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Understanding the physics of strongly correlated mateiiglone of the grand challenges in
condensed-matter physics. Simple approximations sudtededal density approximation fail,
due to the importance of the Coulomb repulsion betweenilmthlelectrons. Instead we have
to resort to non-perturbative many-body techniques. Satufations are, however, only fea-
sible for quite small model systems. This means that theHalhiltonian of a real material
has to be approximated by a model Hamiltonian comprising th@ most important electronic
degrees of freedom, while the effect of all other electroms merely be included in an aver-
age way in form of parameters. In this work we describe howaloutate those parameters
for the one-dimensional organic metal TTF-TCNQ. Having starcted the Hamiltonian we
calculate the ground state and dynamical properties wéh_inczos method. This method is
limited by the available main memory. We show how to make ieficuse of the memory and
computational power of the massively parallel BlueGensg/étem for such calculations. To
gain high-resolution angular-resolved spectral functioi®e employ cluster perturbation theory
(CPT) which helps identifying signatures of spin-chargpgasation also found experimentally
in TTF-TCNQ. Increasing the nearest neighbour interadsstudied using a periodic version
of CPT (kCPT).

1 Motivation

Essentially all of condensed matter physics is describeddyon-relativistic Schrodinger
equationih% |¥) = H |¥), with the Hamiltonian

Nn =4 Ne _’2 NS NTIV Ne Nn
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whereZ, is the atomic numben/, the massﬁa the position and3a the momentum of
nucleusa. p; andr; denote thej*" electron’s momentum and position and, N, the
number of electrons and nuclei, respectively. To accyratescribe materials of techno-
logical interest and design new ones with superior propertll we have to do is solve
this equation. There is, however, a severe problem whictesialbrute-force approach to
the many-body Schrodinger equation infeasible. To ithtstthis, let us consider a single
iron atom. With its26 electrons the total electronic wave function dependg®times3
spatial coordinates. Thus, even without spin, specifyiregelectronic wave function on a
hypercubic grid with merely0 points per coordinate, we would have to stdfé® num-
bers. This is impossible in practice: Even if we could storeimber in a single hydrogen
atom, the required memory would weighi®' kg — far more than our home-galaxy, the
milky way.

Still, the quantitative description of solids is not an eglii hopeless enterprise. Even
though an exact treatment is a practical impossibilityrerere successful approximations
that work for wide classes of materials. The most promineatrgles are approxima-
tions to density functional theofyThey effectively map the hard many-body problem to
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Figure 1. The molecular metal TTF-TCNQ. Centre: molecutsels of the isolated molecules; left: two TTF
molecules with the electron density of their highest ocedpnolecular orbital (HOMO); right: TCNQ with the
electron density of the lowest unoccupied molecular orittlMO). The red arrow denotes the charge transfer
of 0.6 electrons from the TTF-HOMO to the TCNQ-LUMO.

an effective single-particle problem that can be efficiestiived numerically. Essential
to these approximations is that the Coulomb repulsion isritesd on a mean-field level.
Such an approximation fails, however, to capture the plyisicystems with strong cor-
relations. In these systems the Coulomb repulsion betwesegrléctrons is so strong that
the motion of a single electron depends on the position dhalbthers. The electrons thus
lose their individuality and the single-electron picturediks down. To accurately model
this, we have to solve the many-electron problem exactlgafy we cannot do this for
the full Hamiltonian. Instead, we consider a simplified Hiomian, which describes only
those electrons that are essential to the correlationtsffén this work we find the model
Hamiltonian for the one-dimensional organic metal TTF-TCANd solve it numerically.

As shown in figure 1, TTF and TCNQ are stable molecules with metaly filled
molecular orbitals. The highest molecular orbital (HOM®)T@F is, however, signifi-
cantly higher in energy than the lowest unoccupied molearaital (LUMO) of TCNQ.
Thus in a crystal of TTF and TCNQ, charge is transferred froed@TTF-HOMO to the
TCNQ-LUMO. This leads to partially filled bands and thus niietébehaviour. In the
TTF-TCNQ crystal, like molecules are stacked on top of egblero Electrons can move
along these stacks, while hopping between different stackstremely weak. Thus the
material is quasi one-dimensional.

