the indicesα, β indicate the species of the
particles, i.e. there are parametersA, B, D in Eq.7 andǫ, σ in Eq.8 for intra-species inter-
actions (α = β) and cross species interactions (α 6= β). For the Lennard-Jones potential
the parameters have a simple physical interpretation:ǫ is the minimum potential energy,
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Figure 2. Comparison between a Buckingham-, Lennard-Jones(12-6) and Lennard-Jones
(9-6) potential.

located atr = 21/6σ andσ is the diameter of the particle, since forr < σ the potential
becomes repulsive. Often the Lennard-Jones potential gives a reasonable approximation
of a true potential. However, from exact quantum ab initio calculations an exponential
type repulsive potential is often more appropriate. Especially for dense systems the too
steep repulsive part often leeds to an overestimation of thepressure in the system. Since
computationally the Lennard-Jones interaction is quite attractive the repulsive part is some-
times replaced by a weaker repulsive term, like∝ r−9. The Lennard-Jones potential has
another advantage over the Buckingham potential, since there are combining rules for the
parameters. A common choice are the Lorentz-Berelot combining rules

σαβ =
σαα + σββ

2
, ǫαβ =

√
ǫααǫββ (9)

This combining rule is, however, known to overestimate the well depth parameter. Two
other commonly known combining rules try to correct this effect, which are Kong43 rules

σαβ =






1

213

ǫαασ12
αα

√

ǫαασ6
ααǫββσ6

ββ



1 +

(

ǫββσ12
ββ

ǫαασ12
αα

)1/13




13





1/6

(10)

ǫαβ =

√

ǫαασ6
ααǫββσ6

ββ

σ6
αβ

(11)

and the Waldman-Kagler44 rule

σαβ =

(

σ6
αα + σ6

ββ

2

)1/6

, ǫαβ =

√

ǫαασ6
ααǫββσ6

ββ

σ6
αβ

(12)

In a recent study45 of Ar-Kr and Ar-Ne mixtures, these combining rules were tested and it
was found that the Kong rules give the best agreement betweensimulated and experimental
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pressure-density curves. An illustration of the differentcombining rules is shown in Fig.3
for the case of an Ar-Ne mixture.
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Figure 3. Resulting cross-terms of the Lennard-Jones potential for an Ar-Ne mixture.
Shown is the effect of different combining rules (Eqs.9-12). Parameters used areσAr =
3.406 Å, ǫAr = 119.4 K andσNe = 2.75 Å, ǫNe = 35.7 K.

Since there are only relatively few particles which have to be considered for the inter-
action with a tagged particle (i.e. those particles within the cutoff range), it would be a
computational bottleneck if in any time step all particle pairs would have to be checked
whether they lie inside or outside the interaction range. This becomes more and more a
problem as the number of particles increases. A way to overcome this bottleneck is to in-
troduce list techniques. The first implementation dates back to the early days of molecular
dynamics simulations. In 1967, Verlet introduced a list46, where at a given time step all
particle pairs were stored within a rangeRc + Rs, whereRs is called the skin radius and
which serves as a reservoir of particles, in order not to update the list in each time step
(which would make the list redundant). Therefore, in a forceroutine, not all particles have
to tested, whether they are in a rangerij < Rc, but only those particle pairs, stored in the
list. Since particles are moving during the simulation, it is necessary to update the list from
time to time. A criterion to update the list could be, e.g.

max
i

|ri(t) − ri(t0)| ≥
Rs

2
(13)

wheret0 is the time from the last list update. This ensures that particles cannot move
from the outside region into the cutoff sphere without beingrecognized. This technique,
though efficient, has still complexityO(N2), since at an update step,all particle pairs have
to be checked for their mutual distances. Another problem arises when simulating many
particles, since the memory requirements are relatively large (size of the list is4π(Rc +
Rs)

3ρ N/3). There is, of course also the question, how large the skin radius should be
chosen. Often, it is chosen asRs = 1.5σ. In Ref.47 it was shown that an optimal choice
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Figure 4. Contour plots of the performance for the combination of linked-cell and Verlet list as a function
of the cell length and the size of the skin radius. Crosses mark the positions predicted from an optimization
procedure48. Test systems were composed of 4000 Lennard-Jones particles withRc = 2.5 σ at temperature
T = 1.4 ǫ/kB . Left: ρ = 0.75/σ3 . Right: ρ = 2.0/σ3 .

strongly depends on the number of particles in the system andan optimization procedure
was outlined.

An alternative list technique, which scales linearly with the number of particles is the
linked-cell method49, 50. The linked-cell method starts with subdividing the whole system
into cubic cells and sorting all particles into these cells according to their position. The size
of the cells,Lc, is chosen to beLc ≤ LBox/floor(LBox/Rc), whereLBox is the length
of the simulation box. All particles are then sorted into a list array of lengthN . The list
is organized in a way that particles, belonging to the same cell are linked together, i.e. the
entry in the list referring to a particle points directly to the entry of a next particle inside
the same cell. A zero entry in the list stops the search in the cell and a next cell is checked
for entries. This technique not only has computational complexity of O(N), since the
sorting into the cells and into theN -dimensional array is ofO(N), but also has memory
requirements which only grow linearly with the number of particles. These features make
this technique very appealing. However, the technique is not well vectorizable and also
the addressing of next neighbors in the cells require indirect access (e.g.i=index(i)),
which may lead to cache misses. In order not to miss any particle pair in the interactions
every box has to have a neighbor region in each direction which extends toRc. In the
case, whereLc ≥ Rc, every cell is surrounded by 26 neighbor cells in three dimensional
systems. This gives rise to the fact that the method gives only efficiency gains ifLBox ≥
4Rc, i.e. subdividing each box direction into more than 3 cells.In order to approximate the
cutoff sphere in a better way by cubic cells, one may reduce the cell size and simultaneously
increasing the total number of cells. In an optimization procedure47, it was found that a
reduction of cell sizes toLc = Rc/2 or even smaller often gives very much better results.

It is, of course, possible to combine these list techniques,i.e. using the linked-cell
technique in the update step of the Verlet list. This reducesthe computational complexity
of the Verlet list toO(N) while fully preserving the efficiency of the list technique.It is
also possible to model the performance of this list combination and to optimize the length
of the cells and the size of the skin radius. Figure 4 shows theresult of a parameter study,
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where the performance of the list was measured as a function of (Lc, Rs). Also shown is
the prediction of parameters coming out of an optimization procedure48.

2.2 Long Range Interactions

Long range interactions essentially require to take all particle pairs into account for a proper
treatment of interactions. This may become a problem, if periodic boundary conditions
are imposed to the system, i.e. formally simulating an infinite number of particles (no
explicit boundaries imply infinite extend of the system). Therefore one has to devise special
techniques to treat this situation. On the other hand one also has to apply fast techniques
to overcome the inherentO(N2) complexity of the problem, since for large numbers of
particles this would imply an intractable computational bottleneck. In general one can
classify algorithms for long range interactions into the following system:

• Periodic boundary conditions

– Grid free algorithms, e.g. Ewald summation method51–53

– Grid based algorithms, e.g. Smoothed Particle Mesh Ewald54, 55, Particle-
Particle Particle-Mesh method56–58

• Open boundary conditions

– Grid free algorithms, e.g. Fast Multipole Method59–64 (FMM), Barnes-Hut Tree
method65, 66

– Grid based algorithms, e.g. Particle-Particle Particle-Multigrid method67

(P3Mg), Particle Mesh Wavelet method68 (PMW)

In the following two important members of these classes willbe described, the Ewald
summation method and the Fast Multipole Method.

2.2.1 Ewald Summation Method

The Ewald summation method originates from crystal physics, where the problem was to
determine the Madelung constant69, describing a factor for an effective electrostatic energy
in a perfect periodic crystal. Considering the electrostatic energy of a system ofN particles
in a cubic box and imposing periodic boundary conditions, leads to an equivalent problem.
At position ri of particle i, the electrostatic potential,φ(ri), can be written down as a
lattice sum

φ(ri) =
∑

n

†

N∑

j=1

qj

‖rij + nL‖ (14)

wheren = (nx, ny, nz), nα ∈ Z is a vector along cartesian coordinates andL is the length
of the simulation box. The sign ”†” means thati 6= j for ‖n‖ = 0.

