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Abstract 

The real-time implementation of wave energy control leads to non-causality as the wave load 

that comes in the next few seconds is used to optimize the control command. The present 

work tackles non-causality through online forecasting of future wave force using artificial 

intelligence technique. The past free surface elevation is used to forecast the incoming wave 

load. A feedforward artificial neural network is developed for the forecasting, which learns to 

establish the intrinsic link between past free surface elevation and future wave force through 

machine learning algorithm. With the implementation of the developed online wave force 

prediction algorithm, a real-time discrete control algorithm taking constraint on response 

amplitude into account, is developed and implemented to a bi-oscillator wave energy 

converter in the present research. The dynamic response and the wave power extraction are 

simulated using a state-space hydrodynamic model. It is shown that the developed real-time 

control algorithm enhances the power capture substantially whereas the motion of the system 

is hardly increased. The prediction error effect on power extraction is investigated. The 

reduction of power extraction is mainly caused by phase error, whilst the amplitude error has 

minimal influence. A link between the power capture efficiency and the constraint on control 

is also identified. 

Highlights 

A real-time declutching wave energy control based on model predictive control strategy is 

developed. 

Artificial intelligence is used to tackle the non-causality. 
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Forecasting error effect on control efficiency is investigated. 

Constraint effect on control efficiency is investigated. 

Keywords: wave energy control; non-causality; wave force prediction; artificial intelligence; 

power extraction; control constraint. 

Nomenclature 

μ(ω) Frequency-dependent added mass 

λ(ω) Frequency-dependent potential damping 

μ∞ Added mass at infinite frequency 

h(t) Retardation function  

A, B, C System matrices 

n Order of the state-space representation 

u State vector 

H Hamiltonian 

λ Lagrange multiplier 

β Control command 

 

Word count: 7100 

1. Introduction 

Global renewable power capacity is anticipated to grow by 50% until 2024 [1]. Such rapid 

growth is powered by national long-term energy strategies proposed globally. The UK has 

passed its law aiming at zero net emission by 2050 [2]. The binding renewable energy target 

for the EU is of at least 32% of the total energy consumption by 2030 and zero net emission 

by 2050 [3]. To achieve the long-term zero net emission goal, a diverse renewable energy 

resource is crucial. The merits of wave energy include high energy density, full-day 

availability and grid-balancing energy system benefits, etc. Moreover, it has applications for 

remote islands, powering offshore industries such as fish farms, and oil & gas platforms. 

Therefore, the ocean wave energy has been deemed as a high-quality renewable resource of 

power for an extended period. It is anticipated that wave energy is able to contribute 15% of 

the UK’s current electricity demand and to have 22GW installed capacity by 2050 [4]. 

Various categories of wave energy conversion mechanisms have been developed [5, 6], e.g. 

the pressure difference [7], the overtopping [8] and the oscillation [9]. However, the wave 

power capture efficiency is still low, which is one of the obstacles to the large-scale 

employment of wave energy technology. Innovative techniques enabling the enhancement of 
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wave energy efficiency have been identified as an essential route to zero net emission by 

reducing the energy cost [10]. 

Wave energy control theory is thus developed to enhance the power harvesting 

performance of wave energy converter (WEC). The main idea of wave energy control is to 

tune the response phase of the WEC in order to get resonance manually. Falnes [11] 

investigated the reactive control intensively, which tunes the response phase by controlling 

the power take-off (PTO) force. Considering that implementation of reactive control requires 

the PTO system to return power back to the oscillator during parts of the oscillation cycles, 

practical implementation of the reactive control remains challenging. Another well-developed 

control algorithm is the latching control proposed by Budal and Falnes [12], which has been 

employed widely by researchers [13, 14]. The latching control tunes the response phase by 

locking and releasing the oscillator alternately. Once the WEC is released, the buoy velocity 

would be in phase with the wave load resulting in the enhancement of power capture. 

Nevertheless, the alternate locking and releasing may lead to fatigue damage. A dual of the 

latching control is the declutching control [15], which works by loading and offloading the 

PTO system from the WEC alternately. Compared with the latching control, declutching 

control is much more convenient to be implemented in practice, e.g., using a simple by-pass 

valve. A disadvantage of declutching control is that the WEC excursion amplitude will be 

increased, and in some cases, it is necessary to impose a constraint on the excursion. Babarit 

et al. [16] implemented the declutching control to the SEAREV (Système Électrique 

Autonome de Récupération d’Énergie des Vagues) concept, and they showed that the energy 

production was increased substantially. Similar works have been reported by Feng and 

Kerrigan [18]. More recently, new optimal wave energy control algorithms have emerged. 

