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Molecular Dynamics - Extending the Scale from
Microscopic to Mesoscopic

Godehard Sutmann

Institute for Advanced Simulation (IAS)
Julich Supercomputing Centre (JSC)
Forschungszentrum Julich, 52425 Julich, Germany
E-mail: g.sutmann@fz-juelich.de

An introduction to classical molecular dynamics simulatie presented. In addition to some
historical notes, an overview is given over particle modeltegrators and different ensemble
techniques. In the end, methods are presented for pasatieln of short range interaction
potentials. The efficiency and scalability of the algorithon massively parallel computers is
discussed with an extended version of Amdahl’s law.

1 Introduction

Computer simulation methods have become a powerful toalt@snany-body problems
in statistical physics physical chemistd/and biophysic Although both the theoretical
description of complex systems in the framework of statédtphysics as well as the ex-
perimental techniques for detailed microscopic infororatire rather well developed it is
often only possible to study specific aspects of those systegreat detail via simulation.
On the other hand, simulations need specific input parasétat characterize the sys-
tem in question, and which come either from theoretical w@rations or are provided by
experimental data. Having characterized a physical systaarms of model parameters,
simulations are often used both to solve theoretical mdoslend certain approximations
and to provide a hint to experimentalists for further inigeions. In the case of big exper-
imental facilities it is often even required to prove thegutal outcome of an experiment
by computer simulations. In this sense it can be stated tieafield of computer simula-
tions has developed into a very important branch of sciembé&h on the one hand helps
theorists and experimentalists to go beyond tindierent limitationsand on the other hand
is a scientific field on its own. Therefore, simulation sciehas often been called ttgrd
pillar of science, complementing theory and experiment.

The traditional simulation methods for many-body systers ke divided into two
classes, i.e. stochastic and deterministic simulatiohg;ware largely represented by the
Monte Carlo (MC) methot* and the molecular dynamit§ (MD) method, respectively.
Monte Carlo simulations probe the configuration space lay tnioves of particles. Within
the so-called Metropolis algorithm, the energy change fetepn to n + 1 is used as
a trigger to accept or reject a new configuration. Paths tsvenwer energy are always
accepted, those to higher energy are accepted with a ptitpaioiverned by Boltzmann
statistics. This algorithm ensures the correct limitingtidbution and properties of a given
system can be calculated by averaging over all Monte Carl@eswithin a given statistical
ensemble (where one move means that every degree of freedorakied once on aver-
age). In contrast, MD methods are governed by the system|ibauiain and consequently
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are integrated to move particles to new positions and tgassw velocities at these new
positions. This is an advantage of MD simulations with respe MC, since not only the
configuration space is probed but the whole phase space givehadditional information
about the dynamics of the system. Both methods are comptanyen nature but they
lead to the same averages of static quantities, given thatytstem under consideration is
ergodic and the same statistical ensemble is used.

In order to characterise a given system and to simulate itgotex behavior, a model
for interactions between system constituents is requirédis model has to be tested
against experimental results, i.e. it should reproduceppraimate experimental find-
ings like distribution functions or phase diagrams, anatagcal constraints, i.e. it should
obey certain fundamental or limiting laws like energy or nesrtum conservation.

Concerning MD simulations the ingredients for a programbescally threefold:

(i) As already mentioned, a model for the interaction betwggstem constituents (atoms,
molecules, surfaces etc.) is needed. Often, it is assunagbéticles interact only pair-
wise, which is exact e.g. for particles with fixed partial es. This assumption greatly
reduces the computational effort and the work to implemisantodel into the program.
(ii) An integrator is needed, which propagates particleétmms and velocities from time
tot + ot. Itis a finite difference scheme which propagates trajéesatiscretely in time.
The time stept has properly to be chosen to guarantee stability of theiiateg i.e. there
should be no drift in the system’s energy.

(iii) A statistical ensemble has to be chosen, where theymanhic quantities like pressure,
temperature or the number of particles are controlled. &teral choice of an ensemble
in MD simulations is the microcanonical ensemble (NVE)¢sithe system’s Hamiltonian
without external potentials is a conserved quantity. Nenedess, there are extensions to
the Hamiltonian which also allow to simulate different Etital ensembles.

These steps essentially form the essential framework an ikiDIation. Having this
tool at hand, it is possible to obta@xactresults within numerical precision. Results are
only correct with respect to the model which enters into theutation and they have to be
tested against theoretical predictions and experimemt@ings. If the simulation results
differ from real systenproperties or if they are incompatible wislolid theoretical mani-
festations, the model has to be refined. This procedure camdberstood as an adaptive
refinement which leads in the end to an approximation of a hafdbe real world at least
for certain properties. The model itself may be construéiteh plausible considerations,
where parameters are chosen from neutron diffraction or M@surements. It may also
result from first principleb initio calculations. Although the electronic distribution of the
particles is calculated very accurately, this type of mdulélding contains also some ap-
proximations, since many-body interactions are mostlyewtgd (this would increase the
parameter space in the model calculation enormously). Meryvé often provides a good
starting point for a realistic model.

An important issue of simulation studies is the accessibile-tand length-scale which
can be covered by microscopic simulations. Fig.1 shows amalic representation for
different types of simulations. It is clear that the moreailetd a simulation technique
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Figure 1. Schematic of different time- and length-scalesuaing from microscopic to

macroscopic dimensions. Due to recent developments ofitpass like Stochastic Ro-
tation Dynamics (SRD) or Lattice Boltzmann techniques,chtdre designed to simulate
the mesoscopic scales, there is the potential to combifexetit methods in a multiscale
approach to cover a broad spectrum of times and lengths.

operates, the smaller is the accessibility of long timeslarge length scales. Therefore
guantum simulations, where electronic fluctuations arertékto account, are located in
the part of the diagram of very short time and length scaleéshwére typically of the or-
der of A andps. Classical molecular dynamics approximates electrorstridutions in
a rather coarse-grained fashion by putting either fixedaglatharges on interaction sites
or by adding an approximate model for polarization effettsboth cases, the time scale
of the system is not dominated by the motion of electronstheitime of intermolecular
collision events, rotational motions or intramoleculdsrations, which are orders of mag-
nitude slower than those of electron motions. Consequehgitime step of integration is
larger and trajectory lengths are of orderand accessible lengths of ordér— 100 A. If
one considers tracer particles in a solvent medium, whezésomot interested in a detailed
description of the solvent, one can apply Brownian dynamidere the effect of the sol-
vent is hidden in average quantities. Since collision tilmetsveen tracer particles is very
long, one may apply larger timesteps. Furthermore, sinesdivent is not simulated ex-
plicitly, the lengthscales may be increased considerdhally, if one is interested not in
a microscopic picture of the simulated system but in maapiscquantities, the concepts
of hydrodynamics may be applied, where the system propgeatie hidden in effective
numbers, e.g. density, viscosity or sound velocity.

Itis clear that the performance of particle simulationsisijly depends on the computer
facilities at hand. The first studies using MD simulatiorhtgiques were performed in 1957



by B. J. Alder and T. E. Wainrightvho simulated the phase transition of a system of hard
spheres. The general method, however, was presented anjetws latel®. In these early
simulations, which were run on an IBM-704, up to 500 partiateuld be simulated, for
which 500 collisions per hour were calculated. Taking intoaunt 200000 collisions for

a production run, these simulations lasted for more thanteeks. Since the propagation
of hard spheres in a simulation is event driven, i.e. it iedatned by the collision times
between two particles, the propagation is not based on agriation of the equations
of motion, but rather the calculation of the time of the neadlision, which results in a
variable time step in the calculations.

The first MD simulation which was applied to atoms interagtiia a continuous po-
tential was performed by A. Rahman in 1964. In this case, aaimdtem for Argon was
simulated and not only binary collisions were taken intooaet but the interactions were
modeled by a Lennard-Jones potential and the equations dmweere integrated with
a finite difference scheme. This work may be considered agséfor dynamical calcu-
lations. It was the first work where a numerical method wasl teecalculate dynamical
guantities like autocorrelation functions and transposfficients like the diffusion coef-
ficient for a realistic system. In addition, more involvedachcteristic functions like the
dynamic van Hove function and non-Gaussian correctiongfiesébn were evaluated. The
calculations were performed for 864 particles on a CDC 380tre the propagation of
all particles for one time step took 45 s. The calculation 00000 timesteps then took
more than three week&!

With the development of faster and bigger massively pdraftehitectures the accessi-
ble time and length scales are increasing for all-atom stions. In the case of classical
MD simulations it is a kind of competition to break new worlecords by carrying out
demonstration runs of larger and larger particle systéris In a recent publication, it was
reported by Germann and Kadéthat a trillion-atom (0'? particles!) simulation was run
on an IBM BlueGene/L machine at Lawrence Livermore Natidrsddoratory with 212992
PowerPC 440 processors with a total of 72 TB memory. This ras performed with the
memory optimised program SPa$M’ (Scalable Parallel Short-range Molecular dynam-
ics) which, in single-precision mode, only used 44 Bytegipla. With these conditions a
simulation of a Lennard-Jones system\of= (10000)® was simulated for 40 time steps,
where each time step used50secs wall clock time.

Concerning the accessible time scales of all-atom sinuratia numerical study, car-
ried out by Y. Duan and P. A. Kollman in 1998 still may be coes&h as a milestone in
simulation science. In this work the protein folding praxze$the subdomain HP-36 from
the villin headpiec® °was simulated up tad ps. The protein was modelled with a 596
interaction site model dissolved in a system of 3000 watdeoudes. Using a timestep of
integration of2 x 10~'%s, the program was run far x 10 steps. In order to perform this
type of calculation, it was necessary to run the programraéweonths on a CRAY T3D
and CRAY T3E with 256 processors. It is clear that such kind sfmulation is excep-
tional due to the large amount of computer resources neédéd,was nonetheless a kind
of milestone pointing to future simulation practices, whare nowadays still not standard,
but nevertheless exceptionally appfigd

Classical molecular dynamics methods are nowadays appliadchuge class of prob-

20n a standard PC this calculation may be done within lessdharhour nowadays!



lems, e.g. properties of liquids, defects in solids, freetisurface properties, friction,
molecular clusters, polyelectrolytes and biomoleculese b the large area of applica-
bility, simulation codes for molecular dynamics were depeld by many groups. On the
internet homepage of the Collaborative ComputationaleRtdNo.5 (CCPS) a number
of computer codes are assembled for condensed phase dgnamicing the last years
several programs were designed for parallel computers. ngntikem, which are partly
available free of charge, are, e.g., Amber/Safil@HARMM?3, NAMD %4, NWCHEM?®,
GROMACS?® and LAMMPS.