As pointed out above, we cannot treat all the electrons inntbéecular solid. In-
stead, we focus our efforts on the most important electrstaites: the partially filled TTF-
HOMO and TCNQ-LUMO. The effects of the other electrons amiided by considering
their screening effects The simplest model Hamiltonian which captures both effebis
itinerancy of the electrons as well as the strong Coulongraution is the Hubbard model.
We present a slightly extended Hubbard model, it reads

H=-— Z tijcjg Cjo T+ UZ?’LZ'TTLH +V Z nin; . Q)

o,it] <ij>
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The first term gives the kinetic energy, whegg is the amplitude for an electron to hop
from the molecule at sitéto lattice sitej. Note that hopping does not change the spin
o. The second and third terms represent the Coulomb reputgitween electrons in the
same molecular orbital (second term) and in neighbourinigoubar orbitals (third term).
The values ot/ andV determine the strength of the Coulomb repulsion for twotebes

in the same molecular orbital or neighbouring ones, regpdyt In the next section we
will address the problem of calculating those parameters.

Since the Hamiltonian does neither change the number dfrefexnor their spin, we
need to consider (1) only on Hilbert spaces with a fixed nunatb@lectrons of spin up
N; and spin downV,. For a finite system of orbitals there are(NLU) different ways
to arrangeN,, electrons of spinr. Thus the dimension of the Hilbert space is given by
(1\%) : (NLL) Even though we significantly simplified the problem, we $tilve to face the
many-body problem: increasing system size, the dimenditimecHilbert space increases
steeply. A system witl20 orbitals andl0 electrons of either spin already contains more
than 34 billion 84 134 779 536) different configurations. Storing a single many-bodyestat
for this system takes abo254 GB.

2 Calculation of Parameters for a Realistic Description

For a realistic description of TTF-TCNQ we employ all-etect DFT using the Perdew-
Burke-Ernzerhof functiondl.We start with the hopping matrix elemeritalong stacks of
like molecules. Due to the relatively small overlap of thel@ealar wave functions the de-
scription in terms of the tight-binding model is a good apgmmation, for the same reason
nearest neighbour hopping suffices. Similar to atomic gnkggls splitting in bonding
and anti-bonding levels when forming diatomic homonuciealecules the molecular en-
ergy levels of isolated molecules split when two moleculggraach one another. From
this bonding and anti-bonding splitting for a pair of like lmcules we obtain the absolute
value of the hopping parameter. Letlenote the molecular level for which we want to cal-
culate the hopping parameter, here either the HOMO of TTR@tLtJMO of TCNQ, and
e, its molecular energy. In a specific dimer with stgg%), wherex = A, B distinguishes
the two molecules, the tight-binding Hamiltonian reads

g, —t¥
= (). @
Diagonalizing vyields the symmetric/anti-symmetric statei.e. |<pf/“> =
% (|¢2) £ [¢F)) . with the corresponding energies, ije/") = e, T . From
this we obtain the absolute value of the hopping parametedibigling the splitting
|Ae¥| = 2|t”| of the molecular energy levels by two. The signttf however, is not
directly accessible by this method. It can be derived from simmetry of the dimer
wavefunctions. If the bonding orbital (the lower one in eygris symmetric kcpf/“>)
thent, is positive. And correspondingly if the lower one is antisyetric, t is negative.
For TTF-TCNQ we obtaint = —0.15 eV for TTF and 0.18 eV for TCNQ.

The Coulomb parameters are harder to determine due to thersog processes inside
the crystal. We start with the bare Coulomb integrals of tlwecular orbitalv for two
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TTE TCNQ TTE TCNQ
Uvare 5.9 54 Voo 3.1 20
U, 47 43 V, 29 28
U 2 1.7 Vv 1 0.9

Table 1. Hubbard parameters for TTF-TCNQ, .. is the direct Coulomb integral/y includes intra-molecular
screening, and/ is the screened on-site Coulomb term in the crystal wheveaenotes the screened nearest
neighbour parameter. All energies are in eV.

molecules a relative distance Ezﬁpart, ie.

