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We discuss how electromagnetic properties provide useful tests of the nature of resonances, and
we study these properties for the N∗(1535) which appears dynamically generated from the strong
interaction of mesons and baryons. Within this coupled channel chiral unitary approach, we evaluate
the A1/2 and S1/2 helicity amplitudes as a function of Q2 for the electromagnetic N∗(1535) → γ∗N
transition. Within the same formalism we evaluate the cross section for the reactions γN → ηN .
We find a fair agreement for the absolute values of the transition amplitudes, as well as for the
Q2 dependence of the amplitudes, within theoretical and experimental uncertainties discussed in
the paper. The ratios obtained between the S1/2 and A1/2 for the neutron or proton states of the
N∗(1535) are in qualitative agreement with experiment and there is agreement on the signs. The
same occurs for the ratio of cross sections for the η photoproduction on neutron and proton targets
in the vicinity of the N∗(1535) energy. The global results support the idea of this resonance as
being dynamically generated, hence, largely built up from meson baryon components. However, the
details of the model indicate that an admixture with a genuine quark state is also demanded that
could help obtain a better agreement with experimental data.

PACS numbers: 14.20.Gk,13.40.Gp,12.39.Fe

I. INTRODUCTION

The traditional picture of baryons as being made from
three constituent quarks [1] is giving rise, in some cases,
to more complicated structures. One of the ideas which
has gained strength in recent times is that low lying reso-
nances of JP = 1/2−, 3/2− seem to be well represented in
terms of states which are generated by the meson baryon
interaction in L = 0; in the 1/2− case from the inter-
action of the octet of mesons of the π with the octet of
baryons of the p [2, 3, 4, 5, 6, 7, 8, 9] and in the 3/2− from
the interaction of the same mesons with the decuplet of
baryons of the ∆(1232) [10, 11]. The Λ(1405), which
actually comes as two poles in chiral theories [6], with
this two-pole structure supported by experiment [12],
has been for long thought of as a kind of meson baryon
molecule of the K̄N and πΣ states [13, 14], a structure
similar to that provided by the chiral approaches men-
tioned above. The N∗(1535) is one more resonance that
appears in the two octets and one singlet of dynamically
generated resonances coming from the interaction of the
octet of mesons of the π with the octet of baryons of
the p [6]. In fact, it was noted earlier in [15], before
the systematics of [6] was established, that the inter-
action provided by chiral Lagrangians put as kernel of
the Lippmann Schwinger equation generated this reso-
nance, which also appears in other work along similar
lines [16, 17].

The N∗(1535) plays an important role in all processes
of η production since it couples very strongly to ηN . This
feature is actually provided automatically by the chiral
theories, one of the points of support for the nature of
this resonance as being dynamically generated. A recent
study of the model dependence of the properties of this

resonance is seen in [18].

From the point of view of a dynamically generated
resonance the N∗(1535) leads to fair descriptions of the
πN → ηN and γN → ηN reactions [15, 17, 19] and pro-
duces reasonable numbers for the ηN scattering lengths
[2, 17]. Yet, it has been argued that one of the important
tests of the nature of a resonance is its electromagnetic
form factors. Indeed, a meson baryon resonance should
get the Q2 dependence basically from the meson cloud
(we take as usual Q2 = −k2 with k being the photon
momentum). If this is a pion, this light particle has a
fairly large extent in the wave function, as a consequence
of which, the form factor of the resonance should fall rel-
atively fast compared to ordinary quark models which
confine the quarks at smaller distances. This is also the
case for the proton at small Q2, due to its meson cloud,
which stabilizes later on at larger values of Q2 where the
quark components take over, as shown in chiral quark
models [20, 21, 22]. We shall see that something spe-
cial happens for the N∗(1535), but in any case this is a
very stringent test, since the chiral theory provides the
normalization and the Q2 dependence for the different
transition form factors without any free parameter, once
the parameters used in πN scattering with its coupled
channels are fixed to scattering data.

Radiative decays of resonances from the point of view
of their dynamically generated nature have been ad-
dressed in [23] for the Λ(1520), in [24] for the ∆(1700)
and in [25] for the two Λ(1405) states. It concerns the
decay of the resonances into a baryon and a real photon.
Some work with virtual photons from this point of view is
done in [2, 26] for the electroproduction of η in the vicin-
ity of the N∗(1535) resonance. Meanwhile, experimental
analyses have succeeded in extracting the helicity transi-
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tion form factors for N∗(1535) → Nγ A1/2 and S1/2, for

both N = p, n, in a relatively wide range of Q2 values
[27].

We evaluate these form factors from the point of view
of the N∗(1535) as a dynamically generated resonance.
For that purpose we shall extend the formalism of [24, 25]
to virtual photons. The new formalism requires changes
from the real photon case, but it is rewarding since it
provides much more information, replacing the helicity
transition amplitudes by functions of Q2 and adding the
new S1/2 transition form factor which only plays a role
for virtual photons. Hence, there is far more information
to test the predictions of the model.

From the quark model point of view there has also
been much work done on these helicity form factors
[28, 29, 30, 31, 32, 33, 34, 35, 36]. A comparison of their
prediction with experiment plus a compilation of results
from different experiments can be seen in [27, 37, 38].
There are appreciable differences from one quark model
to another and relativistic effects seem to be important,
particularly in the S1/2 helicity transition form factor.
It should be noted that some of the models, particularly
those incorporating relativistic effects [31, 33, 35] pro-
duce a fair agreement with data, in particular a good
description of the Q2 dependence of the form factor.

In our approach, the quarks enter through the meson
and baryon components of the resonance and the Q2 de-
pendence is tied to the meson and baryon form factors,
which we take from experiment, plus the particular Q2

dependence of the loop functions from the meson baryon
coupled channels that build up the resonance. Thus, the
final Q2 dependence is a non-trivial consequence of chiral
dynamics, which provides the coupling of the resonance
to open and closed channels, the Q2 dependence of the
different loops, and the form factors of the mesons and
baryons, particularly the mesons, as we shall see.

The results that we obtain are in fair agreement with
experiment for both charged states and for the two tran-
sition form factors, hence providing extra support for the
nature of the N∗(1535) as being largely made from the
interaction of meson baryon coupled channels.

Some deficiency in the Q2 dependence at large Q2

could be an indication of a mixture of the meson baryon
components with a genuine quark component, which is
also indicated by particular details of the chiral approach
that we shall mention below.

II. HELICITY AMPLITUDE

We consider the production reaction of the N(1535)
resonance (Jp = 1/2−) by in-elastic electron-nucleon
scattering as shown in Fig.1. The N(1535) is created by
exchange of a virtual photon carrying momentum k. The
initial N and final N∗ momenta and masses are denoted
by (pi, MN) and (P, MN∗), respectively. The energy mo-

FIG. 1: Kinematics of the electroproduction of N(1535).

mentum conservation reads

P = pi + k. (1)

There are two independent amplitudes for the electro-
transition from JP = 1/2+ to 1/2−, A1/2 and S1/2, which
are defined in terms of the transition electric current Jµ

by

A1/2 =

√

2πα

qR

1

e
〈N∗, Jz =

1

2
|ǫ(+)

µ Jµ|N, Sz = −1

2
〉 (2)

S1/2 =

√

2πα

qR

1

e

|~k|
√

Q2
〈N∗, Jz =

1

2
|ǫ(0)µ Jµ|N, Sz =

1

2
〉(3)

with the fine structure constant α = e2/4π, the en-
ergy equivalent to that of a real photon qR = (W 2 −
M2

N)/(2W ) and the photon-nucleon center-of-mass en-

ergy W ≡
√

P 2. The polarization vectors of the photon,
ǫµ, are given by

ǫ±µ =
1√
2
(0,∓1,−i, 0) (4)

ǫ0µ =
1

√

Q2
(k, 0, 0,−k0) (5)

with Q2 = −k2, where we take the CM momenta ~k and
~pi along the z axis.

Let us discuss the general expression of the transition
current Jµ in the relativistic formulation. First of all, we
recall the equation of motion for the initial nucleon

(pi/ − MN )ui(pi) = 0 (6)

where ui(pi) is the Dirac spinor for the initial nucleon
normalized by

uN =

√

Ei + MN

2MN

(

1
~σ·~pi

Ei+MN

)

χ. (7)

For the final N∗, we assume the pole dominance, so that
we again have

(P/ − MN∗)uf (P ) = 0 (8)

where uf(P ) is the N∗ Dirac spinor and MN∗ denotes
the real part of the N∗ mass. In the calculations of the



3

helicity amplitude, the MN∗ is chosen as the N∗ energy
in the final state, W ≃ 1535 MeV.