Although, with the development of massively parallel aretiures and highly scalable
molecular dynamics codes, it has become feasible to extentimhe and length scales to
relativelylarge scales, a lot of processes are still beyond techrapaltilities. In addition,
the time and effort for running these simulations is enorsnand it is certainly still far
beyond of standard. A way out of this dilemma is the inventidmew simulation of
methodological approaches. A method which has attracted af linterest recently is
to coarse grain all-atom simulations and to approximateratdtions between individual
atoms by interactions between whole groups of atoms, wigabd to a smaller number
of degrees of freedom and at the same time to a smoother eger@ace, which on the
one hand side increases the computation between parttel@ations and on the other
hand side allows for a larger time step, which opens the waifaulations on larger
time and length scales of physical proce$%eblsing this approach, time scales of more
thanl psecs can now be accessed in a fast #a3f, although it has to be pointed out that
coarse grained force fields have a very much more limitedeafi@pplication than all-
atom force fields. In principle, the coarse graining procedas to be outlined for every
different thermodynamic state point, which is to be consdédn a simulation and from
that point of view coarse grain potentials are not tran&fiera a straight forward way as
it is the case for a wide range of all-atom force field paransete

2 Models for Particle Interactions

A system is completely determined through it's Hamiltortén= Hy + H1, whereH, is
theinternal part of the Hamiltonian, given as

Ho = L +Zu(rivrj)+Zu(3)(riarjvrk)+"' (2)

Qmi — .
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=

wherep is the momentumy: the mass of the particles andandw(® are pair and three-
body interaction potentials?; is an external part, which can include time dependent
effects or external sources for a force. All simulated otgjeze defined within a model
description. Often a precise knowledge of the interactietvieen atoms, molecules or sur-
faces are not known and the model is constructed in orderdorithe the main features of
some observables. Besides boundary conditions, whichrgresed, it is the model which
completely determines the system from the physical poimtef. In classical simulations
the objectsare most often described by point-like centers which irtettarough pair- or
multibody interaction potentials. In that way the highlyngglex description of electron
dynamics is abandoned and an effective picture is adoptedethe main features like the
hard core of a particle, electric multipoles or internaliées of freedom of a molecules are



modeled by a set of parameters and (most often) analytioatiins which depend on the
mutual position of particles in the configuration. Since plagameters and functions give
a complete information of the system’s energy as well as dheefacting on each parti-
cle throughF' = —VU, the combination of parameters and functions is also calfecce
field®’. Different types of force field were developed during thé¢las years. Among them
are e.g. MM82 MM433, Dreiding®®, SHARP®, VALBON?3¢, UFF*7, CFF958, AMBER®?
CHARMM#, OPLS" and MMFF?2,

There are major differences to be noticed for the potentiah§. The first distinction
is to be made between pair- and multibody potentials. Inesystwith no constraints, the
interaction is most often described by pair potentials,chtis simple to implement into a
program. In the case where multibody potentials come iray, phe counting of interaction
partners becomes increasingly more complex and dramigtstaelvs down the execution
of the program. Only for the case where interaction partaegsknown in advance, e.g.
in the case of torsional or bending motions of a molecule bartiriteraction be calculated
efficiently by using neighbor lists or by an intelligent wafjirndexing the molecular sites.

A second important difference between interactions ispladial extent of the potential,
classifying it into short and long range interactions. K thotential drops down to zero
faster than-—¢, wherer is the separation between two particles anithe dimension of
the problem, it is called short ranged, otherwise it is lomgged. This becomes clear by

considering the integral
dr? o n<d
I/r_n{finite:n>d ®)

i.e. a particles’ potential energy gets contributions fralinparticles of the universé
n < d, otherwise the interaction is bound to a certain region,chs often modeled
by a spherical interaction range. The long range natureefrtteraction becomes most
important for potentials which only have potential paraengebf the same sign, like the
gravitational potential where no screening can occur. Farl@nb energies, where posi-
tive and negative charges may compensate each other, Ingg effects may be of minor
importance in some systems like molten salts.

There may be different terms contributing to the interatpotential between particles,
i.e. there is no universal expression, as one can imagingér$oiprinciples calculations.
In fact, contributions to interactions depend on the modattvis used and this is the re-
sult of collecting various contributions into differentites, coarse graining interactions or
imposing constraints, to name a few. Generally one camdisish between bonded and
non-bonded terms, or intra- and inter-molecular terms.firkeclass denotes all contribu-
tions originating between particles which are closelytezldo each other by constraints or
potentials which guaranty defined particles as close neighbrhe second class denotes
interactions between particles which dagely move, i.e. there are no defined neighbors,
but interactions simply depend on distances.

A typical form for a (so called) force field (e.g. AMBER looks as follows

U= D En(r—r1e)+ Y Kol0 =0+ %[Hcos(w—v)] )

bonds angles dihedrals
3 Aij  Bij 3 Cij  Dij 3 qi4;
+ 12~ 6 + 12~ .10 +
et | 12 ro. - T — Tij
i<j j 1j H—bonds L % v 1<j




In the following, short- and long-range interaction poteistand methods are briefly
described in order to show differences in their algorithahiceatment.

In the following two examples shall illustrate the diffetéreatment of short- and long
range interactions.

2.1 Short Range Interactions

Short range interactions offer the possibility to take ia¢count only neighbored particles
up to a certain distance for the calculation of interactiohs that way a cutoff radius
is introduced beyond of which mutual interactions betweartigles are neglected. As
an approximation one may introduteng range correctionso the potential in order to
compensate for the neglect of explicit calculations. Thellshort range potential may
then be written as

N

U= ZU(HHT”‘ < RC) + Ulrc (5)
i<j

The long-range correction is thereby given as

o0
Upre = 27er0/ dr r?g(r)u(r) (6)
wherepy is the number density of the particles in the system @nd = p(r)/po is the
radial distribution function. For computational reasaj(s,) is most often only calculated
uptoR,, so thatin practice itis assumed tlgét) = 1 forr > R.., which makes it possible
for many types of potentials to calculdi®.. analytically.

Besides internal degrees of freedom of molecules, which Ineagnodeled with short
range interaction potentials, it is first of all the excludedume of a particle which is
of importance. A finite diameter of a particle may be représgiby a steep repulsive
potential acting at short distances. This is either deedrifly an exponential function or
an algebraic formx r—", wheren > 9. Another source of short range interaction is the
van der Waals interaction. For neutral particles theseraré bndon forces arising from
induced dipole interactions. Fluctuations of the electimtribution of a particle give rise
to fluctuating dipole moments, which on average compensaterbd. But the instantaneous
created dipoles induce also dipoles on neighbored pastidhich attract each other 6.
Two common forms of the resulting interactions are the Baugkam potential
- Do ™

T3
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and the Lennard-Jones potential

ac((@)-(2))

which are compared in Fig.2. In Egs.7,8 the indice® indicate the species of the
particles, i.e. there are parametdrs3, D in Eq.7 and, o in Eq.8 for intra-species inter-
actions ¢ = () and cross species interactions £ (). For the Lennard-Jones potential
the parameters have a simple physical interpretatida:the minimum potential energy,
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Figure 2. Comparison between a Buckingham-, Lennard-Jd2e6) and Lennard-Jones
(9-6) potential.

located at- = 2'/%¢ ando is the diameter of the particle, since for< o the potential

becomes repulsive. Often the Lennard-Jones potentias giveasonable approximation
of atrue potential. However, from exact quantum ab initio calcalas an exponential

type repulsive potential is often more appropriate. Esglcfor dense systems the too
steep repulsive part often leeds to an overestimation optbssure in the system. Since
computationally the Lennard-Jones interaction is quiraetive the repulsive partis some-
times replaced by a weaker repulsive term, like-=°. The Lennard-Jones potential has

another advantage over the Buckingham potential, singe i@ combining rules for the
parameters. A common choice are the Lorentz-Berelot camdpitles

=—%5 €= s 9)
This combining rule is, however, known to overestimate thedl Wepth parameter. Two
other commonly known combining rules try to correct thiseff which are Kontf rules
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In a recent study? of Ar-Kr and Ar-Ne mixtures, these combining rules wereeesand it
was found that the Kong rules give the best agreement betsieertated and experimental



pressure-density curves. An illustration of the differeonbining rules is shown in Fig.3
for the case of an Ar-Ne mixture.

Lorentz-Berthelot

eArNe [K]

r[A]

Figure 3. Resulting cross-terms of the Lennard-Jones pakdor an Ar-Ne mixture.
Shown is the effect of different combining rules (Egs.9-123rameters used asey,. =
3.406 A, e, = 119.4 K andoy, = 2.75 A, ene = 35.7 K.

Since there are only relatively few particles which haveeabnsidered for the inter-
action with a tagged particle (i.e. those particles wittiia tutoff range), it would be a
computational bottleneck if in any time step all particlerpavould have to be checked
whether they lie inside or outside the interaction rangeis Becomes more and more a
problem as the number of particles increases. A way to oneedbis bottleneck is to in-
troduce list techniques. The first implementation date& bathe early days of molecular
dynamics simulations. In 1967, Verlet introduced a*fisivhere at a given time step all
particle pairs were stored within a ran§fe + R, whereR; is called the skin radius and
which serves as a reservoir of particles, in order not to tepthee list in each time step
(which would make the list redundant). Therefore, in a fomeine, not all particles have
to tested, whether they are in a rangge < R., but only those particle pairs, stored in the
list. Since particles are moving during the simulationsihécessary to update the list from
time to time. A criterion to update the list could be, e.g.

max |r(t) —r;(to)| > (13)
wheret, is the time from the last list update. This ensures that gagicannot move
from the outside region into the cutoff sphere without beiagognized. This technique,
though efficient, has still complexit9(N?), since at an update stegd| particle pairs have
to be checked for their mutual distances. Another problesesmwhen simulating many
particles, since the memory requirements are relativebeldsize of the list islw (R, +
R4)3p N/3). There is, of course also the question, how large the skifusashould be
chosen. Often, it is chosen & = 1.50. In Ref?’ it was shown that an optimal choice
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Figure 4. Contour plots of the performance for the combamatf linked-cell and Verlet list as a function
of the cell length and the size of the skin radius. Crosse& tharpositions predicted from an optimization
proceduré®. Test systems were composed of 4000 Lennard-Jones pawitieR. = 2.5 o at temperature
T = 1.4¢/kp. Left: p = 0.75/03. Right: p = 2.0/03.

strongly depends on the number of particles in the systemaaraptimization procedure
was outlined.

An alternative list technique, which scales linearly witle number of particles is the
linked-cell method®°. The linked-cell method starts with subdividing the whofstsm
into cubic cells and sorting all particles into these cedlsading to their position. The size
of the cells,L., is chosen to bd.. < Lp,,/floor(Lg,./R.), whereLp,, is the length
of the simulation box. All particles are then sorted intost &rray of lengthV. The list
is organized in a way that particles, belonging to the saiarlinked together, i.e. the
entry in the list referring to a particle points directly teetentry of a next particle inside
the same cell. A zero entry in the list stops the search inéll@nd a next cell is checked
for entries. This technique not only has computational demify of O(N), since the
sorting into the cells and into th¥-dimensional array is 0O (V), but also has memory
requirements which only grow linearly with the number oftjdes. These features make
this technique very appealing. However, the technigue isnedl vectorizable and also
the addressing of next neighbors in the cells require ictlizecess (e.g.=i ndex(i)),
which may lead to cache misses. In order not to miss any papair in the interactions
every box has to have a neighbor region in each direction lwlidends toR.. In the
case, wherd., > R., every cell is surrounded by 26 neighbor cells in three disimral
systems. This gives rise to the fact that the method giveseffitiency gains ifL 5., >
4R, i.e. subdividing each box direction into more than 3 céfiorder to approximate the
cutoff sphere in a better way by cubic cells, one may redueedh size and simultaneously
increasing the total number of cells. In an optimizationgeauré’, it was found that a
reduction of cell sizes td. = R./2 or even smaller often gives very much better results.

