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We have measured both the static and dynamic structure factors of a single dendrimer with
small-angle x-ray scatteringSAXS) and neutron spin-echo spectroscopy under good solvent
conditions with the aim of finding a consistent correlation between the structural properties of
dendrimers and their dynamic behavior. The samples under investigation were star-burst
polyamidoamine dendrimers with generatiogis 0 to 8 in dilute methanol solutions. A model
independent approach employing inverse Fourier transformation and square root deconvolution
methods has been used to analyze the SAXS data to obtain the pair distance distribution function
p(r) and the radial excess electron density prafijg(r). In addition, we formulated a model that
takes both the colloiddblobular, compact shape with form polydispersity or fuzzy surfasewell

as the loose, polymeriself-avoiding random wa)kcharacter of dendrimers into account. With this
model we were able to describe the spectra of all dendrimer generations consistently. Parameters
discussed as a function of the dendrimer generation are, among others, the correlation length of the
density fluctuationgblob radiug & the radius of gyratiorR,, the sphere radiugs, the form
polydispersity o or analogously, the width of the fuzzy surface regiow;2 Both the
model-independent approach and the model fits reveal that at least down to the third generation the
dendrimers exhibit a rather compact, globular shape. These findings are in agreement with the
dynamic results obtained by NSE spectroscopy which probes length scales both larger and much
smaller than the dimension of a single dendrimer. The method reveals that the dynamics throughout
is dominated by the center-of-mass diffusion—the internal dynamics is suppressed. The diffusion
coefficients obtained are close to the values calculated from the Stokes—Einstein relation using the
sphere radiufkg determined from the SAXS spectra. Dynamically, the dendrimers behave like
“hard”, solid spheres. ©2002 American Institute of Physic§DOI: 10.1063/1.1493771

I. INTRODUCTION able volume. This fact raises the question of whether the
ddendrons, tree-like branches stemming from the central core,

Star-burst dendrimers represent a class of well-define . . . )
: . are highly stretched to increase the available volume or if
highly branched macromolecules. They are built from a cen-

tral multifunctional core to which multifunctional monomers there is significant backfolding of the terminal segments to

are added via a protection—deprotection mechanism. Thid® cer:ter o"f.the dendrlmer. In the f|rst. case Qneiwould ex-
hole” in the radial segment density distribution at the

procedure leads to a regular, tree-like structure. The derP€¢t2 _
drimer structure is defined by the functionality of the cére dendrimer core, whereas the latter would imply a dense core

the functionality of the spacer units, and the number of With @ smoothly decreasing segment density with increasing
generationgy. distance from the dendrimer core.
The structural properties of dendrimers have been con- Small-angle scattering experiments with neutrons

troversial since they were first synthesized by Tometial® ~ (SANS) and x rays(SAXS) are suitable to obtain informa-

in 1985. The masM of a dendrimer grows exponentially as tion on the internal structure and overall shape of dendrim-

a function of the generation and much faster than the availers, such as the fractal dimensiakp, the distribution of
chain ends, and the radial density profile, and are therefore

dAuthor to whom correspondence should be addressed. Electronic maiy_ery Va_lluable to Va“d_ate re_sults Obtameq from computer