Zhang and Li [19] proposed the sliding mode control. Zhan et al. [20] developed the so-called 

economic feedback model predictive control. 

Despite the well-established optimal wave energy control theories, the practical 

implementation of optimal wave energy control is still challenging. One of the obstacles is 

the non-causality of optimal wave energy control, which indicates that control command is 

optimized based on future wave excitation force coming in the next few seconds. If the wave 

energy control is to be implemented in practice, the non-causality must be addressed. There 

are two primary categories of methodologies to tackle the non-causality. The first category is 

to make some modifications to the optimal wave energy control algorithm so that it becomes 

causal. However, the modified control algorithm is sub-optimal, which means that the control 

efficiency is harmed. Fusco and Ringwood [21] modified the ideal complex conjugate control 
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and proposed a causal control, which was sub-optimal. Li and Gao [22] developed a similar 

causal control algorithm and interpreted in detail how the modified control algorithm became 

sub-optimal. The second solution group is to forecast the future wave force and optimize the 

control command based on the predicted future wave force. In the present research, the 

second group of solutions to non-causality is adopted. 

Wave force forecasting is essentially a regression problem. Serval approaches have been 

proposed and applied, e.g., the autoregressive model, the grey model, the extended Kalman 

filter, etc.  The autoregressive approach was employed by Li et al. [23] to implement the 

wave force forecasting using. Li et al. [24] forecasted the incoming irregular ocean waves 

using the grey model. One limitation of the classic forecasting approaches is that prediction 

of one variable is based on its past value. In real condition, however, it is not easy to measure 

the wave force directly, which is the integral of wave pressure across the WEC surface.  

The present study aims to propose a feasible wave force forecasting approach and embed 

it to the non-causal wave energy control to increase the power extraction of WECs. The 

explosive development of artificial intelligence technology presents an alternative approach 

to forecast future wave load. The artificial intelligence technology is able to establish the 

correlation between two variables so that the prediction of future wave load is not necessarily 

based on its value in the past, but on other measurable variables. In the present research, an 

online forecasting model is proposed to predict future wave force by monitoring free surface 

elevation.  

The organization of the rest paper is highlighted here. Firstly, the development of the 

WEC dynamic model is presented in Section 2. Subsequently, Section 3 develops a non-

causal model predictive control algorithm for the real-time implementation of wave energy 

control. The artificial intelligence is then utilized in Section 4 for the prediction of incoming 

wave force to tackle the non-causality. The numerical model is validated in Section 5. Section 

6 investigates the efficiency of the proposed smart control algorithm. Effects of prediction 

error and control constraint are demonstrated. Eventually, conclusions drawn from the 

present research are given. 

2. Numerical model 

2.1. Wave energy converter 

A bi-oscillator WEC is considered in the present research. As illustrated in Fig. 1, the 

submerged part of the buoy is a hemisphere with a diameter of 10 m, and the upside is a 
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cylinder with the same radius. To concentrate on the scope of the present research, the buoy 

only oscillates up and down. The internal oscillator slides along the vertical axis of the buoy, 

which is connected to the buoy through a linear spring. The PTO system converts the relative 

motion between the two oscillators into energy. In this study, the PTO system is represented 

by a linear damper. 

 Two coordinates are defined. Coordinate 1 is a global one fixed to the ground. The 

coordinate origin is at the undisturbed free surface level with the positive Z axis upward. 

Coordinate 2 is attached to and moves together with the buoy. The coordinate origin is at the 

equilibrium position of the internal oscillator, and the positive Z axis is upward as well. 

 
Fig. 1. Wave energy converter. 

2.2. Motion equation 

According to the Cummins’ equation [25], the motion equation of the bi-oscillator is given 

by 
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with: 

• z1 the displacement of the buoy relative to the ground (defined in the global 

coordinate), z2 the displacement of the internal oscillator relative to the buoy (defined 

in the body-fixed coordinate) 

• mi the mass of the body i. m1 = 1.88×105 kg, m2 = 8.05×105 kg, so that the total 

weight is equal to the buoyance. 