It is, of course, possible to combine these list technigues, using the linked-cell
technique in the update step of the Verlet list. This redtitessomputational complexity
of the Verlet list toO(N) while fully preserving the efficiency of the list techniquéis
also possible to model the performance of this list comineand to optimize the length
of the cells and the size of the skin radius. Figure 4 showsdelt of a parameter study,
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where the performance of the list was measured as a functioh.0R;). Also shown is
the prediction of parameters coming out of an optimizatioycpduré®.

2.2 Long Range Interactions

Long range interactions essentially require to take aliglarpairs into account for a proper
treatment of interactions. This may become a problem, ifogér boundary conditions
are imposed to the system, i.e. formally simulating an itdimumber of particles (no
explicit boundaries imply infinite extend of the system) eféfore one has to devise special
techniques to treat this situation. On the other hand oretals to apply fast techniques
to overcome the inherei®(N?2) complexity of the problem, since for large numbers of
particles this would imply an intractable computationattlemeck. In general one can
classify algorithms for long range interactions into thikdfeing system:

e Periodic boundary conditions

— Grid free algorithms, e.g. Ewald summation metHoef

— Grid based algorithms, e.g. Smoothed Particle Mesh E#akl Particle-
Particle Particle-Mesh metheft>®

e Open boundary conditions

— Grid free algorithms, e.g. Fast Multipole Met8d* (FMM), Barnes-Hut Tree
method® %6

— Grid based algorithms, e.g. Particle-Particle Particlailgrid method’
(P*Mg), Particle Mesh Wavelet meth&t(PMW)

In the following two important members of these classes béldescribed, the Ewald
summation method and the Fast Multipole Method.

2.2.1 Ewald Summation Method

The Ewald summation method originates from crystal physitere the problem was to
determine the Madelung constéthtescribing a factor for an effective electrostatic energy
in a perfect periodic crystal. Considering the electristtergy of a system d¥ particles

in a cubic box and imposing periodic boundary conditionsgeto an equivalent problem.
At positionr; of particlei, the electrostatic potentiaf(r;), can be written down as a
lattice sum

N
=SS 4 14
o(r;) Z g - (14)
wheren = (ng,ny, n.),n. € Z is avector along cartesian coordinates &rid the length
of the simulation box. The signi” means that # j for ||n|| = 0.

Eq. (14) is conditionally convergent, i.e. the result of thiecome depends on the order
of summation. Also the sum extends over infinite number dickatvectors, which means
that one has to modify the procedure in order to get an alesotrivergent sum and to get
it fast converging. The original method of Ewald consistedhtroducing a convergence

11



factore="*, which makes the sum absolute convergent; then transfgriminto different
fast converging terms and then putting the convergence factor to zero. The final result
of the calculation can be easier understood from a physicalne. If every charge in
the system is screened by a counter charge of opposite sigohvs smeared out, then
the potential of this composite charge distribution becesigort ranged (it is similar in
electrolytic solutions, where ionic charges are screeryecblinter charges - the result is
an exponentially decaying function, the Debye poteffialin order to compensate for
the added charge distribution it has to be subtracted agHiw. far field of a localized
charge distribution is, however, again a Coulomb potenfiderefore this term will be
long ranged. There would be nothing gained if one would synspim up these different
terms. The efficiency gain shows up, when one calculateshbe eange interactions as
direct particle-particle contributions in real space, i@lsiumming up the long range part
of the smeared charge cloud in reciprocal Fourier spaceosihg as the smeared charge
distribution a Gaussian charge cloud of half widthy the corresponding expression for
the energy becomes

N
erfc(a||r;; + nLl|)
. :§ TE ) J
¢(rl) = 4a; Hrij'f'nLH (15)

n

N
4m QG k|?/40? ikes; 20
Lam Qi I ? ke 2
3 2
7 2 2 T NG

The last term corresponds to a self energy contribution wvhas to be subtracted, as it is
considered in the Fourier part. Eq. (15) is an exact equivaeEq. (14), with the differ-
ence that it is an absolute converging expression. Therefmhing would be gained with-
out further approximation. Since the complimentary errorction can be approximated
for large arguments by a Gaussian function and the k-spategecreases like a Gaussian,
both terms can be approximated by stopping the sums at drckattice vectom and a
maximalk-valuek,,... The choice of parameters depends on the eerer, exp(—p?),
which one accepts to tolerate. Setting the error tolerarened choosing the width of the
counter charge distribution, one gets

R OB L2 og(2) (16)

4
R + 80 08(Far) = 407+ 1og (75 ) (17)

This can be solved iteratively or if one is only interestediimapproximate estimate for the
error, i.e. neglecting logarithmic terms, one gets

R.=2 (18)
[0
kmaz = 2ap (19)

Using this error estimate and furthermore introducing exea times, spent for the real-
and reciprocal-space part, it is possible to show that paramsi., « andk,,., can be
chosen to get a complexity @(N3/2) for the Ewald surf-72 In this case, parameters
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are

%z,/ﬁ : aLz%:\/lem (20)
Figure 5 shows the contributions of real- and reciprocatsiar Eq. (15), as a func-
tion of the spreading parameter where an upper limit in both the real- and reciprocal-
contributions was applied. In the real-space part usuailby/ restricts the sum tm| = 0
and applies a spherical cutoff radiug,. For fixed values oR?. andk,, . there is a broad
plateau region, where the two terms add up to a constant.\litlein this plateau region,
a value fora should be chosen. Often it is chosen according te 5/L. Also shown is
the potential energy of a particle, calculated with the Ehgalm. It is well observed that
due to the periodicity of the system the potential energjaseris not radial symmetric,
which may cause problems for small numbers of particlesarsifstem.

Energy

\ - real part

N
\s‘?“\:‘
N
:“‘:::\f‘\

W
N

W
AR
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PN WA O N

Figure 5. Left: Dependence of the calculated potential @ndhoice of the scaled inverse widit,L,
of the smeared counter charge distribution. Parameterthiditest wereN = 152, R, = 0.5 L and
kmaz L /27 = 6. Right: Surface plot and contours for the electrostati@ptial of a charge, located in the
center of the simulation volume. Picture shows the xy-pfane = L /2. Parameters werB. = 0.25 L,
aL =12.2andkmasL/27 = 6.

The present form of the Ewald sum gives an exact representitihe potential energy
of point like charges in a system with periodic boundary d¢tols. Sometimes the charge
distribution in a molecule is approximated by a point dipmidigher multipole moments.
A more general form of the Ewald sum, taking into accountteatby point multipoles was
given in Ref/®. The case, where also electronic polarizabilities areidensd is given in
Ref.’4.

In certain systems, like in molten salts or electrolyte 8ohs, the interaction between
charged species may approximated by a screened Coulomitiphtehich has a Yukawa-
like form
N
1 e—slirisll
U=3 > aur - 21)
= [l
The parametex is the inverse Debye length, which gives a measure of sargetiength
in the system. Ik < 1/L the potential is short ranged and usual cut-off methods may
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be used. Instead, if > 1/L, or generally ifu(r = L/2) is larger than the prescribed
uncertainties in the energy, the minimum image conventi@moimbination with truncation
methods fails and the potential must be treated in a moreaigoway, which was pro-
posed in Ref?, where an extension of the Ewald sum for such Yukawa typenpiate was
developed.

2.2.2 The Fast Multipole Method

In open geometries there is no lattice summation, but ordystim over all particle pairs
in the whole system. The electrostatic energy at a parigesition is therefore simply
calculated as

N
_ 4
o) = 2w 22

Without further approximation this is always &{N?) algorithm since there arl¥ (N —
1)/2 interactions to consider in the system (here Newton’s tlavd was taken into ac-
count). The idea of a multipole method is to group particlésclv are far away from a
tagged particle together and to consider an effectiveactan of a particle with this par-
ticle groug®’8 The physical space is therefore subdivided in a hieraathiay, where
the whole system is considered as level 0. Each further iswainstructed by dividing the
length in each direction by a factor of two. The whole systethérefore subdivided into a
hierarchy of boxes where eaplarent boxcontains eighthildren boxesThis subdivision
is performed at maximum until the level, where each parigllcated in an individual
box. Often it is enough to stop the subdivision already atretdevel.

In the following it is convenient to work in spherical coandies. The main principle
of the method is that the interaction between two partidesated atr = r,0,p and
a = (a, o, ) can be written as a multipole expansidn

l_|m| ' a —zm(ﬁ— )
a2 3 b o) Py 00 23

whereP,,, (z) are associated Legendre polynonfidl§ his expression requires thatr <

1 and this gives a lower limit for the so calleekll separatedhoxes. This makes it necessary
to have at least one box between a tagged box and the zoneg wirributions can be
expanded into multipoles. Defining the operators

Oim(a) = al (I — |m|)! Py (cos a) e~ imB (24)
Mio) = 7o Gy P (c0s ) €7 (25)

with which Eq. (23) may simply be rewritten in a more compaait is possible to write
further three operators, which are needed, in a compachszhiee.

1.) atranslation operator, which relates the multipoleaggion of a point located atto a
multipole expansion of a point located=at- b

l J
Om(a+b)=>">" Arm)Op@ ,  AR(b)=0jmk(b) (26)

=0 k=—1
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Figure 6. Schematic of different passes in the Fast Mukipdiethod. Upper left: Pass 1, evaluation
of multipole terms in finest subdivision and translatingoimfiation upwards the tree. Upper right: Pass 2,
transforming multipole expansions in well separated baxeslocal Taylor expansions. Lower left: Pass 3,
transferring multipole expansions downwards the trees ttnllecting information of the whole system,
except nearest neighbor boxes. Lower right: Pass 5, diedctilation of particle-particle interactions in
local and nearest neighbor boxes.