It follows that the terms involving the γ matrix in Jµ

are only of the form γ · ǫ, since we can move pi/ and P/
through γµγν − γνγµ = gµν to either the left or right
end in the amplitudes, and they can be replaced by the
masses by means of Eqs. (6) and (8). The term involving
k/ can also be replaced by the momentum conservation
k/ = P/ − pi/ . Thus, Lorentz invariance and momentum
conservation (1) require the transition current Jµ to be
written, in general, by the following three Lorentz scalar
amplitudes:

Jµ = (M1γ
µ + M2P

µ + M3k
µ)γ5. (9)

The gauge invariance k · J = 0, tells us that there
are only two independent amplitudes among these three
amplitudes, Mi, giving the following relation:

(MN∗ + MN )M1 + k · PM2 + k2M3 = 0 . (10)

Using the transition current (9), we evaluate the helic-
ity amplitudes, A1/2 and S1/2, in the rest frame of the
N(1535) resonance. After some algebra, the helicity am-
plitudes are written in terms of the amplitude M2 and
M3 by

A1/2 =

√

2πα

qR

√

Ei + MN

2MN

1

e

√
2

MN∗ + MN

×
(

k · PM2 + k2M3

)

(11)

S1/2 =

√

2πα

qR

√

Ei + MN

2MN

1

e

−|~k|
MN∗ + MN

× (MN∗M2 + (MN∗ − MN )M3) (12)

The transition current (9) can be written equivalently
in the CM frame as

Jµ =

√

Ei + MN

2MN
[M1σ

µ

+

( M1

(Ei + MN )W
+

M2

Ei + MN

)

Pµσ · k

+
M3

Ei + MN
kµσ · k

]

(13)

≡ MNR
1 σµ + MNR

2 Pµσ · k + MNR
3 kµσ · k (14)

where σµ = (0, ~σ) and we take the CM frame Pµ =

(W,~0). Then the helicity amplitudes are written in terms
of the amplitudes defined above, MNR

i , as

A1/2 =

√

2πα

qR

1

e

√
2
(

k · PMNR
2 + k2MNR

3

)

(15)

S1/2 =

√

2πα

qR

−|~k|
e

(

WMNR
2 + k0MNR

3

)

(16)

with the gauge invariance condition for the nonrelativis-
tic amplitudes

MNR
1 + MNR

2 k · P + MNR
3 k2 = 0. (17)

III. EVALUATION OF THE TRANSITION

FORM FACTORS

A. Model of N(1535) and photon coupling

In our approach, the N(1535) resonance is dynami-
cally generated in the s-wave meson baryon scattering
in the coupled channels of π−p, π0n, ηn, K+Σ−, K0Σ0,
K0Λ for the neutron resonance (with neutral charge) and
π0p, π+n, ηp, K+Σ0, K0Σ+, K+Λ for the proton reso-
nance (with +1 charge). The scattering amplitude for the
N(1535) resonance is described in Ref.[17] by means of
the Bethe-Salpeter equation for meson baryon scattering
given by

T = V + V GT . (18)

Based on the N/D method and the dispersion relation
[5], this integral scattering equation can be reduced to a
simple algebraic equation

T = (1 − V G)−1 V (19)

where the matrix V is the s-wave meson-baryon inter-
action given by the lowest order of the chiral perturba-
tion theory, which is the Weinberg-Tomozawa interac-
tion, given by

Vij = −Cij
1

4f2
(2
√

s − Mi − Mj)

×
√

Mi + E

2Mi

√

Mj + E′

2Mj
(20)

with the channel indices i, j, the baryon mass M , the me-
son mass m, the meson decay constant f and the center
of mass energy

√
s. The coefficient Cij is the coupling

strength of the meson and baryon, which is determined
by the SU(3) group structure of the channel. The diago-
nal matrix G is the meson baryon loop function given in
terms of the meson and baryon propagators by

G(
√

s) = i

∫

d4q

(2π)4
M

E(~q)

1

q0 − E(~q) + iǫ

× 1

(P − q)2 − m2 + iǫ
(21)

with the total energy P = (
√

s, 0, 0, 0) in the center of
mass frame. For the baryon propagator we use the non-
relativistic form and neglect the negative energy prop-
agation. The loop function should be regularized with
proper schemes. In the practical calculation, we take di-
mensional regularization by using a covariant form of the
positive energy part of the baryon propagator,

M

E(~q )

Σrur(~q )ur(~q )

q0 − E(~q ) + iǫ
≃ 2M Σrur(~q )ur(~q )

q2 − M2 + iǫ
. (22)
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In dimensional regularization, the loop function in each
channel i is given by the following analytic expression:

Gi = i

∫

d4q

(2π)4
2Mi

q2 − M2
i + iǫ

1

(P − q)2 − m2
i + iǫ

=
2Mi

16π2

{

ai(µ) + ln
M2

i

µ2
+

m2
i − M2

i + s

2s
ln

m2
i

M2
i

+

+
q̄i√
s

[

ln(s − (M2
i − m2

i ) + 2q̄i

√
s)

+ ln(s + (M2
i − m2

i ) + 2q̄i

√
s)

− ln(−s + (M2
i − m2

i ) + 2q̄i

√
s)

− ln(−s − (M2
i − m2

i ) + 2q̄i

√
s)

]}

, (23)

where q̄i is the 3-momentum of the meson or baryon in
the center of mass frame, µ is the scale of dimensional
regularization and ai(µ) are subtraction constants, which
are determined by a fit to the S11 and S31 partial waves
of πN scattering [17]. Once these constants are fixed to
the πN scattering data, the amplitudes involving pho-
tons can be predicted without introducing any new free
parameters.

It should be emphasized that the subtraction constants
ai(µ) are different for different channels i in the model
of [17]. This is unlike the case of KN scattering and the
Λ(1405) resonance, where all the subtraction constants
in the different channels are approximately equal and of
natural size according to Ref. [5]. The need for different
subtraction constants in the case of πN scattering and
the N∗(1535) resonance has been interpreted recently
[39] as a clear indication that the N∗(1535) contains a
mixture of a genuine quark state apart from the meson
baryon components. This conclusion has been reached by
following an alternative method in which the subtraction
constants have been chosen of natural order, and approx-
imately equal, and a CDD pole is included which would
give us an indication that extra components to the meson
baryon ones are needed in the N∗(1535) wave function.
The study of Ref. [39] clearly indicates that the effect of
the CDD pole is negligible for the Λ(1405) resonance but
relevant for the the case of the N∗(1535). We shall see
that our approach, based on the meson baryon compo-
nents exclusively, provides a fair description of data, but
some remaining discrepancies indirectly hint to the need
of extra components in the wave function.

The resulting amplitudes T ij from Eq. (19) can be an-
alytically continued to the complex plane of the scatter-
ing energy s1/2. The amplitude has a pole in the complex
plane that is identified with the resonance, and the cou-
pling strengths gi of the resonance to the meson-baryon
channels is determined by the residues of the pole:

T ij
N∗(

√
s) =

gigj√
s − MR + iΓR/2

+ T ij
BG (24)

where
√

s is the c.m. energy of the meson-baryon system

TABLE I: Complex coupling constants gi of n∗ to the meson-
baryon channels.

π−p π0n ηn

0.557 + 0.325i −0.387 − 0.238i −1.45 + 0.435i

K+Σ− K0Σ0 K0Λ

2.20 − 0.171i −1.56 + 0.115i 1.39 − 0.0825i

TABLE II: Coupling constants gi of p∗ to the meson-baryon
channels.

π0p π+n ηp

0.397 + 0.222i 0.555 + 0.322i −1.47 + 0.432i

K+Σ0 K0Σ+ K+Λ

1.56 − 0.133i 2.21 − 0.183i 1.37 − 0.100i

and T ij
BG is an amplitude for the nonresonant contribu-

tions. The pole positions of the resonance are obtained
as

√
s = 1537− 37i [ MeV] (25)

for the n∗ (neutral charge) and
√

s = 1532− 37i [ MeV] (26)

for the p∗ (+1 charge). The values of the coupling con-
stants are listed in Table I. The coupling constants gi

characterize the structure of the N∗. The empirical evi-
dence of larger coupling of the N(1535) to ηN than that
to πN is reproduced in this model. In addition, the
couplings to the ΣK and ΛK channels are also large.
This implies that the N(1535) has large components of
strangeness.

In the meson-baryon picture of the N(1535) resonance,
the photoproduction of the resonance from the nucleon
is formulated through the photon couplings to the me-
son and baryon components of the N∗(1535). Photon
couplings and gauge invariance in the case of chiral uni-
tary amplitudes are discussed in Ref.[40, 41, 42]. Here,
we follow an approach similar to the one developed in
Refs.[23, 24, 25] for real photons, extending it to virtual
ones. Feynman diagrams to the transition form factors
at one-loop level are shown in Fig. 2. In the loops, all
possible octet mesons and baryons contribute, namely,
π−p, π0n, ηn, K+Σ−, K0Σ0, K0Λ for the neutron reso-
nance (neutral charge) and π0p, π+n, ηp, K+Σ0, K0Σ+,
K+Λ for the proton resonance (+1 charge). We sum up
all the contributions to the transition amplitudes. In dia-
grams (a) and (b), the photon attaches to the meson and
baryon in the loop, respectively. Diagram (c) has the
Kroll-Ruderman coupling which is the contact interac-
tion of the photon, meson and baryon. Diagrams (d) and
(e) have to be taken into account to keep gauge invari-
ance. It seems that these diagrams contain a forbidden
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k

P

q

(a) (b) (c)

(d) (e)

FIG. 2: Feynman diagrams for the transition form factor of
N(1535) at one loop level. The solid, dashed, wavy and dou-
ble lines denote octet baryons, mesons, photon and N(1535),
respectively.

transition from the 1/2+ state of the proton to the 1/2−

state of the N(1535), but negative energy propagation of
the intermediate baryons in these diagrams is possible,
having the opposite parity to the positive energy prop-
agation. The positive energy part in motion also mixes
different parity states through the different partial waves.