• μ∞ the hydrodynamic added mass of the buoy at infinite frequency 
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• k1 = 789.7 kN/m the hydrostatic restoring stiffness of the buoy; d1 = 50.4 kNs/m the 

additional linear damping representing the viscous load on the external buoy. d1 is 

equal to 5% critical damping. 

• k2 the spring connecting the external buoy and the internal oscillator; d2 the damping 

coefficient of the PTO system. k2 = 94.8 kN/m and d2 = 50 kNs/m are employed so as 

the natural period of the internal oscillator (about 6.3 s) is close to wave peak period 

that is to be considered in the present research. 

• h(t) is the so-called retardation kernel function, representing the memory effect of the 

free surface. It can be obtained from the potential damping 𝜆(ω) 

 
0

2
( ) ( )cos( )h t t d   





=   (2) 

• Fwave(t) the wave excitation force. In the present research, the time series of wave 

excitation force is generated by 
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=   

 

=


 (3) 

with Ψ(ω) being the transfer function of linear wave excitation force. S(ω) is the JONSWAP 

wave spectrum, representing the power distribution of the irregular ocean waves. ε is a 

random value between [0, 2π] representing the random phase difference between wave 

components of various oscillating frequencies. 

The boundary element analysis software Wadam [26] is used to calculate the 

hydrodynamic quantities listed above. To focus on the scope of the present research, the 

linear potential flow has been applied whereas other modelling approaches are also available. 

Zabala et al. [27] investigated the advantages and disadvantages of existing tools and 

proposed an integrated modelling framework, namely the so-called ‘Digital prototype’. 

Penalba [28] presented a review on mathematical modelling of wave energy converters, with 

an emphasis on the nonlinear approaches. 

However, it is inconvenient to implement the real-time control strategy with Eq. (1) and 

thus a state-space model is developed, in which the convolution term is replaced by a state-

space representation. Denoting f(t) the radiation force, the following formulas are an 

approximation of each other 

 1

0

( ) ( ) ( )d

t

f t h t z  = −  (4) 
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where A, B and C are system matrices. Their dimensions are n×n, n×1 and 1×n. n is the order 

of the system. n = 5 is employed in the current hydrodynamic model. u can be regarded as a 

type of intermediate vector. 

Combing Eq. (5) and Eq. (6) 
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Combing Eq. (4) and Eq. (6) 

 ( ) th t e= A
C B  (8) 

Taking the Laplace transform of Eq. (5) , one gets 
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Eq. (2) is the time-domain expression of retardation kernel function, and it can be 

transformed to the frequency-domain through the Fourier transformation 
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Eq. (8) and Eq. (9) are correlated through the Fourier transformation  
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According to Eq. (11) 
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Parameters p and q are estimated by the least square method, known as system 

identification. Fig. 2 gives the system identification system result with n = 5. As shown, a 

fifth-order state-space model is a good representation and thus n = 5 is employed hereinafter. 

 

Fig. 2. System identification result, n = 5.  

By using the state-space representation, Eq. (1) can be re-written as 
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Denote a state vector X = [ 𝑧1, 𝑧2,  𝑧̇1, 𝑧̇2, 𝒖𝑇]𝑇. Then, Eq. (14) is transformed into a first-

order differential equation 
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With the pre-given initial condition X(0) = 0, Eq. (15) is solved as a classical initial value 

problem following the 4th Runge-Kutta algorithm. The power extraction of the bi-oscillator 

WEC is 
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3. Real-time declutching control algorithm 

3.1. Optimal declutching control 

In the present research, declutching control is used to increase the power extraction by 

connecting and disconnecting the PTO system alternately according to the control command 

β(t). When the PTO system is loaded, β = 1 and β = 0 not. The switch between loading and 

offloading could be realized using a by-pass valve for a hydraulic PTO or a power-electronic 

switch if the PTO is a direct generator. Declutching control is non-causal since the future 

wave force must be known to derive the control command. At this point, it is assumed that 

the future wave force is known whilst the next section will interpret how the future wave 

force is forecasted in the present research. 

With the implementation of declutching control, Eq. (15) can be re-expressed as 
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 (17) 

As shown in Eq. (17), the dynamics of the bi-oscillator is not continuous as β varies 

abruptly between 0 and 1, implying that the system switches between two different states 

(PTO loaded and unloaded). It is worth noting that a delay exists when a practical controller 

decides to apply the declutching action. The lag effect was numerically modelled by Clément 

and Babarit [29]. It is not the scope of the present study, and thereby the lag effect is 

neglected. 