2.) a transformation operator, which transforms a mulgépekpansion centered at the
origin into a Taylor expansion centered at locatton

R
Mim(a=b)=> Y Bir®b)Ou@ ,  BiF(b)=Mijmk(b) (27)
3=0 k=—1

3.) a translation operator, which translates a Taylor egjomsrof a pointr about the origin
into a Taylor expansion af about a poinb

l J
Mip(r=b) =" Chir(b) Mjx(r) ,  Chr(b)=Al(b)  (28)
l

j=0 k=—
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The procedure to calculate interactions between partislésen subdivided into five
passes. Figure 6 illustrates four of them. The first passisisraf calculating the multipole
expansions in the lowest level boxes (finest subdivisiorgint) the translation operator
Oim(a + b), the multipole expansions are translated into the centéredf parent boxes
and summed up. This procedure is repeated then subseqferelch level, until level 2
is reached, from where no further information is passed twaaser level. In pass 2, using
operatorM;,,(a — b), multipole expansions are translated into Taylor exparssio a box
from well separated boxes, whose parent boxes are neaigboeboxes. Well separated
means, that for all particles in a given box the multipoleangion in a separated box is
valid. Since the applicability of Eqg. (23) implies> «a, well separateness means on level
I that boxes should be separated by a distande This also explains, why there is no
need to transfer information higher than level 2, since ftbere on it is not possible to
have well separated boxes anymore, i.e. multipole expagsice not valid any more. In
pass 3, using the operatdf;,,,(a — b), this information is then translated downwards the
tree, so that finally on the finest level all multipole inforina is known in order to inter-
act individual particles with expansions, originatingrfrall other particles in the system
which are located in well separated boxes of the finest ldaglass 4 this interaction be-
tween individual particles and multipoles is performedeafy in pass 5, explicit pair-pair
interactions are calculated between particles in a lovess box and those which are in
nearest neighbor boxes, i.e. those boxes which are notlcaéé separated.

It can be showft that each of the steps performed in this algorithm is of ofdeN),
making it an optimal method. Also the error made by this meéttem be controlled rather
reliably®*. A very conservative error estimate is thereby givel§&58!

a (ay @9)

T r—a \r

q
r—al

]w) -

At the current description the evaluation of multipole terssales a®(l%,,...), whenl,,q.
is the largest value dfin the multipole expansion, Eq.(23). A faster version wischles
asO(13,,,) and therefore strongly reducing the prefactor of the ovecileme, was pro-
posed in Ref?, where multipoles are evaluated in a rotated coordinatedtavhich makes
it possible to reduce calculations to Legendre polynomaald not requiring associated
Legendre polynomials.

Also to mention is that there are approaches to extend theMratpole Method to

periodic systenfg83

2.3 Coarse Grain Methods

The force field methods mentioned so far treat molecules eratbmic level, i.e. re-
solving heavy atoms, in most cases also hydrogens, exyplititthe case, where flexible
molecular bonds, described e.g. by harmonic potentiaéscansidered the applied time
step is of the order oft ~ 10715 secs. Considering physical phenomena like self as-
sembling of lipid moleculé¥: 8, protein folding or structure formation in macromolecular
system&-8 which take place on time scales of microseconds to secanelgea longer,
the number of timesteps would exceed the current computdticapacities. Although
these phenomena all have an underlying microscopic baakgtahe fast dynamics of
e.g. hydrogen vibrations are not directly reflected in therail process. This lead to the
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idea to either freeze certain degrees of freedom, as it ie done.g. rigid water mod-
el%2 or to take several degrees of freedom only into accountftdy via a pseudo
potential, which reflects the behavior of whole groups ofreo It is the latter approach
which is now known as coarse grainfi§g> °*of molecular potentials and which opens the
accessibility of a larger time and length scale. Mappingugsoof atoms to one pseudo
atom, or interaction site, leads already to an effectivedase of the specific volume of
the degrees of freedom. Therefore, the same number of degféeeedom of a coarse
grain model, compared with a conventional force field moaeljld directly lead to larger
spatial scale, due to the increase of volume of each degifeeeafom. On the other hand,
comparing a conventional system before and after coarsgimggathe coarse grained sys-
tem could cover time scales longer by a factor of 100-100®en éonger compared with a
conventional force field all-atom model (the concrete factrtainly depends on the level
of coarse graining).

Methodologies for obtaining coarse grain models of a systien start from an atom-
istic all-atom model, which adequately describes phasgrdias or other physical proper-
ties of interest. On a next level, groups of atoms are catband an effective non-bonded
interaction potential may be obtained by calculating ptiéérenergy surfaces of these
groups and to parametrize these potentials to obtain acallytescriptions. Therefore,
distribution functions of small atomic groups are takemiatcount (at least implicitly)
which in general depend on the thermodynamic state point. bBoded potentials be-
tween groups of atoms, a normal mode analysis may be perfimueder to get the most
important contributions to vibrational-, bending- or forsal-modes.

In principle, one is interested in reducing the number ofrdeg of freedom by sepa-
rating the problem space into coordinates whichiameortantand those which arenim-
portant Formally, this may be expressed through a set of coordifate € R™ and
{r} € R", wheren; andn,, are the number of degrees of important and unimportant
degrees of freedom, respectively. Consequently, the yst@miltonian may be written
asH = H(ry,...,rn,,71,...,Ts,). From these considerations one may definedaced
partition function, which results from integrating out alimportant degrees of freedom

Z:/drl,...,drni,dﬁ,...,dfmexp{—ﬁH(rl,...,rni,fl,...,fnu)} (30)

:/ Ari,...,drn,, di, ... dig, exp {—BH(r1,...,0,)} (31)

where a coarse grain Hamiltonian has been defined

HCG(rl,...,rm):—log/ Tlyeooydip, exp{—=BH(r1, ... Tn;y 1,370, )} (32)

which corresponds to the potential of mean force and whithedgree energy of the non-
important degrees of freedom. Since the Hamiltonian dessronly a subset of degrees
of freedom, thermodynamic properties, derived from thisnitmnian will be different
than obtained from the full Hamiltonian description (e.gegsure will correspond to the
osmotic pressure and not to the thermodynamic pressura$. hbls to be taken into ac-
countwhen simulating in different ensembles or if experitakthermodynamic properties
should be reproduced by simulation.

The coarse grained Hamiltonian is still a multi-body dgstioin of the system, which
is hard to obtain numerically. Therefore, it is often appmeated by a pair-potential, which
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is considered to contribute the most important terms

HOCry, ) = Y Vi) iy = [le — x| (33)
i>]

According to the uniqueness theorem of Hendet¥dn a liquid where particles in-
teract only through pair interactions, the pair distribatfunctiong(r) determines up to a
constant uniquely the pair interaction poteniigl. Therefore};; may be obtained point-
wise by reverting the radial pair distribution functf§r® e.g. by reverse Monte Carlo
technique® or dynamic iterative refinemelf. This approach directly confirms what was
stated in Sec. 1 about the limited applicability of coars@mggd potentials. It is clear that
for different temperatures, pressures or densities thialrditribution functions of e.g.
cation-cation, cation-anion and anion-anion distribogiéan electrolytic solutions will be
different. If one wants to simulate ions in an effective nuedi(continuum solvent), the
potential, which is applied in the simulation will dependtbe thermodynamic state point
and therefore has to be re-parametrized for every diffestate point.

3 The Integrator

The propagation of a classical particle system can be destby the temporal evolution
of the phase space variablgs, q), where the phase spatép,q) € RV contains all
possible combinations of momenta and coordinates of thtersy ST he exact time evolution
of the system is thereby given by a flow map

st 0 ROV — ROV (34)
which means
Ps5e,m(p(t), alt)) = (p(t) + 6p,a(t) + da) (35)
where
p + dp = p(t + ot) , q+dq = q(t + dt) (36)

For a nonlinear many-body system, the equations of motionaisbe integrated exactly
and one has to rely on numerical integration of a certainroRl®pagating the coordinates
by a constant step size a number of different finite difference schemes may be used f
the integration. But there are a number of requirements;twvhave to be fulfilled in order
to be useful for molecular dynamics simulations. An intégrasuitable for many-body
simulations should fulfill the following requirements:

e Accuracy, i.e. the solution of an analytically solvabld @®blem should be as close
as possible to the numerical one.

e Stability, i.e. very long simulation runs should producegibally relevant trajecto-
ries, which are not governed by numerical artifacts

e Conservativity, there should be no drift or divergence insgyved quantities, like
energy, momentum or angular momentum
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e Reversibility, i.e. it should have the same temporal stmects the underlying equa-
tions

o Effectiveness, i.e. it should allow for large time stepshwiit entering instability and
should require a minimum of force evaluations, which uguatted about 95 % of
CPU time per time step

e Symplecticity, i.e. the geometrical structure of the phassce should be conserved

It is obvious that the numerical flows: 4, of a finite difference scheme will not be
fully equivalent to®;, 4, but the system dynamics will be described correctly if teens
above will be fulfilled.

In the following the mentioned points will be discussed anduanber of different
integrators will be compared.

3.1 Basic Methods

The most simple integration scheme is the Euler method,wtmiay be constructed by a
first order difference approximation to the time derivatifehe phase space variables

0
n = Pn — 0t— nsy Un 37
Prn+1 =P 8qH(p an) (37)
0
P

wheredt is the step size of integration. This is equivalent to a Taglpansion which is
truncated after the first derivative. Therefore, it is olgohat it is of first order. Knowing
all variables at step, this scheme has all relevant information to perform thegrdation.
Since only information from one time step is required to de ititegration, this scheme
is called the one-step explicit Euler scheme. The basicseh&gs. (37,38) may also be
written in different forms.

The implicit Euler method

0
Pn+1 = Pn — 5ta—(1H(Pn+17 dn+1) (39)

0
dn+1 =dqn + 5f%H(Pn+17 dn+1) (40)

can only be solved iteratively, since the derivative on tgbtrhand-siderhs) is evaluated
at the coordinate positions on the left-hand-sitis)(

An example for a so called partitioned Runge-Kutta methothésvelocity implicit
method

0

Pn+1 = Pn — 5ta_H(pn+17 qn) (41)
q
0

Ant1 =y + 5ta—H(pn+1, dn) (42)
P

Since the Hamiltonian usually splits into kineficand potential/ parts, which only de-
pend on one phase space variable, i.e.

H(p,q) = %pT M~ p+U(q) (43)
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whereM ! is the inverse of the diagonal mass matrix, this scheme nsayba written as

0
nt1 = Pn — 0t——U(an 44
Prn+1 =P aqU(Q) (44)
ot
qn+1 = dn + —Pn+1 (45)
m

showing that it is not necessary to solve it iteratively.
Obviously this may be written asposition implicit method

0
Prn+1 = Pn — 5ﬁa—qu(qn+1) (46)
ot
m

Applying first Eq. (47) and afterwards Eq. (46) also this &atidoes not require an iterative
procedure.