We calculate the transition amplitudes both in a non
relativistic and relativistic formulations. The momentum
of the baryon is small enough to describe the transition
amplitudes in nonrelativistic formulation. In addition,
as we have already mentioned above, in the construc-
tion of the N(1535) in the meson-baryon scattering [17],
we have used the nonrelativistic formulation in the ele-
mentary vertex and the baryon propagators as seen in
Eqs. (20) and (23). Therefore, to keep consistency of the
calculation of the photon couplings with the construc-
tion of the N∗ resonance, the nonrelativistic calculation
is preferable. One should mention that the fact, that
one fits subtraction constants to data, largely washes out
relativistic effects from the use of Eq.(21) or (23) in the
G function in a fair range of energies around the fitted
point. Nevertheless, it is somewhat complicated to prove
gauge invariance in the nonrelativistic formalism, since
we need to take into account all the possible diagrams in-
cluding negative energy contributions, which are referred
to as Z-diagrams. To avoid this complication, we will
also perform the calculation of the amplitudes in rela-
tivistic formulation, in which the negative energy contri-
butions are automatically counted without introducing
the Z-diagrams, and we shall show that the relativistic
calculation is exactly gauge invariant. This guarantees
that each term in the 1/M expansion is gauge invariant.
Exploiting this fact, in the nonrelativistic framework we
calculate diagrams for leading amplitudes relying upon
gauge invariance and show that the next-to-leading terms
are relatively small.

The basic interactions of the mesons and baryons are

given by the following chiral Lagrangian:

LMBB = − D√
2f

Tr
[

B̄γµγ5{∂µΦ, B}
]

− F√
2f

Tr
[

B̄γµγ5[∂
µΦ, B]

]

(27)

with the meson and baryon fields, Φ and B, defined by

Φ =









1√
2
π0 + 1√

6
η π+ K+

π− − 1√
2
π0 + 1√

6
η K0

K− K̄0 − 2√
6
η









(28)

B =









1√
2
Σ0 + 1√

6
Λ Σ+ p

Σ− − 1√
2
Σ0 + 1√

6
Λ n

Ξ− Ξ0 − 2√
6
Λ









. (29)

The MBB couplings from these Lagrangian are given
by gi

A/(2f) with the corresponding axial vector coupling
gi

A and the meson decay constant f . The axial vector
couplings are given in terms of the D and F parameters in
the Lagrangian (27) as listed in Table III. For the meson
decay constant, we use f = 93 MeV for all channels in
our calculation. The values of D and F for the axial
vector couplings are taken from Ref.[43] as

D = 0.85 ± 0.06 , F = 0.52 ± 0.04 . (30)

These values are determined by the experimental data
of the hyperon axial vector couplings, neglecting higher-
order corrections. The photon couplings to mesons and
baryons are given by the gauge couplings:

LγB = −eTr
[

B̄γµ[Qch, B]
]

Aµ (31)

LγM = ieTr [∂µΦ[Qch, Φ]]Aµ (32)

with the charge matrix Qch = diag(2
3 ,− 1

3 ,− 1
3 ). The

Kroll-Ruderman terms, the γMBB couplings, are ob-
tained by replacing the derivative acting on the me-
son fields, ∂µΦ, with the covariant derivative DµΦ =
∂µΦ+ ieAµ[Qch, Φ] in the interaction Lagrangian (27) to
realize the gauge invariance. The Kroll-Ruderman terms
are proportional to the meson charge QM . For the cou-
plings of the meson-baryon to the N∗ resonance, we take
a Lorentz scalar form representing the s-wave nature and
the coupling strengths are taken from the chiral unitary
approach as given in Tables I, II.

B. Nonrelativistic formulation

In the nonrelativistic formulation, the leading terms of
the 1/M expansions are the diagrams (a) and (c) in Fig.2.
Diagram (b) is found to be of next-to-leading order due to
the 1/M factor in the γBB coupling. In the CM frame of
the N∗, which we take for the nonrelativistic calculation,
diagram (d) vanishes, since there is a direct transition
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TABLE III: The axial vector coupling gi
A for each channel.

The values of D and F are given in Eq. (30).

channel npπ− nnπ0 nnη

gi
A

√
2(D + F ) −D − F 1√

3
(−D + 3F )

nΣ−K+ nΣ0K0 nΛK0

√
2(D − F ) −D + F − 1√

3
(D + 3F )

channel ppπ0 pnπ− ppη

gi
A D + F

√
2(D + F ) 1√

3
(−D + 3F )

pΣ0K+ pΣ+K0 pΛK+

D − F
√

2(D − F ) − 1√
3
(D + 3F )

p

i2Mū(p)u(p)

p2 − M2 + iǫ p

i

p2 − m2 + iǫ

p

p′

ǫ

− i
QB

2M
(p + p′) · ǫ p

p′

ǫ

− iQM (p + p′) · ǫ

k
gi

A

2f
k · σ

ǫ

− QM

gi

A

2f
ǫ · σ

N∗

− igi

N∗

FIG. 3: Nonrelativistic Feynman rules for the propagator and
the elementary vertices. The solid, dashed, wavy and double
lines denote octet baryons, mesons, photon and N(1535), re-
spectively. M and m denote the baryon and meson masses,
respectively. QB and QM are the charges of the baryon and
meson.

of 1/2+ to 1/2−. Diagram (e) has some contribution in
this frame, but it is also found to be of next-to-leading
order, since the contribution to diagram (e) is confirmed
to vanish in the large M limit. Indeed, if one neglects the
kinetic energy term of the baryon propagators in the loop
(~p 2/2M), the loop function vanishes. It also vanishes in
the rest frame of the nucleon since it again involves a
1/2+ to 1/2− transition.

We will obtain each component of the diagram (a) and
(c) in the decomposition in terms of the Lorentz structure

given in Eq. (14). Since the helicity amplitudes can be
expressed by the MNR

2 and MNR
3 in Eqs. (15) and (16),

we will calculate only these two amplitudes. The ampli-
tudes MNR

2 and MNR
3 remain finite even with one loop

integration. In fact, MNR
1 does have divergence in the

loop calculation, which should cancel with divergences
coming from the other diagrams thanks to gauge invari-
ance. Here we do not confirm the cancellation of the di-
vergences, since we later show the complete cancellation
in the relativistic formulation.

The Feynman rules for the nonrelativistic couplings are
summarized in Fig. 3. In the figure, ǫµ denotes the pho-
ton polarization, and σ is a Lorentz covariant form of the
spin matrix, σµ = (0, ~σ). gi

A stands for the axial vector
coupling constants of the baryons to the corresponding
meson. The values of gi

A for each channel are given in
Table III. gi

N∗ is the coupling strength of the N∗ to the
meson-baryon channel i. The values of gi

N∗ are listed in
Table I and II. For the baryon propagator we use the
covariant form from Eq. (22). The γBB coupling is used
for the calculation of diagram (b), which is not taken
into account in our final result of the nonrelativistic cal-
culation. But in order to confirm that sub-leading terms
from the 1/M expansion are negligibly small, we have
calculated the diagram (b) in the nonrelativistic calcu-
lation. The γBB vertex is obtained by a nonrelativistic
reduction of the interaction Lagrangian (31) as

− iQBūγ · ǫu → −iQBχ†
[

ǫ0 − ~ǫ · (~p + ~p ′)

2M

]

χ (33)

≃ −iQBχ†
[

ǫ · (p + p ′)

2M

]

χ (34)

where we have used the fact that the baryon kinetic en-
ergies are small in the nonrelativistic kinematics, p0 ≃
p0′ ≃ M , in the last expression. In Eqs. (33) and (34)
we have neglected the magnetic term that behaves like

(~σ×~k)/2M which has one power less in the loop variable.
In Sec. VB, we shall estimate the contributions from the
convection current and the magnetic terms. In Eqs. (33)
and (34), QB is the baryon charge such that it is e for
the proton with e2/(4π) = α ≃ 1/137.