s.rathgeber@fz-juelich.de simulations. Fractal dimensions of dendrimers have been
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evaluated by Murat and Gréstusing molecular dynamics cause the comprehensive understanding of the static proper-
simulations as well as by Mansfiéltiwith Monte Carlo ties is essential for the interpretation of the dendrimer
methods. Murat and Grest have foulth: Rgf with d¢~3 dynamics, we will present in Sec. IV A a detailed discussion
for all generations, with slight deviations occurring only for of our static measurements and results.
g=1 andg=2. A fractal dimension ofl;=3 indicates that Our work on the dynamic properties of dendrimers was
the dendrimers present compact, space-filling structures. ORotivated by the extensive studies of Richesral.'*~*° on
the other hand, a scaling behavior betwekr2.76 for g the dynamics of star polymers, which represent another class
=9 down tod;=2.45 forg=6 obtained by Mansfield would ©f highly branched macromolecules. The authors showed
suggest a transition to a looser, more polymeric-like structuréhat for these systems the internal dynamics reflects the star
with decreasing generation. SANS and SAXS experimentfolymer architecture. Recent theoretical work indicates that
measuring the generation dependenceRgffor PAMAMS this should also be true for dendritic polymét€2The aim
and polypropyleneiming dendrimer8 seem to support the of this work is to find a consistent correlation between the
MNRS scaling behavior. structure of the dendrimers and their dynamic behavior.
Most computer simulations seem to agree that the end- Richter and co-workers found that low-functionality
groups of a dendrimer are distributed throughout thestars show the same behavior as linear homopolymers. A
moleculé*"~°and are not located predominantly on the out-simple transition from diffusional dynamics at logvvalues
side of the dendrimer, as was postulated by the theory of d& Zimm dynamics at higly values is observed. In contrast,
Gennes and Hervé?. Toppet al* however, concluded from for high-functionality stars, the authors found a pronounced
SANS experiments on partially labeled dendrimers and thaninimum in the reduced relaxation rat&4q® on the same
fact that the radius of gyration of the terminal grouRgr Ieng_th sca!es 2/q*, where the structure factor exhibits a
was larger tharR, of the entireg=7 dendrimer that the mMaximum in Kratky representation. Since the reduced line-
endgroups were concentrated near the periphery of the deMidth scales with the scaling variatigR; ; (Ry o= radius of
drimer. Lyulin et al}**® later showed that the radius of gy- gyration of one armin the same way as the form factor,
ration is not a safe measure of the location of terminal unitsRichter et al. draw an analogy to the phenomenon of de
since distribution functions withRy r=R, can be con- Gennes narrowing in the case of liquids, where the structure
structed where most of the endgroups are located within théctor S(q) renormalizes the intrinsic relaxation rate of the
interior of the dendrimer. In accordance with the concept ofdensity fluctuationsQ to an effective rate()q=Q/q).
backfolding of terminal groups, most simulations support a¥vhereas de Gennes narrowing denotes a collective phenom-
radial segment density profile having a maximum at the cor@&non involving different particles, the effect described above
with a monotonic decrease to the eddeexcept for a slight occurs for the density fluctuations within one entity, how-
local minimum at small radial distanc3.The notion of a  €Vver, containing a large number of monomeric segments.
monotonically decreasing density profile fg=4 andg For dendrimers of various branching topology, local
=5 dendrimers is supported by SANS experiments by Balstiffness, and different generations, La Fétland Ganazzoli
lauff and co-worker¥"'® using contrast variation methods. €t al?2 calculated the dynamic structure factor in the frame-
The authors described their SANS spectra by assuming Work of the Rouse-Zimm theory. Compared to star poly-
Gaussian distribution for the segment density profile. Denmers, the model predicts an even deeper local minimum lo-
sity profiles obtained by IFT and SQDEC-methods fromcated agR,~2.08 for the reduced relaxation rate, except for
SAXS data by Prosat al!® decrease monotonically from  dendrimers with high local stiffness. In contrast to the find-
=10tog="7. For lower generationdrom g=6 tog=2) the  ings for star polymers, the depth and the width of the mini-
density profiles display local minima in the periphery which, mum decreases with increasing stiffness. High local stiffness
in the interpretation of the authors, result from a polydisperwould prevent a space-filling arrangement in the dendrimer
sity of shapes and sizes. interior and thus reduce the screening of the hydrodynamic
The same authof$ also concluded from their SAXS interaction.
data that a geometry change occurs in dendrimers with de- This paper is outlined as follows: In Sec. Il A we give a
creasing generation number. A gradual transition in ghe short theoretical introduction to the first cumulant evaluation
dependence of the data at high scattering vectors, frqnfa and summarize the most important equations necessary for
power-law behavior fog= 10, which would be typical for a the evaluation of the dynamic NSE data. In Secs. [I1B1 and
dense spherical object with smooth surface, to #%power-  11B 2 we would like to give a short introduction to the in-
law behavior forg=3, which would be characteristic for a verse Fourier transformatiafFT) and square root deconvo-
loose polymeric structure under good solvent condition, wasution (SQDEQ methods developed by GlattérA compre-
taken as the basis for this conclusion. Accordingly, the formhensive introduction to the model we formulated for the
factors lose more features in the high-q region, e.g., higheanalysis of the static SAXS data is given in Sec. Il C. Section
order maxima. The authors claimed that their observationsil describes the samples and summarizes the experimental
were in qualitative agreement with simulation results fromconditions for the SAXS and NSE experiments. In Sec. IVA
Mansfield®>*1"who, however, observedar *? behavior(6-  the static SAXS results are presented and discussed with the
condition at high g values also for high-generation emphasis on putting the structural characteristics of the den-
dendrimers. drimers in relation to those of low- and high-functionality
In our opinion, the previously reported work is not to- stars. In Sec. IV B the dynamic NSE results are shown and
tally consistent and requires a more detailed analysis. Behe relation between the structural and dynamical properties
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of the dendrimers and the differences from previous results _ {p(q,0) £ p*(q,0))
on high-functionality stars are discussed. The major conclu-  With  x(q)= K 'qu , )
sions are summarized in Sec. V. .

where w(q) is the so-called generalized mobility. In the
framework of the random phase approximati®&PA) w(q)
Il. THEORY or Q(q) can be determined, but assumptions about the de-
A NSE—First cumulant evaluation tailed interaction between segments must be nfade.

