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Absence of self-averaging in the complex admittance for transport through random media
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A random walk model in a one-dimensional disordered medium with an oscillatory input current is pre-
sented as a generic model of boundary perturbation methods to investigate properties of a transport process in
a disordered medium. It is rigorously shown that an admittance which is equal to the Fourier-Laplace transform
of the first-passage time distribution is non-self-averaging when the disorder is strong. The low-frequency
behavior of the disorder-averaged admittangg,— 1~ w*, where u<1, does not coincide with the low-
frequency behavior of the admittance for any sample,1~ w. It implies that the Cole-Cole plot ofy)
appears at a different position from the Cole-Cole ploty aff any sample. These results are confirmed by
Monte Carlo simulations.

Response of a system to an external field is a standanhaster equation has a memory effé@hus, the dynamics of
information to be utilized in the study of condensed matteran averaged quantity may be non-Markovian even though
Recently, the frequency response methadd the intensity the process for each sample is Markovian. There are several
modulated photocurrent spectroscopgve been introduced, reports on absence of SA in transport phenomena in disor-
where an oscillatory perturbation is applied at one end of dlered media: for mean square displacenidot, mean first-
system and a response from the other end of the system Rassage time of the Sinai model. _
measured. Thus, these experimental techniques can be con-In this report, we study a random walk model in a one-
sidered to belong to a generic method which can be calledimensional disordered medium with an oscillatory input
the boundary perturbation meth@8PM). In the presence of Ccurrent as a generic model of the BPM. It is rigorously
a periodically forced boundary condition on one end of aShown that the admittance, which is equal to the Fourier-
system, the output from the other end of the system is ir{_aplace_ transform of the first-passage time 'dlstrlbqtlon
proportion to the perturbation in the linear regime and the(FPTD), is non-self-averagingnon-SA when the disorder is
proportionality constant is called the admittance. The fre-Strong. _ _ _ _
quency dependence of the admittance contains various infor- We consider a general random walk in a one-dimensional
mation of the dynamics of the system. The BPM is expecteéﬁtt'ce segment ol + 1 sites. The Ia_ttlce sites are denote_d by
to provide useful information on transport properties of dis-integersn=0,1, ... N. The dynamics of a random walking
ordered media. particle can be described by a master equation for the prob-

The analysis of transport of particles in a random mediun®bility Pn(t) that the particle is at sita at timet=0. The
attracts great interest since the transport mechanism is badiaster equation for the model is written as
for the understanding of many physical phenomena, from )
electrical conductivity to thermal propertigdJsually it is Pa(t) =Wq n—1Pn_1(t) = (Wn_1 n T Wn1 1) Pn(t)
assumed that a sample used in experiments is sufficiently w P. . .(t) 1)
large that it can be considered to be composed of a large nnElnelth
number of subsystems. If each of the subsystems is itselffherew,, , denotes the random jump rate of a particle from
macroscopic, the boundary effect is negligible and each sulsite n to site m. The probability distribution of jump rates
system may be considered to be a realization of the systewharacterizes the random medium. We introduce a perturba-
with a particular choice for the disorder. Thus, a measuretion at the left end, so that the equation fy(t) is given by
ment of any observable in such a system corresponds to an .
average over all the subsystems, i.e., an average over the Po(t)=—wq oPo(t) +wg 1P1(t) +J(1). 2
ensemble of all realizations of the disorder. Systems for. ) i ) )
which this assumption is valid are said to be self-averaging](t) is the oscnlator_y current perturbatlon_ at site 0. The rlgh_t
(SA). Since the assumption implies no sample dependence, §nd Of the system is assumed to be a sink and the equation
guarantees reproducibility of experimental results in any/©" Pn-1 IS given by

sample. )
However, it is known that the disorder-averaged quantity Pn-1(t) =Wy_1 n-2Pn-2(t)
follows a dynamics that is different from the dynamics of the — (Wy—2 N_1+Wn ne1) Ph_a(1). 3

qguantity of each sample. If the dynamics of particles in a
disordered sample is assumed to be stochastic and Marko®ince the current perturbatial{t) oscillates in time around
ian, i.e., to follow a master equation, the disorder-averaged positive average with the amplitude), the response of the
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output currentwy n_1Pn_1(t) oscillates around its station- 10°
ary state with the amplitudery y_1APy-1 at the same fre-

guency with a phase-shift. The admittance is defined as the

ratio of these two amplitudes

107
Wy N-1APN-1
x(w)= — A7 (4) :

We first note that the admittance can be related to the first 10™
passage time distributidRy, o(t) (FPTD), which is the prob-
ability density that the particle which starts at site 0 at time 0
arrives for the first time at sithl at timet. Since siteN is a
sink, the FPTD is given by the output current from site 10°, & ppey 07 ppey
when there is no input current and the particle starts from site o
0 at time 0. The Fourier-Laplace transform of a system of
master equations for the case is the same as a system of FIG. 1. Low-frequency behavior of the imaginary part of the
equations forAP,/AJ derived from the master equations admittance when the exponent of the probability distribution of