All of these schemes are first order accurate but have diffgneperties, as will be
shown below. Before discussing these schemes it will begsting to show a higher order
scheme, which is also based on a Taylor expansion. Firg doitvn expansions

q(t +6t) = q(t) + ot a(t) + % 52 §(t) + O(6t%) (48)
= alt) + (1) + 56 pe) + O (49)
p(t+6t) = p(t) + 6t p(t) + % 52 B(t) + O(5t?) (50)
= p(1) + 5 (B(0) + (1 +51)) + O(57") 1)

where in Eq. (49), the relatio§ = p/m was used and in Eq. (51) a first order Taylor
expansion fomp was inserted. From these expansions a simple second ordestep
splitting scheme may be written as

ot
Pn+1/2 = Pn + 5 F(q,) (52)
_ ot 53
dn+1 = Qn + — Prt1/2 (53)
ot
Pn+1 = Pnt1/2 + b} F(qn+1) (54)

where the relatiop = —9H/9dq = F was used. This scheme is called Wedocity Verlet
scheme. In a pictorial way it is sometimes described askielf-drift, half-kick, since the
first step consists in applying forces for half a time steppsé step consists in free flight
of a particle with momenturp,, . ; » and the last step applies again a force for half a time
step. In practice, forces only need to be evaluated oncedh &ae step. After having
calculated the new positiong,, 1, forces are calculated for the last integration step. They
are, however, stored to be used in the first integration sepdaforces in the next time
step of the simulation.
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This algorithm comes also in another flavor, called Bosition Verletscheme. It can
be expressed as

ot
dn+1/2 = dn + o P (55)
Prn+1 = Pn + 5tF(qn+1/2) (56)
ot
Unt1/2 = dn+1/2 T 5 - Potl (57)

In analogy to the description above this is sometimes dasdras half-drift, kick, half-
drift. Using the relationp = ¢/m and expressing this as a first order expansion, it is
obvious that(q,,+1/2) = F((an + an+1)/2) which corresponds to an implicit midpoint
rule.

3.2 Operator Splitting Methods

A more rigorous derivation, which in addition leads to thagibility of splitting the prop-
agator of the phase space trajectory into several time sdalbased on the phase space
description of a classical system. The time evolution of mpim the 6N dimensional
phase space is given by the Liouville equation

T'(t) = '~ T(0) (58)
whereT' = (q,p) is the 6N dimensional vector of generalized coordinates,=
di,---,4qn, and momentgy = p1, ..., pn. The Liouville operatorZ, is defined as

N
. dq; 0O op; 0
={... = — 4 = — 59
L={ " Z<8t8qj+aﬁ8pj (59)

j=1
In order to construct a discrete timestep integrator, theitiile operator is split into two
parts,C = L1 + Lo, and a Trotter expansiétt is performed
eiﬁ(;t — ei(£1+£2)6t (60)
_ ei£16t/2€iﬁz(5teiﬁl(5t/2 + O(5t3) (61)

The partial operators can be chosen to act only on positietheementa. Assuming usual
cartesian coordinates for a systemM\dfree particles, this can be written as

)

iLy =Y Fja—p (62)
j=1 I
AR

iLy = ZvjW (63)
j=1 J

Applying Eq.60 to the phase space vediand using the properaf?/9* f (z) = f(x+a)
for any functionf, wherea is independent of x, gives

vi(t +6t/2) = v(t) + FT@% (64)
ri(t + 0t) = ri(t) + vi(t + 0t/2)ot (65)
vi(t+6t) = vi(t + 6t/2) + Mﬁ (66)

m; 2
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which is the velocity Verlet algorithm, Egs. 52-54. In themsaspirit, another algorithm
may be derived by simply changing the definitionsfar— £, andLs — L£;. This gives
the so callegosition Verlet algorithm

vi(t +6t) = v(t) + W (68)
ri(t+dt) = ri(t +0t/2) + (v(t) + vi(t + 6t))% (69)

Here the forces are calculated at intermediate positigits- 6¢/2). The equations of both
the velocity Verlet and the position Verlet algorithms hakie property of propagating
velocities or positions on half time steps. Since both s@wdecouple into an applied
force term and dree flightterm, the three steps are often callealf-kickdrift/half kick
for the velocity Verlet and correspondinghalf-drift/kick/half-drift for the position Verlet
algorithm.

Both algorithms, the velocity and the position Verlet methare examples for sym-
plectic algorithms, which are characterized by a volumeseovation in phase space.
This is equivalent to the fact that the Jacobian matrix ofamgforma’ = f(z,p) and
p' = g(z, p) satisfies

fe fp OIN(fafpY_( OI

(gz gp) <_I 0> <gw gp) <_I 0) (70)
Any method which is based on the splitting of the Hamiltoniarsymplectic. This does
not yet, however, guarantee that the method is also timesigke, which may be also be
considered as a strong requirement for the integrator. droigerty is guaranteed by sym-
metric methods, which also provide a better numerical ktgHl°>. Methods, which try
to enhance the accuracy by taking into account the partitist®ry (multi-step methods)
tend to be incompatible with symplecticn&8s!4 which makes symplectic schemes at-
tractive from the point of view of data storage requiremeAisother strong argument for
symplectic schemes is the so calleaickward error analysi€°-1%7 This means that the
trajectory produced by a discrete integration scheme, neagxbressed as the solution of
a perturbed ordinary differential equation wheokecan formally be expressed as a power
series ingt. It could be shown that the system, described by the ordidiffisrential equa-
tion is Hamiltonian, if the integrator is symplectté 1% In general, the power seriesdn
diverges. However, if the series is truncated, the trajgatdl differ only as O(6¢?) of the
trajectory, generated by the symplectic integrator on sicatesO(1/6t)110,

3.3 Multiple Time Step Methods

It was already mentioned that the rigorous approach of teerdgosition of the Liouville
operator offers the opportunity for a decomposition of tsnales in the system. Supposing
that there are different time scales present in the systgmfast intramolecular vibrations
and slow domain motions of molecules, then the factoripatibEq.60 may be written in
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a more general way
QLA _ il At/2 i At/2 iLost i) At/2 (T At/ (71)

. A (s . . . P . a(s
— QIS At/2 {ez£§f>5t/2ezc26tezc§f)5t/2} RIAINTP (72)

where the time increment &t = pd. The decomposition of the Liouville operator may
be chosen in the convenient way

0 0 0
il = FZ('S)a_pi ;i) = FE”a—pi L ib=vig s (73

where the superscrifts) and (f) mean slow and fast contributions to the forces. The
idea behind this decomposition is simply to take into act@amtributions from slowly
varying components only evepyth timestep with a large time interval. Therefore, the
force computation may be considerably speeded up in the the intermediate force
computation steps. In general, the scheme may be extendacttant for more time
scales. Examples for this may be found in Réfs!'3 One obvious problem, however,
is to separate the timescales in a proper way. The scheme.®? Egxactif the time
scales decouple completely. This, however, is very raminél and most often timescales
are coupled due to nonlinear effects. Nevertheless, foc#se whereAt is not very
much larger thamt (p =~ 10), the separation may be often justified and lead to stable
results. Another criteria for the separation is to distisgibetween long range and short
range contributions to the force. Since the magnitude amdldlstuation frequency is very
much larger for the short range contributions this sepamatiakes sense for speeding up
computations including long range interactibis

The method has, however, its limitatidfs 116 As described, a particle gets eversh
timestep akick due to the slow components. It was reported in literaturée tthia may
excite a system’s resonance which will lead to strong atsfar even instabiliti¢d” 118
Recently different schemes were proposed to overcome tkgsaances by keeping the
property of symplecticne§$-125

3.4 Stability

Performing simulations of stable many-body systems fog lttmes should produce con-
figurations which are in thermal equilibrium. This meang gystem properties, e.g. pres-
sure, internal energy, temperature etc. are fluctuatingrarconstant values. To measure
these equilibrium properties it should not be relevant wherput the time origin from
where configurations are considered to calculate averagtitjes. This requires that the
integrator should propagate phase space variables in swal that small fluctuations do
not lead to a diverging behavior of a system property. Thaskigid of minimal requirement
in order to simulate any physical system without a domimatibnumerical artifacts. It is
clear, however, that any integration scheme will have ita stability range depending on
the step sizét. This is a kind of sampling criterion, i.e. if the step siz&ds large, in order
to resolve details of the energy landscape, an integratioerse may end in instability.
For linear systems it is straight forward to analyze theiltalbange of a given numer-
ical scheme. Consider e.g. the harmonic oscillator, foccvithe equations of motion may
be written as;j(t) = p(t) andp(t) = —w?q(t), wherew is the vibrational frequency and it
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is assumed that it oscillates around the origin. The exdatiea of this problem may be

written as
wq(t)\ [ coswt sinwt w q(0) (74)
p(t) ) \ —sinwt coswt p(0)
For a numerical integrator the stepwise solution may beevrias
W gn+1 W qn
= M(ét 75
<pn+1> ()<Pn) (75)

whereM(dt) is a propagator matrix. It is obvious that any stable nuna¢scheme re-
quires eigenvaluga (M)| < 1. For|A| > 1 the scheme will be unstable and divergent, for
|A| < 1 itwill be stable but will exhibit friction, i.e. will loose rergy. Therefore, in view
of the conservativity of the scheme, it will be required thgiM)| = 1.

As an example the propagator matrices for the Implicit E(Ily and Position Verlet
(PV) algorithms are calculated as

1 1 wdit
Mre0h) =725 (_waﬁ i ) (76)
1 1
1— —w?5t?  wét (1 — —w25t2)
Mpy (3t) = 2 L4 (7
—wot 1-— §w26t2

Itis then straight forward to calculate the eigenvaluesassrof the characteristic polyno-
mials. The eigenvalues are then calculated as

)\EE =1+ iwdt (78)
Mp = — (14 iwt) (79)
TE = T 026¢2 “w
Apy = Ay = Avip = Aprm =1 — w2082 (14 4/1— —2 (80)
PV = AVV = AVIE = APIE = 2w 02012

This shows that the absolute values for the Explicit Euléf)(&nd the Implicit Euler
methods never equals one for# 0, i.e. both methods do not produce stable trajectories.
This is different for the Position Verlet, the Velocity Vetl(VV), the Position Implicit
Euler (PIE) and the Velocity Implicit Euler (VIE), which afiave the same eigenvalues.
It is found that the range of stability for all of them is in th@ngew?5t> < 2. For
larger values obt the absolute values of the eigenvalues bifurcates, gelgirgger and
smaller values than one. In Figure 7 the absolute valueshangrsfor all methods and
in in Figure 8 the imaginary versus real parts)oére shown. For EE it is clear that the
imaginary part diverges linearly with increasejof The eigenvalues of the stable methods
are located on a circle until?5¢> = 2. From there one branch diverges-too, while the
other decreases to zero.

As a numerical example the phase space trajectories of ttmomé& oscillator for
w = 1 are shown for the different methods in Figure 9. For the stabéthods, results
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for a time step close to instability is shown. All differenethods produce closed, stable
orbits, but it is seen on the other hand that they stronglyadefrom the exact solution,
which is shown for reference. This demonstrates that #glsl a necessary, but only a
weak criterion for correct results. Numerically correctutts are only obtained for much
smaller time steps in the range &f =~ 0.01. Also shown are the results for EE and IE.
Here a very much smaller time steft, = 0.01 is chosen. It is seen that the phase space
trajectory of EE spirals out while the one of IE spirals intwitme, showing the instable
or evanescent character of the methods.