Eq. (14) is conditionally convergent, i.e. the result of theoutcome depends on the order
of summation. Also the sum extends over infinite number of lattice vectors, which means
that one has to modify the procedure in order to get an absolute convergent sum and to get
it fast converging. The original method of Ewald consisted in introducing a convergence
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factore−ns, which makes the sum absolute convergent; then transforming it into different
fast converging terms and then puttings in the convergence factor to zero. The final result
of the calculation can be easier understood from a physical picture. If every charge in
the system is screened by a counter charge of opposite sign, which is smeared out, then
the potential of this composite charge distribution becomes short ranged (it is similar in
electrolytic solutions, where ionic charges are screened by counter charges - the result is
an exponentially decaying function, the Debye potential70). In order to compensate for
the added charge distribution it has to be subtracted again.The far field of a localized
charge distribution is, however, again a Coulomb potential. Therefore this term will be
long ranged. There would be nothing gained if one would simply sum up these different
terms. The efficiency gain shows up, when one calculates the short range interactions as
direct particle-particle contributions in real space, while summing up the long range part
of the smeared charge cloud in reciprocal Fourier space. Choosing as the smeared charge
distribution a Gaussian charge cloud of half width1/α the corresponding expression for
the energy becomes

φ(ri) =
∑

n

†

N∑

j=1

qj
erfc(α‖rij + nL‖)

‖rij + nL‖ (15)

+
4π

L3

∑

k 6=0

N∑

j=1

qj

‖k‖2
e−‖k‖2/4α2

eikrij − qi
2α√

π

The last term corresponds to a self energy contribution which has to be subtracted, as it is
considered in the Fourier part. Eq. (15) is an exact equivalent of Eq. (14), with the differ-
ence that it is an absolute converging expression. Therefore nothing would be gained with-
out further approximation. Since the complimentary error function can be approximated
for large arguments by a Gaussian function and the k-space parts decreases like a Gaussian,
both terms can be approximated by stopping the sums at a certain lattice vectorn and a
maximalk-valuekmax. The choice of parameters depends on the error,ǫ = exp(−p2),
which one accepts to tolerate. Setting the error tolerancep and choosing the width of the
counter charge distribution, one gets

R2
c +

log(Rc)

α2
=

1

α2
(p2 − log(2)) (16)

k2
max + 8α2 log(kmax) = 4α2p2 + log

(
4π

L3

)

(17)

This can be solved iteratively or if one is only interested inan approximate estimate for the
error, i.e. neglecting logarithmic terms, one gets

Rc =
p

α
(18)

kmax = 2αp (19)

Using this error estimate and furthermore introducing execution times, spent for the real-
and reciprocal-space part, it is possible to show that parametersRc, α andkmax can be
chosen to get a complexity ofO(N3/2) for the Ewald sum71, 72. In this case, parameters
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are

Rc

L
≈
√

π

N1/3
, αL ≈ Lkmax

2π
=
√

πN1/3 (20)

Figure 5 shows the contributions of real- and reciprocal parts in Eq. (15), as a func-
tion of the spreading parameterα, where an upper limit in both the real- and reciprocal-
contributions was applied. In the real-space part usually one restricts the sum to|n| = 0
and applies a spherical cutoff radius,Rc. For fixed values ofRc andkmax there is a broad
plateau region, where the two terms add up to a constant value. Within this plateau region,
a value forα should be chosen. Often it is chosen according toα = 5/L. Also shown is
the potential energy of a particle, calculated with the Ewald sum. It is well observed that
due to the periodicity of the system the potential energy surface is not radial symmetric,
which may cause problems for small numbers of particles in the system.
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Figure 5. Left: Dependence of the calculated potential on the choice of the scaled inverse width,α L,
of the smeared counter charge distribution. Parameters forthis test wereN = 152, Rc = 0.5 L and
kmaxL/2π = 6. Right: Surface plot and contours for the electrostatic potential of a charge, located in the
center of the simulation volume. Picture shows the xy-planefor z = L/2. Parameters wereRc = 0.25 L,
α L = 12.2 andkmaxL/2π = 6.

The present form of the Ewald sum gives an exact representation of the potential energy
of point like charges in a system with periodic boundary conditions. Sometimes the charge
distribution in a molecule is approximated by a point dipoleor higher multipole moments.
A more general form of the Ewald sum, taking into account arbitrary point multipoles was
given in Ref.73. The case, where also electronic polarizabilities are considered is given in
Ref.74.

In certain systems, like in molten salts or electrolyte solutions, the interaction between
charged species may approximated by a screened Coulomb potential, which has a Yukawa-
like form

U =
1

2

N∑

i,j=1

qiqj
e−κ‖rij‖

‖rij‖
(21)

The parameterκ is the inverse Debye length, which gives a measure of screening strength
in the system. Ifκ < 1/L the potential is short ranged and usual cut-off methods may

13



be used. Instead, ifκ > 1/L, or generally ifu(r = L/2) is larger than the prescribed
uncertainties in the energy, the minimum image convention in combination with truncation
methods fails and the potential must be treated in a more rigorous way, which was pro-
posed in Ref.75, where an extension of the Ewald sum for such Yukawa type potentials was
developed.

2.2.2 The Fast Multipole Method

In open geometries there is no lattice summation, but only the sum over all particle pairs
in the whole system. The electrostatic energy at a particle’s position is therefore simply
calculated as

φ(ri) =

N∑

j=1

qj

‖ri − rj‖
(22)

Without further approximation this is always anO(N2) algorithm since there areN(N −
1)/2 interactions to consider in the system (here Newton’s thirdlaw was taken into ac-
count). The idea of a multipole method is to group particles which are far away from a
tagged particle together and to consider an effective interaction of a particle with this par-
ticle group76–78. The physical space is therefore subdivided in a hierarchical way, where
the whole system is considered as level 0. Each further levelis constructed by dividing the
length in each direction by a factor of two. The whole system is therefore subdivided into a
hierarchy of boxes where eachparent boxcontains eightchildren boxes. This subdivision
is performed at maximum until the level, where each particleis located in an individual
box. Often it is enough to stop the subdivision already at a lower level.

In the following it is convenient to work in spherical coordinates. The main principle
of the method is that the interaction between two particles,located atr = r, θ, ϕ and
a = (a, α, β) can be written as a multipole expansion79

1

‖r− a‖ =

∞∑

l=0

l∑

m=−l

(l − |m|)!
(l + |m|)!

al

rl+1
Plm(cosα)Plm(cos θ) e−im(β−ϕ) (23)

wherePlm(x) are associated Legendre polynomials80. This expression requires thata/r <
1 and this gives a lower limit for the so calledwell separatedboxes. This makes it necessary
to have at least one box between a tagged box and the zone, where contributions can be
expanded into multipoles. Defining the operators

Olm(a) = al (l − |m|)! Plm(cosα) e−imβ (24)

Mlm(r) =
1

rl+1

1

(l + |m|)! Plm(cos θ) eimϕ (25)

with which Eq. (23) may simply be rewritten in a more compact way, it is possible to write
further three operators, which are needed, in a compact scheme, i.e.

1.) a translation operator, which relates the multipole expansion of a point located ata to a
multipole expansion of a point located ata + b

Olm(a + b) =
l∑

j=0

j
∑

k=−l

Alm
jk (b)Ojk(a) , Alm

jk (b) = Ol−j,m−k(b) (26)
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Figure 6. Schematic of different passes in the Fast Multipole Method. Upper left: Pass 1, evaluation
of multipole terms in finest subdivision and translating information upwards the tree. Upper right: Pass 2,
transforming multipole expansions in well separated boxesinto local Taylor expansions. Lower left: Pass 3,
transferring multipole expansions downwards the tree, thus collecting information of the whole system,
except nearest neighbor boxes. Lower right: Pass 5, direct calculation of particle-particle interactions in
local and nearest neighbor boxes.

2.) a transformation operator, which transforms a multipole expansion centered at the
origin into a Taylor expansion centered at locationb

Mlm(a − b) =

l∑

j=0

j
∑

k=−l

Blm
jk (b)Ojk(a) , Blm

jk (b) = Ml+j,m+k(b) (27)

3.) a translation operator, which translates a Taylor expansion of a pointr about the origin
into a Taylor expansion ofr about a pointb

Mlm(r − b) =

l∑

j=0

j
∑

k=−l

Clm
jk (b)Mjk(r) , Clm

jk (b) = Alm
jk (b) (28)
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The procedure to calculate interactions between particlesis then subdivided into five
passes. Figure 6 illustrates four of them. The first pass consists of calculating the multipole
expansions in the lowest level boxes (finest subdivision). Using the translation operator
Olm(a + b), the multipole expansions are translated into the center oftheir parent boxes
and summed up. This procedure is repeated then subsequentlyfor each level, until level 2
is reached, from where no further information is passed to a coarser level. In pass 2, using
operatorMlm(a−b), multipole expansions are translated into Taylor expansions in a box
from well separated boxes, whose parent boxes are nearest neighbor boxes. Well separated
means, that for all particles in a given box the multipole expansion in a separated box is
valid. Since the applicability of Eq. (23) impliesr > a, well separateness means on level
l that boxes should be separated by a distance2−l. This also explains, why there is no
need to transfer information higher than level 2, since fromthere on it is not possible to
have well separated boxes anymore, i.e. multipole expansions are not valid any more. In
pass 3, using the operatorMlm(a − b), this information is then translated downwards the
tree, so that finally on the finest level all multipole information is known in order to inter-
act individual particles with expansions, originating from all other particles in the system
which are located in well separated boxes of the finest level.In pass 4 this interaction be-
tween individual particles and multipoles is performed. Finally in pass 5, explicit pair-pair
interactions are calculated between particles in a lowest level box and those which are in
nearest neighbor boxes, i.e. those boxes which are not called well separated.

It can be shown61 that each of the steps performed in this algorithm is of orderO(N),
making it an optimal method. Also the error made by this method can be controlled rather
reliably64. A very conservative error estimate is thereby given as76, 61, 81

∣
∣
∣
∣
φ(r) − q

‖r − a‖

∣
∣
∣
∣
≤ |q|

r − a

(a

r

)p+1

(29)

At the current description the evaluation of multipole terms scales asO(l4max), whenlmax

is the largest value ofl in the multipole expansion, Eq.(23). A faster version whichscales
asO(l3max) and therefore strongly reducing the prefactor of the overall scheme, was pro-
posed in Ref.62, where multipoles are evaluated in a rotated coordinate frame, which makes
it possible to reduce calculations to Legendre polynomialsand not requiring associated
Legendre polynomials.