Vu,l —/d3 d3—¥ pu(”?)pf/(ry)’ (3)

bare |F

wherepl (7) = |¢!, ()| and¢L () is the wave function of orbital at positior. Obviously
the local Coulomb integral, the Hubbatds,,., is given bbe’;fC = U, .- The bare pa-
rameters are, in general, too large since all screeningtsfége neglected. To calculate the
on-site Coulomb parametéf, including intra-molecular screening we use (all-electron
density functional theory total energy calculations fdfedent additional chargegon a
single molecule. To obtaiti, for HOMOs electrons are taken away and similarly for LU-
MOs electrons are added to the molecule. The Kohn-Sham Dial énergy consists of

several contributions. It reads

2 -
Etotal Z gini — /d3,’? chn(f‘) — % /d3fd31ﬂ M + Fye [n] + Vions ) (4)

where thes; are the Kohn-Sham eigenenergies anthe corresponding occupation num-
bers,Vi,ns denotes the ion-ion interaction.

The terms behave differently when subjected to a changeatreh density. Charging
up the molecule witly leads to a linear change in the occupation numbgifer the orbital
v with energye,. The Hartree potential also has a linear contribution. This be seen
when substituting — p+dp, wheredp denotes the change due to the additional charge. Its
contribution however is mainly quadratic. The effects @ é&xchange-correlation potential
are usually small and therefore neglected. Thus, fittingttha energies for different
additional charges to the function

2
Eug(a) = a0+ a1q + U S (5)

yields the desired/y andag, a; as further fit parameters.,, should be about the energy
for Eyy (0). a1 captures the linear effects in The factorl /2 of the quadratic term stems
from the factorl /2 in the Hartree potential in equation (4).

Similarly Vo”’fis calculated. We consider two molecules with an additi@halrge of
q/2 put on both of them. The total energy for differeris fitted to

vl (4
Evou,r(Q) = 2Euy(q/2) + bo + big + Vj (5) ; (6)

yielding V.
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Figure 2. (left) Transpose operation that makes memorysactteead-local when calculating the operation of
the Hamiltonian on the state-vector. The communicatiod &eows) is realized by a call tgPI _al | t oal | ,
which is very efficiently implemented on BlueGene/L. The Biak arrows indicate the local operations needed
to complete the matrix-transpose;(right) Speed-up of @rdzos code on IBM Blue Gene/L JUBL in CO mode
for 20 sites half-filled Hubbard model.

To also include the inter-molecular screening contributiequires calculations of the
energy of an infinite lattice of molecules. We employ an etestatic approach and rep-
resent the molecules by their polarizabilities. The pakility tensor of the isolated
molecules is calculated with DFT, by evaluating the dipotenments in homogeneous ex-
ternal fields along the principal axes and extracting thedirresponse. Regarding the
molecules as point-polarizabilities we can calculate tily{screened parametéraith
the distributed dipole-approach. All parameters are ctadpn table 1.

3 Computational Aspects

The key ingredient of the Lanczos algorithm, our eigenvaliger, is the sparse matrix

vector multiplication. Already for quite small systemssttiperation takes most of the
execution time, and with increasing the size of the manyybattor it dominates even

more. Thus it will be in the focus of our parallelization etfa On shared memory systems
this matrix-vector multiplication is embarrassingly sil@put we are restricted to relatively
small memories. To use the memory that is needed to redute siae effects, we had to

find an efficient distributed memory implementation.

The kinetic energy term of the Hamiltonian (1) has non-dredderms and therefore
leads to non-local memory access patterns. To obtain aneeffidistributed memory im-
plementation we use a simple yet important observation:ohsted out above, the kinetic
energy term conserves spin. Thus, performing the up-elettopping takes only differ-
ent up-hopping configurations into account while the dovatteon configuration remains
unchanged. If we group all up configurations for a fixed downfiguration together in
a single thread this hopping can thus be carried out locédly:a fixed indexi, all iy
configurations follow and can be stored in a thread. We seaéttifs basis can be naturally
indexed by a tupléi|,i1) instead of a global index We can therefore equivalentlynega
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Figure 3. (first row) Angular-resolved spectral functiortashed by CPT for 20 sites TCNQ-like, i.e. six elec-
trons of either spin{-U Hubbard model with/ = 1.96 eV, ¢t = 0.4 eV (left) and¢-U-V Hubbard model with
U =1.7eV,t =0.18 eVandV = 0.9 eV (right). The second row shows a magnification of the vigiof the
T" point. In thet-U model we clearly observe signatures of spin-charge seépasathereas for the-U-V model
the lower branch is split. The green cosine shows the indigerparticle band.