The Zimm model takes hydrodynamic interaction be-

Neutron spin-echo spectroscopy measures the coherefifeen the segments via the flow field of the surrounding

intermediate structure fact@(q,t) on length scales where g ent into account. The generalized mobility can be written
we are able to resolve not only the diffusion of the overall ;4

dendrimer but also internal relaxation processes. Since ex-

plicit theoretical predictions for the dynamic structure factor E|Nm<g|g|mg exp(—igrim))
of a dendrimer in dilute solution are still missing, we discuss ~ u#(q)=——— KeT '
our data using a first cumulant approach, which is discussed B

in more detail in Ref. 24. In the framework of linear response kT
theory, the time development of the density vecin,t) with le:T Oim* (1= 0im) Tim.s (6)
satisfies the condition
ap(q,1) Whe_reN den'ot'es the number of segments qrig the local
o —Lp(q,t), (1) friction coefficient. The Oseen tens@dji,,, describes a flow

field, the strength of which decays slowly with the inverse of
whereL is a real, linear, and time-independent operator actthe distance between two segments, leading to a strong cou-
ing on the position vectors of all segments in the solutionpling of the dynamics of different segments. It was shown by
From this general equation, via a Mori—Zwanzig projectionBurchard et al?® that for Zimm dynamics the generalized
formalism, a generalized Langevin equation can be derivednobility can be expressed to high accuracy by the sum of a
ie., hydrodynamically preaveraged termp’e(q)xEﬁm(gQ|mg>
X{(exp(—igr;y)) and a correction term (q)

dp(q,t) t
s - Q@e(@.n+ | dud(gt-u)e(a,u) 1
pPA)= 5 f S(va*+u®) du, @)
+1(1), (2) s 70
wheref(t) denotes the random Langevin forces acting from 2

q -
the surrounding medium, which is considered as a heat bath Au(d)= 35— J u=[S(,/0.729%)
. . 30m°7ns Jo
acting on each segment. The memory matbikg,t) takes
the viscoelastic properties of the medium into account, and _S(\/o_72q?+ u?)] du, (8
the so-called relaxation frequency or mobility maté(q) ' . _
describes théshort-time elastic response. Multiplying Eq. Where 7 is the solvent viscosity.

(2) from the right withp*(q,0) and taking equilibrium aver- In case of noninteracting segments undergétogise re-

ages finally leads to the equation for the dynamic structuréaxation according to Eq(6) we obtainD,,=(kgT/{) &im

factor (q,t)=(p(q,t)p*(q,0)) and the mobility is then simply given y=N/{. As a con-
45(q.t sequence of the local character of the friction, the mobility

t . .
= —Q(Q)§(q7t)+f dud(q,t—u)S(q,u). (3) does not depend on. For the first cumulanf)y we derive
0 with Eq. (5) and the limits of the static structure factl)

For short times memory effectsecond termcan be disre- S(q)”'\f for g<Ry* and (2) S(q)~12N(qgl)~? for I
garded, leading to a decoupled linear differential equatior%q>Rg

system for$(q,t), that can easily be solved. For a one- KaT

component system, such as a fully protonated dendrimer in (1) Qg(q)=0°Dg= qZi for g< Rgl,

deuterated solver{the solvent can be eliminated by the in- NZ

ot

compressibility conditioy the short-time decay of the NSE KT |2 ©)
signal should follow a simple single-exponential decay (2) Qr(q)= % Zq4 for |7 1>q> Rg—l,
dsS(q.t)
g~ Y@say with | being the segment length afitk the Rouse center-of-
mass diffusion coefficient. The relaxation rate increases with
=35(q,t)=3S(q,t=0) exg — Q(q)t]. (4)  q*for segmental relaxation and witff for simple center-of-

Only the static properties of the system enter the calculatio'ass diffusion. . o
of the first cumulant As a result of the long-range interaction in the case of
5 Zimm dynamicsthe mobility is now a function of the scat-
Q(q)= kgTq w(q) tering vector. The higlg limits for the static structure factor
S(q,00 ' are given by(a) S(g)~12N(ql) 2 for the #-condition and
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(b) S(q)=(ql)~ Y with the Flory—Huggins parameter
=3/5 for good solvent conditions. Insertion into E(Y)
leads to