Also to mention is that there are approaches to extend the Fast Multipole Method to
periodic systems82, 83.

2.3 Coarse Grain Methods

The force field methods mentioned so far treat molecules on the atomic level, i.e. re-
solving heavy atoms, in most cases also hydrogens, explicitly. In the case, where flexible
molecular bonds, described e.g. by harmonic potentials, are considered the applied time
step is of the order ofδt ≈ 10−15 secs. Considering physical phenomena like self as-
sembling of lipid molecules84, 85, protein folding or structure formation in macromolecular
systems86–88, which take place on time scales of microseconds to seconds or even longer,
the number of timesteps would exceed the current computational capacities. Although
these phenomena all have an underlying microscopic background, the fast dynamics of
e.g. hydrogen vibrations are not directly reflected in the overall process. This lead to the
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idea to either freeze certain degrees of freedom, as it is done for e.g. rigid water mod-
els89–92, or to take several degrees of freedom only into account effectively via a pseudo
potential, which reflects the behavior of whole groups of atoms. It is the latter approach
which is now known as coarse graining28, 93, 94of molecular potentials and which opens the
accessibility of a larger time and length scale. Mapping groups of atoms to one pseudo
atom, or interaction site, leads already to an effective increase of the specific volume of
the degrees of freedom. Therefore, the same number of degrees of freedom of a coarse
grain model, compared with a conventional force field model,would directly lead to larger
spatial scale, due to the increase of volume of each degree offreedom. On the other hand,
comparing a conventional system before and after coarse graining, the coarse grained sys-
tem could cover time scales longer by a factor of 100-1000 or even longer compared with a
conventional force field all-atom model (the concrete factor certainly depends on the level
of coarse graining).

Methodologies for obtaining coarse grain models of a systemoften start from an atom-
istic all-atom model, which adequately describes phase diagrams or other physical proper-
ties of interest. On a next level, groups of atoms are collected and an effective non-bonded
interaction potential may be obtained by calculating potential energy surfaces of these
groups and to parametrize these potentials to obtain analytical descriptions. Therefore,
distribution functions of small atomic groups are taken into account (at least implicitly)
which in general depend on the thermodynamic state point. For bonded potentials be-
tween groups of atoms, a normal mode analysis may be performed in order to get the most
important contributions to vibrational-, bending- or torsional-modes.

In principle, one is interested in reducing the number of degrees of freedom by sepa-
rating the problem space into coordinates which areimportantand those which areunim-
portant. Formally, this may be expressed through a set of coordinates {r} ∈ R

ni and
{r̃} ∈ R

nu , whereni andnu are the number of degrees of important and unimportant
degrees of freedom, respectively. Consequently, the system Hamiltonian may be written
asH = H(r1, . . . , rni

, r̃1, . . . , r̃ni
). From these considerations one may define areduced

partition function, which results from integrating out allunimportant degrees of freedom

Z =

∫

dr1, . . . , drni
, dr̃1, . . . , dr̃ni

exp {−βH(r1, . . . , rni
, r̃1, . . . , r̃nu

)} (30)

=

∫

dr1, . . . , drni
, dr̃1, . . . , dr̃nu

exp
{
−βHCG(r1, . . . , rni

)
}

(31)

where a coarse grain Hamiltonian has been defined

HCG(r1, . . . , rni
) = − log

∫

r̃1, . . . , dr̃ni
exp {−βH(r1, . . . , rni

, r̃1, . . . , r̃nu
)} (32)

which corresponds to the potential of mean force and which isthe free energy of the non-
important degrees of freedom. Since the Hamiltonian describes only a subset of degrees
of freedom, thermodynamic properties, derived from this Hamiltonian will be different
than obtained from the full Hamiltonian description (e.g. pressure will correspond to the
osmotic pressure and not to the thermodynamic pressure). This has to be taken into ac-
count when simulating in different ensembles or if experimental thermodynamic properties
should be reproduced by simulation.

The coarse grained Hamiltonian is still a multi-body description of the system, which
is hard to obtain numerically. Therefore, it is often approximated by a pair-potential, which
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is considered to contribute the most important terms

HCG(r1, . . . , rni
) ≈

∑

i>j

Vij(rij) , rij = ‖ri − rj‖ (33)

According to the uniqueness theorem of Henderson95, in a liquid where particles in-
teract only through pair interactions, the pair distribution functiong(r) determines up to a
constant uniquely the pair interaction potentialVij . Therefore,Vij may be obtained point-
wise by reverting the radial pair distribution function96–98, e.g. by reverse Monte Carlo
techniques99 or dynamic iterative refinement100. This approach directly confirms what was
stated in Sec. 1 about the limited applicability of coarse grained potentials. It is clear that
for different temperatures, pressures or densities the radial distribution functions of e.g.
cation-cation, cation-anion and anion-anion distributions in electrolytic solutions will be
different. If one wants to simulate ions in an effective medium (continuum solvent), the
potential, which is applied in the simulation will depend onthe thermodynamic state point
and therefore has to be re-parametrized for every differentstate point.

3 The Integrator

The propagation of a classical particle system can be described by the temporal evolution
of the phase space variables(p,q), where the phase spaceΓ(p,q) ∈ R

6N contains all
possible combinations of momenta and coordinates of the system. The exact time evolution
of the system is thereby given by a flow map

Φδt,H : R
6N → R

6N (34)

which means

Φδt,H(p(t),q(t)) = (p(t) + δp,q(t) + δq) (35)

where

p + δp = p(t + δt) , q + δq = q(t + δt) (36)

For a nonlinear many-body system, the equations of motion cannot be integrated exactly
and one has to rely on numerical integration of a certain order. Propagating the coordinates
by a constant step sizeh, a number of different finite difference schemes may be used for
the integration. But there are a number of requirements, which have to be fulfilled in order
to be useful for molecular dynamics simulations. An integrator, suitable for many-body
simulations should fulfill the following requirements:

• Accuracy, i.e. the solution of an analytically solvable test problem should be as close
as possible to the numerical one.

• Stability, i.e. very long simulation runs should produce physically relevant trajecto-
ries, which are not governed by numerical artifacts

• Conservativity, there should be no drift or divergence in conserved quantities, like
energy, momentum or angular momentum
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• Reversibility, i.e. it should have the same temporal structure as the underlying equa-
tions

• Effectiveness, i.e. it should allow for large time steps without entering instability and
should require a minimum of force evaluations, which usually need about 95 % of
CPU time per time step

• Symplecticity, i.e. the geometrical structure of the phasespace should be conserved

It is obvious that the numerical flow,φδt,H, of a finite difference scheme will not be
fully equivalent toΦδt,H, but the system dynamics will be described correctly if the items
above will be fulfilled.

In the following the mentioned points will be discussed and anumber of different
integrators will be compared.

3.1 Basic Methods

The most simple integration scheme is the Euler method, which may be constructed by a
first order difference approximation to the time derivativeof the phase space variables

pn+1 = pn − δt
∂

∂q
H(pn,qn) (37)

qn+1 = qn + δt
∂

∂p
H(pn,qn) (38)

whereδt is the step size of integration. This is equivalent to a Taylor expansion which is
truncated after the first derivative. Therefore, it is obvious that it is of first order. Knowing
all variables at stepn, this scheme has all relevant information to perform the integration.
Since only information from one time step is required to do the integration, this scheme
is called the one-step explicit Euler scheme. The basic scheme, Eqs. (37,38) may also be
written in different forms.

The implicit Euler method

pn+1 = pn − δt
∂

∂q
H(pn+1,qn+1) (39)

qn+1 = qn + δt
∂

∂p
H(pn+1,qn+1) (40)

can only be solved iteratively, since the derivative on the right-hand-side (rhs) is evaluated
at the coordinate positions on the left-hand-side (lhs).

An example for a so called partitioned Runge-Kutta method isthe velocity implicit
method

pn+1 = pn − δt
∂

∂q
H(pn+1,qn) (41)

qn+1 = qn + δt
∂

∂p
H(pn+1,qn) (42)

Since the Hamiltonian usually splits into kineticK and potentialU parts, which only de-
pend on one phase space variable, i.e.

H(p,q) =
1

2
pT M−1 p + U(q) (43)
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whereM−1 is the inverse of the diagonal mass matrix, this scheme may also be written as

pn+1 = pn − δt
∂

∂q
U(qn) (44)

qn+1 = qn +
δt

m
pn+1 (45)

showing that it is not necessary to solve it iteratively.
Obviously this may be written as aposition implicit method

pn+1 = pn − δt
∂

∂q
U(qn+1) (46)

qn+1 = qn +
δt

m
pn (47)

Applying first Eq. (47) and afterwards Eq. (46) also this variant does not require an iterative
procedure.