Another issue related to stability is the effect of a trajegtperturbation. If initial
conditions are slightly perturbed, will a good integrateep this trajectory close to the
reference trajectory? The answer is No and it is even fouatlttie result is not that
strong dependent on the integrator. Even for integratofsighi order, trajectories will
not stay close to each other. The time evolution of the distnce may be studied similar
to the system trajectory. Consider the time evolutionIfer 6T", wherel’ = (p,q) and
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0T = (0p, dq) is a small disturbance. Then

dr
i VrH(I) (81)
Similarly one can write for smalil’
d
E(F +0I') = VrH(I' +4T) (82)
= VrH(T) + Vr(VrH())oT (83)

where the second line is a truncated Taylor series. Congp&eiims one simply gets as
equation of motion for a perturbation

dg—f = VZH(I")oT (84)
Itis found that the disturbance develops exponentiallh wicharacteristic, system depen-
dent exponent, which is the Ljapunov exportéht?’

Now consider the following situation where identical stagtconfigurations are taken
for two simulations. They will be carried out by differenttyexact algorithms, therefore
leading formally to the same result. Nevertheless it maypbaghat different orders of
floating-point operations are used in both algorithms. Dueound off errors, floating-

point arithmetic is not necessarily associative, i.e. inegal
ado(boc)# (adb)oc (85)

wheres is a floating-point machine operation-(—, /, *). Therefore, both simulations
will be different by round off errors. According to the abogiscussion, this may be
considered as the slightest disturbance of a system toayedt ,,,;,,, and the question is,
what effect such a round off error will have. A different mathto study difference in
system trajectories is the calculation of the difference

N
B =230 S (@) - a0 (36)

1=1 a=x,y,z
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whereN is the number of particles;(t) a certain property, e.g. the coordinates or mo-
menta, and: the same property of a disturbed trajectory. In Figure 10Qltesre shown
for a system of Lennard-Jones particles, where the distadbaas induced by reversing
the order of summation in the force routine, thereby prowgkbund off errors in the first
time step. Shown are results for the coordinates, the w@de@nd the forces and it is seen
that all quantities diverge exponentially from machineuaacy up to a certain behavior at
long times, which is shown in the inset. To understand thg kime behavior;y, (¢) can

be written as average property

Ya(t) = ((2(t) — 2(0) — &(t) + 2(0))*) (87)
= (|lz(t) = 2(0)*) + (|2(t) — 2(0)[*) (88)
—2(x(H)Z(t)) + 2(x(0)Z(1)) + 2(x(t)(0)) — 2(x(0)?)

In the second equation the first two terms are mean squarkacispents of: in the two
systems (note that(0) = x(0) since the same starting configurations are used), the next
term is a cross correlation between the systems. This wilisveif the systems become
independent of each other. The next two systems consistefaurelation functions af

in each system. For long times they will also decrease to. Zémally, the last term gives

a constant offset which does not depend on time. Thereferkotig time behavior will be
governed for coordinates, momenta and forces by

Jim 74(t) = 2(|q(t) — q(0)[*) = 12Dt (89)
tlirgo Yp(t) = 2(p(t)?) = mkpT (90)
Jim () = 2(F(8)*) = 2(VW)? (91)

whereD is the diffusion coefficient]’ the temperature and’ the potential of mean force.

That the divergent behavior of neighbored trajectoriessgsiem dependent property
is shown in Figure 10 where results for Lennard-Jones systndifferent temperatures
are shown.

In conclusion, the individual trajectories of a physicaimquex system will end up at
different places in phase space when introducing roundrodfe or small perturbations.
Round off errors cannot be avoided with simple floating-pairithmetic (only discrete
calculations are able to avoid round off errors; but therptisical problem is transformed
into a different space). Since one cannot say anything abtrue summation order, the
location in phase space cannot have an absolute meaningefdtes the solution to come
out of this dilemma is to interpret the phase space locat®@ possibleand allowed
realization of the system, which makes it necessary, howéweaverage over a lot of
possible realizations.

3.5 Accuracy

For an integrator of order > 1, the local error may be written as an upper béund
1ot — ¢otll < MO+ (92)

whereM > 0 is a constant®s; 1 is the exact and;; the numerical flow of the system.
The global error, i.e. the accumulated error for larger &ime thereby bound for stable
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methods b§
ID(tn) =Tyl < K (e —1) 6t |, t, =ndt (93)

whereK > 0is a constant]. > 0 the Lipschitz constant,(¢,,) = (p(¢»), q(t,)) the exact
andTl’,, = (p», q.) the numerically computed trajectory at timge This estimate gives of
course not too much information fdrt,, 1 unlessét is chosen very small. Nevertheless,
qualitatively this estimate shows a similar exponentiaédjent behavior of numerical and
exact solution for a numerical scheme, as was observed tin8et4.

A different approach to the error behavior of a numericaleset is backward error
analysis, first mentioned in R&® in the context of differential equations. The idea is
to consider the numerical solution of a given scheme as thetesolution of a modified
equation. The comparison of the original and the modifiecaégn then gives qualitative
insight into the long time behavior of a given scheme.

It is assumed that the numerical scheme can be expresseeém@ssacs the form

¢5¢(Cn) = T + 6t f(T) + 6t2go(T) + 6tg3(T) £ . .. (94)
where they; are known coefficients and for consistency of the diffesdm®fjuation it must
hold

_({0-1 Vo
f(F)_(l 0 )(Vq)H(paq) (95)

On the other hand it is assumed that there exists a modifiéerelitial equation of the
form

%ﬁ — F(P) + 5t fo(T) + 562 f5(F) + .. (96)

whereT" will be equivalent to the numerically obtained solution.olmler to construct the
modified equation, the solution of Eq. (96) is Taylor expahde.

D(t+ot) = ()+6t(f(f)+6tf2(f)+5t2f3(f)+...) (97)
(D) + ot fL(0) + )(2 B)(f(f)Jrétfg(f)Jr...)

(v
5’f3{(f~ Ve ® ) (0 () o+ )
+(r@ +oen@ -+ ) (5 8) (FE) + ot + )

X f(f)+5tf2(f)+...)}
...

The procedure to construct the unknown functignproceeds in analogy to perturbation
theory, i.e. coefficients with same powersdfare collected which leads to a recursive
scheme to solve for all unknowns.

To give an example the Lennard-Jones oscillator is consitjéle. a particle perform-
ing stable motions in negative part of a Lennard-Jones piateAs was observed already
for the harmonic oscillator, the Explicit Euler method wglin energy during the time,
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Figure 11. Phase space trajectories of the Lennard-Jorgitatos calculated with the Explicit Euler
scheme and different time steps of integration. Ekactsolution (numerical solution of a high order
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Egs. (98,99). The right figure shows the differences in doatds between the calculation with Explicit
Euler scheme applied to Lennard-Jones oscillator and Wglderlet applied to the modified equation,
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i.e. the particle will increase kinetic energy which finalljil lead to an escape of the
Lennard-Jones potential well. Solving for the modified eiureof the Explicit Euler, one
gets as a first correction

. OH  §tOoH

_ it 98

d op + 2 0q (98)
OH &t O*H

y— ey nt 99

P 9 +5 P2 (99)

Figure 11 shows results for the integration of equations afion with the Explicit Euler
scheme. Different time steps for integration were applieéttvshow a faster escape from
a stable orbit with increasing time step. Also plotted in shene figure is the solution of
the modified equations with a high order symplectic schentéglwcan be considered as
exacton these time scales. Itis found that the trajectories moless coincide and cannot
be distinguished by eye. A more quantitative analysis (féidil) shows that for relatively
long times the solution is rather well approximated by thelified equation, although with
increasing time the differences between solutions becoore pronounced. This means
that for longer times it would be necessary to include mamaseof higher order it into
the modified equation. It should be mentioned that, in génera series expansion of the
modified equation diverges.

4 Simulating in Different Ensembles

In MD simulations it is possible to realize different typestioermodynamic ensembles
which are characterized by the control of certain thermadyic quantities. If one knows
how to calculate a thermodynamic quantity, e.g. the temipex®r pressure, it is often pos-
sible to formulate an algorithm which fixes this property tesired value. However, it is
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not always clear whether this algorithm describes the ptigseof a given thermodynamic
ensemble.
One can distinguish four different types of control meckars:

Differential control : the thermodynamic quantity is fixed to the prescribed valoé no
fluctuations around an average value occur.

Proportional control : the variables, coupled to the thermodynamic propgrtsire cor-
rected in each integration step through a coupling constarards the prescribed value of
f. The coupling constant determines the strength of the fictas aroundf).

Integral control : the system’s Hamiltonian is extended and variables aredoted which
represent the effect of an external system which fix the stettee desired ensemble. The
time evolution of these variables is determined by the égnatof motion derived from
the extended Hamiltonian.

Stochastic control: the values of the variables coupled to the thermodynandpgty
f are propagated according to modified equations of motiorergvicertain degrees of
freedom are additionally modified stochastically in oraegive the desired mean value of
I

In the following, different statistical ensembles are preed and all methods will be
discussed via examples.

4.1 The Microcanonical Ensemble

The microcanonical ensemble (NVE) may be considered as#éteral ensemble for
molecular dynamics simulations (as it is the canonical ere (NVT) for Monte Carlo
simulations). If no time dependent external forces are idened, the system’s Hamilto-
nian is constant, implying that the system’s dynamics ee®bn a constant energy surface.
The corresponding probability density in phase space igtbee given by

p(q,p) = 0(H(q,p) — E) (100)

In a computer simulation this theoretical condition is gatlg violated, due to limited
accuracy in integrating the equations of motion and due tadoff errors resulting from
a limited precision of number representation. In R&fa numerical experiment was per-
formed showing that tiny perturbations of the initial pasiss of a trajectory are doubled
about every picosecond. This would mean even for doublégioacarithmetic that after
about50 ps roundoff errors will be dominaht’. This is, however, often not a too seri-
ous restriction, since most time correlation functiongpimzero on a much shorter time
scale. Only for the case where long time correlations are@ep one does have to be very
careful in generating trajectories.

4.2 The Canonical Ensemble

The simplest extension to the microcanonical ensembleisahonical one (N,V,T), where
the number of particles, the volume and the temperaturexae o prescribed values. The
temperaturéis, in contrast taV andV/, an intensive parameter. The extensive counterpart
would be the kinetic energy of the system. In the followiniffedent control mechanisms,
introduced in Sec. 4 are described.
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4.2.1 The Differential Thermostat

Different methods were proposed to fix the temperature tceal firmlue during a simulation
without allowing fluctuations of’. The first method was introduced by Woodcttk
where the velocities were scaled accordingto— /Ty/Tp;, whereTy is the reference
temperature and’ the actual temperature, calculated from the velocity ofgh#icles.
This method leads to discontinuities in the momentum pathefphase space trajectory
due to the rescaling procedure.