the vectors as matricesi |, ;) with indices:; andi;. Now it is easy to see that a matrix
transpose reshuffles the data elements such that the dodigwations are sequentially
in memory and local to the thread. Therefore, the efficierfcthe sparse matrix-vector
multiplication rests on the performance of the matrix t@ose operation. We implement
it with MPI _Al | t oal | . This routine expects, however, the data packages whidtbwil
sent to a given process to be stored contiguously in memdrigs does not apply to our
case, since we would like to store the spin-down electrorigorations sequentially in
memory. Thus, the matrix is stored column wise. B _Al | t oal | to work prop-
erly, we would have to bring the data elements in row-majdearThis could be done by
performing a local matrix transpose. The involved matraes however, in general rect-
angular, leading to expensive local-copy and reorderiregatpons. We can avoid this by
calling MPI _Al | t oal | for each column separately. After callidg®l _Al | t oal | for
each column (red arrows in figure 2) only a local strided tpasgion has to be performed
(small pink arrows) to obtain the fully transposed matrix.anczos vecto®.® The speed-
up (figure 2) shows that collective communication is indeexyefficient on BlueGenel/L.
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Figure 4. kCPT angular-resolved spectral functions clas¢he I" point for 20 sites TCNQ-like Hubbard
model with 6 electrons of either spin and different values of the neamegihbour Coulomb repulsiol’ =
{0.0,0.1,0.2,0.4,0.6,0.9}eV (U = 1.7eV, ¢t = 0.18eV). We clearly observe the increase in the splitting of
the former holon and spinon branch with increasing valués .of

4 (k)Cluster Perturbation Theory and Spin-Charge Separatbn

Our parallel implementation of the Lanczos method enabesouefficiently calculate
angular-resolved spectral functions for quite large syste However, we still can have
at most as many different momenta as we have sites. To resotitng physics like spin-
charge separation we need, however, a higher resolutionaydtevachieve this is cluster
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perturbation theory (CPT)The general idea is to solve a finite cluster wigien boundary
conditionsexactly and then treat hopping between clusters in strooglow perturbation
theory, leading to an effectively infinite chain.

Figure 3 shows the angular-resolved spectral function @N® in a CPT calculation
for a 20 sitest-U Hubbard model. At thd-point we observe signatures of spin-charge
separation: The electron dispersion splits into a holonaasiginon branch. These features
are also observed in experiments. Usually the parametdr set1.96 eV, ¢t = 0.4 eV
has been used in the calculations since they fit the expeténfeny well. The parameter
calculations, however, show thashould be smaller by a factor of more than two, but
on the other hand the nearest neighbour interadti@hould not be neglected since it is
about half the value of/. We thus repeated the calculation with the realistic patarae
derived above and observe tHateffectively doubles the bandwidth. At the same time
the spectral-weight of the holon-band spreads and the simgtinger liquid behaviour is
lost.

To study this transition we need several calculations féfedint values ofi”. CPT
calculations are, however, quite expensive. To generat€®l plots about three Blue-
Gene/L rack-days are needed: The calculation of the grotatel is negligible and takes
considerably less than half an hour 2nt8 processors in VN mode on a BlueGene/L sys-
tem. To calculate the Green’s function for photoemissiahianerse photoemission about
400 Green's functions each have to be calculated, where theeiocalculation takes a
total of aboutl5 hours whereas the latter one takes about two days. We thugavasort
to a computationally less demanding, however, more fine-sffect prone method — the
kCPT method. The key idea is to always keep translationahsgtry by using periodic
boundary conditions. Figure 4 shows how increadihghifts apart the spectral features
close to thd” point.
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