All of these schemes are first order accurate but have different properties, as will be
shown below. Before discussing these schemes it will be interesting to show a higher order
scheme, which is also based on a Taylor expansion. First write down expansions

q(t + δt) = q(t) + δt q̇(t) +
1

2
δt2 q̈(t) + O(δt3) (48)

= q(t) +
δt

m
p(t) +

1

2m
δt2 ṗ(t) + O(δt3) (49)

p(t + δt) = p(t) + δt ṗ(t) +
1

2
δt2 p̈(t) + O(δt3) (50)

= p(t) +
δt

2
(ṗ(t) + ṗ(t + δt)) + O(δt3) (51)

where in Eq. (49), the relatioṅq = p/m was used and in Eq. (51) a first order Taylor
expansion forṗ was inserted. From these expansions a simple second order, one-step
splitting scheme may be written as

pn+1/2 = pn +
δt

2
F(qn) (52)

qn+1 = qn +
δt

m
pn+1/2 (53)

pn+1 = pn+1/2 +
δt

2
F(qn+1) (54)

where the relatioṅp = −∂H/∂q = F was used. This scheme is called theVelocity Verlet
scheme. In a pictorial way it is sometimes described as half-kick, drift, half-kick, since the
first step consists in applying forces for half a time step, second step consists in free flight
of a particle with momentumpn+1/2 and the last step applies again a force for half a time
step. In practice, forces only need to be evaluated once in each time step. After having
calculated the new positions,qn+1, forces are calculated for the last integration step. They
are, however, stored to be used in the first integration step as old forces in the next time
step of the simulation.
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This algorithm comes also in another flavor, called thePosition Verletscheme. It can
be expressed as

qn+1/2 = qn +
δt

2m
pn (55)

pn+1 = pn + δtF(qn+1/2) (56)

qn+1/2 = qn+1/2 +
δt

2m
pn+1 (57)

In analogy to the description above this is sometimes described as half-drift, kick, half-
drift. Using the relationp = q̇/m and expressing this as a first order expansion, it is
obvious thatF(qn+1/2) = F((qn + qn+1)/2) which corresponds to an implicit midpoint
rule.

3.2 Operator Splitting Methods

A more rigorous derivation, which in addition leads to the possibility of splitting the prop-
agator of the phase space trajectory into several time scales, is based on the phase space
description of a classical system. The time evolution of a point in the 6N dimensional
phase space is given by the Liouville equation

Γ(t) = eiLt Γ(0) (58)

where Γ = (q,p) is the 6N dimensional vector of generalized coordinates,q =
q1, . . . ,qN , and momenta,p = p1, . . . ,pN . The Liouville operator,L, is defined as

iL = {. . . ,H} =

N∑

j=1

(
∂qj

∂t

∂

∂qj
+

∂pj

∂t

∂

∂pj

)

(59)

In order to construct a discrete timestep integrator, the Liouville operator is split into two
parts,L = L1 + L2, and a Trotter expansion101 is performed

eiLδt = ei(L1+L2)δt (60)

= eiL1δt/2eiL2δteiL1δt/2 + O(δt3) (61)

The partial operators can be chosen to act only on positions and momenta. Assuming usual
cartesian coordinates for a system ofN free particles, this can be written as

iL1 =
N∑

j=1

Fj
∂

∂pj
(62)

iL2 =

N∑

j=1

vj
∂

∂rj
(63)

Applying Eq.60 to the phase space vectorΓ and using the propertyea∂/∂xf(x) = f(x+a)
for any functionf , wherea is independent of x, gives

vi(t + δt/2) = v(t) +
Fi(t)

mi

δt

2
(64)

ri(t + δt) = ri(t) + vi(t + δt/2)δt (65)

vi(t + δt) = vi(t + δt/2) +
Fi(t + δt)

mi

δt

2
(66)
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which is the velocity Verlet algorithm, Eqs. 52-54. In the same spirit, another algorithm
may be derived by simply changing the definitions forL1 → L2 andL2 → L1. This gives
the so calledposition Verlet algorithm

ri(t + δt/2) = ri(t) + v(t)
δt

2
(67)

vi(t + δt) = v(t) +
Fi(t + δt/2)

mi
(68)

ri(t + δt) = ri(t + δt/2) + (v(t) + vi(t + δt))
δt

2
(69)

Here the forces are calculated at intermediate positionsri(t+δt/2). The equations of both
the velocity Verlet and the position Verlet algorithms havethe property of propagating
velocities or positions on half time steps. Since both schemes decouple into an applied
force term and afree flight term, the three steps are often calledhalf-kick/drift/half kick
for the velocity Verlet and correspondinglyhalf-drift/kick/half-drift for the position Verlet
algorithm.

Both algorithms, the velocity and the position Verlet method, are examples for sym-
plectic algorithms, which are characterized by a volume conservation in phase space.
This is equivalent to the fact that the Jacobian matrix of a transformx′ = f(x, p) and
p′ = g(x, p) satisfies

(
fx fp

gx gp

)(
0 I

−I 0

)(
fx fp

gx gp

)

=

(
0 I

−I 0

)

(70)

Any method which is based on the splitting of the Hamiltonian, is symplectic. This does
not yet, however, guarantee that the method is also time reversible, which may be also be
considered as a strong requirement for the integrator. Thisproperty is guaranteed by sym-
metric methods, which also provide a better numerical stability 102. Methods, which try
to enhance the accuracy by taking into account the particles’ history (multi-step methods)
tend to be incompatible with symplecticness103, 104, which makes symplectic schemes at-
tractive from the point of view of data storage requirements. Another strong argument for
symplectic schemes is the so calledbackward error analysis105–107. This means that the
trajectory produced by a discrete integration scheme, may be expressed as the solution of
a perturbed ordinary differential equation whoserhscan formally be expressed as a power
series inδt. It could be shown that the system, described by the ordinarydifferential equa-
tion is Hamiltonian, if the integrator is symplectic108, 109. In general, the power series inδt
diverges. However, if the series is truncated, the trajectory will differ only asO(δtp) of the
trajectory, generated by the symplectic integrator on timescalesO(1/δt)110.

3.3 Multiple Time Step Methods

It was already mentioned that the rigorous approach of the decomposition of the Liouville
operator offers the opportunity for a decomposition of timescales in the system. Supposing
that there are different time scales present in the system, e.g. fast intramolecular vibrations
and slow domain motions of molecules, then the factorization of Eq.60 may be written in

22



a more general way

eiL∆t = eiL
(s)
1 ∆t/2eiL

(f)
1 ∆t/2eiL2δteiL

(f)
1 ∆t/2eiL

(s)
1 ∆t/2 (71)

= eiL
(s)
1 ∆t/2

{

eiL
(f)
1 δt/2eiL2δteiL

(f)
1 δt/2

}p

eiL
(s)
1 ∆t/2 (72)

where the time increment is∆t = pδ. The decomposition of the Liouville operator may
be chosen in the convenient way

iL(s)
1 = F

(s)
i

∂

∂pi
, iL(f)

1 = F
(f)
i

∂

∂pi
, iL2 = vi

∂

∂qi
(73)

where the superscript(s) and (f) mean slow and fast contributions to the forces. The
idea behind this decomposition is simply to take into account contributions from slowly
varying components only everyp’th timestep with a large time interval. Therefore, the
force computation may be considerably speeded up in the thep − 1 intermediate force
computation steps. In general, the scheme may be extended toaccount for more time
scales. Examples for this may be found in Refs.111–113. One obvious problem, however,
is to separate the timescales in a proper way. The scheme of Eq.72 is exactif the time
scales decouple completely. This, however, is very rarely found and most often timescales
are coupled due to nonlinear effects. Nevertheless, for thecase where∆t is not very
much larger thanδt (p ≈ 10), the separation may be often justified and lead to stable
results. Another criteria for the separation is to distinguish between long range and short
range contributions to the force. Since the magnitude and the fluctuation frequency is very
much larger for the short range contributions this separation makes sense for speeding up
computations including long range interactions114.

The method has, however, its limitations115, 116. As described, a particle gets everyn’th
timestep akick due to the slow components. It was reported in literature that this may
excite a system’s resonance which will lead to strong artifacts or even instabilities117, 118.
Recently different schemes were proposed to overcome theseresonances by keeping the
property of symplecticness119–125.

3.4 Stability

Performing simulations of stable many-body systems for long times should produce con-
figurations which are in thermal equilibrium. This means that system properties, e.g. pres-
sure, internal energy, temperature etc. are fluctuating around constant values. To measure
these equilibrium properties it should not be relevant where to put the time origin from
where configurations are considered to calculate average quantities. This requires that the
integrator should propagate phase space variables in such away that small fluctuations do
not lead to a diverging behavior of a system property. This isa kind of minimal requirement
in order to simulate any physical system without a domination of numerical artifacts. It is
clear, however, that any integration scheme will have its own stability range depending on
the step sizeδt. This is a kind of sampling criterion, i.e. if the step size istoo large, in order
to resolve details of the energy landscape, an integration scheme may end in instability.

For linear systems it is straight forward to analyze the stability range of a given numer-
ical scheme. Consider e.g. the harmonic oscillator, for which the equations of motion may
be written asq̇(t) = p(t) andṗ(t) = −ω2q(t), whereω is the vibrational frequency and it
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is assumed that it oscillates around the origin. The exact solution of this problem may be
written as

(
ω q(t)
p(t)

)

=

(
cosωt sinωt
− sinωt cosωt

) (
ω q(0)
p(0)

)

(74)

For a numerical integrator the stepwise solution may be written as
(

ω qn+1

pn+1

)

= M(δt)

(
ω qn

pn

)

(75)

whereM(δt) is a propagator matrix. It is obvious that any stable numerical scheme re-
quires eigenvalues|λ(M)| ≤ 1. For|λ| > 1 the scheme will be unstable and divergent, for
|λ| < 1 it will be stable but will exhibit friction, i.e. will loose energy. Therefore, in view
of the conservativity of the scheme, it will be required that|λ(M)| = 1.

