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Absence of self-averaging in the complex admittance for transport through random media
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A random walk model in a one-dimensional disordered medium with an oscillatory input current is pre-
sented as a generic model of boundary perturbation methods to investigate properties of a transport process in
a disordered medium. It is rigorously shown that an admittance which is equal to the Fourier-Laplace transform
of the first-passage time distribution is non-self-averaging when the disorder is strong. The low-frequency
behavior of the disorder-averaged admittance,^x&21;vm, wherem,1, does not coincide with the low-
frequency behavior of the admittance for any sample,x21;v. It implies that the Cole-Cole plot of̂x&
appears at a different position from the Cole-Cole plots ofx of any sample. These results are confirmed by
Monte Carlo simulations.
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Response of a system to an external field is a stand
information to be utilized in the study of condensed matt
Recently, the frequency response method1 and the intensity
modulated photocurrent spectroscopy2 have been introduced
where an oscillatory perturbation is applied at one end o
system and a response from the other end of the syste
measured. Thus, these experimental techniques can be
sidered to belong to a generic method which can be ca
the boundary perturbation method~BPM!. In the presence o
a periodically forced boundary condition on one end o
system, the output from the other end of the system is
proportion to the perturbation in the linear regime and
proportionality constant is called the admittance. The f
quency dependence of the admittance contains various in
mation of the dynamics of the system. The BPM is expec
to provide useful information on transport properties of d
ordered media.

The analysis of transport of particles in a random medi
attracts great interest since the transport mechanism is b
for the understanding of many physical phenomena, fr
electrical conductivity to thermal properties.3 Usually it is
assumed that a sample used in experiments is sufficie
large that it can be considered to be composed of a la
number of subsystems. If each of the subsystems is it
macroscopic, the boundary effect is negligible and each s
system may be considered to be a realization of the sys
with a particular choice for the disorder. Thus, a measu
ment of any observable in such a system corresponds t
average over all the subsystems, i.e., an average ove
ensemble of all realizations of the disorder. Systems
which this assumption is valid are said to be self-averag
~SA!. Since the assumption implies no sample dependenc
guarantees reproducibility of experimental results in a
sample.

However, it is known that the disorder-averaged quan
follows a dynamics that is different from the dynamics of t
quantity of each sample. If the dynamics of particles in
disordered sample is assumed to be stochastic and Mar
ian, i.e., to follow a master equation, the disorder-avera
PRB 610163-1829/2000/61~9!/5839~4!/$15.00
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master equation has a memory effect.4 Thus, the dynamics of
an averaged quantity may be non-Markovian even tho
the process for each sample is Markovian. There are sev
reports on absence of SA in transport phenomena in di
dered media: for mean square displacement,5 for mean first-
passage time of the Sinai model.6

In this report, we study a random walk model in a on
dimensional disordered medium with an oscillatory inp
current as a generic model of the BPM. It is rigorous
shown that the admittance, which is equal to the Four
Laplace transform of the first-passage time distribut
~FPTD!, is non-self-averaging~non-SA! when the disorder is
strong.

We consider a general random walk in a one-dimensio
lattice segment ofN11 sites. The lattice sites are denoted
integers,n50,1, . . . ,N. The dynamics of a random walkin
particle can be described by a master equation for the p
ability Pn(t) that the particle is at siten at time t>0. The
master equation for the model is written as

Ṗn~ t !5wn n21Pn21~ t !2~wn21 n1wn11 n!Pn~ t !

1wn n11Pn11~ t !, ~1!

wherewm n denotes the random jump rate of a particle fro
site n to site m. The probability distribution of jump rates
characterizes the random medium. We introduce a pertu
tion at the left end, so that the equation forP0(t) is given by

Ṗ0~ t !52w1 0P0~ t !1w0 1P1~ t !1J~ t !. ~2!

J(t) is the oscillatory current perturbation at site 0. The rig
end of the system is assumed to be a sink and the equa
for PN21 is given by

ṖN21~ t !5wN21 N22PN22~ t !

2~wN22 N211wN N21!PN21~ t !. ~3!

Since the current perturbationJ(t) oscillates in time around
a positive average with the amplitudeDJ, the response of the
5839 ©2000 The American Physical Society
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output currentwN N21PN21(t) oscillates around its station
ary state with the amplitudewN N21DPN21 at the same fre-
quency with a phase-shift. The admittance is defined as
ratio of these two amplitudes

x~v![
wN N21DPN21

DJ
. ~4!