(a) ,upre(q)zE N q~! for 6-solvent, and
Z0 Ty ’

2
ol

(10
(b) ,u,grg(q)ocﬁmq‘”3 for good solvent
S

for the g-dependent mobilities. The corresponding first cu-
mulantsQ), now read

1

(a) Qze(q)=§

q® for #-solvent, and
S

(11)
3

(b) ng(q):0.07lk;Tq for good solvent.
S

The relaxation rates increase witfi for segmental relax-
ation. Not preaveraging the Oseen tensor just leads to
renormalization of the prefactors from 14%$~0.053 to
0.063 and from 0.071 to 0.079 fekand good solvent con-
ditions, respectivel§®?’ Independent of the solvent quality,
the q® dependence is preserved.

For the Zimm center-of-mass diffusion coefficielig,
the following expressions

5 kgT
7sRe

(a) Dz,=0.19 for #-solvent, and

keT (12
(b) Dz4=0.203—5- for good solvent
7sRe

can be derived, wher®; is the end-to-end distané.
Practical fitting of the NSE spectra involvé® as the

only parameter. By fitting the data for eaghvalue sepa-

rately, the relaxation rates or relaxation times=(Q ') can

be determined as a function of the scattering vector o

equivalent as a function of the length scake2#/q.

B. SAXS—Model independent approach

In this paper we analyze our small-angle x-(8AXS)
data via amodel-independerdapproach as well as bgirect
modeling The latter will be presented in Sec. IIC. The

Rathgeber et al.

Due to the finite experimental range of scattering vectors, the
potentially significant influence of instrumental smearing ef-
fects, and insufficiently corrected background scattering, it is
not possible to derivg(r) by direct inverse Fourier trans-
formation. We therefore applied an IFT method first intro-
duced by Glattef® The theoretical aspects of this method
and its experimental applications are discussed
elsewheré32°-31From the approximated pair distance dis-
tribution functionp,er(r), the radius of gyration

SpiEr(r)r2dr
RS:fopxlFT( ) 1 (14
2[opier(r)dr
and the forward scattering intensity
||FT(q:0):47TfO Pirr(r)dr, (15

can be calculated. In particular, we used e program of
Bedersen for the calculation qfier(r) from our SAXS
data®

From the sampling theorefA,predictions can be made
about the minimal and maximal length scal&r,-r and
Dmax» that can be resolved in real space by indirect Fourier
transformation of a small-angle scattering data set. For a set
of P data points at scattering vectors with values between
Umin=0=<0may @and a step width oA q, we derive the condi-
tions

kg

Aq

T
g

D max< -
min

D max= or (16)

H

(17

o
Ar'FT_PTAq or Argr= .
In our SAXS experiment noAq=5.5x10 3 nm™! but
Qmin=0.08 nm ! andq,=3.5 nm ! (see Sec. Il Bare the
fimiting factors leading to an upper and lower resolution
limit of D,5,=39 nm andAr -r=0.9 nm, respectively. For
the calculation ofo(r) the program routine requires an esti-
mation of the maximum particle dimensid». Muller and
Glatter* have shown that an overestimation of the true par-
ticle dimension does not lead to significant changeg(in).
We obtained stable results by settibgup to 4X Ry, which
gives D~16 nm for theg=8 PAMAM dendrimer. This

model-independent evaluation involves an indirect Fourievalue clearly lies below the theoretical upper resolution limit

transformation(IFT), which provides the pair distance distri-
bution functionp(r), or, equivalently the correlation func-
tion y(r)=r1"9Mp(r), where dim defines the type of sym-
metry (dim=1 lamellar,dim=2 cylindrical, anddim=3
spherical. Assuming spherical symmetry of the scattering

D ax Of the IFT method. The value fakr-r obtained from

Eqg. (17) underestimates the lower resolution limit. Extensive
tests indicate that the resolution is better estimated by the
relationAr gt~ 1/0max, Which would result in a resolution of
about~0.3 nm for our particular cas8.

objects in a subsequent step via a square-root deconvolution

(SQDEQ of p(r), the radial excess electron density distri-
bution Ap(r) can be derived.
1. Inverse Fourier transformation (IFT)

The intensityl ¢, {(q)>* measured in a SANS or SAXS

2. Square-root deconvolution method (SQDEC)

The radial excess scattering length or electron density
distribution Ap(r) (scattering length or electron density of

experiment is given by the Fourier transform of the pair dis-the polymer with respect to the solvgig related to the pair

tance distribution functiom(r)

sin(qr)
qr

lexp<q>=4wf:p<r> dr. (13

distance distribution function by

(18

p<r>=r2jZA;»(x)Ap(x—r)dx,
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wherer is the distance from the center of spherical symme-
try (dim=3). In practice, statistical and systematic errors,
impossible.

etc. will make a direct deconvolution
Apsgpedr) can be obtained fronper(r) via an (indirect
square-root deconvolution routine introduced by Glétter.