Let us start with diagram (a). Applying the Feynman
rules shown in Fig.3, the amplitude (−it = J · ǫ) for
channel i is calculated as

− itia =

∫

d4q

(2π)4
(−igi

N∗)
i2Mi

(P − q)2 − M2
i + iǫ

(

gi
A

2f

)

(q − k) · σ i

q2 − m2
i + iǫ

(−iQM )(2q − k) · ǫ i

(q − k)2 − m2
i + iǫ

= iQMAi

∫

d4q

(2π)4
(q − k) · σ (2q − k) · ǫ

((P − q)2 − M2
i + iǫ)(q2 − m2

i + iǫ)((q − k)2 − m2
i + iǫ)

(35)

where the coefficient Ai is defined by

Ai =
gi

Agi
N∗Mi

f
. (36)

We use the Feynman parameterization of the integral

1

abc
= 2

∫ 1

0

dx

∫ x

0

dy
1

(a + (b − a)x + (c − b)y)
3 . (37)
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Then, using the integral variable q′, such that q = q′ +
P (1 − x) + ky and renaming q′ as q, we eliminate the

linear terms of q in the denominator and obtain

− itia = iQMAi2

∫ 1

0

dx

∫ x

0

dy

∫

d4q

(2π)4
(q + (y − 1)k) · σ (2q + (2y − 1)k + 2(1 − x)P ) · ǫ

(q2 − Si
a + iǫ)

3 , (38)

where we use P ·σ = 0 in the CM frame and Si
a is defined

by

Si
a = 2P · k(1 − x)y − P 2x(1 − x) − k2y(1 − y)

+M2
i (1 − x) + m2

i x . (39)

In Eq. (38), even powers of q give contributions after per-
forming the integration. The qµqν term in the numera-
tor which contributes to the MNR

1 is divergent, while the
terms with 0th power of q remain finite and contribute
to the MNR

2 and MNR
3 amplitudes. Finally after the in-

tegration, we obtain the MNR
2 and MNR

3 components for
the channel i as

Mi(NR)
2a =

QMAi

(4π)2

∫ 1

0

dx

∫ x

0

dy
2(y − 1)(1 − x)

Si
a − iǫ

(40)

Mi(NR)
3a =

QMAi

(4π)2

∫ 1

0

dx

∫ x

0

dy
(y − 1)(2y − 1)

Si
a − iǫ

(41)

where we have used
∫

d4q

(2π)4
1

(q2 − S)3
= − i

(4π)2
1

2

(

1

S

)

. (42)

In a similar way we evaluate the contribution from di-
agram (b) which, as we mentioned, is of order 1/M of
the previous ones and we obtain

Mi(NR)
2b = −QBAi

(4π)2

∫ 1

0

dx

∫ x

0

dy
2y(1 − x)

Si
b − iǫ

Mi(NR)
3b = −QBAi

(4π)2

∫ 1

0

dx

∫ x

0

dy
y(2y − 1)

Si
b − iǫ

(43)

with

Si
b = 2P · k(1 − x)y − P 2x(1 − x) − k2y(1 − y)

+m2
i (1 − x) + M2

i x . (44)

For the diagram (c), the amplitude has only the MNR
1

component as seen in

− itic = (−igi
N∗)

∫

d4q

(2π)4
i2M

(P − q)2 − M2 + iǫ
(−QM

gi
A

2f
)ǫ · σ i

q2 − m2 + iǫ

= iQMAi

∫

d4q

(2π)4
ǫ · σ

((P − q)2 − M2 + iǫ)(q2 − m2 + iǫ)
. (45)

Hence we do not need to perform further calculation for
this amplitude.

Finally the helicity amplitudes in the nonrelativistic
formulation are obtained by summing up all the chan-
nels and substituting the amplitudes (40) and (41) in
Eqs. (15) and (16).

C. Relativistic formulation

In this subsection, we calculate the transition ampli-
tudes in relativistic formulation at one loop level. One of
our purposes for the relativistic calculation is to confirm

gauge invariance of our formulation. Without the 1/M
expansion, which has been performed in the nonrelativis-
tic calculation, all the diagrams shown in Fig.2 should be
calculated to make the amplitudes gauge-invariant at one
loop level. Each diagram has divergence from the loop
integral. It will be found that the divergence appears
only in the M1 term. After testing gauge invariance by
summing up all the diagrams, the amplitudes should be
finite without any regularization, since gauge invariance
assures cancellation of the divergences coming from each
diagram. In order to check this cancellation of the diver-
gences, we calculate the M1 terms from all the diagrams.
To isolate the divergent parts of the amplitudes, we ex-
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p

i(p/ + M)

p2 − M2 + iǫ p

i

p2 − m2 + iǫ

p

p′

ǫ

− iQBγ · ǫ p

p′

ǫ

− iQM (p + p′) · ǫ

k
gi

A

2f
k/γ5

ǫ

− QM

gi

A

2f
γ · ǫγ5

N∗

− igi

N∗ p

p′

ǫ

− iQEγ · ǫ

FIG. 4: Same as Fig.3 for the relativistic formulation. QE

stands for the external N∗ charge.

ploit dimensional regularization, which respects gauge-
invariance. The calculations are done in d-dimension,
and then we expand d around d = 4 in terms of ε given
by d = 4 − 2ε. We also calculate the finite M2 and M3

to obtain the helicity amplitudes in the relativistic for-
mulation. We will find again that only diagrams (a) and
(b) contribute to the M1 and M2 amplitudes.

Let us start with diagram (a). Using the Feynman
rules shown in Fig.4, the amplitude of the diagram (a)
for the channel i is given by

− iT i
a =

∫

ddq

(2π)d
(−igi) i

P/ − q/ + Mi

(P − q)2 − M2
i + iǫ

(

gi
A

2f

)

(q/ − k/)γ5 i
1

(q − k)2 − m2
i + iǫ

i
1

q2 − m2
i + iǫ

(−iQM )(2q − k) · ǫ

= iQMBi

∫

ddq

(2π)d

(P/ − q/ + Mi)(q/ − k/)γ5(2q − k) · ǫ
((P − q)2 − M2

i )((q − k)2 − m2
i )(q

2 − m2
i )

(46)

where we define Bi = (gi
Agi

N∗/2f). We can write ex-
pressions for all the other diagrams and then an explicit
calculation shows that by substituting ǫµ by kµ one ob-
tains an exact cancellation of the terms, hence passing
the ordinary test of gauge invariance. The coupling of
the photon to all lines and vertices in the meson baryon
loop diagrams guarantees gauge invariance, as is com-
monly known [41, 44].

We now come back to the amplitude Ta of Eq. (46) and,
using the Feynman parameter integral (37), shifting the
integral variable q to q = q′+P (1−x)+ky and renaming
q′ by q, we find the integrand written as a function of q2

as

− iT i
a = iQMBi2

∫ 1

0

dx

∫ x

0

dy

∫

ddq

(2π)d

1
2q2Ca + Da

(q2 − Si
a + iǫ)

3

(47)

where Si
a is defined in Eq. (39) and the coefficients Ca

and Da are defined in terms of the Lorentz components
by

Ca = Ca1ǫ/γ5 + Ca2P · ǫγ5 + Ca3k · ǫγ5 (48)

Da = Da1ǫ/γ5 + Da2P · ǫγ5 + Da3k · ǫγ5 . (49)

After some algebra, noting that gµ
µ = d = 4 − 2ε in the

d-dimensional calculation, the coefficients Cai and Dai

are found as

Ci
a1 = (MN + Mi)(1 + ε

2 ) (50)

Ci
a2 = 2(3x − 2) + xε (51)

Ci
a3 = 2(1 − 3y) − yε (52)

and

Di
a1 = 0 (53)

Di
a2 = 2(1 − x)

[

(x − y)yk2 − x(x − y)M2
N∗

+y(1 − x)M2
N + (y − 1)MiMN

−(x − y)MN∗(MN + Mi)] (54)

Di
a3 = (2y − 1)

[

(x − y)yk2 − x(x − y)M2
N∗

+y(1 − x)M2
N + (y − 1)MiMN

−(x − y)MN∗(MN + Mi)] (55)

After the q integration, the divergent term is found only
in the M1 amplitude as

ξi
a = −QMBi

(4π)2
1

ε

MN + Mi

2
ǫ/γ5 (56)

The divergent terms in the M2 and M3 vanish due to
∫ 1

0 dx
∫ x

0 dy(3x− 2) = 0 and
∫ 1

0 dx
∫ x

0 dy(1− 3y) = 0. To
calculate the divergent term we have used the following
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formula:

∫

ddq

(2π)d

q2

(q2 − S)3
=

i

(4π)2−ǫ

4 − 2ǫ

2

Γ(ǫ)

Γ(3)

(

1

S

)ǫ

=
i

(4π)2

(

1

ǫ
− log S − 1

2
− γ + log 4π + O(ǫ)

)

(57)

The finite parts in the M2 and M3 terms are obtained
as

Mi
2a =

QMBi

(4π)2

∫ 1

0

dx

∫ x

0

dy

[

2(3x − 2) logSi
a − x +

Da2

Si
a

]

(58)

Mi
3a =

QMBi

(4π)2

∫ 1

0

dx

∫ x

0

dy

[

2(1 − 3y) log Si
a + y +

Da3

Si
a

]

(59)

where the first two terms in the integrands are from the finite parts of the divergent integrals and the last terms come
from the finite integrals.