As an example the propagator matrices for the Implicit Euler(IE) and Position Verlet
(PV) algorithms are calculated as

MIE(δt) =
1

1 + ω2δt2

(
1 ωδt

−ωδt 1

)

(76)

MPV (δt) =






1 − 1

2
ω2δt2 ωδt

(

1 − 1

4
ω2δt2

)

−ωδt 1 − 1

2
ω2δt2




 (77)

It is then straight forward to calculate the eigenvalues as roots of the characteristic polyno-
mials. The eigenvalues are then calculated as

λEE = 1 ± iωδt (78)

λIE =
1

1 + ω2δt2
(1 ± iωδt) (79)

λPV = λV V = λV IE = λPIE = 1 − 1

2
ω2δt2

(

1 ±
√

1 − 4

ω2δt2

)

(80)

This shows that the absolute values for the Explicit Euler (EE) and the Implicit Euler
methods never equals one forδt 6= 0, i.e. both methods do not produce stable trajectories.
This is different for the Position Verlet, the Velocity Verlet (VV), the Position Implicit
Euler (PIE) and the Velocity Implicit Euler (VIE), which allhave the same eigenvalues.
It is found that the range of stability for all of them is in therangeω2δt2 < 2. For
larger values ofδt the absolute values of the eigenvalues bifurcates, gettinglarger and
smaller values than one. In Figure 7 the absolute values are shown for all methods and
in in Figure 8 the imaginary versus real parts ofλ are shown. For EE it is clear that the
imaginary part diverges linearly with increase ofδt. The eigenvalues of the stable methods
are located on a circle untilω2δt2 = 2. From there one branch diverges to−∞, while the
other decreases to zero.

As a numerical example the phase space trajectories of the harmonic oscillator for
ω = 1 are shown for the different methods in Figure 9. For the stable methods, results
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Figure 8. Imaginary versus real part of eigenvaluesλ of the propagator matrices. Left: Implicit and Explicit
Euler. Right: Velocity and Position Verlet as well as Velocity Implicit and Position implicit Euler method.

for a time step close to instability is shown. All different methods produce closed, stable
orbits, but it is seen on the other hand that they strongly deviate from the exact solution,
which is shown for reference. This demonstrates that stability is a necessary, but only a
weak criterion for correct results. Numerically correct results are only obtained for much
smaller time steps in the range ofδt ≈ 0.01. Also shown are the results for EE and IE.
Here a very much smaller time step,δt = 0.01 is chosen. It is seen that the phase space
trajectory of EE spirals out while the one of IE spirals in with time, showing the instable
or evanescent character of the methods.

Another issue related to stability is the effect of a trajectory perturbation. If initial
conditions are slightly perturbed, will a good integrator keep this trajectory close to the
reference trajectory? The answer is No and it is even found that the result is not that
strong dependent on the integrator. Even for integrators ofhigh order, trajectories will
not stay close to each other. The time evolution of the disturbance may be studied similar
to the system trajectory. Consider the time evolution forΓ + δΓ, whereΓ = (p,q) and
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Figure 9. Phase space trajectories for the one-dimensionalharmonic oscillator, integrated with the Velocity
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δΓ = (δp, δq) is a small disturbance. Then

dΓ

dt
= ∇ΓH(Γ) (81)

Similarly one can write for smallδΓ

d

dt
(Γ + δΓ) = ∇ΓH(Γ + δΓ) (82)

= ∇ΓH(Γ) + ∇Γ(∇ΓH(Γ))δΓ (83)

where the second line is a truncated Taylor series. Comparing terms one simply gets as
equation of motion for a perturbation

dδΓ

dt
= ∇2

ΓH(Γ)δΓ (84)

It is found that the disturbance develops exponentially, with a characteristic, system depen-
dent exponent, which is the Ljapunov exponent126, 127.

Now consider the following situation where identical starting configurations are taken
for two simulations. They will be carried out by different yet exact algorithms, therefore
leading formally to the same result. Nevertheless it may happen that different orders of
floating-point operations are used in both algorithms. Due to round off errors, floating-
point arithmetic is not necessarily associative, i.e. in general

a
∧◦ (b

∧◦ c) 6= (a
∧◦ b)

∧◦ c (85)

where
∧◦ is a floating-point machine operation (+,−, /, ∗). Therefore, both simulations

will be different by round off errors. According to the abovediscussion, this may be
considered as the slightest disturbance of a system trajectory, δΓmin, and the question is,
what effect such a round off error will have. A different method to study difference in
system trajectories is the calculation of the difference

γx(t) =
1

3N

N∑

i=1

∑

α=x,y,z

(x(t) − x̃(t))2 (86)
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whereN is the number of particles,x(t) a certain property, e.g. the coordinates or mo-
menta, and̃x the same property of a disturbed trajectory. In Figure 10 results are shown
for a system of Lennard-Jones particles, where the disturbance was induced by reversing
the order of summation in the force routine, thereby provoking round off errors in the first
time step. Shown are results for the coordinates, the velocities and the forces and it is seen
that all quantities diverge exponentially from machine accuracy up to a certain behavior at
long times, which is shown in the inset. To understand the long time behavior,γx(t) can
be written as average property

γx(t) = 〈(x(t) − x(0) − x̃(t) + x(0))2〉 (87)

= 〈|x(t) − x(0)|2〉 + 〈|x̃(t) − x(0)|2〉 (88)

−2〈x(t)x̃(t)〉 + 2〈x(0)x̃(t)〉 + 2〈x(t)x(0)〉 − 2〈x(0)2〉
In the second equation the first two terms are mean square displacements ofx in the two
systems (note that̃x(0) = x(0) since the same starting configurations are used), the next
term is a cross correlation between the systems. This will vanish if the systems become
independent of each other. The next two systems consist of auto-correlation functions ofx
in each system. For long times they will also decrease to zero. Finally, the last term gives
a constant offset which does not depend on time. Therefore the long time behavior will be
governed for coordinates, momenta and forces by

lim
t→∞

γq(t) = 2〈|q(t) − q(0)|2〉 = 12Dt (89)

lim
t→∞

γp(t) = 2〈p(t)2〉 = mkBT (90)

lim
t→∞

γf (t) = 2〈F(t)2〉 = 2(∇W)2 (91)

whereD is the diffusion coefficient,T the temperature andW the potential of mean force.
That the divergent behavior of neighbored trajectories is asystem dependent property

is shown in Figure 10 where results for Lennard-Jones systems at different temperatures
are shown.

In conclusion, the individual trajectories of a physical complex system will end up at
different places in phase space when introducing round off errors or small perturbations.
Round off errors cannot be avoided with simple floating-point arithmetic (only discrete
calculations are able to avoid round off errors; but then thephysical problem is transformed
into a different space). Since one cannot say anything abouta true summation order, the
location in phase space cannot have an absolute meaning. Therefore, the solution to come
out of this dilemma is to interpret the phase space location as a possibleand allowed
realization of the system, which makes it necessary, however, to average over a lot of
possible realizations.

3.5 Accuracy

For an integrator of orderp ≥ 1, the local error may be written as an upper bound8

‖Φδt,H − φδt‖ ≤ Mδtp+1 (92)

whereM > 0 is a constant,Φδt,H is the exact andφδt the numerical flow of the system.
The global error, i.e. the accumulated error for larger times, is thereby bound for stable
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methods by8

‖Γ(tn) − Γn‖ ≤ K
(
eLtn − 1

)
δtp , tn = nδt (93)

whereK > 0 is a constant,L > 0 the Lipschitz constant,Γ(tn) = (p(tn),q(tn)) the exact
andΓn = (pn,qn) the numerically computed trajectory at timetn. This estimate gives of
course not too much information forLtn1 unlessδt is chosen very small. Nevertheless,
qualitatively this estimate shows a similar exponential divergent behavior of numerical and
exact solution for a numerical scheme, as was observed in Section 3.4.

A different approach to the error behavior of a numerical scheme is backward error
analysis, first mentioned in Ref.128 in the context of differential equations. The idea is
to consider the numerical solution of a given scheme as the exact solution of a modified
equation. The comparison of the original and the modified equation then gives qualitative
insight into the long time behavior of a given scheme.

It is assumed that the numerical scheme can be expressed as a series of the form

φδt(Γn) = Γn + δtf(Γ) + δt2g2(Γ) + δt3g3(Γ) ± . . . (94)

where thegi are known coefficients and for consistency of the differential equation it must
hold

f(Γ) =

(
0 −1
1 0

)(
∇p

∇q

)

H(p,q) (95)

On the other hand it is assumed that there exists a modified differential equation of the
form

d

dt
Γ̃ = f(Γ̃) + δtf2(Γ̃) + δt2f3(Γ̃) + . . . (96)

whereΓ̃ will be equivalent to the numerically obtained solution. Inorder to construct the
modified equation, the solution of Eq. (96) is Taylor expanded, i.e.

Γ̃(t + δt) = Γ̃(t) + δt
(

f(Γ̃) + δtf2(Γ̃) + δt2f3(Γ̃) + . . .
)

(97)

+
δt2

2!

(

f ′(Γ̃) + δtf ′
2(Γ̃) + . . .

)(
0 1
1 0

)(

f(Γ̃) + δtf2(Γ̃) + . . .
)

+
δt3

3!

{
(

f ′′(Γ̃) + δtf ′′
2 (Γ̃) + . . .

)((
0 1
1 0

)(

f(Γ̃) + δtf2(Γ̃) + . . .
))2

+
(

f ′(Γ̃) + δtf ′
2(Γ̃) + . . .

)((
0 1
1 0

)(

f ′(Γ̃) + δtf ′
2(Γ̃) + . . .

