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Realistic Description of TTF-TCNQ – a Strongly
Correlated Organic Metal

Andreas Dolfen and Erik Koch

Institut für Festkörperforschung, Forschungszentrum Jülich, 52425 Jülich, Germany
E-mail: {a.dolfen, e.koch}@fz-juelich.de

Understanding the physics of strongly correlated materials is one of the grand challenges in
condensed-matter physics. Simple approximations such as the local density approximation fail,
due to the importance of the Coulomb repulsion between localized electrons. Instead we have
to resort to non-perturbative many-body techniques. Such calculations are, however, only fea-
sible for quite small model systems. This means that the fullHamiltonian of a real material
has to be approximated by a model Hamiltonian comprising only the most important electronic
degrees of freedom, while the effect of all other electrons can merely be included in an aver-
age way in form of parameters. In this work we describe how to calculate those parameters
for the one-dimensional organic metal TTF-TCNQ. Having constructed the Hamiltonian we
calculate the ground state and dynamical properties with the Lanczos method. This method is
limited by the available main memory. We show how to make efficient use of the memory and
computational power of the massively parallel BlueGene/L system for such calculations. To
gain high-resolution angular-resolved spectral functions we employ cluster perturbation theory
(CPT) which helps identifying signatures of spin-charge separation also found experimentally
in TTF-TCNQ. Increasing the nearest neighbour interactionis studied using a periodic version
of CPT (kCPT).

1 Motivation

Essentially all of condensed matter physics is described bythe non-relativistic Schrödinger
equationi~ ∂

∂t |Ψ〉 = H |Ψ〉, with the Hamiltonian

H = −
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~P 2
α

2Mα
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Ne∑
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whereZα is the atomic number,Mα the mass,~Rα the position and~Pα the momentum of
nucleusα. ~pj and~rj denote thejth electron’s momentum and position andNe, Nn the
number of electrons and nuclei, respectively. To accurately describe materials of techno-
logical interest and design new ones with superior properties, all we have to do is solve
this equation. There is, however, a severe problem which makes a brute-force approach to
the many-body Schrödinger equation infeasible. To illustrate this, let us consider a single
iron atom. With its26 electrons the total electronic wave function depends on26 times3
spatial coordinates. Thus, even without spin, specifying the electronic wave function on a
hypercubic grid with merely10 points per coordinate, we would have to store1078 num-
bers. This is impossible in practice: Even if we could store anumber in a single hydrogen
atom, the required memory would weight1051 kg – far more than our home-galaxy, the
milky way.

Still, the quantitative description of solids is not an entirely hopeless enterprise. Even
though an exact treatment is a practical impossibility, there are successful approximations
that work for wide classes of materials. The most prominent examples are approxima-
tions to density functional theory.1 They effectively map the hard many-body problem to
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Figure 1. The molecular metal TTF-TCNQ. Centre: molecular levels of the isolated molecules; left: two TTF
molecules with the electron density of their highest occupied molecular orbital (HOMO); right: TCNQ with the
electron density of the lowest unoccupied molecular orbital (LUMO). The red arrow denotes the charge transfer
of 0.6 electrons from the TTF-HOMO to the TCNQ-LUMO.

an effective single-particle problem that can be efficiently solved numerically. Essential
to these approximations is that the Coulomb repulsion is described on a mean-field level.
Such an approximation fails, however, to capture the physics in systems with strong cor-
relations. In these systems the Coulomb repulsion between the electrons is so strong that
the motion of a single electron depends on the position of allthe others. The electrons thus
lose their individuality and the single-electron picture breaks down. To accurately model
this, we have to solve the many-electron problem exactly. Clearly we cannot do this for
the full Hamiltonian. Instead, we consider a simplified Hamiltonian, which describes only
those electrons that are essential to the correlation effects.2 In this work we find the model
Hamiltonian for the one-dimensional organic metal TTF-TCNQ and solve it numerically.

As shown in figure 1, TTF and TCNQ are stable molecules with completely filled
molecular orbitals. The highest molecular orbital (HOMO) of TTF is, however, signifi-
cantly higher in energy than the lowest unoccupied molecular orbital (LUMO) of TCNQ.
Thus in a crystal of TTF and TCNQ, charge is transferred from the TTF-HOMO to the
TCNQ-LUMO. This leads to partially filled bands and thus metallic behaviour. In the
TTF-TCNQ crystal, like molecules are stacked on top of each other. Electrons can move
along these stacks, while hopping between different stacksis extremely weak. Thus the
material is quasi one-dimensional.