This procedure is similar to the IFT method, except that the—
resulting equations are nonlinear and have to be solved iterae

tively.
In particular, we used theQDEC program of Pedersen
for the deduction ofA psopedr) from pier(r).*° The pro-

gram follows the procedures described below and is dis-__
cussed more extensively in Refs. 29-31 and 33-35. TheZ

density distribution is approximated by a serieshbfequi-
distant box function®8(r) (zeroth-order spline functiohs

M
Af’SQD|zdr):le bmB2(r) for 0<r<Rpax

(19

=0 for r>Rpax

where b, denotes the constant excess elect(scattering
length density in each shell an/,,,, is an estimate for the
maximal particle radius. Insertion into E@L8) leads to

M
Psopec= X Vi )bZ+2 X Vinn(1)byby,
m=1 m>n

since Vuu(r)=Vm(r). (20

The overlap integral¥,,,(r) that give the overlap of theith
andnth box function as a function of a displacemenalso
contain the symmetry-dependent facta®™ . The SQ-

Dynamics of star-burst dendrimers in solution 4051
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FIG. 1. Comparison between the theoretical predictions calculated from the
fuzzy sphere model with internal density fluctuations and the experimental
SAXS spectrum(circles obtained for theg=8 PAMAM dendrimer. The
separate contribution of the blob scattering and the contribution of the over-
all dendrimer shapéfuzzy sphergto the total scattering are also shown.

DEC method applied here assumes spherical symmetry, iering length densityAp. The shell thicknesar ggpec de-
which case analytical expressions can be obtained fofermines the resolution of the method in real space. The
Vin(r). It has been shown by Glatfér® that the SQDEC  maximal number of box functions used in the program of
gives reasonable results even in the case of small deviationsagersen isl =40. With the estimated maximal radi&,
from spherical symmetry. The nonlinear set of equations fo'(required as an input parameteset to 1.5 Ry, this would

by, is defined by the optimizing conditiony€+ AN.)=min
with
PV

ry)— ri 2
=3 [ Psqped )2 Pier(ri)] ,

(21)
i=1 T;j

and the constraint
M—-1
Ne= 2 [bmi1—bml?,
m=1

whereP’ is the number of discrete data points mg(r;)
each having a standard errot. The optimal value of the
Lagrangian multipliern is determined by a discrepancy
criterion3°

We obtainAp(r) in absolute units with the condition

M V;
> bpVn=<rAp, (22)
m=1 Na

lead to a spatial resolution @frgqpec=0.15 nm for theg

=8 dendrimer, a value smaller than the resolution of the IFT
method. In practice, we uséd <20 box functions so that
Argopec=Arer=~0.3 nm was always satisfied for all den-
drimer generations.

C. SAXS—Data modeling

1. Sphere with fuzzy shell and internal density
fluctuations

In the dendrimer scattering spectra, as for example plot-
ted in Fig. 1 for theg=8 dendrimer, two different regimes
can be clearly distinguished. At log values the scattering
appears to show the typical behavior expected for spherical
objects with the occurrence of higher order maxima for the
dendrimers with generatiog=6. In the higheg regime the
dendrimer form factoP(q) is dominated by a power-law
dependence originating from the density fluctuations on

where theV,, are volumes of spherical shells of thicknesslength scales smaller than the dimension of the dendrimer.

Arsopec= Rmax/M determined by the number of box func-

The scattering on length scales smaller than the correlation

tions M used in the deconvolution procedure. The sum ovetength ¢ of the density fluctuations is analogous to that of a
all productsV b, should be equal to the product of the semidilute polymer solution and the exponent of the power-

polymer volumeV,, determined from the forward scattering
intensity[Eqg. (15)] and the theoretical excess electi(goat-

law dependence can be derived from the Flory—Huggins pa-
rameterv. Within a so-called “blob”, a spherical volume
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with radius &, the dendrons have to be described as a self- The relative amplitude,, of the blob scattering to the
avoiding random walk and excluded-volume interaction hasamplitude of the contribution stemming from the overall
to be consideretf shape can be considered in analogy to the star
Following a similar ansatz of Dozieet al®” for high-  macromolecule&®*! Since there is no correlation between
functionality stars, which has also, in a different modifica- segments belonging to different blobs, the scattering inten-
tion, been successfully applied to polymeric miceffésve  sjty 1(g=1/¢) on length scales of the effective blob radius
split the dendrimer form factor into the sum of two terms  arises from the incoherent superposition of the coherent scat-