An extension of this method implies a constraint of the eiguatof motion to keep
the temperature fixéd 133 The principle of least constraint by Gauss states that@efor
added to restrict a particle motion on a constraint hypéasershould be normal to the
surface in a realistic dynamics. From this principle theatmuns of motion are derived

dq;
=Pi 101
5 — P (101)
8[)1' oV
=— —(ps 102
5t o (p (102)
where( is a constraint force term, calculated as
SRV
—~ m; dq;
(=-—"——F—— (103)

N o
Zpi

m;
i=1 "

Since the principle of least constraint by Gauss is uses allgiorithm is also calleGaus-
sian thermostatlt may be shown for this method that the configurational patthe phase
space density is of canonical form, i.e.

p(a,p) = 6(T — Tp) e V(@ (104)

4.2.2 The Proportional Thermostat

The proportional thermostat tries to correct deviationshef actual temperaturg form
the prescribed on&, by multiplying the velocities by a certain factarin order to move
the system dynamics towards one correspondiritdl he difference with respect to the
differential control is that the method allows for fluctuats of the temperature, thereby not
fixing it to a constant value. In each integration step it suired that th§" is corrected to

a value more close td,. A thermostat of this type was proposed by Berendsen’ét-af>
who introducedveak coupling methods to an external hathe weak coupling thermostat
was motivated by the minimization of local disturbances stachastic thermostat while
keeping the global effects unchanged. This leads to a matdit of the momentp; —

Ap;, where
A= [1+ﬁ<ﬁl)] (105)
T T

The constant, appearing in Eq.105, is a so called coupling time constdmthwdeter-
mines the time scale on which the desired temperature iheeadt is easy to show that the
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proportional thermostat conserves a Maxwell distributidowever, the method cannot be
mapped onto a specific thermodynamic ensemble. In'®ehe phase space distribution
could be shown to be

p(a,p) = f(p) e (V@ -asU(@?/3N) (106)

wherea ~ (1 — §E/6U) anddéU, JE are the mean fluctuations of the potential and total
energy. f(p) is in general an unknown function of the momenta, so that tHel&nsity
cannotbe determined. Far= 0, which correspondsin Eq.105te = dt, the fluctuations

in the kinetic energy vanish and Eq.106 reduces to Eq.1€4ititepresents the canonical
distribution. The other extreme afr — oo corresponds to an isolated system and the
energy should be conserved, i®& = 6K + U = 0 anda = 1. In this case, Eq.106
corresponds to the microcanonical distributi$n Eq.106 may therefore be understood as
an interpolation between the canonical and the microcaabansemble.

4.2.3 The Stochastic Thermostat

In the case of a stochastic thermostat, all or a subset of égeeds of freedom of the
system are subject to collisions witirtual particles. This method can be motivated by a
Langevin stochastic differential equation which desitiee motion of a particle due to
the thermal agitation of a heat bath

8pi - oU

ot~ Oq;
wherev is a friction constant anf'™ a Gaussian random force. The amplituddfdf is
determined by the second fluctuation dissipation theorem

(Ff (t1)F] (t2)) = 2vkpT0i;0(t1 — ta) (108)

A larger value fory will increase thermal fluctuations, white = 0 reduces to the mi-
crocanonicle ensemble. This method was applied to moledylaamics in Ret3”. A
more direct way was followed in Ret8® 13 where particles collide occasionally with
virtual particles from a Maxwell distribution correspondito a temperaturé, and after
collisions loose their memory completely, i.e. the mottoitally randomized and the mo-
menta become discontinuous. In order not to disturb thegpbpace trajectory too much,
the collision frequency has to be chosen not too high. Sitame collision frequency will
lead to a strong loss of the particle’s memory, it will leadcitfast decay of dynamic corre-
lation functiond®. The characteristic decay time of correlation functiorsust therefore
be a measure for the collision time. It was proved for thetsstic thermost&t® that it
leads to a canonical distribution function.

A slightly different method which is able to control the cding to an external bath
was suggested in Reté:142 In this approach the memory of the particle is not compyetel
destroyed but the new momenta are chosen to be

Pin=V1—a?pio,+apr (1209)

wherep,. is chosen a momentum, drawn from a Maxwell distribution esponding td .
Similar to the proportional thermostat, the parametenay be tuned to give distributions
ranging from the microcanonical to the canonical ensemble.

—pi +F* (107)
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4.2.4 The Integral Thermostat

The integral method is also often callextended system methaslit introduces additional
degrees of freedom into the system’s Hamiltonian for whighations of motion can be
derived. They are integrated in line with the equations F&r $patial coordinates and
momenta. The idea of the method invented by N&%s&4 is to reduce the effect of an
external system acting as heat reservoir to keep the tetopeiaf the system constant, to
one additional degree of freedom. The thermal interactimtaeen a heat reservoir and
the system result in a change of the kinetic energy, i.e. ¢hecity of the particles in the
system. Formally it may therefore be expressed a scalirftgofelocities. Nosé introduced
two sets of variables: real and so called virtual ones. Thealivariables are consistently
derived from a Sundman transformattéhdr/dt = s, wherer is a virtual time ands is

a resulting scaling factor, which is treated as dynamicabhlsde. The transformation from
virtual to real variables is then performed as

p; = ;s ) Qi = p; (110)
The introduction of theeffective massM,, connects also a momentum to the additional
degree of freedoms,. The resulting Hamiltonian, expressed in virtual coortisaeads
i e

* T;
H* = Z s +Ul(p) + oL + gkpTIns (111)

1=

whereg = 3N + 1 is the number of degrees of freedom (system\ofree particles).
The Hamiltonian in Eq.111 was shown to lead to a probabilépgity in phase space,
corresponding to the canonical ensemble.

The equations of motion drawn from this Hamiltonian are

-F_ e 112
or 52 (112)
om; oU (p)
= — 113

or op; (113)
Js T

- 114
or M, (114)
ors 1 7r12 gkpT

- an - =

If one transforms these equations back into real varialtlés found*4® that they can be
simplified by introducing the new variable= 9s/9t = sps/M; (ps is real momentum
connected to the heat bath)

% _Dpi (116)
mg
i —ag—o(f) ~(pi (117)
Olns
= ¢ (118)
% 1 (P
3 = I <Z; i gksT (119)

34



These equations describe the so called Nosé-Hoover tistamo

4.3 The Constant-Pressure Constant-Enthalpy Ensemble

In order to control the pressure in an MD simulation cells mécessary to allow for volume
variations. A simple picture for a constant pressure syssearbox the walls of which are
coupled to a piston which controls the pressure. In conteatste case where the temper-
ature is controlled, no coupling to the dynamics of the phasi (timescales) is performed
but the length scales of the system will be modified. In thifahg, different algorithms
are described for a constant pressure ensemble. The cedsprantity will not be the sys-
tem’s energy, since there will be an energy transfer to anftieeexternalsystem (piston
etc.), but the enthalpy/ will be constant. In line with the constant temperature rodth
there are also differential, proportional, integral ammthastic methods to achieve a con-
stant pressure situation in simulations. The differemtiathod, however, is not discussed
here, since there are problems with that method relatecmotinect initial pressuré&” 148

A scheme for the calculation of the pressure in MD simulatifor various model systems
is given in the appendix.

4.3.1 The Proportional Barostat

The proportional thermostat in Sec. 4.2.2 was introducednasxtension for the equa-
tion of the momentum, since it couples to the kinetics of thgiples. Since the barostat
acts on a volume change, which may be expressed in a scalipgriifles’ positions, a

phenomenological extension for the equation of motion efdbordinates may be formu-
lated34

dq; Pi
i AN 2 i 120
ot~ m; 0 (120)

while a change in volume is postulated as
V =3aV (121)

A change in pressure is related to the isothermal compiiésib
1 oV 3

== 122
FGTV ot RT ( )

which is approximated as
(Py— P) 3a

== (123)
TP KT
and therefore Eq.120 can be written as
0 _Pi_ KT p  p (124)

af o m; 3Tp

which corresponds to a scaling of the boxlength and cootelfep — sq and L. — sL,
where

(Po—P) (125)

35



The time constantp was introduced into Eq.123 as a characteristic timescaletoch
the system pressure will approach the desired prediuré also controls the strength of
the coupling to the barostat and therefore the strengtheofdbume/pressure fluctuations.
If the isothermal compressibility;r, is not known for the system, the constaft =
7p/kT may be considered as a phenomenological coupling time vdaintbe adjusted to
the system under consideration. As for the proportionaintiostat, a drawback for this
method is that the statistical ensemble is not known. Inangd the thermostat, it may
be assumed timterpolatebetween the microcanonical and the constant-pressustérgn
enthalpy ensemble, depending on the coupling consiant

4.3.2 The Integral Barostat

In line with the integral thermostat one can introduce a negréde freedom into the sys-
tems Hamiltonian which controls volume fluctuations. Thisthod was first proposed
by Andersef’®. The idea is to include the volume as an additional degreeeafdbm
and to write the Hamiltonian in a scaled form, where lengtiesexpressed in units of
the boxlengthl, = V'/3,i.e. q; = L p, andp; = L ;. Sincel is also a dynamical
guantity, the momentum is not related to the simple timevd#ixie of the coordinates but
oq; = L 0yp; + p; 0:L. The extended system Hamiltonian is then written as

N
1 Z Uy 1/3 m
H* = m o Qmi + U(V p) +PexV + (126)

oMy

whereP,, is the prescribed external pressure andandMy are a momentum and a mass
associated with the fluctuations of the volume.
The equations of motion which are derived from this Hamikorare

% _ aU(g;@m (128)
38_‘; _ L_VV (129)
N

%T—tv - = (% ; o V“%ﬁ?—éﬁ”) (130)

A transformation to real variables then gives
88(:11: - :T %%‘;% (13D)
%_‘t/ _ % (133)

N

By _ o (H P, majéq)) P (134

S

36



2048 F ,
1024 F —=—ideal

e --erw, =099
Sz w, =0.9
256F -—v—w =05
128 F
64 F
32F

Speedup

LT IETTIITY ERUTTETH RUTTTITY RETTITTN RRTTTITH RUTTITIN REUTTTIN RRTTTIIT RUTTTT W 1.3

1 2 4 8 16 32 64 128 256 512 10242048
# PEs

= N~
T

Figure 12. The ideal speedup for parallel applications \w@Ro, 90%, 99% and 100%
(ideal) parallel work as a function of the number of processo

In the last equation the term in brackets corresponds to riesspre, calculated from the
virial theorem. The associated volume force, introducingtfiations of the box volume
is therefore controlled by the internal pressure, origimtatrom the particle dynamics and
the external pressuré,, .