))

×
(

f(Γ̃) + δtf2(Γ̃) + . . .
)
}

+ . . .

The procedure to construct the unknown functionsfi proceeds in analogy to perturbation
theory, i.e. coefficients with same powers ofδt are collected which leads to a recursive
scheme to solve for all unknowns.

To give an example the Lennard-Jones oscillator is considered, i.e. a particle perform-
ing stable motions in negative part of a Lennard-Jones potential. As was observed already
for the harmonic oscillator, the Explicit Euler method willgain energy during the time,
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Figure 11. Phase space trajectories of the Lennard-Jones oscillator calculated with the Explicit Euler
scheme and different time steps of integration. Theexactsolution (numerical solution of a high order
composition scheme with small time step) is shown as a reference - it forms closed orbits. Superimposed
to the solutions are results, obtained with a Velocity Verlet scheme, applied to the modified equations,
Eqs. (98,99). The right figure shows the differences in coordinates between the calculation with Explicit
Euler scheme applied to Lennard-Jones oscillator and Velocity Verlet applied to the modified equation,
|qEE(t) − qmod(t)|.

i.e. the particle will increase kinetic energy which finallywill lead to an escape of the
Lennard-Jones potential well. Solving for the modified equation of the Explicit Euler, one
gets as a first correction

q̇ =
∂H
∂p

+
δt

2

∂H
∂q

(98)

ṗ = −∂H
∂q

+
δt

2
p

∂2H
∂p2

(99)

Figure 11 shows results for the integration of equations of motion with the Explicit Euler
scheme. Different time steps for integration were applied which show a faster escape from
a stable orbit with increasing time step. Also plotted in thesame figure is the solution of
the modified equations with a high order symplectic scheme, which can be considered as
exacton these time scales. It is found that the trajectories more or less coincide and cannot
be distinguished by eye. A more quantitative analysis (Figure 11) shows that for relatively
long times the solution is rather well approximated by the modified equation, although with
increasing time the differences between solutions become more pronounced. This means
that for longer times it would be necessary to include more terms of higher order inδt into
the modified equation. It should be mentioned that, in general, the series expansion of the
modified equation diverges.

4 Simulating in Different Ensembles

In MD simulations it is possible to realize different types of thermodynamic ensembles
which are characterized by the control of certain thermodynamic quantities. If one knows
how to calculate a thermodynamic quantity, e.g. the temperature or pressure, it is often pos-
sible to formulate an algorithm which fixes this property to adesired value. However, it is
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not always clear whether this algorithm describes the properties of a given thermodynamic
ensemble.

One can distinguish four different types of control mechanisms:

Differential control : the thermodynamic quantity is fixed to the prescribed valueand no
fluctuations around an average value occur.

Proportional control : the variables, coupled to the thermodynamic propertyf , are cor-
rected in each integration step through a coupling constanttowards the prescribed value of
f . The coupling constant determines the strength of the fluctuations around〈f〉.

Integral control : the system’s Hamiltonian is extended and variables are introduced which
represent the effect of an external system which fix the stateto the desired ensemble. The
time evolution of these variables is determined by the equations of motion derived from
the extended Hamiltonian.

Stochastic control: the values of the variables coupled to the thermodynamic property
f are propagated according to modified equations of motion, where certain degrees of
freedom are additionally modified stochastically in order to give the desired mean value of
f .

In the following, different statistical ensembles are presented and all methods will be
discussed via examples.

4.1 The Microcanonical Ensemble

The microcanonical ensemble (NVE) may be considered as thenatural ensemble for
molecular dynamics simulations (as it is the canonical ensemble (NVT) for Monte Carlo
simulations). If no time dependent external forces are considered, the system’s Hamilto-
nian is constant, implying that the system’s dynamics evolves on a constant energy surface.
The corresponding probability density in phase space is therefore given by

ρ(q,p) = δ(H(q,p) − E) (100)

In a computer simulation this theoretical condition is generally violated, due to limited
accuracy in integrating the equations of motion and due to roundoff errors resulting from
a limited precision of number representation. In Ref.129 a numerical experiment was per-
formed showing that tiny perturbations of the initial positions of a trajectory are doubled
about every picosecond. This would mean even for double precision arithmetic that after
about50 ps roundoff errors will be dominant117. This is, however, often not a too seri-
ous restriction, since most time correlation functions drop to zero on a much shorter time
scale. Only for the case where long time correlations are expected one does have to be very
careful in generating trajectories.

4.2 The Canonical Ensemble

The simplest extension to the microcanonical ensemble is the canonical one (N,V,T), where
the number of particles, the volume and the temperature are fixed to prescribed values. The
temperatureT is, in contrast toN andV , an intensive parameter. The extensive counterpart
would be the kinetic energy of the system. In the following, different control mechanisms,
introduced in Sec. 4 are described.
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4.2.1 The Differential Thermostat

Different methods were proposed to fix the temperature to a fixed value during a simulation
without allowing fluctuations ofT . The first method was introduced by Woodcock130,
where the velocities were scaled according topi →

√

T0/Tpi, whereT0 is the reference
temperature andT the actual temperature, calculated from the velocity of theparticles.
This method leads to discontinuities in the momentum part ofthe phase space trajectory
due to the rescaling procedure.

An extension of this method implies a constraint of the equations of motion to keep
the temperature fixed131–133. The principle of least constraint by Gauss states that a force
added to restrict a particle motion on a constraint hypersurface should be normal to the
surface in a realistic dynamics. From this principle the equations of motion are derived

∂qi

∂t
= pi (101)

∂pi

∂t
= − ∂V

∂qi
− ζpi (102)

whereζ is a constraint force term, calculated as

ζ = −

N∑

i=1

pi

mi

∂V

∂qi

N∑

i=1

p2
i

mi

(103)

Since the principle of least constraint by Gauss is used, this algorithm is also calledGaus-
sian thermostat. It may be shown for this method that the configurational partof the phase
space density is of canonical form, i.e.

ρ(q,p) = δ(T − T0) e−βU(q) (104)

4.2.2 The Proportional Thermostat

The proportional thermostat tries to correct deviations ofthe actual temperatureT form
the prescribed oneT0 by multiplying the velocities by a certain factorλ in order to move
the system dynamics towards one corresponding toT0. The difference with respect to the
differential control is that the method allows for fluctuations of the temperature, thereby not
fixing it to a constant value. In each integration step it is insured that theT is corrected to
a value more close toT0. A thermostat of this type was proposed by Berendsen et al.134, 135

who introducedweak coupling methods to an external bath. The weak coupling thermostat
was motivated by the minimization of local disturbances of astochastic thermostat while
keeping the global effects unchanged. This leads to a modification of the momentapi →
λpi, where

λ =

[

1 +
δt

τT

(
T0

T
− 1

)] 1
2

(105)

The constantτT , appearing in Eq.105, is a so called coupling time constant which deter-
mines the time scale on which the desired temperature is reached. It is easy to show that the
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proportional thermostat conserves a Maxwell distribution. However, the method cannot be
mapped onto a specific thermodynamic ensemble. In Ref.136 the phase space distribution
could be shown to be

ρ(q,p) = f(p) e−β(U(q)−αβδU(q)2/3N) (106)

whereα ≃ (1 − δE/δU) andδU, δE are the mean fluctuations of the potential and total
energy.f(p) is in general an unknown function of the momenta, so that the full density
cannot be determined. Forα = 0, which corresponds in Eq.105 toτT = δt, the fluctuations
in the kinetic energy vanish and Eq.106 reduces to Eq.104, i.e. it represents the canonical
distribution. The other extreme ofτT → ∞ corresponds to an isolated system and the
energy should be conserved, i.e.δE = δK + δU = 0 andα = 1. In this case, Eq.106
corresponds to the microcanonical distribution136. Eq.106 may therefore be understood as
an interpolation between the canonical and the microcanonical ensemble.

4.2.3 The Stochastic Thermostat

In the case of a stochastic thermostat, all or a subset of the degrees of freedom of the
system are subject to collisions withvirtual particles. This method can be motivated by a
Langevin stochastic differential equation which describes the motion of a particle due to
the thermal agitation of a heat bath

∂pi

∂t
= − ∂U

∂qi
− γpi + F+ (107)

whereγ is a friction constant andF+ a Gaussian random force. The amplitude ofF+ is
determined by the second fluctuation dissipation theorem

〈F+
i (t1)F

+
j (t2)〉 = 2γkBTδijδ(t1 − t2) (108)

A larger value forγ will increase thermal fluctuations, whileγ = 0 reduces to the mi-
crocanonicle ensemble. This method was applied to molecular dynamics in Ref.137. A
more direct way was followed in Refs.138, 139 where particles collide occasionally with
virtual particles from a Maxwell distribution corresponding to a temperatureT0 and after
collisions loose their memory completely, i.e. the motion is totally randomized and the mo-
menta become discontinuous. In order not to disturb the phase space trajectory too much,
the collision frequency has to be chosen not too high. Since alarge collision frequency will
lead to a strong loss of the particle’s memory, it will lead toa fast decay of dynamic corre-
lation functions140. The characteristic decay time of correlation functions should therefore
be a measure for the collision time. It was proved for the stochastic thermostat138 that it
leads to a canonical distribution function.