: sin(qr) tering from within the blobsi(q=1/¢£)~n, N2, wheren,
P(q)= Pshapgq)+at’,4wJ r2y(r) dr, (23)  denotes the number of blobs in the dendrimer higds the
0 ar number of segments in one blob. In the limi=0 all con-

wherea/, denotes the relative amplitude of the blob scatter-fiPutions add ccz)hergntly: resulting in a total intensity of
ing contribution. The first terPg,,,{q) denotes the form 1(q=0)~(n, Np)*=N¢, with N, being the overall number
factor most appropriate to describe the overall shape of th@ Segments in the dendrimer. The amplituda,
dendrimer(see below and the second ter,,,(q) repre-  =1(1/£)/1(0) is simply given by the ratio of the number of
sents the Fourier transform of the density correlation funcscatterers in one blobl, to the total dendrimer segment
tion y(r) describing the density fluctuations on length scalesiumberN;

smaller than the blob radius. In the Daoud—Cotton mddel

= £(r) is expected to increase with increasing radial distance nbNﬁ N,

from the centef® However, in theq range of interest only a,= N2 N

the largest, outermost blobs should give a significant contri- t t
bution to the scattering signal. Therefore, we neglectrthe
dependence of the blob radius and replgfe by an effec-
tive blob radiusé. Since the correlation function of the den-
sity fluctuations is equal to zero for length scales larger than

the correlation |engtE the integration in Eq(23) is limited wherem=2 is the functionality of the branching unit=4

to r<§. Taking the sum of both terms instead of their con-js the functionality of the core, anglis the generation of the
volution is strictly valid only if theq ranges of both scatter- dendrimer.

ing contributions are clearly separated, allowing us to neglect  From the reduced slope in the intermedigteegion of
interference terms. As a result of the density fluctuations, théhe dendrimer form factaisee Sec. IV Awe can predict that
center of mass of the dendrimer itself undergoes random dl&he dendrimers are not perfect]y Spherica| in Shape_ In prin_
placementgBrownian diffusion around a fixed origin. Fol- ciple, we can imagine three different scenarids:the den-
lowing the model introduced by Beaucaljethis can be drimer morphology is ellipsoidal rather than spherical, as
taken into account by substituting the scattering veqtbly  seen in some computer simulation studté$;(2) the den-

f
with Ntzm(mgﬂ—l)ﬂ:zg”—s, (27

the reduced parameter drimers are homogeneous spheres with a sharp edge but with
a certain(Gaussiaj polydispersity in the sphere radii and;
q= a (24) last but not least3) their density profile is constant in the
[erf(ng/\/E)]"" dense, homogeneous core region but decays smoothly
) ) (monotonically to zero in a softer shell regiotiuzzy edge.
whereerf denotes the error function. In this way a “cutoff” For a rotational ellipsoid with main axeR,, Ry and

of the power-law contribution to lovwg values, where the
shape contribution should be dominant, is ensussd Fig.
1). According to the results of Daoud and Cottdrior r

€R in EQ. (23), Pgpapf) has to be replaced 8%

— /2
<¢, the density correlation functiom(r) is set to PgLapéqf-Rel):J P.(q,r’)sina de,
0
y(r)yer# 2 with pu=v»"1-1, (25)
where v is the Flory—Huggins parameter, which equals 3/5  with r’=Rg\/sir® a+ €’ cos a, (28)

for good solvent conditions, 1/2 faksolvents and 2/3 in the
case that the dendrons are stretched. An analytical expressigﬂ d
for the blob scattering can be obtained by inserting a “cut-

off” factor exp(—r/&) into the integral of Eq(23) and ex- , 2
tending the integration to infinity. The blob scattering contri- ~ Ps(@:r" ) =As(a,r")
bution to the dendrimer form factor then finally reads

o i ptan (q)] =W—,)6[sin(qr’)—qr’cos(qr’)]2. (29)

P = " > , 26
blob(d) PN [1+qb2]ﬂ/z (26)