Wave energy control is a constrained optimization problem from a mathematic point of 

view, namely the optimization of the objective function P with respect to the control 

command β in the presence of constraint Eq. (17). Multiple optimization algorithms are 

available, e.g., the quadratic programming and the Lagrange multiplier method. In the present 

research, the Lagrange multiplier method is employed 

 ( )2

2 2H d z= +   +X    (18) 
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where λ is the Lagrange multiplier and H is the Hamiltonian. Through the introduction of the 

Lagrange multiplier, the original constrained optimization is converted into an unconstrained 

problem. Please note that the single variable β switches between 0 and 1, so Eq. (18) is 

optimized when 

 

( )

( )
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1 1 2
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Now, it is to set up an equation to describe λ. According to Babarit et al. [16]:  

 ( , , )i

i

H
t

X
 


= −


X  (20) 

Although Eq. (20) is also a differential formula, it can not be addressed as an initial value 

problem as λ(0) must be in accordance with the control algorithm [30]. Borne et al. [30] 

proposed a final condition λ(T) = 0 and got the Lagrange multiplier with an iterative process 

(see Fig. 3). The same approach is employed to optimize the control command. Firstly, 

launch the simulation with β(t) = 0 to obtain the dynamic response free of control by 

integrating Eq. (17) from t = 0 to t = T. λ is subsequently obtained by integrating Eq. (20) 

from t = T to t = 0 (λ(T) = 0 is now an initial condition). Based on Eq. (19), the control 

command β(t) is derived. Re-launch the simulation with the derived control command to 

update the dynamic response. Iterate the process to optimize the control command until it 

converges. 
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Fig. 3 Process of optimal declutching control algorithm. 

Fig. 4 plots the velocity of the inner oscillator under regular wave. As shown, the PTO 

system is switched on and off alternately according to the optimized control command. 

Considering that the PTO force is offloaded occasionally, the inner oscillator is subject to less 

resistance so that its oscillation is amplified. Once the PTO system is loaded again, it 

experiences a much stronger relative motion between the two oscillators resulting in the 

enhancement of power capture. 

 

Fig. 4. Time series of inner oscillator velocity under regular wave (wave height is 1 m, wave period is 7 s). 

100 110 120 130 140 150
-3

-2

-1

0

1

2

3

Time (s)

z 2
 (

m
/s

)

 without control  with control

-1

0

1





12 

 

3.2. Model predictive control strategy 

Optimal declutching control utilizes wave load over the entire time interval [0, T] to 

maximize the power extraction. Although various types of forecasting modelling exist, the 

prediction is only short-term whereas the future wave force over the entire interval [0, T] is 

unpredictable. It indicates that optimal declutching control cannot be implemented directly. 

To tackle this problem, a modified declutching control based on the model predictive control 

strategy is employed. The model predictive control strategy has been confirmed effective in 

the implementation of other wave energy control algorithms [13, 31, 32]. Here, we employ 

the model predictive control strategy to implement real-time declutching control. 

The model predictive strategy optimizes the control command over a finite and short time 

interval [ti, ti+∆t] rather than optimizing Eq. (18) over the entire time interval [0, T]. 

Therefore, it is optimal over time interval [ti, ti+∆t] but sub-optimal over entire time interval 

[0, T]. The control command is optimized at each time instant over the updated time interval 

[ti, ti+∆t], and thereby the declutching control is implemented online. 

Similarly, the control command over time horizon [ti, ti+∆t] is optimized using the 

iterative procedure as illustrated in Fig. 3, in which an initial control command 𝛽(t) = 0 is 

assumed. It is effective, but not efficient as the control command is optimized only after a 

certain amount of iterations. Wu et al. [33] suggested that control command optimized at 

previous time step can be used as the initial control command at the current time step. To 

further enhance the computation efficiency, they executed the iteration only once. Here, the 

same approach is adopted (see Table 1).  

Table 1 Modified model predictive control strategy (N represents the simulation length). 