Next, let us move to the calculation of the diagram (b). In a similar way, we obtain the finite M2 and M3

amplitudes as

Mi
2b =

QBBi

(4π)2

∫ 1

0

dx

∫ x

0

dy

[

2(3y − 1) log Si
b − y + 1 +

Db3

Si
b

]

(60)

Mi
3b =

QBBi

(4π)2

∫ 1

0

dx

∫ x

0

dy

[

−2(3y − 1) logSi
b + y − 1 +

Db3

Si
b

]

(61)

with Sb defined in Eq. (44) and

Di
b2 = 2(y(1 − y)(x − y)k2 − y(1 − x)(x − y)M2

N∗ − y2(1 − x)M2
N

+xyMNMi + (x − y)((1 − x)MN∗ + Mi)(MN + Mi)) (62)

Di
b3 = 2(−y(1 − y)(x − y)k2 + y(1 − x)(x − y)M2

N∗ + y2(1 − x)M2
N

−xyMNMi + y(x + y)(MN + Mi)(MN∗ + MN )) (63)

We have the divergent term in the M1 term as

ξi
b = −QBBi

(4π)2
1

ε

MN − MN∗ − Mi

2
ǫ/γ5 . (64)

The amplitudes for diagrams (c), (d) and (e) have only
the M1 components, which we do not use for the transi-
tion amplitudes. Only the divergent terms are necessary
for the present arguments. The divergent terms are found

ξi
c =

QMBi

(4π)2
1

ε

MN∗ + 2Mi

2
ǫ/γ5 (65)

ξi
d = −QEBi

(4π)2
1

ε

(M2
N∗ − 2M2

i − 2m2
i + MN∗Mi)

2(MN + MN∗)
ǫ/γ5 (66)

ξi
e =

QEBi

(4π)2
1

ε

(M2
N − 2M2

i − 2m2
i − MNMi)

2(MN∗ + MN )
ǫ/γ5 . (67)

At the end, collecting all the divergent terms of dia-
grams (a) to (e), we find that the divergent terms cancel

according to

e
∑

A=a

ξi
A =

−
(

Biǫ/γ5

(4π)2

)

(QE − QB − QM )
MN∗ − MN + Mi

2

1

ε

= 0 (68)

due to the charge conservation QE = QB + QM . The
cancellation takes place in each channel of the loop.

IV. RESULTS

In this section we show our results for the helicity am-
plitudes, A1/2 and S1/2, of the N(1535) dynamically gen-
erated in meson-baryon scattering. In Fig.5, we show our
result for the A1/2 amplitude of the proton resonance cal-
culated in the nonrelativistic formulation [cf. Eqs. (15,
40, 41)] with the CM energy W = 1535 MeV. In the
present calculation, we multiply the amplitudes obtained
in the former section by the electromagnetic form factors
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FIG. 5: Modulus of the A1/2 helicity amplitude for the pro-

ton resonance as a function of Q2 with W = 1535 MeV cal-
culated in the nonrelativistic formulation. The solid (dotted)
line shows the Ap

1/2
amplitude with (without) the form fac-

tor of the meson inside the loops given in Eq. (69). Marks
with error bars are experimental data normalized by the N∗

full width ΓN∗ = 150 MeV and the N∗ → ηN branching
ratio bη = 0.55. Filled triangles and circles are results of
the CLAS collaboration taken from Refs.[37] and [45], respec-
tively. Open circles show results of Refs.[46, 47, 48, 49]. The
values are taken from Ref.[46].

of the mesons or baryons to which the photon couples.
The form factors of the meson and baryons components
of the resonance, together with the intrinsic Q2 structure
of the loops are responsible here for the Q2 dependence
of the helicity transition form factors. For the mesons
and baryons form factors we take monolope form factors
consistent with the values for the radii of the mesons. We
take

F (Q2) =
Λ2

Λ2 + Q2
(69)

with

Λπ = 0.727 [GeV] (70)

ΛK = 0.828 [GeV] (71)

which correspond to 〈r2〉 = 0.44 fm2 and 〈r2〉 = 0.34 fm2

for the pion and the kaon respectively [50, 51, 52]. For
the baryon form factor, we take the same form as for the
corresponding meson to keep gauge invariance.

In Fig.5, we show our result for the Ap
1/2 amplitude

of the proton resonance calculated in the nonrelativis-
tic formulation together with various experimental data.
The CM energy is taken as W = 1535 MeV. Let us
first discuss the Q2 dependence of the helicity ampli-
tude. The solid line denotes the modulus of the cal-
culated amplitude multiplied by the meson form factor
given in Eq. (69), while the dotted line shows the results
without the meson form factor, which means that the Q2

dependence comes only from the loop calculation per-
formed in the previous section. In this case, the helicity
amplitude increases as Q2 increases. The inclusion of the
form factors introduces a decreasing function of Q2 which
leads to a Q2 dependence of the helicity amplitude in fair
agreement with the experimental observation, although
it falls faster than experiment since at Q2 = 0 we need a
renormalization factor of 1.45 to reach the data while at
Q2 = 1 GeV2 we need a factor of 2.15.

The absolute magnitude of our helicity amplitude looks
underestimated if one compares our result directly with
the experimental data shown in the figure. But it should
be noted that extraction of the helicity amplitude from
the experimental observables of the γp → ηp reaction is
performed by using the following formula [45, 46, 53, 54]:

A1/2(Q
2) =

√

WΓN∗

2mpbη
σ(W, Q2) (72)

with a N∗ full width ΓN∗ , a N∗ → ηN branching ratio
bη, a resonance part of the total cross section σ(W, Q2),
the CM energy W and the proton mass mp. To obtain
this relation, one assumes that the cross section is domi-
nated by the single N(1535) resonance and that the S1/2

amplitude is small. For the experimental data shown in
Fig.5, the amplitudes are normalized by ΓN∗ = 150 MeV
and bη = 0.55 [45], which are obtained in a global fit of
the cross section with the Breit-Wigner amplitude. On
the other hand, the N∗ width obtained in the present ap-
proach is ΓN∗ ≃ 74 MeV for the p∗ as obtained from the
pole position shown in Eq. (26), in which the half width
is given by the imaginary part. The branching ratio bη

in this approach has been reported as bη ≃ 70% [17].
This normalization difference would give us a factor 1.6
reduction in the normalization with respect to the data
shown in Fig.5. Similarly, should one use in the experi-
mental analysis a N(1535) width of the order of 90 MeV
as found at BES [57] or the 100 MeV quoted in the last
MAID2007 analysis [58], the results obtained would be in
much better agreement with the theoretical results. We
will come back to the discussion on the normalization
later on when discussing the photoproduction cross sec-
tion in the present approach. Let us note that the value
obtained here at Q2 = 0 of Ap

1/2 = 64.88·10−3 GeV−1/2 is

in excellent agreement with the most recent MAID 2007

analysis reported in Ref.[58] of 66 · 10−3 GeV−1/2.
The Sp

1/2 amplitude calculated in the nonrelativistic

formulation is plotted in Fig.6 together with experimen-
tal data. Although the modulus of S1/2 is plotted in the
figure, the ratio of S1/2 to A1/2 is nearly real and negative
in agreement with experiment, where an implicit phase
convention is taken that renders Ap

1/2 real and positive.

Here we also show the effect of the meson form factor.
As mentioned before, diagram (b), in which the pho-

ton couples to the baryon in the loop, gives sub-leading
contributions in the 1/M expansion. This can be seen
in Figs.7, 8, 9 and 10. In these figures, the amplitudes
with diagram (a) only (solid line) are almost equivalent
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to those with both diagrams (a) and (b) (dashed line),
and the contributions from diagram (b) (dotted line) are
smaller, in the present case, than typical corrections of
20-30 percent for the 1/M terms. Therefore, the helic-
ity amplitudes in the nonrelativistic formulation around
these energies are basically given by diagram (a). We also
plot the pion and kaon contributions separately. The fig-
ure shows that the pion contribution (dot-dashed line) is
comparable with the kaon contribution (two-dotted line).
This implies that the strange component is important in
the structure of the N(1535).

Next, we report on results for the helicity amplitudes
of the neutron. The n/p ratios of the helicity amplitudes,
An

1/2/A
p
1/2 and Sn

1/2/Sp
1/2, are plotted in Fig.11 as a func-

tion of Q2. For a real photon at Q2 = 0 we obtain the
ratio −0.79 + 0.11i, which is almost a real value, and its
modulus 0.80. A multipole analysis [59] using the inclu-
sive experimental data of Ref.[46] gives the negative sign
value −0.84±0.15 for An

1/2/A
p
1/2. Values of |An

1/2|/|A
p
1/2|

which are extracted from the ratio of the eta photopro-
duction cross sections, σn/σp, are reported as 0.82±0.04
in Ref.[60] and 0.819 ± 0.018 in Ref.[61]. The result ob-
tained in our approach agrees with the experimental data
in both sign and magnitude. This comparison is free from
the normalization uncertainty of Eq. (72).