. o For a sphere with radiuRg and Gaussian form polydisper-
with g5, =q*¢ anday,=ay,- 47w 1T (u), So thatPpe(q sity with standard deviatioorg, the normalized form factor
—0)/ap,=1.T(u) denotes the gamma function. reads
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21 R -1 first to derive an expression for the form factor of star-like
Pehapd:Rs, 07) = \ﬁ— 1+erf — Gaussian dendrimers of special architectufe=8, m=2)
mIs 205 but arbitrary number of segmemiswith lengthl between the

w r—Ry)? branching units. Hammoutfaderived a generalized analyti-
XJ Ps(q,r)ex;{— }dr cal expression for the dendrimer form factor with an arbi-
0 trary functionality of the core and the branching units.
(30) The dendrimer form factor can be expressed in terms of
the dimensionless scattering variable- %1%/6, the scatter-

The integrations have been performed numerically. . .
Another model already successfully applied to polymer'_ng amplitudeA(a,n), and the form factoiP(a,n) of the

micelles describes the fuzzy, nonideal surface of a sphericgl'lneaz chamsktj)el_tl\éve(tentthlf btrhanchmg .p?mts. In thte f?]“OWThg
object by a convolution of a density profile of a homoge-We aso would fike 10 lake Ihe case Into account where the

neous sphere with a Gaussian expi/o%). Since the Fourier dendrm)er core ',S a _Ilnear chain .bu'lt. by segments of
transform of a convolution product simply splits into the lengthl”, W'th m’ being the functionality of_the end seg-
product of the Fourier transform of the multipliers, we obtain ments, The d|fferec?é cross- and self-correlation terms as de-
a simple analytical expression for the normalized scatterinémed by Hammoud then read

amplitude S g . N
o S|n(qr) 0 Psb(q)_ m_l P(a,n)+ ?P(a N ),
Afs(q’Rf-Uf):J Ap(r)r? dr pr(r)err
0 qr o . g
oot PL(@)=2A(a,n?Y, mt 3 m
:As(q1Rf)eXV<_ 2 ), (31 k=1 i=k+1

Xexg —an(i—k—1)]+2A(a,n)A(a’,n")
and for the form factorP, £q,Ry. o) =Ars(d, Ry, 04). .
Here, 25 is a measure for the width of the soft shell region = Y
and R; is the radius of an analogous homogeneous sphere ngl mexd —an(j—=1)],
with the same mass and core denggge the insert of Fig.
5). The pair distance distribution functiq(r) and the seg- 9 9
ment density profileAp(r) were obtained by numerical in- Pip(a)=A(a,n)2>, m<"1> m'~1
verse Fourier transformation of the form facky,(q) and of K=t =t
the amplitudeA¢(q), respectivelysee Eq(31) and(13)]. xXexd —(an(i+k—2)+a’'x)],
In summary, we describe our static SAXS data with a
form factor which is given by a sum of two contributions

(32

MG

g k=1 g—i
P2(q)=A(a,n)’(m—1 mk—1 m 1
(i) Aterm that takes the scattering stemming from the inter- o @)= Al MY )g‘z 2’1 j=1

nal density fluctuations into account. The effective corre-
lation length(blob radiu$ ¢ of these fluctuations and the

amplitudeay, of the blob scattering relative to the shape where o’ =q?"2/6. The dendrimer form factor normalized
contribution are the adjustable parameters. to unity is given by

Xexdg —an(k—i—1+j)],

(ii) The second term describes the overall shape of the den-

_ s f a 12 A
drimer. Here, we distinguish three cases. P(Q)=[F(Psp(a) +Psy(Q) +Pgp) +2m"“Pip(q,x=n")

(a) Polydisperse spheres with the sphere radysand +2m’(m’—1)P;p(q,x=0)]/NZ, (33
the standard deviations of the Gaussian form polydis-
persity as free parameters. with N; being the total number of segments in the dendrimer

(b) Rotational ellipsoids with the main axgs,, R, and  as defined in Eq(27). To mimic excluded volume interac-
€R,. The fit parameters are the radius of gyrationtion, following procedures previously described for star
Ry=Re/(2+ €%)/5 and the aspect ratia polymers,® we redefinex,=6a/[(2v+1)(2v+2)] and re-