As pointed out above, we cannot treat all the electrons in themolecular solid. In-
stead, we focus our efforts on the most important electronicstates: the partially filled TTF-
HOMO and TCNQ-LUMO. The effects of the other electrons are included by considering
their screening effects.3 The simplest model Hamiltonian which captures both effects, the
itinerancy of the electrons as well as the strong Coulomb interaction is the Hubbard model.
We present a slightly extended Hubbard model, it reads

H = −
∑

σ,i6=j

tijc
†
iσ cjσ + U

∑

i

ni↑ni↓ + V
∑

<ij>

ninj . (1)
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The first term gives the kinetic energy, wheretij is the amplitude for an electron to hop
from the molecule at sitei to lattice sitej. Note that hopping does not change the spin
σ. The second and third terms represent the Coulomb repulsionbetween electrons in the
same molecular orbital (second term) and in neighbouring molecular orbitals (third term).
The values ofU andV determine the strength of the Coulomb repulsion for two electrons
in the same molecular orbital or neighbouring ones, respectively. In the next section we
will address the problem of calculating those parameters.

Since the Hamiltonian does neither change the number of electrons nor their spin, we
need to consider (1) only on Hilbert spaces with a fixed numberof electrons of spin up
N↑ and spin downN↓. For a finite system ofL orbitals there are

(
L

Nσ

)
different ways

to arrangeNσ electrons of spinσ. Thus the dimension of the Hilbert space is given by(
L

N↑

)
·
(

L
N↓

)
. Even though we significantly simplified the problem, we still have to face the

many-body problem: increasing system size, the dimension of the Hilbert space increases
steeply. A system with20 orbitals and10 electrons of either spin already contains more
than 34 billion (34 134 779 536) different configurations. Storing a single many-body state
for this system takes about254 GB.

2 Calculation of Parameters for a Realistic Description

For a realistic description of TTF-TCNQ we employ all-electron DFT using the Perdew-
Burke-Ernzerhof functional.4 We start with the hopping matrix elementst along stacks of
like molecules. Due to the relatively small overlap of the molecular wave functions the de-
scription in terms of the tight-binding model is a good approximation, for the same reason
nearest neighbour hopping suffices. Similar to atomic energy levels splitting in bonding
and anti-bonding levels when forming diatomic homonuclearmolecules the molecular en-
ergy levels of isolated molecules split when two molecules approach one another. From
this bonding and anti-bonding splitting for a pair of like molecules we obtain the absolute
value of the hopping parameter. Letν denote the molecular level for which we want to cal-
culate the hopping parameter, here either the HOMO of TTF or the LUMO of TCNQ, and
εν its molecular energy. In a specific dimer with states|φx

ν〉, wherex = A,B distinguishes
the two molecules, the tight-binding Hamiltonian reads

HTBA
ν =

(
εν −tν
−tν εν

)
. (2)

Diagonalizing yields the symmetric/anti-symmetric state, i.e. |ϕs/a
ν 〉 =

1√
2

(∣∣φA
ν

〉
±
∣∣φB

ν

〉)
, with the corresponding energies, i.e.|ǫs/a

ν 〉 = εν ∓ tν . From
this we obtain the absolute value of the hopping parameter bydividing the splitting
|∆εν | = 2|tν | of the molecular energy levels by two. The sign oftν , however, is not
directly accessible by this method. It can be derived from the symmetry of the dimer

wavefunctions. If the bonding orbital (the lower one in energy) is symmetric (
∣∣∣ϕs/a

ν

〉
)

thentν is positive. And correspondingly if the lower one is antisymmetric, t is negative.
For TTF-TCNQ we obtain:t = −0.15 eV for TTF and 0.18 eV for TCNQ.

The Coulomb parameters are harder to determine due to the screening processes inside
the crystal. We start with the bare Coulomb integrals of the molecular orbitalν for two
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TTF TCNQ TTF TCNQ
Ubare 5.9 5.4 Vbare 3.1 2.9
U0 4.7 4.3 V0 2.9 2.8
U 2 1.7 V 1 0.9

Table 1. Hubbard parameters for TTF-TCNQ.Ubare is the direct Coulomb integral,U0 includes intra-molecular
screening, andU is the screened on-site Coulomb term in the crystal whereasV denotes the screened nearest
neighbour parameter. All energies are in eV.

molecules a relative distance of~l apart, i.e.