_ : : = _ jump rates is 1/2 and the length of a chain is 100. Each solid line
icgé(::'; rgg)i.nl;t)ll,lrtnsﬂ:arsertl?ztrf dNtOh(Z p:':l(;f[?crgrsttgftsc ?rsoemwsri]te; % at[epresents the admlittance for each of 50 samples. The dashed line
. . . - represents the admittance averaged over 5000 samples. Though the
time 0 is identical towy n-1APy—1/AJ. Thus, the admit- dmittance of each sample is proportionalspthe averaged ad-
tance is equal to the Fourier-Laplace transform of the outpu ittance is proportional ta/e
current in the problem described above, i.e., the FPTD. '

We make the low-frequency expansion of the admittancepe first inverse moment of a jump rate exists, the low-
to see the behavior near the static limit. Since the admi'[tancferequency behavior of the disorder-averaged admittance is
is given by the Fourier-Laplace transform of the FPTD, thethe same as the one of each sample givenybyl~iw.
admittance at zero frequency equals one due to nOmlal'Ze?:urthermore, if the second inverse moment of a jump rate
tion of the FPTD. The mean first-passage titMFPT) t  exists, the prefactor ab does not depend on a realization of
which is the first moment of the FPTD is given ky the chain when the chain is sufficiently long.
=idy(w=0)/dw. Thus, the low-frequency expansion of the  In order to test the foregoing observation, we performed a

_5

10

admittance is given by computer simulation in one-dimensional chain of 100 sites.
o Figure 1 shows the low-frequency behavior of the imaginary
x(w)=1-it 0+0(w?). (50  part of the admittance obtained by the Monte-Carlo simula-
) . tion where the relatiorw;, ;;=w;; 4 is assumed and the
Since the MFPT is given By probability distribution of jump rates is given by
Gy " S L wy awe™if 0<w<1,
=2 + 2 ——1, (6 P(w) )

k=0 Wk—1k k=0 Wkt+1k i=k+1 j=ki+1 Wj+1 | |0 otherwise,

the MFPTt is larger thanS-11/w,_,,. By taking the where 0<a<1. The power-law probability distribution cor-
= - " e . . . . —a—1
average of Eq(6) over the distribution for the jump rates, résponds to the waiting-time distribution(t) ~t used

o~ in the study of dispersive transport wheteis proportional
one sees that the average of the MRRY is larger than the to temperatur& and it has been shown that the power-law

first inverse moment of a random jump rafbiw). Thus, distribution is common for activation processes with random

when the first inverse moment of a jump rate diverges, which. ~. "~ -
activation energy.

is called strong disorder, the disorder-averaged MFPT di- In the literature of experiments of the BPW the Cole-

verges. It indicates that the disorder-averaged admittance E . . . .
. ; ) . o ole plot of the admittance is employed for the analysis. It is
non-analytic. Since the admittance is a functioni of we . . . .
can write as a parametric plot of the imaginary part of the admittance
against the real part. The shape of the Cole-Cole plot is in-
; dependent of the length of the chain for a sufficiently long
—1~(iw)*, 7 ; . X _

(@) (o) @) chain due to time-scale invariance of the Cole-Cole plot.
where O<u<1. Since this behavior of the disorder- Thus, the Cole-Cole plot shows the size-independent charac-
averaged admittance is completely different from the behavteristics of a medium.
ior of the admittance of each sample given by Es), the In order to see the non-SA property of the admittance in
admittance is non-SA when the disorder is strong. the Cole-Cole plot, we first note that the inverse of the ad-

On the other hand, when the first inverse moment of anittance satisfies the following recursive relation:
jump rate exists, it is easily shown from E(), that the

MFPT is finite provided that there is no correlation between 1) = o T 1+Wn—1n “1 (@)

W 1, andw;, q;, wherei=k+1. The condition of inde- An Wht1n Whtin An-1

pendence of the neighboring jump rates holds for the site

disordered model called random trap model and the bond _Wn—1”X—1 (o) 9)
disordered model called a random barrier model. Thus, when Woign "2