Standard model predictive control strategy Modified model predictive control strategy 

[33] 

for i = 2:N  for i = 2:N  

     Predict the future wave force over [ti, ti+p]      Predict the future wave force over [ti, ti+p] 

     for j=1:∞      for j=1:1 

        Assume an initial command 𝛽(t) = 0         Adopt command 𝛽(t) at previous step ti-1 

        Optimize the control command 𝛽(t)         Optimize the control command 𝛽(t) 

     end,  if 𝛽(t) converges      end 

     Implement the control according to command 

u(ti) 

     Implement the control according to command 

u(ti) 

end end 

 

3.3. Constraint of control 

The previous section develops the declutching control algorithm without restrictions. In 

real conditions, however, a limit must be imposed on the excursion of the PTO system. Thus, 
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there is an upper bound on the relative displacement between the two oscillators. A braking 

strategy is used to implement an amplitude constraint to the WEC. Whenever the relative 

displacement z2 exceeds a threshold Z0, a large damping force is applied to lock the internal 

oscillator. Thus, the dynamics of the bi-oscillator with constraint is further expressed as 
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where d3 is a finite and huge damping coefficient. 

4. Online wave force forecasting 

The present work forecasts future wave force by measuring the wave elevations online. At 

each time instant, the free surface elevations over the past 5 seconds are inputted into a neural 

network to forecast the wave load that comes in the next 5 seconds. The sampling rate is 0.1 s, 

so that 50 data points of past wave elevation are used to forecast 50 future wave force data 

points. The forecasting process is updated online in accordance with the model predictive 

control strategy presented in Section 3.2. 

4.1. forecasting algorithm 

A feedforward backpropagation neural network with six layers (one input layer, four 

hidden layers and one output layer), as shown in Fig. 5, is employed to forecast the future 

wave force. There are 10 neurons in each layer. The network is trained to establish the 

intrinsic link between past free surface elevation and future wave force. Once this link has 

been established, future wave force could be forecasted based on past free surface elevation. 
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Fig. 5. Feedforward backpropagation artificial neural network. 

The machine learning algorithm is used to establish such link with a large amount of 

examples. The learning data are generated manually by Eq. (3). From a mathematic point of 

view, the nature of the so-called ‘training’ is to optimize parameters w and b so as to 

minimize the forecasting error Θ 
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w is the weight and b is the bias. L is the number of learning examples. yk is the 

forecasting output, and ak is the actual value. The gradient descent method and the 

backpropagation method are used to optimize w and b. The training process is based on an 

iteration basis, which optimizes w and b using the gradient descent method.  

 

'

'

ji ji

ji

ji ji

ji

w w
w

b b
b






= −




= −



 (23) 

where wji' and bji' are the optimized parameters after one iteration. 𝜅 is known as the learning 

rate, a parameter used to represent how ‘fast’ the network learns during the training process. 

The gradient of the forecasting error is estimated by the backpropagation approach. Please 

refer to Refs [34, 35] for more information of the training process. 

The significance of the present forecasting approach is that the real-time wave surface 

elevation, which can be easily measured using various types of techniques, is employed to 

predict the future wave force. It makes great sense in practical application as the wave force, 

which is very difficult to measure, is no longer needed in the prediction. The trained neural 

network is represented by parameters w and b, also making it very convenient to implement 

in practice without extra cost. Moreover, the forecasting method is robust to the wave state as 

the wave surface elevation, rather than the wave spectra which is available at certain intervals 
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and site-dependent, is employed for the forecasting. It enables the forecasting method to be 

implemented in real-time and employed in a wide range of ocean sites. Therefore, the present 

wave prediction algorithm can be deemed a feasible and promising solution to the 

enhancement of wave energy efficiency. 

4.2. Forecasting accuracy 

The accuracy of the incoming wave load prediction is essential to the control efficiency 

[24, 36] as the forecasted future wave load is inputted into the controller while the oscillation 

is induced by the actual wave force. It is worth investigating the forecasting accuracy before 

the implementation of the wave energy control. Fig. 6 compares the forecasted wave load and 

the real situation, with the forecasting length ∆t = 5 s. Despite the slight discrepancy, which is 

inevitable, the time series of the forecasted future wave force match the real situation well.  

 
Fig. 6. Prediction performance of the trained artificial neural network. 

To further evaluate the forecasting accuracy, a predictability index R [37] is employed  
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where ( )waveF t t t+ is the forecasted future wave force at time instant t+Δt, which is 

predicted Δt ahead at time instant t. ( )waveF t t+ is real future wave force at time instant t+Δt. 

R > 1 indicates that the predicted value is larger than the real value. The predictability index 

R corresponding to the 1 hour period is 1.07, indicating a good prediction. It implies that the 

control command could be derived appropriately even if the future wave force is predicted. 