We first note that the admittance can be related to the
passage time distributionFN 0(t) ~FPTD!, which is the prob-
ability density that the particle which starts at site 0 at tim
arrives for the first time at siteN at time t. Since siteN is a
sink, the FPTD is given by the output current from siteN
when there is no input current and the particle starts from
0 at time 0. The Fourier-Laplace transform of a system
master equations for the case is the same as a syste
equations forDPn /DJ derived from the master equation
Eqs.~1!–~3!. It implies thatF̃N 0(s5 iv) for the case where
there is no input current and the particle starts from site 0
time 0 is identical towN N21DPN21 /DJ. Thus, the admit-
tance is equal to the Fourier-Laplace transform of the ou
current in the problem described above, i.e., the FPTD.

We make the low-frequency expansion of the admitta
to see the behavior near the static limit. Since the admitta
is given by the Fourier-Laplace transform of the FPTD, t
admittance at zero frequency equals one due to norma
tion of the FPTD. The mean first-passage time~MFPT! t̄

which is the first moment of the FPTD is given byt̄
5 i dx(v50)/dv. Thus, the low-frequency expansion of th
admittance is given by

x~v!512 i t̄ v1O~v2!. ~5!

Since the MFPT is given by7

t̄ 5 (
k50

N21
1

wk21 k
1 (

k50

N22
1

wk11 k
(

i 5k11

N21

)
j 5k11

i
wj 21 j

wj 11 j
, ~6!

the MFPT t̄ is larger than(k50
N211/wk21 k . By taking the

average of Eq.~6! over the distribution for the jump rates
one sees that the average of the MFPT^ t̄ & is larger than the
first inverse moment of a random jump rate^1/w&. Thus,
when the first inverse moment of a jump rate diverges, wh
is called strong disorder, the disorder-averaged MFPT
verges. It indicates that the disorder-averaged admittanc
non-analytic. Since the admittance is a function ofiv, we
can write as

^x~v!&21;~ iv!m, ~7!

where 0,m,1. Since this behavior of the disorde
averaged admittance is completely different from the beh
ior of the admittance of each sample given by Eq.~5!, the
admittance is non-SA when the disorder is strong.

On the other hand, when the first inverse moment o
jump rate exists, it is easily shown from Eq.~6!, that the
MFPT is finite provided that there is no correlation betwe
wk11 k and wi 11 i , where i>k11. The condition of inde-
pendence of the neighboring jump rates holds for the
disordered model called random trap model and the b
disordered model called a random barrier model. Thus, w
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the first inverse moment of a jump rate exists, the lo
frequency behavior of the disorder-averaged admittanc
the same as the one of each sample given byx21; iv.
Furthermore, if the second inverse moment of a jump r
exists, the prefactor ofv does not depend on a realization
the chain when the chain is sufficiently long.

In order to test the foregoing observation, we performe
computer simulation in one-dimensional chain of 100 sit
Figure 1 shows the low-frequency behavior of the imagin
part of the admittance obtained by the Monte-Carlo simu
tion where the relationwi 11 i5wi i 11 is assumed and the
probability distribution of jump rates is given by

P~w!5H awa21 if 0 ,w,1,

0 otherwise,
~8!

where 0,a,1. The power-law probability distribution cor
responds to the waiting-time distributionC(t);t2a21 used
in the study of dispersive transport wherea is proportional
to temperature,8 and it has been shown that the power-la
distribution is common for activation processes with rand
activation energy.9

In the literature of experiments of the BPM,1,2 the Cole-
Cole plot of the admittance is employed for the analysis. I
a parametric plot of the imaginary part of the admittan
against the real part. The shape of the Cole-Cole plot is
dependent of the length of the chain for a sufficiently lo
chain due to time-scale invariance of the Cole-Cole p
Thus, the Cole-Cole plot shows the size-independent cha
teristics of a medium.

In order to see the non-SA property of the admittance
the Cole-Cole plot, we first note that the inverse of the a
mittance satisfies the following recursive relation:

xn
21~v!5S iv

wn11 n
111

wn21 n

wn11 n
Dxn21

21 ~v!

2
wn21 n

wn11 n
xn22

21 ~v!, ~9!