5 Parallel Molecular Dynamics

With the advent of massively parallel computers, where $hods of processors may work
on a single task, it has become possible to increase the sthe mumerical problems
considerably. As has been already mentioned in Sec.1 itfsintiple possible to treat
multi-billion particle systems. However, the whole succesparallel computing strongly
depends both on the underlying problem to be solved and tiiriaption of the computer
program. The former point is related to a principle problehick is manifested in the so
called Amdahl's law*°. If a problem has inherently certain parts which can be sbbrdy
in serial, this will give an upper limit for the parallelizah which is possible. The speedup
o, which is a measure for the gain of using multiple procesaftsrespect to a single one,
is therefore bound

o= L. (135)

wp + Npws

Here, N, is the number of processors, andw, is the amount of work, which can be
executed in parallel and in serial, i.ev, + w, = 1. From Eq.135 it is obvious that
the maximum efficiency is obtained when the problem is cotepleparallelizable, i.e.
wp, = 1 which gives anV, times faster execution of the program. In the other extreme,
whenw, = 1there is no gain in program execution at all ane- 1, independentol,,. In
Fig.12 this limitation is illustrated for several cases gndthe relative amount for the serial
work was modified. If the parallel work is 50%, the maximumesgp is bound to = 2.
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If one aims to execute a program on a real massively parallapater with hundreds or
thousands of processors, the problem at hand must be intyepanallel for 99.99...%.
Therefore, not only big parallel computers guarantee agfestution of programs, but the
problem itself has to be chosen properly.

Concerning MD programs there are only a few parts which habe tanalysed for par-
allelization. As was shown, an MD program consists essgntibthe force routine, which
costs usually more than 90% of the execution time. If one nsé&hbor lists, these may
be also rather expensive while reducing the time for thegfesaluation. Other important
tasks are the integration of motion, the parameter setugeateéginning of the simulation
and the file input/output (I/O). In the next chapter it will Blgown how to parallelize the
force routine. The integrator may be naturally paralleliz@nce the loop oveW particles
may be subdivided and performed on different processors.pinameter setup has either
to be done in serial so that every processor has informaliontaelevant system parame-
ters, or it may be done in parallel and information is disttédal from every processor via
a broadcast. The file /O is a more complicated problem. Thesage passing interface
MPI | does not offer a parallel I/O operation. In this cas&Méry node writes some infor-
mation to the same file there is, depending on the configuratithe system, often only
one node for I/O, to which internally the data are sent fromdther nodes. The same
applies for reading data. Since on this node the data frarfiBonodes are written/read
sequentially, this is a serial process which limits the dppeof the execution. The new
MPI Il standard offers parallel read/write operations, ethiead to a considerable effi-
ciency gain with respect to MPI. However, the efficiency ated depend strongly on the
implementation on different architectures. Besides MPihods, there are other libraries,
which offer more efficient parallel 1/O with respect to natiprogramming. To name a
few, there are PnetCDP 15} an extension towards parallelism of the oletwork Com-
mon Data Form netCDF-4°2153 which is in direct line of netCDF development, which
now has parallel functionality and which is built on top of MPO, or SIONIib, a recently
developed high performance library for parallel 1?

Another serious point is the implementation into the corapabde. A problem which
is inherently 100% parallel will not be solved with maximumeed if the program is
not 100% mapped onto this problem. Implementation detailpérallel algorithms will
be discussed in the following sections. Independent of tif@émentation of the code,
Eq.135 gives only an upper theoretical limit which will otdg reached in very rare cases.
For most problems it is necessary to communicate data fraerpomcessor to another or
evento all other processors in order to take into accouatdigppendencies. This implies an
overhead which depends on the latency and the bandwidtledhtarprocessor network,
which strongly depends on the hardware.

5.1 Domain Decomposition

The principle of spatial decomposition methods is to asgigometrical domains to dif-
ferent processors. This implies that particles are no Iobgend to a certain processor
but will be transfered from one PE to another, according ®&rthpatial position. This
algorithm is especially designed for systems with shoryeainteractions or to any other
algorithm where a certain cut-off in space may be appliedc&hneighbored processors
contain all relevant data needed to compute forces on femtiocated on a given PE,
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this algorithm avoids the problem of global communicatio@éven that the range of in-
teraction between particles is a cut-off radius of size the size,D of the domains is
preferentially chosen to bB > R., so that only thes? — 1 neighbored processors have
to communicate datal(is the dimension of the problem). Whether this can be futfille
depends on the interplay between size of the system and thbars of processors. If a
small system is treated with a large number of processagsjdmains will be small and
D < R.. Inthis case not only the next but also the second or everehigtdler neighbor
PEs have to send their coordinates to a given PE. For siryplig assume her® > R..
Algorithms, which treat efficiently the general case werestigped recentf{p>—157

The algorithm then works as follows. Particles are distabuin the beginning of the
simulation to a geometrical region. The domains are cootd.ito have a rather homo-
geneous distribution of particles on each processor, erdhdmogeneous bulk liquids the
domains can be chosen as equally sized cuboids which fillithelation box. In order
to calculate forces between particles on different pramss€oordinates of the so called
boundary particlegthose which are located in the outer region of sie> R. of the
domains) have to be exchanged. Two types of lists are cansttdior this purpose. The
one contains all particle indices, which have left the lat@ihain and which have conse-
guently to be transferred to the neighbored PE. The othecontins all particle indices,
which lie in the outer region of siz&; of a domain. The first list is used to update the
particles’addressi.e. all information like positions, velocities, forcetseare sent to the
neighbored PE and are erased in the old domain. The secoisddiged to send temporar-
ily position coordinates which are only needed for the fazxemputation. The calculation
of forces then operates in two steps. First, the forces dimctl particles are computed
using Newton'’s 3rd law. In a next step, forces due to the bannparticles are calculated.
The latter forces are thus calculated twice: on the local RiEthe neighbored PE. This
extra computation has the advantage that there is no coneation step for forces. A
more elaborate scheme has nevertheless been proposedndhictes also Newton’s 3rd
law for the boundary particles and thus the communicatiofoafes®8 15 Having fin-
ished the evaluation of forces, the new positions and viéscare evaluated only for local
particles.

A naive method would requir8? — 1 send/receive operations. However, this may
be reduced t@log,(3% — 1) operations with a similar tree-like method. The method is
described here for the casedf 2. It may be generalized rather easily. The 4 processors,
located directly at the edges of a given one are labeled #8det and up/down. Then
in a first step, information is sent/received to/from the bkefid the right PE, i.e. each
processor now stores the coordinates of three PEs (ingudaal information). The next
step proceeds in sending/receiving the data to the up and &&s. This step finishes
already the whole communication process.

The updating process is not necessarily done in each tinpe $tehe width of the
boundary region is chosen & = R. + or, it is possible to trigger the update automat-
ically via the criterion ma§{x(to + t) — x(t9)|) < ér, which is the maximum change in
distance of any particle in the system, measured from theifatate.

A special feature of this algorithm is the fact that it showtheoretical superlinear
speed-up if Verlet neighbor lists are used. The constranatibthe Verlet list requires
N'(N'" —1)/2 4+ N'6N operations, wheréN is the number of boundary particles and
N’ is the number of particles on a PE. If the number of PEs is aszd as twice as large,
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Figure 13. Communication pattern for the domain decomjoosilgorithm in 2 dimen-
sions.

there areN’/2 particles on each processor which therefore requifeQ(N'/2 — 1)/2 +
N’/26N operations. IfN’ >> §N andN'* > N’ one gets a speed-up factorof4!

5.2 Performance Estimations

In order to estimate the performance of the different athars on a theoretical basis it is
useful to extend the ideal Amdahl’s law to a more realistigecal he ideal law only takes
into account the degree of parallel work. From that pointiefwall parallel algorithms
for a given problem should work in the same way. However threroanication between
the processors is also a limiting factor in parallel appi@ss and so it is natural to extend
Amdabhl’s law in the following way

1
a wy/Np + ws + ¢(Np)

(136)

wherec(NN,) is a function of the number of processors which will chardeeethe different
parallel algorithms. The function will contain both comnization work, which depends
on the bandwidth of the network and the effect of the latemmyet i.e. how fast the
network responds to the communication instruction. Thection ¢(V,,) expresses the
relative portion of communication with respect to compiotat Therefore it will depend
in general also on the number of particles which are simdlate

In the following a model analysis for the domain decompositilgorithm is presented.
Itis assumed that the work is strictly parallel, ke, = 1.

Spatial decomposition algorithm is based on local comnatidn. As was described
in Sec.5.1, only six communication steps are required twiliige the data to neighbored
PEs. Therefore the latency time part is constant whereaantioeint of data to be sent and

consequently the communication part is decreased witletayy. The communication
function reads therefore

0N, =1

e(Ny) = F(N,) (A + #) LN =N CE @D
? 6 N, <8
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Figure 14. Left: Estimation of realistic speedup curvesniédncludes the latency time and bandwidth of the pro-
cessor interconnect. It is assumed that the problem cantallg be parallelized 100%. Different parameter values
are compared for the latency timeand bandwidthy for a local nearest neighbor communications. The idealecurv
neglects communication completely. Right: Realistic Ieenark for a domain decomposition program, simulating
a system consisting of 3000 polymers with 250 monomers each.

Here the functiory (V) was introduced to cover also the cases for small numberssf PE
where a data exchange is not necessary in each spatialialireds seen from Fig.14 the
speedup curves are nearly linear with a slightly smallgresthan unity. However, for very
large numbers of PEs the curves will also flatten. Neverfiseltne local communication
model provides the best speedup behavior from all pardglelizthms and seems to be best
suited for large parallel architectures.

RemarkNote that the local communication model in its present fariorily valid for short
range interaction potentials. If the potential is longerged than one spatial domain, the
function f(V,) has to be modified. For long range interactions, all-to-@thmunications
are generally required. In that case the tree-method maydséiywpreferred.

This theoretical analysis demonstrates the importancefa$tainterconnect between
processors for the case of molecular dynamics simulatidosincluded in the communi-
cation functionc(N,,) is the bandwidth function of the network. This, however| wiily
slightly change Fig.14.

5.3 Comparison with Simulation

In order to verify the theoretical model, one may perform MB simulations for model
systems, which are as large as the principal features, eppéathe analysis are fulfilled.
This includes that domains are large enough in order toicegtarticle interactions to
neighbored domains and to have a nearly homogenous pattitiédoution, which avoids
unbalanced computational work on the processors.

In the current case, the program MP2®@was used, which implements both a meso-
scopic solvent method, based on the Muli-Particle-CalligMPC) dynamics and a molec-
ular dynamics part. The program is based on a domain decatiopcgpproach and allows
to couple MD and MPC simulations or to decouple them, in otoleun either MD or MPC
in a simulation for e.g. all-atom force-field simulationgiwgut hydrodynamic coupling or
e.g. fluid dynamics without solvated particles, respebtivin the present case a simula-
tion of a polymer system, consisting of 3000 polymeric chairth 250 monomers each
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was simulated. The monomers were coupled within the chaimiarmonic bond potential
and the non-bonded part of the potential was set to the rigpwart of a Lennard-Jones
potential which was applied to all particle pairs which weod coupled within bonds.

The programwas run on an IBM BlueGene/P at Jilich SuperctimpCentre. Fig. 14

shows the scaling up td/, = 2048 processors, which is qualitatively comparable and
shows the same behavior as prescribed by the simple modedttériscaling is to be ex-
pected, when more particles are simulated, which movesti®@af communication/com-
putation to smaller values, which reduces the relativelue@d in the parallel execution.
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