V ν,~l
bare =

∫
d3~rd3~r′

ρ0
ν(~r)ρ

~l
ν(~r′)

|~r − ~r′| , (3)

whereρ~l
ν(~r) = |φ~l

ν(~r)|2 andφ~l
ν(~r) is the wave function of orbitalν at position~l. Obviously

the local Coulomb integral, the Hubbard-Ubare, is given byV ν,~0
bare = Ubare. The bare pa-

rameters are, in general, too large since all screening effects are neglected. To calculate the
on-site Coulomb parameterU0 including intra-molecular screening we use (all-electron)
density functional theory total energy calculations for different additional chargesq on a
single molecule. To obtainU0 for HOMOs electrons are taken away and similarly for LU-
MOs electrons are added to the molecule. The Kohn-Sham DFT total energy consists of
several contributions. It reads

Etotal[n] =
∑

i=1

εini−
∫
d3~r Vxcn(~r)− e

2

2

∫
d3~rd3~r′

n(~r)n(~r′)
|~r − ~r′| +Exc[n]+Vions , (4)

where theεi are the Kohn-Sham eigenenergies andni the corresponding occupation num-
bers,Vions denotes the ion-ion interaction.

The terms behave differently when subjected to a change in electron density. Charging
up the molecule withq leads to a linear change in the occupation numbersnν for the orbital
ν with energyǫν . The Hartree potential also has a linear contribution. Thiscan be seen
when substitutingρ→ ρ+δρ, whereδρ denotes the change due to the additional charge. Its
contribution however is mainly quadratic. The effects of the exchange-correlation potential
are usually small and therefore neglected. Thus, fitting thetotal energies for different
additional charges to the function

EUν
0
(q) = a0 + a1q + Uν

0

q2

2
, (5)

yields the desiredU0 anda0, a1 as further fit parameters.a0 should be about the energy
for EUν

0
(0). a1 captures the linear effects inq. The factor1/2 of the quadratic term stems

from the factor1/2 in the Hartree potential in equation (4).

Similarly V ν,~l
0 is calculated. We consider two molecules with an additionalcharge of

q/2 put on both of them. The total energy for differentq is fitted to

E
V ν,~l
0

(q) = 2EUν
0
(q/2) + b0 + b1q + V ν,~l

0

(q
2

)2

, (6)

yieldingV ν,~l
0 .
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Figure 2. (left) Transpose operation that makes memory access thread-local when calculating the operation of
the Hamiltonian on the state-vector. The communication (red arrows) is realized by a call toMPI alltoall,
which is very efficiently implemented on BlueGene/L. The small pink arrows indicate the local operations needed
to complete the matrix-transpose;(right) Speed-up of our Lanczos code on IBM Blue Gene/L JUBL in CO mode
for 20 sites half-filled Hubbard model.

To also include the inter-molecular screening contribution requires calculations of the
energy of an infinite lattice of molecules. We employ an electrostatic approach and rep-
resent the molecules by their polarizabilities. The polarizability tensor of the isolated
molecules is calculated with DFT, by evaluating the dipole moments in homogeneous ex-
ternal fields along the principal axes and extracting the linear response. Regarding the
molecules as point-polarizabilities we can calculate the fully-screened parameters3 with
the distributed dipole-approach. All parameters are compiled in table 1.

3 Computational Aspects

The key ingredient of the Lanczos algorithm, our eigenvaluesolver, is the sparse matrix
vector multiplication. Already for quite small systems this operation takes most of the
execution time, and with increasing the size of the many-body vector it dominates even
more. Thus it will be in the focus of our parallelization efforts. On shared memory systems
this matrix-vector multiplication is embarrassingly simple but we are restricted to relatively
small memories. To use the memory that is needed to reduce finite size effects, we had to
find an efficient distributed memory implementation.

The kinetic energy term of the Hamiltonian (1) has non-diagonal terms and therefore
leads to non-local memory access patterns. To obtain an efficient distributed memory im-
plementation we use a simple yet important observation: As pointed out above, the kinetic
energy term conserves spin. Thus, performing the up-electron hopping takes only differ-
ent up-hopping configurations into account while the down-electron configuration remains
unchanged. If we group all up configurations for a fixed down configuration together in
a single thread this hopping can thus be carried out locally:for a fixed indexi↓, all i↑
configurations follow and can be stored in a thread. We see, that this basis can be naturally
indexed by a tuple(i↓, i↑) instead of a global index We can therefore equivalently regard
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Figure 3. (first row) Angular-resolved spectral function obtained by CPT for a20 sites TCNQ-like, i.e. six elec-
trons of either spin,t-U Hubbard model withU = 1.96 eV, t = 0.4 eV (left) andt-U -V Hubbard model with
U = 1.7 eV, t = 0.18 eV andV = 0.9 eV (right). The second row shows a magnification of the vicinity of the
Γ point. In thet-U model we clearly observe signatures of spin-charge separation, whereas for thet-U -V model
the lower branch is split. The green cosine shows the independent-particle band.