The values of the A1/2 helicity amplitude at Q2 = 0 are
summarized in Table IV. The phases of the amplitudes
are set so that the A1/2 helicity amplitude for p∗ has

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0  0.5  1  1.5  2

|S
1/

2|
 1

0-3
 [

G
eV

-1
/2

]

Q2 [GeV2]

|Sp
1/2|

Present calc.
w/o Form Factor

FIG. 6: Modulus of the S1/2 helicity amplitude for the proton

resonance as a function of Q2 with W = 1535 MeV. The solid
(dotted) line shows the Sp

1/2
amplitude with (without) the

form factor of the meson inside the loops given in Eq. (69).
The sign of this amplitude relative to Ap

1/2
is negative, both

in experiment and theory. Solid triangles up (down) show the
results from a combined analysis of π (η) electroproduction
data [27, 38]. The solid squares are from single-Q2 fits from
Ref. [55]. The empty triangles up are taken from Ref. [56].
The other data (empty circle and empty triangle down) are
from Ref. [27].
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FIG. 7: (Color Online) Ap
1/2

helicity amplitudes for the pro-

ton calculated in the nonrelativistic formulation as a function
of Q2. The upper, middle and lower panels are respectively
the modulus, real parts and imaginary parts of the ampli-
tudes. The phases of the amplitudes are set so that the Ap

1/2

amplitude has a real and positive value at Q2 = 0. The
solid lines show the calculation with diagram (a) (meson pole
term). The dashed and dotted lines stand for the calculations
of sum of diagrams (a) and (b) and diagram (b) only, respec-
tively. The dot-dashed and two-dotted lines denote the pion
and kaon contribution, respectively.

a real and positive value at Q2 = 0. The ratios of the
helicity amplitudes to that of p∗ are also shown in the
table. We also show the helicity amplitudes in the isospin
decomposition:

AIS
1/2 =

1

2

(

Ap
1/2 + An

1/2

)

(73)

AIV
1/2 =

1

2

(

Ap
1/2 − An

1/2

)

. (74)

In the nonrelativistic calculation we find that the value
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FIG. 8: (Color Online) Sp
1/2

helicity amplitudes for the proton

calculated in the nonrelativistic formulation as a function of
Q2. Same as Fig.7.

of the isoscalar component is much smaller than that
of the isovector, which is consistent with experimental
observation. The ratio of the isoscalar component to the
p∗ amplitude is |AIS

1/2/A
p
1/2| = 0.12 in our calculation,

while in experiments it is found to be AIS
1/2/A

p
1/2 = 0.09±

0.02 in Ref.[60] and 0.09 ± 0.01 in Ref.[61].

It is also interesting to compare the values of our p∗

and n∗ helicity amplitudes A1/2 at Q2 = 0 with those

of the PDG [62]. We obtain 0.065 GeV−1/2 and −0.052
GeV−1/2 for the p∗ and n∗, respectively, versus the val-
ues quoted in the PDG, which include uncertainties from
the compilation of data of several analyses, 0.090±0.030
GeV−1/2 for the p∗ and −0.046± 0.027 GeV−1/2 for the
n∗. As one can see, the agreement, within uncertainties,
is good.
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FIG. 9: (Color Online) An
1/2 helicity amplitudes for the neu-

tron calculated in the nonrelativistic formulation as a function
of Q2. The upper, middle and lower panels are respectively
the modules, real parts and imaginary parts of the amplitudes.
The phases of the amplitudes are set so that the Ap

1/2
ampli-

tude has a real and positive value at Q2 = 0. The solid shows
the calculation with the diagram (a) (meson pole term). The
dashed and dotted lines stands for the calculations of sum of
diagrams (a) and (b) and diagram (b) only, respectively. The
dot-dashed and two-dotted lines denote the pion and kaon
contribution, respectively.

V. DISCUSSION

A. Photoproduction of the eta meson

In this section, we investigate the photoproduction of
the eta meson close to threshold energies in order to dis-
cuss the normalization of the helicity amplitude in the
present approach. In the calculation of the helicity am-
plitude in Sec. III B, we have separated out the N(1535)
resonance contributions from the scattering amplitudes
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FIG. 10: (Color Online) Sn
1/2 helicity amplitudes for the neu-

tron calculated in the nonrelativistic formulation as a function
of Q2. Same as Fig.9.

in which the N(1535) is dynamically generated, by set-
ting the CM energy as the resonance energy and multi-
plying the coupling strengths of the N(1535) resonance
to each channel, gi

N∗ , by the loop functions. For our pur-
pose of calculating the η photoproduction cross section,
we replace the coupling strengths, gi

N∗ , by the MB → ηp

scattering amplitudes, t
(i)
ηp , obtained by the chiral unitary

approach [17], where i denotes the initial meson baryon
channel. The evaluation of these amplitudes is sketched
here in section III and done in detail in Ref.[17].

Following the above prescription for the eta photopro-
duction amplitudes, we obtain the cross section of the
photoproduction as

σ =
M2

4π s

kη

kγ
|tγp→ηp|2 (75)

where kγ (kη) is the photon (η) three-momentum in the
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FIG. 11: The n/p ratios of the helicity amplitudes with W =
1535 MeV. The upper and lower panels show the np ratios of
the A1/2 and S1/2 amplitudes, respectively. The open square
shows the value given in Ref.[59].

Nonrelativistic calculation

A1/2 |A1/2| A1/2/A
p
1/2

|A1/2/A
p
1/2

|
p∗ 64.88 64.88 — —

n∗ −51.54 + 7.21i 52.04 −0.79 + 0.11i 0.80

IV 58.21 − 3.61i 58.32 0.90 − 0.056i 0.90

IS 6.67 + 3.61i 7.59 0.10 + 0.056i 0.12

Relativistic calculation

A1/2 |A1/2| A1/2/A
p
1/2

|A1/2/A
p
1/2

|
p∗ 46.31 46.31 — —

n∗ −55.24 + 28.95i 62.36 −1.19 + 0.63i 1.35

IV 50.78 − 14.47i 52.80 1.10 − 0.31i 1.14

IS −4.46 + 14.47i 15.15 −0.10 − 0.31i 0.33

TABLE IV: Values of the A1/2 helicity amplitudes at Q2 = 0

in units of 10−3GeV−1/2 in the nonrelativistic (upper panel)
and relativistic (lower panel) calculations. The ratios to the
Ap

1/2
are also shown. The phases of the amplitudes are set

so that the Ap
1/2

amplitude has a real and positive value at

Q2 = 0. IV and IS stand for isovector and isoscalar.

CM frame and the T -matrix is given by

|tγp→ηp|2 =
8m2

p + 8EE′

16m2
p

∣

∣

∣

∣

∣

6
∑

i=1

Mi(NR)
1

t
(i)
ηp

gi
N∗

∣

∣

∣

∣

∣

2

(76)

where E (E′) are the energies of the incoming (outgoing)
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FIG. 12: Cross section for photoproduction of the η using the
nonrelativistic formalism for the photon loop. Dots: Analysis
from Arndt [63] (SAID data base).

proton in the CM frame. To obtain the Mi(NR)
1 am-

plitude from the Mi(NR)
2 and Mi(NR)

3 amplitudes calcu-
lated in the previous section, we use the gauge invariance
condition given in Eq. (17). Actually, the eta photopro-
duction with a real photon has no contribution from the

Mi(NR)
3 amplitude, hence only one amplitude needs to

be evaluated which we choose to be M2 that shows its
finiteness immediately.

In Fig.12, the total cross section of the present calcu-
lation (solid line) is plotted together with the data from
Arndt [63] (dots). Our result of the eta photoproduction
cross section provides the right strength around the peak
of the N∗(1535) resonance but the width of the peak is
narrower than the experiment as a result of the narrower
widths of the N(1535) resonance obtained by the present
model.

In Fig.13 we show the ratio of the cross sections of η
photoproduction on the neutron over that on the pro-
ton, σn/σp, obtained in the nonrelativistic formulation,
comparing our calculation with experimental data. The
value of the ratio at Elab

γ = 785 MeV which corresponds
to ECM = 1535 MeV is found to be 0.53, which is quite
consistent with the experimental data.