PRB 61 BRIEF REPORTS 5841

Since the Cole-Cole plot of the admittance of any sample
appears outside the Debye semicircle, the Cole-Cole plot
clearly shows non-SA property of the admittance. Figure 2
shows the Cole-Cole plot of and(x) obtained by Monte
Carlo simulation wherw=1/2 in Eq.(8). Since the admit-
tance of each sample at the same frequency scatters outside
the Debye semicircle, the admittance averaged at the same
frequency is inside the Debye semicircle. In the case that the
first inverse moment of a jump rate exists, the argl& the
Cole-Cole plot of the averaged admittanceni®, which is
the same as the Cole-Cole plot of each sample, because of
the regular behavior as¢) —1~iw.
-0-1_0 5 0'2 0‘6 10 In conclusion, we have presented a generic stochastic dy-
' ' X’ ' ' namical model in one-dimensional medium of the BPM and
ave shown that the admittance has important information
bout transport in disordered media, e.g., the FPTD. Thus the
BPM will be a powerful technique to investigate the dynami-
81I process in random media. We have also shown that the
a(?mittance is non-SA when the disorder is strong. Since the
absence of SA is due to nonanalyticity introduced by an
gverage over infinite number of samples, the behavior of the
averaged admittance over infinite number of samples given
by a theoretical analysis does not coincide with that of the
¢ admittance observed in experiments.

Non-SA behavior, i.e., strong sample to sample depen-
dence may be observed in other experiments. For example, it
is known that anomalous system-size dependence of the mo-
bility, u~N*"Y* is observed in the time-of-flight experi-
ment of amorphous semiconduct§rsThe anomalous
system-size dependence is due to the fact that the smallest

EX]

FIG. 2. The Cole-Cole plot of the admittance when the exponeng1
of the probability distribution of jump rates is 1/2 ami= 100.
Each solid line represents the admittance for each of 30 sample
The dashed line represents the admittance averaged over 50
samples. The circles represents the admittance of each sample
»=5%10"". Although the circles scatter outside the Debye semi-
circle, the diamond, i.e., the averaged admittance is inside of th
Debye semicircle.

wherexrjl(w) is the inverse of the admittance for a chain o
lengthn.’® The recursive relation proves inductively that the
inverse of the admittance obeys the following four inequali-
ties in the frequency regidr0,w, ], wherew, is the positive

1!
smallest zero of;, ' :

an >0, value of random jump rates depends on the length of a
chain! Since the smallest value dominates the mobility, the

XE_li>0, mobility is also a random variable. Thus, the anomalous

(10) system-size dependence implies absence of SA. .

X*l”> -1” It is important to note that the system treated in the
n n-b present report is purely one dimensional and it is still an
1y open problem whether the admittance for higher-dimensional
Xn™ <Xn-1- media are SA. Since one can consider a diffusing particle’s

Since the second inequality shows<w,_;, the fourth in-  path a one-dimensional chain and a higher-dimensional me-

equality impIiesX;1'<X;,l/l<o ) '<XI1/:1 in the region dlum ce}n be regarded as a bundle of many_reall'zatllons of a
. ahtf d h hap- L' imoli particle’s path, the total output from the medium is given by

[O.wn]. It is straightforward to s ow thag = <1 implies e sym of one-dimensional currents. Thus, the admittance
that the Cole-Cole plot of the admittance of each sample cap,. ¢ ,ch a system may be SA, since the number of paths is
exist onlyoutside a semicirclevhose center is at (1/2,0) and g1y jarge when the medium is macroscopic. Thus, in order

radius is 1/2, which we call the Debye semicircle, when 4 see the non-SA behavior described here one needs to work

<wn. i . in one-dimensional system or the case where the transla-
On the other hand, we can show in the following way thatijona] invariance is violated in only one direction since there

the Cole-Cole plot of the averaged admittance is located g gjl| the possibility that the SA assumption is valid for two-
side the Debye semicirciwhen the disorder is strong. We . ihree-dimensional systems.

consider the angl® between the tangent of the Cole-Cole

plot at (1,0) and the horizontal axis. For H@), 0= um/2, This work was supported in part by Grant-in-Aid from the
which is less thamr/2 sinceu< 1, is obtained. However, the Ministry of Education, Science, Sports and Culture. One of
angle ¢ for the Debye semicircle is equal te/2. It implies  us(M.K.) is thankful to the Institut fuFestkaperforschung,
that the Cole-Cole plot of the averaged admittance appeafsorschungszentrum lich for its hospitality, where part of
inside the Debye semicircle when the disorder is strongthe present work was done.
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