the vectors as matricesv(i↓, i↑) with indicesi↓ andi↑. Now it is easy to see that a matrix
transpose reshuffles the data elements such that the down configurations are sequentially
in memory and local to the thread. Therefore, the efficiency of the sparse matrix-vector
multiplication rests on the performance of the matrix transpose operation. We implement
it with MPI Alltoall. This routine expects, however, the data packages which will be
sent to a given process to be stored contiguously in memory. This does not apply to our
case, since we would like to store the spin-down electron configurations sequentially in
memory. Thus, the matrix is stored column wise. ForMPI Alltoall to work prop-
erly, we would have to bring the data elements in row-major order. This could be done by
performing a local matrix transpose. The involved matricesare, however, in general rect-
angular, leading to expensive local-copy and reordering operations. We can avoid this by
calling MPI Alltoall for each column separately. After callingMPI Alltoall for
each column (red arrows in figure 2) only a local strided transposition has to be performed
(small pink arrows) to obtain the fully transposed matrix orLanczos vector.5, 6 The speed-
up (figure 2) shows that collective communication is indeed very efficient on BlueGene/L.
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Figure 4. kCPT angular-resolved spectral functions close to the Γ point for 20 sites TCNQ-like Hubbard
model with6 electrons of either spin and different values of the nearestneighbour Coulomb repulsionV =
{0.0, 0.1, 0.2, 0.4, 0.6, 0.9}eV (U = 1.7eV, t = 0.18eV). We clearly observe the increase in the splitting of
the former holon and spinon branch with increasing values ofV .

4 (k)Cluster Perturbation Theory and Spin-Charge Separation

Our parallel implementation of the Lanczos method enables us to efficiently calculate
angular-resolved spectral functions for quite large systems. However, we still can have
at most as many different momenta as we have sites. To resolveexciting physics like spin-
charge separation we need, however, a higher resolution. A way to achieve this is cluster
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perturbation theory (CPT).7 The general idea is to solve a finite cluster withopen boundary
conditionsexactly and then treat hopping between clusters in strong coupling perturbation
theory, leading to an effectively infinite chain.

Figure 3 shows the angular-resolved spectral function for TCNQ in a CPT calculation
for a 20 sitest-U Hubbard model. At theΓ-point we observe signatures of spin-charge
separation: The electron dispersion splits into a holon anda spinon branch. These features
are also observed in experiments. Usually the parameter setU = 1.96 eV, t = 0.4 eV
has been used in the calculations since they fit the experiments fairly well. The parameter
calculations, however, show thatt should be smaller by a factor of more than two, but
on the other hand the nearest neighbour interactionV should not be neglected since it is
about half the value ofU . We thus repeated the calculation with the realistic parameters
derived above and observe thatV effectively doubles the bandwidth. At the same time
the spectral-weight of the holon-band spreads and the simple Luttinger liquid behaviour is
lost.

To study this transition we need several calculations for different values ofV . CPT
calculations are, however, quite expensive. To generate the CPT plots about three Blue-
Gene/L rack-days are needed: The calculation of the ground state is negligible and takes
considerably less than half an hour on2048 processors in VN mode on a BlueGene/L sys-
tem. To calculate the Green’s function for photoemission and inverse photoemission about
400 Green’s functions each have to be calculated, where the former calculation takes a
total of about15 hours whereas the latter one takes about two days. We thus want to resort
to a computationally less demanding, however, more finite-size effect prone method – the
kCPT method. The key idea is to always keep translational symmetry by using periodic
boundary conditions. Figure 4 shows how increasingV shifts apart the spectral features
close to theΓ point.
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7. D. Sénéchal, D. Perez, and M. Pioro-Ladrière,Spectral Weight of the Hubbard Model
through Cluster Perturbation Theory, Phys. Rev. Lett.84, 522, 2000.

8. T. Maier, M. Jarrell, Th. Pruschke, M. Hettler,Quantum Cluster Theories,
Rev. Mod. Phys77, 1027, 2005.

244


