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We study the molecular motion of ferrocene Fe(C5H5)2 locked up in the supercages of KY zeolite at
temperatures 22 Ke T e 238 K by means of quasielastic neutron scattering. The geometry of the motion is
determined to be a 5-fold internal jump reorientation of the cyclopentadienyl C5H5 rings around the symmetry
axis of the ferrocene molecule. We also obtain the mean residence time for these jumps as well as the activation
energy for the process. We compare with NMR results on ferrocene in faujasite-type zeolites and with
quasielastic neutron scattering results on pure ferrocene.

Introduction

Recently, Overweg et al.1 have studied the molecular motions
of ferrocene molecules Fe(C5H5)2 locked up in the supercages
of faujasite-type zeolites by means of NMR spectroscopy. They
concluded that for temperaturesT below 225 K the ferrocene
molecules have no translational freedom, the only motion being
a, on the time scale of NMR experiments (∼microseconds), very
rapid internal jump rotation of the cyclopentadienyl C5H5 rings
about their 5-fold axes. The actual value of the residence time
τ of the rings at each site was determined by NMR to be much
smaller than microseconds. Here we study at various temper-
atures the dynamics of ferrocene in a KY zeolite by means of
quasielastic neutron scattering with which we can probe motions
at time scales of the order of nanoseconds as well as the
geometry of the motion. For ferrocene in a KY zeolite it is found
that the motion is consistent with an internal jump rotation of
the rings about their 5-fold axes. The residence timeτ(T) ) 62
ps atT ) 202 K. From the temperature dependence ofτ(T) we
determine an activation energyEa ) 5.96 kJ mol-1 needed for
the rotations. We compare our results with those obtained by
Overweg et al. and with quasielastic neutron scattering results
on pure ferrocene.2

Quasielastic Neutron Scattering

The theoretical incoherent dynamic structure factorS(Q,ω),
i.e., the scattered neutron intensity as a function of momentum
Q and energyω transfer, is for a powder sample and 5-fold
jump diffusion over a circle with radiusR given by3

where the amplitudeA0(Q) of the delta functionδ(ω) is the
so-called elastic incoherent structure factor (EISF).B(Q,ω) is

the quasielastic broadening

Here the amplitudesAl(Q) with l ) 0, 1, 2 are given by

with j0(x) the spherical Bessel function of zeroth order, and the
half-widthsλl with l ) 1, 2 are given by

whereτ is the mean residence time of the molecule at one site.
We note thatτ depends onT but not onQ, as we will need
below. We will also need thatA0(Q) + 2A1(Q) + 2A2(Q) ) 1
for all Q, due to the normalization ofS(Q,ω), i.e.,∫S(Q,ω) dω
) 1 for all Q. We remark that the neutron spectrum observed
in experiments is given by eq 1 folded with the resolution
function R(Q,ω) of the spectrometer.

Experiment

The sample consisted of ferrocene Fe(C5H5)2 loaded into the
supercages of dehydrated KY zeolite, prepared similar to the
way described by Overweg et al.1 There is one ferrocene
molecule in each supercage. The sample was contained in an
indium sealed aluminum flat plate sample chamber.

The neutron scattering measurements have been performed
on the backscattering spectrometer BSS of the Forschungszen-
trum Jülich, Germany. First we used the Si(111) monochroma-
tor, resulting in an energy window-15 e ω e 15 µeV and an
energy resolution∆ω(Q) ≈ 0.5µeV (hwhm), depending slightly
on the momentum transferQ. Second, the energy window was
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shifted to -5 e ω e 30 µeV by using the Si0.9Ge0.1(111)
monochromator, resulting in an energy resolution∆ω(Q) ≈ 1.2
µeV, again slightly depending onQ. In both setups the
momentum transferQ ranged from 0.2 to 1.9 Å-1. We also
performed in both setups measurements on vanadium to
determine the full resolution functionR(Q,ω) of the spectro-
meter, which, in good approximation, is of Lorentzian shape
with hwhm ∆ω(Q). Measurements on pure KY zeolite show
quasielastic spectra also proportional toR(Q,ω). From the
intensity we conclude, as expected, that the scattering from KY
zeolite is far less than from ferrocene. Its (small) contribution
is accounted for in the modeling procedure.

Results

Below 100 K no quasielastic broadening in the spectra of
ferrocene in KY zeolite is observed; i.e., the spectraS(Q,ω)
are indistinguishable from the resolution functionR(Q,ω). Above
140 K a broadening starts to appear which is very clear atT )
202 K. In Figure 1a the spectra for momentum transfersQ )
1.8 Å-1 at T ) 22 and 202 K are plotted. Clearly the central
peak atT ) 202 K is lower than the peak atT ) 22 K, whereas
the side wings have more intensity atT ) 202 K than atT )
22 K. This means that at 22 KB(Q,ω) ) 0 andA0(Q) ) 1
while at 202 KB(Q,ω) > 0 andA0(Q) < 1 (cf. eq 1). The spectra
at T ) 202 K were subsequently fitted with the 5-fold jump
reorientational model according to eqs 1-4, whereδ(ω) is
replaced by the normalized resolution functionR(Q,ω). A0 and
τ were taken as two independent fit parameters whileA1 and
A2 were determined by the relationsA0 + 2A1 + 2A2 ) 1 and
A2(Q)/A1(Q) as given by eq 3 andR ) 2.33 Å (i.e., the actual
radius of the cyclopentadienyl rings4). The fits for Q ) 1.34
and 1.88 Å-1 are shown in Figure 1b,c. We find that all the
spectraS(Q,ω) can be fitted perfectly (like in Figure 1) with
the 5-fold jump model whereτ depends onT, but not onQ, as
theoretically predicted.