Section 6.2 will further investigate the forecasting uncertainty effect on the control 

performance. 
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5. Validation 

The developed numerical model is validated against the analytical result in this section. In 

regular wave, the analytical dynamic model of the bi-oscillator can be expressed as 
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Thus, the analytical dynamic motion of the bi-oscillator is  
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Fig. 7 compares the motions of the bi-oscillator obtained with the present time-domain 

numerical model (Eq. (15)) and the analytical formula (Eq. (26)), respectively. The 

agreement is quite good and thereby the developed numerical model can be deemed validated. 

 

Fig. 7 Validation of the developed time-domain numerical model (wave height = 1m). 

6. Results and discussions 

The power extraction of the bi-oscillator WEC with and without the proposed real-time 

declutching control is investigated. The sea state in the East China Sea during summer 2012, 

which was measured by Wu et al. [38], is considered. Table 2 summaries the sea wave 

conditions. 

Table 2 Sea states  

 Hs (m) Tp (s) Shape factor 

June 1.54 7.79 3.3 

July 1.33 6.88 3.3 

August 2.39 8.18 3.3 
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6.1. Performance with unconstraint declutching control 

6.1.1. WEC dynamics 

In real condition, it is expected that the motion excursion of the two oscillators could be 

limited within a specific range. Significant relative motion is likely to produce undesired 

structural loads and even exceed the design limits of the power production facilities. In this 

subsection, the movements of the two oscillators are investigated. 

Fig. 8 presents the power spectrum density (PSD) of the buoy motion. As expected, most 

of the response energy is located around the wave energy frequency range. Additionally, it is 

found that the control effect on the motion of the external buoy is minimal. It implies that the 

control is a minor driving factor in the design of the external structure. 

 
Fig. 8 PSD of the external buoy motion. 

Comparatively, the control effect on the internal oscillator motion is noticeable. As 

presented in Fig. 9, the internal oscillator is stimulated substantially with the implementation 

of declutching control. From the power extraction point of view, it is desirable since the 

electric power is converted from the kinetic movement of the internal oscillator. However, 

large internal motion excursion may exceed the physical allowance of the PTO system, and 

thus a constraint control algorithm is necessary. Section 6.3 will address this issue. 
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Fig. 9. PSD of internal oscillator motion. 

6.1.2. Power extraction 

Fig. 10 gives the total wave energy absorbed during 1-hour period for the three load cases 

considered. Since the significant wave height in August is much larger than those in the other 

two months, the total energy absorption is nearly doubled in August. Regardless of the sea 

states, one can find that the total energy absorption is increased by around 30% with 

implementation of the proposed real-time declutching control.  

 
Fig. 10. 1-hr total energy absorption. 

To further demonstrate the control effect on the power extraction, its distribution is 
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energy is converted when the PTO system operates with relatively low power (0~30 kW), 

accounting to around 70% of the total generated power. As long as the controller is activated, 

a reduction of the energy absorption within this range is seen, dropping to 3.95 kW∙h from 

5.85 kW∙h. It is not a surprise since the PTO is offloaded occasionally and no power is 

generated during the switch-off period. Due to the switching-off of the PTO system, the 

internal oscillator is subject to fewer resistive loads, leading to the amplification of its 

oscillation. It indicates that the PTO could operate with high power once it is loaded back 

again (see Fig. 12). For example, a total of electricity energy of 3.20 kW∙h is generated 

within [30kW, 60kW] and 1.72 kW∙h within [60kW, 90kW]. Although the controller 

disconnects the PTO system occasionally and no power is generated, the PTO system is able 

to operate with high power so that the total energy absorption is increased. This mechanism is 

somewhat similar with the complex conjugate control, which feeds energy back to the WEC 

during parts of the oscillation cycles to accelerate it.  

  
Fig. 11. Power extraction and its distribution, June. Left: without control; Right: with control. 
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Fig. 12 Time series of instantaneous power capture, June. 

6.1.3. Fatigue load 

It has been confirmed that the proposed declutching control strategy is able to increase the 

power extraction substantially. In practice, it is also worth an investigation on the control 

effect on the structural loads, since the average time to structural failure could be affected 

with the control action. To get a quantitative estimation of the declutching control effect on 

the fatigue load applied on the PTO system, the load cycle of the PTO system is counted 

using the rain-flow algorithm, according to the ASTM E1049 standard [39]. The counting is 

based on 3600 s numerical realization. 