FIG. 1. Low-frequency behavior of the imaginary part of th
admittance when the exponent of the probability distribution
jump rates is 1/2 and the length of a chain is 100. Each solid
represents the admittance for each of 50 samples. The dashed
represents the admittance averaged over 5000 samples. Thoug
admittance of each sample is proportional tov, the averaged ad-
mittance is proportional toAv.
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wherexn
21(v) is the inverse of the admittance for a chain

lengthn.10 The recursive relation proves inductively that t
inverse of the admittance obeys the following four inequa
ties in the frequency region@0,vn#, wherevn is the positive

smallest zero ofxn
218:

xn
219.0,

xn21
218.0,

~10!
xn

219.xn21
219 ,

xn
218,xn21

218 .

Since the second inequality showsvn<vn21, the fourth in-

equality impliesxn
218,xn21

218,•••,x1
21851 in the region

@0,vn#. It is straightforward to show thatx218,1 implies
that the Cole-Cole plot of the admittance of each sample
exist onlyoutside a semicirclewhose center is at (1/2,0) an
radius is 1/2, which we call the Debye semicircle, whenv
,vn .

On the other hand, we can show in the following way th
the Cole-Cole plot of the averaged admittance is locatedin-
side the Debye semicirclewhen the disorder is strong. W
consider the angleu between the tangent of the Cole-Co
plot at (1,0) and the horizontal axis. For Eq.~7!, u5mp/2,
which is less thanp/2 sincem,1, is obtained. However, the
angleu for the Debye semicircle is equal top/2. It implies
that the Cole-Cole plot of the averaged admittance app
inside the Debye semicircle when the disorder is stro

FIG. 2. The Cole-Cole plot of the admittance when the expon
of the probability distribution of jump rates is 1/2 andN5100.
Each solid line represents the admittance for each of 30 sam
The dashed line represents the admittance averaged over
samples. The circles represents the admittance of each samp
v5531027. Although the circles scatter outside the Debye se
circle, the diamond, i.e., the averaged admittance is inside of
Debye semicircle.
-

n

t
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Since the Cole-Cole plot of the admittance of any sam
appears outside the Debye semicircle, the Cole-Cole
clearly shows non-SA property of the admittance. Figure
shows the Cole-Cole plot ofx and ^x& obtained by Monte
Carlo simulation whena51/2 in Eq. ~8!. Since the admit-
tance of each sample at the same frequency scatters ou
the Debye semicircle, the admittance averaged at the s
frequency is inside the Debye semicircle. In the case that
first inverse moment of a jump rate exists, the angleu of the
Cole-Cole plot of the averaged admittance isp/2, which is
the same as the Cole-Cole plot of each sample, becaus
the regular behavior aŝx&21; iv.

In conclusion, we have presented a generic stochastic
namical model in one-dimensional medium of the BPM a
have shown that the admittance has important informa
about transport in disordered media, e.g., the FPTD. Thus
BPM will be a powerful technique to investigate the dynam
cal process in random media. We have also shown that
admittance is non-SA when the disorder is strong. Since
absence of SA is due to nonanalyticity introduced by
average over infinite number of samples, the behavior of
averaged admittance over infinite number of samples gi
by a theoretical analysis does not coincide with that of
admittance observed in experiments.

Non-SA behavior, i.e., strong sample to sample dep
dence may be observed in other experiments. For examp
is known that anomalous system-size dependence of the
bility, m;N121/a, is observed in the time-of-flight experi
ment of amorphous semiconductors.8 The anomalous
system-size dependence is due to the fact that the sma
value of random jump rates depends on the length o
chain.11 Since the smallest value dominates the mobility, t
mobility is also a random variable. Thus, the anomalo
system-size dependence implies absence of SA.

It is important to note that the system treated in t
present report is purely one dimensional and it is still
open problem whether the admittance for higher-dimensio
media are SA. Since one can consider a diffusing partic
path a one-dimensional chain and a higher-dimensional
dium can be regarded as a bundle of many realizations
particle’s path, the total output from the medium is given
the sum of one-dimensional currents. Thus, the admitta
for such a system may be SA, since the number of path
very large when the medium is macroscopic. Thus, in or
to see the non-SA behavior described here one needs to
in one-dimensional system or the case where the tran
tional invariance is violated in only one direction since the
is still the possibility that the SA assumption is valid for tw
or three-dimensional systems.
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