The fitted values for the area of the central lineA0, the elastic
incoherent structure factor, are represented in Figure 2 as a
function of Q, as well as the theoretical EISF according to eq
3 with R ) 2.33 Å. We also show (cf. Be´e3) the theoretical
predictions for 10-fold jumps and for continuous diffusion over
a circle (i.e.,∞-fold jumps). The agreement between theory and
experiment is sufficient to ascertain that one indeed observes a
5-fold jump rotation of the cyclopentadienyl rings of ferrocene
over a circle with radiusR ) 2.33 Å. From the present
experiment we find for the mean residence timesτ(T) ) 203
ps (146 K), 121 ps (170 K), 71 ps (191 K), 62 ps (202 K), and
30 ps (238 K) as shown in Figure 3. The dependence of the
mean residence timesτ(T) on temperatureT is well-described
by an Arrhenius law:

with Ea being the activation energy for a jump reorientation, to
be determined from the slope of the curve in Figure 3. We find

Figure 1. Top: Neutron scattering spectra on ferrocene Fe(C5H5)2 in
KY zeolite for momentum transferQ ) 1.8 Å-1 at temperaturesT )
22 K (open squares) andT ) 202 K (solid squares) as measured on
the BSS spectrometer in Ju¨lich. Middle and bottom: Incoherent
dynamic structure factorsS(Q,ω) for momentum transfersQ ) 1.34
and 1.88 Å-1 of ferrocene in KY zeolite (open circles), together with
fits according to a 5-fold jump reorientational model (as explained in
the text). The dotted line gives the central peak of the fit, and the dashed
line gives the quasielastic broadening.

Figure 2. Fitted values for the area of the central lineA0, the incoherent
elastic structure factor EISF, for ferrocene in KY zeolite (open circles).
The solid line gives the theoretical EISF according to a 5-fold jump
reorientational model on a circle with radiusR ) 2.33 Å (cf. eq 1) and
the dashed line for 10-fold and the dotted line for∞-fold jumps (cf.
Bée3).

τ(T) ) τ∞ exp[Ea/kBT] (5)
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for Ea a value ofEa ) 5.96 kJ mol-1 and for the preexponential
factor τ∞ ) 1.63 ps.

Discussion

We conclude that the geometry of the motion of the ferrocene
molecules locked up in the supercages of KY zeolite is a 5-fold
jump reorientation of the cyclopentadienyl C5H5 rings around
the symmetry axis of the ferrocene molecule. Quasielastic
neutron scattering spectra at different temperatures are perfectly
fitted with such a model. Furthermore, the experimental elastic
incoherent structure factor as a function ofQ is in good

agreement with the theoretical curve according to the 5-fold
jump reorientational model. For smallQ values we find that
the radius of the circle is in agreement with the actual radius of
the cyclopentadienyl rings (i.e., 2.33 Å), whereas for large values
we find that the EISF tends to 1/5, where five is the number of
sites used in the 5-fold model. These conclusions are consistent
with those obtained by Overweg et al.1

We are also able to determine the mean residence time of
the ferrocene molecule at one site, being 62 ps at 202 K. From
the temperature dependence of the mean residence time we
determine the activation energy for a jump reorientation of the
cyclopentadienyl rings of the ferrocene molecule around their
5-fold axes to be 5.96 kJ mol-1. The values of the mean
residence times and for the activation energy are considerably
larger than those obtained for pure ferrocene (as shown in Figure
3), meaning that the ferrocene molecule is more tightly bound
in the supercages of the zeolite than in the pure solid state.

According to Brot,5 the frequencyωlibr of libration of the
ferrocene molecule in its potential well is of the order ofπτ∞

-1,
whereτ∞ ) 1.63 ps is the prefactor in eq 5. Thus, one expects
a libration peak inS(Q,ω) at ω ∼ ωlibr ∼ 1.3 meV, far outside
the energy window of the BSS spectrometer used in the present
work. We prepare experiments on the IRIS spectrometer of ISIS
(UK) to confirm the existence of such a libration peak.
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Figure 3. Residence timesτ obtained from fits on neutron spectra
with the 5-fold jump reorientational model as a function of temperature
T for ferrocene in zeolite (solid squares, present work) and solid
ferrocene (open squares, by Gardner et al.2). The solid line is a fit with
an Arrhenius type law.
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