Fig. 13 compares the load cycle counts when the WEC operates with and without the 

declutching control. Generally, the load cycle counts are tripled within the low load 

amplitude (0~50 kN) and high load amplitude (100~250 kN) ranges, when the declutching 

controller is active. The load cycle seems to be insensitive to the control activities within the 

moderate load range (50~100 kN). According to the Miner’s Rule, the fatigue damage 

accumulates linearly with the load cycles. Considering that the load cycle counts have been 

increased by the declutching control, the fatigue damage will accumulate more rapidly and 

the structure is more likely to fail. It implies that the control effect should be considered 

carefully in the structural design stage. 
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Fig. 13. Load cycle counts of the PTO force. 

6.2. Forecasting effect 

As illustrated in Section 3.2, the proposed real-time declutching control is sub-optimal as 

the control command is optimized over the forecasting length. Moreover, the forecasted wave 

force is used to optimize the control command, whereas the oscillation is induced by the 

actual wave force. This section will investigate how the two factors affect power extraction of 

the bi-oscillator WEC. 

6.2.1. Forecasting length 

The forecasting length effect is investigated individually by inputting the actual future 

wave force into the controller manually so as to eliminate the forecasting error. Therefore, the 

online wave force prediction model is not employed. Fig. 14 shows the effect of forecasting 

length on the energy absorption. Generally, the WEC always harvest more wave energy when 

a longer receding horizon length is employed. Three regions are identified, where the energy 

absorption reacts to the variance of forecasting length in different manners. With the 

employment of short forecasting length, the declutching control seems to be not useful at all 

as the power generation is hardly enhanced. Comparatively, the power capture performance is 

enhance substantially within range [2s, 7s]. The energy absorption increases rapidly within 

the forecasting length. After that, the increasing increment gradually slows down.  

0 50 100 150 200 250
0

50

100

150

200

250

300

350
N

Load amplitude (kN)

 without control  with control

June

July

0 50 100 150 200 250
0

50

100

150

200

250

300

N

Load amplitude (kN)

August

0 50 100 150 200 250
0

50

100

150

200

250

300

350

N

Load amplitude (kN)



22 

 

Recall optimization of the control command. The final condition λ(t+∆t) = 0 proposed by 

Borne et al. [30] is applied to get the control command optimized based on an iteration 

procedure. It is worth stressing that this so-called final condition is the initial condition used 

by the control command optimization. As presented previously, the Lagrange multiplier λ is 

derived by integrating Eq. (20) with the initial condition λ(T) = 0, which induces a transient 

effect. When the forecasting length ∆t is sufficiently long, the transient impact will not 

propagate back to time instant t. On the contrary, the control command is not derived 

correctly due to the transient impact. Although a long horizon length is preferable in order to 

enhance power extraction, it requires intensive computation in a short time step. Moreover, it 

is more challenging to predict a longer-term future wave force. Therefore, a moderate horizon 

length 5 s is employed in the present research. 

 
Fig. 14. Effect of receding horizon length on the control efficiency (August). 

6.2.2. Forecasting error 

 
Fig. 15. Effect of forecasting error on the energy harvesting (August). 

Fig. 15 demonstrates the effect of forecasting error on the power capturing performance, 

where the forecasting error leads to a 5% reduction of the total energy absorption. According 

0 2 4 6 8 10
16

18

20

22

24

26

28

30

E
n
er

g
y

 a
b
so

rp
ti

o
n

 (
k
W

h
)

Prediction horizon length (s)

0 600 1200 1800 2400 3000 3600
0

5

10

15

20

250

100

200

300

400

500

 

E
n

er
g

y
 (

k
W

h
)

Time (s)

 with prediction error

 without prediction error

 

 

P
o

w
er

 e
x

tr
ac

ti
o

n
 (

k
W

)  with prediction error

 without prediction error



23 

 

to Zhang et al. [17], the forecasting error involves two aspects, i.e., the phase error and the 

amplitude error. To investigate the two parts quantitatively, the present work defines the 

forecasted future wave force manually 
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where α represents the amplitude error and θ represents the phase error. 

Fig. 16 illustrates the sensitivity of average power to the prediction error in regular waves. 

As shown, the amplitude error effect on control efficiency is negligible. Comparatively, the 

phase error effect on the control efficiency is noticeable. A positive link between energy loss 

and phase error has been identified. The maximum power is achieved at 𝜃 = 0, where the 

prediction error is omitted.  