A slightly different method which is able to control the coupling to an external bath
was suggested in Refs.141, 142. In this approach the memory of the particle is not completely
destroyed but the new momenta are chosen to be

pi,n =
√

1 − α2 pi,o + α pr (109)

wherepr is chosen a momentum, drawn from a Maxwell distribution corresponding toT0.
Similar to the proportional thermostat, the parameterα may be tuned to give distributions
ranging from the microcanonical to the canonical ensemble.
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4.2.4 The Integral Thermostat

The integral method is also often calledextended system methodas it introduces additional
degrees of freedom into the system’s Hamiltonian for which equations of motion can be
derived. They are integrated in line with the equations for the spatial coordinates and
momenta. The idea of the method invented by Nosé143, 144, is to reduce the effect of an
external system acting as heat reservoir to keep the temperature of the system constant, to
one additional degree of freedom. The thermal interactionsbetween a heat reservoir and
the system result in a change of the kinetic energy, i.e. the velocity of the particles in the
system. Formally it may therefore be expressed a scaling of the velocities. Nosé introduced
two sets of variables: real and so called virtual ones. The virtual variables are consistently
derived from a Sundman transformation145 dτ/dt = s, whereτ is a virtual time ands is
a resulting scaling factor, which is treated as dynamical variable. The transformation from
virtual to real variables is then performed as

pi = πis , qi = ρi (110)

The introduction of theeffective mass, Ms, connects also a momentum to the additional
degree of freedom,πs. The resulting Hamiltonian, expressed in virtual coordinates reads

H∗ =

N∑

i=1

π
2
i

2mis2
+ U(ρ) +

π2
s

2Ms
+ gkBT ln s (111)

whereg = 3N + 1 is the number of degrees of freedom (system ofN free particles).
The Hamiltonian in Eq.111 was shown to lead to a probability density in phase space,
corresponding to the canonical ensemble.

The equations of motion drawn from this Hamiltonian are

∂ρi

∂τ
=

πi

s2
(112)

∂πi

∂τ
= −∂U(ρ)

∂ρi

(113)

∂s

∂τ
=

πs

Ms
(114)

∂πs

∂τ
=

1

s3

N∑

i=1

π
2
i

mi
− gkBT

s
(115)

If one transforms these equations back into real variables,it is found146 that they can be
simplified by introducing the new variableζ = ∂s/∂t = sps/Ms (ps is real momentum
connected to the heat bath)

∂qi

∂t
=

pi

mi
(116)

∂pi

∂t
= −∂U(q)

∂qi
− ζpi (117)

∂ ln s

∂t
= ζ (118)

∂ζ

∂t
=

1

Ms

(
N∑

i=1

p2
i

mi
− gkBT

)

(119)
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These equations describe the so called Nosé-Hoover thermostat.

4.3 The Constant-Pressure Constant-Enthalpy Ensemble

In order to control the pressure in an MD simulation cell, it is necessary to allow for volume
variations. A simple picture for a constant pressure systemis a box the walls of which are
coupled to a piston which controls the pressure. In contrastto the case where the temper-
ature is controlled, no coupling to the dynamics of the particles (timescales) is performed
but the length scales of the system will be modified. In the following, different algorithms
are described for a constant pressure ensemble. The conserved quantity will not be the sys-
tem’s energy, since there will be an energy transfer to or from theexternalsystem (piston
etc.), but the enthalpyH will be constant. In line with the constant temperature methods
there are also differential, proportional, integral and stochastic methods to achieve a con-
stant pressure situation in simulations. The differentialmethod, however, is not discussed
here, since there are problems with that method related to thecorrect initial pressure147, 148.
A scheme for the calculation of the pressure in MD simulations for various model systems
is given in the appendix.

4.3.1 The Proportional Barostat

The proportional thermostat in Sec. 4.2.2 was introduced asan extension for the equa-
tion of the momentum, since it couples to the kinetics of the particles. Since the barostat
acts on a volume change, which may be expressed in a scaling ofparticles’ positions, a
phenomenological extension for the equation of motion of the coordinates may be formu-
lated134

∂qi

∂t
=

pi

mi
+ αqi (120)

while a change in volume is postulated as

V̇ = 3αV (121)

A change in pressure is related to the isothermal compressibility κT

Ṗ = − 1

κT V

∂V

∂t
= − 3α

κT
(122)

which is approximated as

(P0 − P )

τP
= − 3α

κT
(123)

and therefore Eq.120 can be written as

∂qi

∂t
=

pi

mi
− κT

3τP
(P0 − P ) (124)

which corresponds to a scaling of the boxlength and coordinatesq → sq andL → sL,
where

s = 1 − κT δt

3τP
(P0 − P ) (125)
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The time constantτP was introduced into Eq.123 as a characteristic timescale onwhich
the system pressure will approach the desired pressureP0. It also controls the strength of
the coupling to the barostat and therefore the strength of the volume/pressure fluctuations.
If the isothermal compressibility,κT , is not known for the system, the constantτ ′

P =
τP /κT may be considered as a phenomenological coupling time whichcan be adjusted to
the system under consideration. As for the proportional thermostat, a drawback for this
method is that the statistical ensemble is not known. In analog to the thermostat, it may
be assumed tointerpolatebetween the microcanonical and the constant-pressure/constant-
enthalpy ensemble, depending on the coupling constantτP .

4.3.2 The Integral Barostat

In line with the integral thermostat one can introduce a new degree freedom into the sys-
tems Hamiltonian which controls volume fluctuations. This method was first proposed
by Andersen138. The idea is to include the volume as an additional degree of freedom
and to write the Hamiltonian in a scaled form, where lengths are expressed in units of
the boxlengthL = V 1/3, i.e. qi = L ρi andpi = L πi. SinceL is also a dynamical
quantity, the momentum is not related to the simple time derivative of the coordinates but
∂tqi = L ∂tρi + ρi ∂tL. The extended system Hamiltonian is then written as

H∗ =
1

V 2/3

N∑

i=1

πi

2mi
+ U(V 1/3

ρ) + PexV +
π

2
V

2MV
(126)

wherePex is the prescribed external pressure andπV andMV are a momentum and a mass
associated with the fluctuations of the volume.

The equations of motion which are derived from this Hamiltonian are

∂ρi

∂t
=

1

V 2/3

πi

mi
(127)

∂πi

∂t
=

∂U(V 1/3
ρ)

∂ρi

(128)

∂V

∂t
=

πV

MV
(129)

∂πV

∂t
=

1

3V

(

1

V 2/3

N∑

i=1

πi

mi
− V 1/3

ρi

∂U(q)

∂qi

)

(130)

A transformation to real variables then gives

∂qi

∂t
=

pi

mi
+

1

3V

∂V

∂t
qi (131)

∂pi

∂t
= −∂U(q)

∂qi
− 1

3V

∂V

∂t
pi (132)

∂V

∂t
=

pV

MV
(133)

∂pV

∂t
=

1

3V

(
N∑

i=1

pi

mi
− qi

∂U(q)

∂qi

)

︸ ︷︷ ︸

P

−Pex (134)
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Figure 12. The ideal speedup for parallel applications with50%, 90%, 99% and 100%
(ideal) parallel work as a function of the number of processors.

In the last equation the term in brackets corresponds to the pressure, calculated from the
virial theorem. The associated volume force, introducing fluctuations of the box volume
is therefore controlled by the internal pressure, originating from the particle dynamics and
the external pressure,Pex.

5 Parallel Molecular Dynamics

With the advent of massively parallel computers, where thousands of processors may work
on a single task, it has become possible to increase the size of the numerical problems
considerably. As has been already mentioned in Sec.1 it is inprinciple possible to treat
multi-billion particle systems. However, the whole success of parallel computing strongly
depends both on the underlying problem to be solved and the optimization of the computer
program. The former point is related to a principle problem which is manifested in the so
called Amdahl’s law149. If a problem has inherently certain parts which can be solved only
in serial, this will give an upper limit for the parallelization which is possible. The speedup
σ, which is a measure for the gain of using multiple processorswith respect to a single one,
is therefore bound

σ =
Np

wp + Npws
. (135)

Here,Np is the number of processors,wp andws is the amount of work, which can be
executed in parallel and in serial, i.e.wp + ws = 1. From Eq.135 it is obvious that
the maximum efficiency is obtained when the problem is completely parallelizable, i.e.
wp = 1 which gives anNp times faster execution of the program. In the other extreme,
whenws = 1 there is no gain in program execution at all andσ = 1, independent ofNp. In
Fig.12 this limitation is illustrated for several cases, where the relative amount for the serial
work was modified. If the parallel work is 50%, the maximum speedup is bound toσ = 2.
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If one aims to execute a program on a real massively parallel computer with hundreds or
thousands of processors, the problem at hand must be inherently parallel for 99.99...%.
Therefore, not only big parallel computers guarantee a fastexecution of programs, but the
problem itself has to be chosen properly.