Although we are only concerned with the vicinity of
the N∗(1535) resonance, one cannot overlook the appar-
ent discrepancy of the theory and experiment at photon
energies above 800 MeV as shown in Fig. 13, which is
also shared by the model of Ref. [2]. Only very recently
have we obtained experimental information that brings
a new perspective to these discrepancies. Indeed, in Ref.
[65] the theoretical results of Fig. 13 are taken and folded
with the Fermi motion of the nucleons in the deuteron to
allow a realistic comparison with the experimental data.
In [65] it is shown that the steep rise of the theoretical
curve is softened to a curve in between the one of Fig.
13 and a horizontal line starting from 800 MeV. On the
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FIG. 13: Ratio of cross sections of photoproduction on the
neutron over that on the proton, σn/σp, as a function of the
photon energy Eγ in the laboratory frame. The data are
taken from Ref.[61] for the deuteron target and Ref.[64] for
the Helium target. The dashed line is a theoretical calculation
by Kaiser et al. in Ref.[2].

other hand, recent results from [66] for γn → ηn show a
steady rise starting from Eγ = 900 MeV. These two facts
together would render the apparent discrepancies into a
rough qualitative agreement. Let us mention in this re-
spect that the inclusion of the ππN channel, although
only qualitatively considered as shown in the next sec-
tion, also works in the direction of softening the steep
rise of Fig. 13. In any case, we must admit larger the-
oretical uncertainties at higher energies than around the
resonance region, also including extra terms considered
in Ref. [42] that would become relevant as one moves
away from the resonance pole.

B. Higher order couplings

In the nonrelativistic treatment of the photon loops
from Fig. 2 in Sec. III B, the magnetic couplings of the
photon to the baryons have been neglected as they are of
higher order in the external photon momentum accord-
ing to k/M . The convection part of the γBB coupling
shows a similar p/M suppression, where p is a typical
loop momentum. These higher order terms have been
neglected for the sake of consistency with the hadronic
part of the model: as discussed after Eq. (21), only the
positive energy part of the baryon propagator is taken in
the evaluation of the MB → MB scattering amplitude.
In this section, the effects of the higher order γBB cou-
pling are studied, which can give an idea of theoretical
uncertainties from these terms.
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The photon-baryon coupling is given by

LγBB = −Ψ

(

QBA/ +
κe

2MN
σµν∂µAν

)

Ψ (77)

with σµν = i
2 [γµ, γν ], the baryon charge QB and the

anomalous magnetic moment κ given in units of the nu-
clear magneton µN = e/(2MN). In the nonrelativis-
tic reduction of this interaction, only terms up to order
p/(2M) are considered which leads to the vertex

− it =
iQB F (Q2)

2M
~ǫ (~p + ~p′) +

e GM (Q2)

2MN
~ǫ (~k × ~σ)µB

(78)

where we have supplied the form factor F (Q2) given in
Eq. (69) and the Sachs form factor GM (Q2) = 1/(1 +
Q2/Λ2

M )2, Λ2
M = 0.71 GeV2 and µB is the baryon mag-

netic moments in units of µN from the PDG [62]. We
use common form factors GM for the Σ and Λ.

With the vertex from Eq. (78), diagram (b) from Fig.2
can be calculated. For the convection part, the result has
been already obtained in Eq. (43). The magnetic part of
diagram (b) is given by

t(i)mag = −i e µ
(i)
B

gi
A gi

N∗

2f
~ǫ (~σ × ~k)

∫

d4q

(2π)4
~σ(~P − ~q)

q2 − M2
i

× 2Mi

(q − k)2 − M2
i

1

(P − q)2 − m2
i

. (79)

This expression is finite and not logarithmically divergent
as the convection part of the γBB coupling or diagrams
(a) and (c). The magnetic part is gauge invariant by itself
as the structure of Eq. (79) shows. In Eq. (79), m(M) are
the masses of the meson (baryon) of channel (i), P 2 ≡
s, and gi

N∗ are the coupling strengths to the N(1535)
from Tables I and II. For photoproduction, one obtains
the amplitude T (γN → ηN) by replacing gi

N∗ with the
MB → Nη T -matrix as discussed in Sec.VA, summing
over all channels i. The axial charges gi

A are given in
Table III. We also take into account the magnetic Σ0Λ
transition. We choose a negative µΣ0Λ = −1.61 which
is the prediction of the quark model [67] while only the
modulus can be measured [62]. For the photon loops with
a Σ0Λ transition, we use average masses for the baryons.
For the unknown magnetic moment of the Σ0, we take
µΣ0 = 1

2 (µΣ+ + µΣ−) = 0.65 which is obtained by the
SU(3) argument [68] and also consistent with the quark
model.

Evaluating the loop integral using Feynman parame-
ters we obtain

t(i)mag = −ih(i)
(

~k 2~σ · ~ǫ − ~k · ~σ ~k · ~ǫ
)

(80)

with

h(i) = −eµ
(i)
B

gi
N∗ gi

A Mi

16π2 f

1
∫

0

dx

x
∫

0

dy
y

Si
b − iǫ

. (81)

TABLE V: The 1/M contributions from the baryon pole term

for A1/2(Q
2 = 0) [10−3GeV−1/2]. See text for the different

cases.

Ap
1/2

An
1/2

I 64.7 + 4i −51.9 + 4i

II 67.7 − 2i −42.7 − 5.5i

III 70.0 − 2.7i −39.9 + 4.6i

IV 74.7 −44.5 + 1.9i

where Si
b is defined in Eq. (44) and we used P · σ = 0

in the CM frame. After summing up all channels for the
photon loop, we obtain the contribution to the helicity
amplitudes from the magnetic couplings according to

A1/2
mag = −

√

2πα

qR

√
2~k 2

e

∑

i=1

h(i) (82)

S1/2
mag = 0. (83)

The γBB coupling of diagram (b) from Fig.2 has a con-
vection part and a magnetic part (cf. Eq. (78)), and both
are of order 1/M . Thus, we will treat both parts together
and compare them to the previous results when only the
leading order couplings are considered. The latter ap-
pear in diagrams (a) and (c), while in the nonrelativistic
calculation diagrams (d) and (e) do not contribute.

In order to see the effects of the various 1/M terms,
we have compared them in Tab. V. The phase is chosen
in the way that Ap

1/2(Q
2 = 0), including all 1/M terms,

is real and positive. Case (I) is from diagrams (a) and
(c) of Fig. 2 only, without any γBB couplings. Case (II)
also includes the convection part of the γBB coupling
from diagram (b). Case (III) additionally includes the
magnetic part. Case (IV) includes, on top of the other
contributions, the Σ0Λ transition magnetic part.

From the different contributions, we can see that the
γBB coupling has moderate influence on the results: For
Ap

1/2, the result increases due to the convection part and

the magnetic part. For An
1/2, the various 1/M contribu-

tions lead to a decrease as Table V shows. As a result,
the ratio An

1/2/A
p
1/2 = −0.60 + i 0.03 is smaller than the

value of −0.79 + i 0.11 found in the last section, where
only the leading couplings were included.

In Fig. 14 the ratio of η photoproduction on the neu-
tron over that on the proton is shown. The decrease,
when including the higher order couplings of diagram
(b), reflects the results from Table V, that Ap

1/2 increases

and An
1/2 decreases when including the 1/M corrections.

In the same figure, we show the result when including ad-
ditional ingredients for the rescattering model from [17]
(dotted line). These are the ππN channel in rescattering
as well as a form factor for the MB → MB transitions.
Coupling the photon to these ingredients is beyond the
scope of this work; therefore, they are not included in the
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FIG. 14: (Color online) The ratio σn/σp including the baryon
pole diagram (b) (dashed line), compared to the result with-
out diagram (b) (solid line). Also, the result is shown when
the ππN channel from [17] is included. The data is from Refs.
[61, 64] [see also Ref. [69]].

final results. Including these ingredients in the rescat-
tering part, the ratio drops for higher photon energies,
and this gives an idea of theoretical uncertainties coming
from omitting the ππN channel in the present study. For
other observables discussed in this study, the additional
ingredients from [17] lead only to very minor changes.

For consistency with the approach followed for me-
son baryon scattering, the terms of order 1/M should
be omitted, and the results of the former section should
be used to compare with data. The discussion in this sec-
tion gives us an idea of the uncertainties that one may
have when considering the 1/M terms.

C. Result of the relativistic formulation

Here we briefly discuss our result for the Ap
1/2 ampli-

tude of the p∗ resonance calculated in the relativistic for-
mulation given in Sec.III C. As we have already men-
tioned, the relativistic formulation is less consistent with
the model of the N(1535) resonance generated dynam-
ically in the present approach than the nonrelativistic
formulation. Therefore we rely upon the nonrelativistic
calculation. However, the Q2 dependence could be given
better by the relativistic calculation, particularly if we
go to values of Q2 of the order of 1 GeV2 or above. On
the other hand, in the relativistic formulation we have
found the cancellation of divergences coming from each
diagram. In Fig.15 we show the results for the Ap

1/2 am-

plitude in the relativistic calculation shown by the thick
solid line in comparison with the nonrelativistic calcula-
tion shown by the dashed line. The relativistic result is a
bit below the nonrelativistic calculation. We also plot the
results for the Sp

1/2 amplitude obtained in the relativistic

formulation in Fig. 16. The relativistic calculation gives
a smaller result than the nonrelativistic one, as in the
case of the Ap

1/2 amplitude, but the differences are now

larger. This reflects the fact that the Sp
1/2 amplitude is

more sensitive to small changes of the input and, conse-
quently, one must accept larger theoretical uncertainties
in this amplitude. The dispersion of the data seems to
reflect a similar problem on the experimental side, the
results proving also rather sensitive to the assumptions
made in the different analyses.