 

Fig. 16. Prediction error effect on the control efficiency. (a) amplitude error; (b) phase error. 
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Due to the implementation of the real-time declutching control, the relative motion 
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cause damage to the PTO system. This section adopts the braking strategy developed in 

Section 3.3 and implements a constraint to the relative displacement between the two 

oscillators. Fig. 17 plots the times series of the constrained relative displacement over 1-hour 

period. It indicates that the proposed constraint strategy is effective. 

 
Fig. 17. Relative motion between the two oscillators with constraint (August). 

Fig. 18 demonstrates the constraint effect on energy absorption. Whether the declutching 

control is implemented or not, the total electric energy generated decreases with the 

constraint. Since the electrical power originates from the relative motion between the two 

oscillators, it is straightforward that the motion constraint will lead to a reduction of energy 

capturing. Additionally, the controlled energy absorption is more sensitive to the constraint. 

When Z0 is not very low, the WEC still harvest more energy with the implementation of the 

declutching control. The energy absorption decreases so rapidly that the WEC captures less 

power with the declutching control when Z0 ≤ 1.25 m. 
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Fig. 18. Effect of constraint on the energy absorption (August). 

While the relative motion is restricted, the fatigue load cycle is affected at the same time. 

Table 3 summarises the load cycle counts with different levels of control constraint. The low 

amplitude cycle counts increase substantially with low-level constraint. The cycle counts with 

respect to moderate load amplitude is relatively insensitive to the control constraint. Although 

the total load cycle counts are increased with the constraint, the counts within high amplitude 

range are reduced. Since the typical S-N curve of a structure commonly follows the 

exponential form, it indicates that the structure is much more sensitive to high amplitude 

fatigue load. Therefore, it can be understood that the PTO system is less likely to fail with a 

constraint control. 

Table 3 Load cycles of PTO force (August). 

 Z0 = +∞ Z0 = 1.5m Z0 = 1.25m Z0 = 1.0m 

0-60 kN 590 747 831 937 

60-120 kN 294 274 275 273 

120-180 kN 120 120 115 107 

>180 kN 43 30 27 13 

Total 1047 1171 1248 1330 

 

Although the dynamics of the internal oscillator is restricted, the external buoy is 

insensitive to the control constraint. As shown in Fig. 19, the response of the external buoy is 

hardly varied regardless of the constraint imposed on the declutching control. 
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Fig. 19. PSD of external buoy motions (August). 

7. Conclusions 

A real-time wave energy control algorithm based on the model predictive control strategy 

is developed and implemented to a bi-oscillator WEC. To tackle the non-causality of wave 

energy control, artificial intelligence technology is adopted to perform online forecasting of 

future wave force based on free surface elevation. 

Due to the implementation of the real-time control, which offloads the PTO system 

occasionally, the power capture efficiency is increased by about 30%. The WEC oscillation is 

amplified as the resistance load of the PTO system is offloaded occasionally.  Once the PTO 

is loaded back again, the WEC oscillation has been amplified resulting in the enhancement of 

wave power capture efficiency. Since the wave elevation rather than the wave spectra is 

employed in the control algorithm, it is robust to the wave condition and thus can be 

implemented in a wide range of sea sites. This research proposes an efficient and robust wave 

energy technology, leading to step change reduction in the energy cost and acceleration of the 

large-scale deployment of wave energy, and ultimately realizing the potential contribution of 

wave energy to the net zero target. 

A reduced power capture efficiency has been linked to the forecasting error. The 

forecasted future wave load is used to optimize the control command whereas the system is 
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subject to the actual wave load. Consequently, the derived control command differs from the 

ideal one. It is shown that the forecasting error leads to a 5% reduction of the total energy 

harvested. Further analysis manifests that the energy loss is primarily attributed to the phase 

error. 

A constraint strategy, which brakes the internal oscillator whenever its excursion exceeds 

a threshold, is also developed and implemented to the declutching control. Although the 

constraint declutching control is less efficient than the unconstraint one, it is still able to 

enhance the power capture of the bi-oscillator on condition that the threshold is not too low 

(Z0 > 1.25 m). Otherwise, the power capture could be decreased. 

Future Work 

The technical viability and effectiveness of the proposed control algorithm has been 

confirmed numerically in this work. In order to fully check its feasibility in real applications, 

scaled model test research in wave basin would be launched in the next stage. 
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