Concerning MD programs there are only a few parts which have to be analysed for par-
allelization. As was shown, an MD program consists essentially of the force routine, which
costs usually more than 90% of the execution time. If one usesneighbor lists, these may
be also rather expensive while reducing the time for the force evaluation. Other important
tasks are the integration of motion, the parameter setup at the beginning of the simulation
and the file input/output (I/O). In the next chapter it will beshown how to parallelize the
force routine. The integrator may be naturally parallelized, since the loop overN particles
may be subdivided and performed on different processors. The parameter setup has either
to be done in serial so that every processor has information about relevant system parame-
ters, or it may be done in parallel and information is distributed from every processor via
a broadcast. The file I/O is a more complicated problem. The message passing interface
MPI I does not offer a parallel I/O operation. In this case, ifevery node writes some infor-
mation to the same file there is, depending on the configuration of the system, often only
one node for I/O, to which internally the data are sent from the other nodes. The same
applies for reading data. Since on this node the data from/for the nodes are written/read
sequentially, this is a serial process which limits the speedup of the execution. The new
MPI II standard offers parallel read/write operations, which lead to a considerable effi-
ciency gain with respect to MPI. However, the efficiency obtained depend strongly on the
implementation on different architectures. Besides MPI methods, there are other libraries,
which offer more efficient parallel I/O with respect to native programming. To name a
few, there are PnetCDF150, 151, an extension towards parallelism of the oldnetwork Com-
mon Data Form, netCDF-4152, 153, which is in direct line of netCDF development, which
now has parallel functionality and which is built on top of MPI-I/O, or SIONlib, a recently
developed high performance library for parallel I/O154.

Another serious point is the implementation into the computer code. A problem which
is inherently 100% parallel will not be solved with maximum speed if the program is
not 100% mapped onto this problem. Implementation details for parallel algorithms will
be discussed in the following sections. Independent of the implementation of the code,
Eq.135 gives only an upper theoretical limit which will onlybe reached in very rare cases.
For most problems it is necessary to communicate data from one processor to another or
even to all other processors in order to take into account data dependencies. This implies an
overhead which depends on the latency and the bandwidth of the interprocessor network,
which strongly depends on the hardware.

5.1 Domain Decomposition

The principle of spatial decomposition methods is to assigngeometrical domains to dif-
ferent processors. This implies that particles are no longer bound to a certain processor
but will be transfered from one PE to another, according to their spatial position. This
algorithm is especially designed for systems with short range interactions or to any other
algorithm where a certain cut-off in space may be applied. Since neighbored processors
contain all relevant data needed to compute forces on particles located on a given PE,
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this algorithm avoids the problem of global communications. Given that the range of in-
teraction between particles is a cut-off radius of sizeRc, the size,D of the domains is
preferentially chosen to beD > Rc, so that only the3d − 1 neighbored processors have
to communicate data (d is the dimension of the problem). Whether this can be fulfilled
depends on the interplay between size of the system and the numbers of processors. If a
small system is treated with a large number of processors, the domains will be small and
D < Rc. In this case not only the next but also the second or even higher order neighbor
PEs have to send their coordinates to a given PE. For simplicity we assume hereD > Rc.
Algorithms, which treat efficiently the general case were developed recently155–157.

The algorithm then works as follows. Particles are distributed in the beginning of the
simulation to a geometrical region. The domains are constructed to have a rather homo-
geneous distribution of particles on each processor, e.g. for homogeneous bulk liquids the
domains can be chosen as equally sized cuboids which fill the simulation box. In order
to calculate forces between particles on different processors, coordinates of the so called
boundary particles(those which are located in the outer region of sizeRb ≥ Rc of the
domains) have to be exchanged. Two types of lists are constructed for this purpose. The
one contains all particle indices, which have left the localdomain and which have conse-
quently to be transferred to the neighbored PE. The other onecontains all particle indices,
which lie in the outer region of sizeRb of a domain. The first list is used to update the
particles’address, i.e. all information like positions, velocities, forces etc. are sent to the
neighbored PE and are erased in the old domain. The second list is used to send temporar-
ily position coordinates which are only needed for the forcecomputation. The calculation
of forces then operates in two steps. First, the forces due tolocal particles are computed
using Newton’s 3rd law. In a next step, forces due to the boundary particles are calculated.
The latter forces are thus calculated twice: on the local PE and the neighbored PE. This
extra computation has the advantage that there is no communication step for forces. A
more elaborate scheme has nevertheless been proposed whichincludes also Newton’s 3rd
law for the boundary particles and thus the communication offorces158, 159. Having fin-
ished the evaluation of forces, the new positions and velocities are evaluated only for local
particles.

A naive method would require3d − 1 send/receive operations. However, this may
be reduced to2 logd(3

d − 1) operations with a similar tree-like method. The method is
described here for the case ofd = 2. It may be generalized rather easily. The 4 processors,
located directly at the edges of a given one are labeled as left/right and up/down. Then
in a first step, information is sent/received to/from the left and the right PE, i.e. each
processor now stores the coordinates of three PEs (including local information). The next
step proceeds in sending/receiving the data to the up and down PEs. This step finishes
already the whole communication process.

The updating process is not necessarily done in each time step. If the width of the
boundary region is chosen asRb = Rc + δr, it is possible to trigger the update automat-
ically via the criterion max(|x(t0 + t) − x(t0)|) ≤ δr, which is the maximum change in
distance of any particle in the system, measured from the last update.

A special feature of this algorithm is the fact that it shows atheoretical superlinear
speed-up if Verlet neighbor lists are used. The construction of the Verlet list requires
N ′(N ′ − 1)/2 + N ′δN operations, whereδN is the number of boundary particles and
N ′ is the number of particles on a PE. If the number of PEs is increased as twice as large,
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Figure 13. Communication pattern for the domain decomposition algorithm in 2 dimen-
sions.

there areN ′/2 particles on each processor which therefore requiresN ′/2(N ′/2− 1)/2 +

N ′/2δN operations. IfN ′ ≫ δN andN ′2 ≫ N ′ one gets a speed-up factor of≈ 4!

5.2 Performance Estimations

In order to estimate the performance of the different algorithms on a theoretical basis it is
useful to extend the ideal Amdahl’s law to a more realistic case. The ideal law only takes
into account the degree of parallel work. From that point of view all parallel algorithms
for a given problem should work in the same way. However the communication between
the processors is also a limiting factor in parallel applications and so it is natural to extend
Amdahl’s law in the following way

σ =
1

wp/Np + ws + c(Np)
(136)

wherec(Np) is a function of the number of processors which will characterize the different
parallel algorithms. The function will contain both communication work, which depends
on the bandwidth of the network and the effect of the latency time, i.e. how fast the
network responds to the communication instruction. The function c(Np) expresses the
relative portion of communication with respect to computation. Therefore it will depend
in general also on the number of particles which are simulated.

In the following a model analysis for the domain decomposition algorithm is presented.
It is assumed that the work is strictly parallel, i.e.wp = 1.

Spatial decomposition algorithm is based on local communication. As was described
in Sec.5.1, only six communication steps are required to distribute the data to neighbored
PEs. Therefore the latency time part is constant whereas theamount of data to be sent and
consequently the communication part is decreased with larger Np. The communication
function reads therefore

c(Np) = f(Np)

(

λ +
χ

N
2/3
p

)

, f(Np) =







0 Np = 1
2 Np = 2
4 Np = 4
6 Np ≤ 8

(137)
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Figure 14. Left: Estimation of realistic speedup curves if one includes the latency time and bandwidth of the pro-
cessor interconnect. It is assumed that the problem can potentially be parallelized 100%. Different parameter values
are compared for the latency timeλ and bandwidthχ for a local nearest neighbor communications. The ideal curve
neglects communication completely. Right: Realistic benchmark for a domain decomposition program, simulating
a system consisting of 3000 polymers with 250 monomers each.

Here the functionf(Np) was introduced to cover also the cases for small numbers of PEs,
where a data exchange is not necessary in each spatial direction. As seen from Fig.14 the
speedup curves are nearly linear with a slightly smaller slope than unity. However, for very
large numbers of PEs the curves will also flatten. Nevertheless, the local communication
model provides the best speedup behavior from all parallel algorithms and seems to be best
suited for large parallel architectures.

RemarkNote that the local communication model in its present form is only valid for short
range interaction potentials. If the potential is longer ranged than one spatial domain, the
functionf(Np) has to be modified. For long range interactions, all-to-all communications
are generally required. In that case the tree-method may be mostly preferred.

This theoretical analysis demonstrates the importance of afast interconnect between
processors for the case of molecular dynamics simulations.Not included in the communi-
cation functionc(Np) is the bandwidth function of the network. This, however, will only
slightly change Fig.14.

5.3 Comparison with Simulation

In order to verify the theoretical model, one may perform real MD simulations for model
systems, which are as large as the principal features, appearing in the analysis are fulfilled.
This includes that domains are large enough in order to restrict particle interactions to
neighbored domains and to have a nearly homogenous particledistribution, which avoids
unbalanced computational work on the processors.

In the current case, the program MP2C160 was used, which implements both a meso-
scopic solvent method, based on the Muli-Particle-Collision (MPC) dynamics and a molec-
ular dynamics part. The program is based on a domain decomposition approach and allows
to couple MD and MPC simulations or to decouple them, in orderto run either MD or MPC
in a simulation for e.g. all-atom force-field simulations without hydrodynamic coupling or
e.g. fluid dynamics without solvated particles, respectively. In the present case a simula-
tion of a polymer system, consisting of 3000 polymeric chains with 250 monomers each
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was simulated. The monomers were coupled within the chain bya harmonic bond potential
and the non-bonded part of the potential was set to the repulsive part of a Lennard-Jones
potential which was applied to all particle pairs which werenot coupled within bonds.

The program was run on an IBM BlueGene/P at Jülich Supercomputing Centre. Fig. 14
shows the scaling up toNp = 2048 processors, which is qualitatively comparable and
shows the same behavior as prescribed by the simple model. A better scaling is to be ex-
pected, when more particles are simulated, which moves the ratio of communication/com-
putation to smaller values, which reduces the relative overhead in the parallel execution.
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