Although we prefer the nonrelativistic results of Ap
1/2

at Q2 = 0, as already mentioned, one can take this dif-
ference as a measure of the theoretical uncertainties. At
Q2 = 0 the relativistic result is some 25% below the
non relativistic one. Taking into account 10% of uncer-
tainty in the recent MAID2007 analyis [70] of Ap

1/2 =

66 ± 7 · 10−3GeV−1/2, one finds good agreement of the
theory with the MAID2007 results within uncertainties.

Let us note that in the relativistic calculation the factor
needed to agree with data at Q2 = 0 is 1.9 and at Q2 = 1
GeV2 the factor needed is 2.4. It indicates a faster fall
down than experiment, 25 % lower than exeriment at
Q2 = 1 GeV2 with a curve normalized at Q2 = 0. This
compares with 48 % smaller strength than experiment at
Q2 = 1 GeV2 of the nonrelativistic curve, normalized to
the data at Q2 = 0. This indicates that relativistic effects
play some role at large Q2, as one might think, along
the line of similar findings in relativistic quark models
[31, 35].

We have also calculated the transition amplitudes us-
ing N∗BM couplings with a derivative of the type γµ∂µ

in the relativistic calculation. In this case, we have an
extra momentum in the N∗BM coupling and this mo-
mentum is included in the loop integral. We also have an
extra Kroll-Ruderman contact term. As a consequence,
the cancellation of the divergences is not complete in the
case of Q2 > 0, while, for the real photon, that is Q2 = 0,
the sum of the amplitudes is finite. From the viewpoint
of consistency with the model of the N∗, one should not
use the derivative coupling in the N∗BM vertex. In the
unitarization based on the N/D method, we exploit the
so-called elastic unitarity, in which the interactions V
are evaluated on the mass shell. In the present case,
the momenta in the Weinberg-Tomozawa couplings are
set on the mass shell. Therefore, to maintain consistency
with this procedure, the momentum in the N∗BM should
have the value on the mass shell and should not be in-
cluded in the loop integral. This means that a constant
N∗BM coupling is more consistent with the present N∗

model. In any case, just for illustrative purposes, the
value that we obtain for Ap

1/2 with the off shell deriva-

tive coupling is of the order of 90 · 10−3 GeV−1/2. Our,
preferred, nonrelativistic result lies in between these two
illustrative relativistic results.
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VI. SUMMARY AND CRITICAL

OBSERVATIONS

In this work we have addressed the evaluation of the
electromagnetic helicity form factors for the electropro-
duction of the N∗(1535) resonance considered as a dy-
namically generated resonance. For this purpose the cou-
pling of the photon to the meson baryon components of
the N(1535), previously studied within the chiral unitary
approach to pion nucleon scattering, was considered. The
calculations have been done relativistically and nonrela-
tivistically, and both of them are found to lead to finite

results for the transition amplitudes, as well as for eta
photoproduction which is evaluated simultaneously with
the same formalism.

Our study finds interesting results which we summarize
here:

The amplitudes were obtained without any free param-
eters, since the couplings of the resonance to the channels
have been obtained from a previous study of πN scat-
tering. The agreement with the Ap

1/2 amplitude of the

proton N∗(1535) resonance is fair up to the normaliza-
tion problem that we have discussed. Indeed, we showed
that the absolute values of the experimental amplitudes
were tied to assumptions on the total width of the res-
onance, which is still far from being a settled issue. We
also showed that our results for A1/2 at Q2 = 0 are in
perfect agreement with the most recent MAID2007 anal-
ysis of scattering and photoproduction data. The Q2

dependence of the transition form factor obtained was
in fair agreement with the experimental determination,
although it provided a moderately faster fall down than
experiment. This result is by no means obvious within
the picture of a dynamically generated resonance, since
the Q2 dependence should be provided by the meson form
factors and they fall much faster than these experimental
form factors. Yet, we found that the theory, in the ab-
sence of the meson form factors, provided a rising func-
tion of Q2, due to the structure of the loops involved,
which led to a moderate decrease of the N∗(1535) tran-
sition form factors when the meson form factors were
considered.

The results obtained for the S1/2 amplitude are also in
fair agreement with experiment, both in size and the rela-
tive sign to the A1/2 amplitude. It should be stressed that
the nature of the loops, where some intermediate states
can be put on shell, naturally leads to an imaginary part
of the amplitude and hence one obtains complex tran-
sition form factors. Comparison with the data implies
a choice of phase to make the A1/2 amplitude real and
with the sign chosen in the experimental analysis. How-
ever, once this is done, the rest of the amplitudes have
very well determined signs and phases . In this sense we
found that the ratio of the S1/2 to the A1/2 amplitude
was practically real and negative, and we also found that
the ratio of the A1/2 amplitude of the neutron resonance
to that of the proton resonance was also practically real
and of the order of -0.80, in good agreement with exper-
iment.

It should be noted that the signs and strengths of the
different amplitudes are a nontrivial consequence of the
contribution of the different channels in the photon tran-
sition loops and of subtle interference of terms.

Thus we can say, that the agreement with the data
is fair when it comes to the shape of the Q2 dependence
and good in the ratios of amplitudes which are free of the
global normalization. All these features together provide
a boost to the hypothesis of the N∗(1535) as being a dy-
namically generated resonance. This of course does not
exclude some other components beyond those of meson
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baryon exploited here, but the claim would be that these
are the dominant components of the wave function and
they show up clearly in the electromagnetic properties
studied here. The slower experimental fall down with
Q2 could be an indication of the contribution of genuine
quark components, along the lines of the work of [39] as
we discussed in Sec. III A.

The discrepancies found in the normalization of Ap
1/2

for the proton deserve more attention. We have al-
ready commented that should one use the width of the
N∗(1535) of 90 MeV of BES, or 100 MeV of MAID2007,
the experimental values would be lowered and the agree-
ment between theoretical results and the experiment
would be better. In fact, the agreement of the theoreti-
cal results for Ap

1/2 with the MAID2007 analysis is very

good, as we have already noticed. But then we could
look at the ratio R = Sp

1/2/A
p
1/2 and we find R = 0.6 at

Q2 = 0.5 GeV2. Experimentally, this ratio is R ∼ 0.2 if
we take an average value of S1/2 over the different data,
so the discrepancies in this ratio seem to be large. Cer-
tainly, the experimental ratio becomes much larger if we
take the points with open triangles in Fig. 6, and then
R ∼ 0.44. This large dispersion of experimental values
is understandable if one recalls that the contributions of
the S1/2 term in the ep → e′pη cross section (from where
the data is extracted) is of the order of a few percent
[27]. This, together with the experimental uncertainties
in the normalization noted above, clearly indicate that
large uncertainties in the experimental S1/2 are indeed
present. Further improvements in S1/2 in the future will
reveal if the discrepancies in the ratio R pointed out here
are deficiencies of the model or stem from present ex-
perimental uncertainties, or both. But it is clear that
stronger claims in favor of the theoretical model are tied
to a better precision in this experimental ratio, thus pro-
viding a justification for improved measurements of this
magnitude.

At the same time we addressed the problem of eta pho-
toproduction on the proton and neutron with the same
formalism. We found a cross section compatible with ex-
periment in the γp → ηp reaction. This cross section
also served to show evidence that our approach misses
strength of the reaction at energies beyond the N∗(1535).

This could be due to the fact that the width that we ob-
tain for the resonance, of the order of 75 − 90 MeV, is
smaller than the experimental one, or that the γp → ηp
reaction collects strength from higher energy resonances
which are not dynamically generated and hence do not
appear in our scheme. This issue is not settled in view
of the large dispersion of results that one can find in the
literature for the width of the N∗(1535), from about 90
MeV to 350 MeV. Furthermore, the ratio of the cross
sections of γn → ηn to γp → ηp was obtained in fair
agreement with experiment, particularly at energies close
to the N∗(1535).

Altogether, the information extracted in this paper
provides support for the idea of the N∗(1535) resonance
as being largely dynamically generated from the interac-
tion of mesons and baryons, the dynamics of which seems
to be well accounted for by chiral Lagrangians together
with a proper coupled channels unitary treatment of the
interaction, as provided by the chiral unitary approach.

However, we also discussed that the recent study of
[39] indicates the need for a genuine quark component of
the N∗(1535), which could provide strength at large Q2

where our model, both in the nonrelativistic and rela-
tivistic versions, still provides a faster fall down with Q2

than experiment.
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