(c) The fuzzy edge model with the widtho2 of the  place (1g) by (ng)®”. In addition, for the scattering ampli-
surface region and the radil& of the analogous, tude and the form factor of the linear units, E¢34) and
homogeneous sphere with a sharp edge, the sani@5) must be inserted instead of their Gaussian analogs. As-

mass and same density in the core region as adjussuming that the distance distribution between any two seg-
able parameters. ments remains Gaussian, the following generalized expres-

sions for an arbitrary Flory—Huggins parametercan be

) derived forP(a,n) andA(a,n):
2. Dendrimer and star form factor

To put our results into the context of previous studies P(a,n)zzfl(l—u)exq—aVnZVUZV] du, (34)
performed on high-functionality stars, we also compared our 0
data to the theoretical form factor obtained for dendrimers
from which the special case of a star polymge1) can be A(a,n)= J'l ext — a,n?"u?"]du. (35)
derived. Using the cascade theory, Burcheiral?° were the ' 0 !
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In practice, the fitting routine involves the productd Y and 10° -

(n'l") as the only parameters. Again, the pair distance dis- ] s

tribution can be obtained by numerical Fourier transforma- 10° 9= ]

tion of the form factor. ] 1 ]
Lo | 103_ =

I1l. EXPERIMENT SECTION N
£ l

A. Samples ° 404 <
o - .

The star-burst PAMAM(polyamidoaming dendrimers =
with generations betweeg=0 and g=8 were purchased e 10'4 4

from Dendritech, Inc. in methanol solution. They were syn-
thesized via reiterative reaction sequences from an ethylene __ o]
diamine core with functionalityf=4. Using protection/ &
deprotection strategies, a new sequefgeneratioh can be
added consisting of amine—amide branching units with func-
tionality m= 2. The final generation terminates with primary
amine endgroups. A more detailed description of the synthe- 1075
sis is given in Refs. 1 and 45. T

B. Small-angle x-ray scattering (SAXS)

The experiments were performed in single-bunch mode 10 A A — 1'0
at the High Brilliance Beamline ID2 at the European Syn- ’
chrotron Radiation Facilitf ESRH, Grenoble, France. We
used a CCD deFeCtor with a high spatial reSOIUtI(_)n of 0'17FIG. 2. SAXS spectra for PAMAM dendrimers of generatians0 to g
mm and an active area of 230 mm. The spot size on th@s in methanol are plotted in a double logarithmic representation. For each
sample was (0.80.3)mnt. At a wavelength oh=0.1nm  generation the axis is scaled wittR, determined by IFTor Guinier fit of
with a bandwidth ofAN pyypm /A =2X 1074, the evaluated the SAXS data. Data are separated by a multiplicative constdit® for
range was 0.08 nFnliqs3.5 nnT 1 using detector setting better visibility. The solid lines represent fits of the spectra using the fuzzy

o . . sphere model.

atd=2 and 10 m. We used quartz capillaries with a diameter
of 1.5 mm as sample containers. The two-dimensional data

were converted to absolute scattering cross sections via stalsvered. The reduction of the multidetector data to

dard correction procedures for absorption, detector sensitivs(q £)/S(q) followed the procedures described in Ref. 46.
ity, and background stemming from the deuterated solvenkq sampie containers we used rectangular, sealed niobium
(methanol and empty cell. In a subsequent step the corrected,, ottes with a sample thickness of 4 mm and an illuminated
data were radially averaged. The convolution of the mea‘sample area of (3930)mn?. For background correction

sured spectra with the experimental resolution is considereg]e signal from the deuterated solvent methanol was mea-

n thle fit rputm(;s, even" th%ugh thel effect Iof-the Ilnqz _sured over the full time range and subtracted from the
resolution is rather small. The angular resolution of ID 'Ssample signal with the proper correction factors.

A6=500 and 10Qurad atd=2 and 10 m, respectively. The measurements at the Saclay instrument were

_ performed with aq resolution of about 20% for the fol-
C. Neutron spin-echo (NSE) spectroscopy lowing momentum transfers X(detector settings) q
The high-resolution inelastic scattering experiments:(0-366' 0.457, 0.548, 0.640, 0.731, 0.822, 0.914, 1.005,

~1
were carried out on the neutron spin-ediNSE) spectrom- 1:096)nm = The neutron wavelength was set %
eter at the DIDO reactor, lloh, Germany as well as on the =0-6 nm with a wavelength spread @f\gyw/\=0.18.

NSE spectrometer MESS at the Orphreactor of the Lab- With 14 Fourier time settings, a time range of 0.25ts
oratoire Len Brillouin, Saclay, France. =<17.54 ns was covered. We used rectangular, sealed quartz

At the NSE spectrometer iri lich the momentum trans- cuvettes with a sample thickness of 6 mm as sample contain-
fer covered was 0.26 nnt<q=<1.80 nm'%, using four dif-  ©'S: A sample area of (X727)mnt was illuminated. The
ferent detector arm settings= (0.5, 0.8, 1.0, 1.4)nmt. The background correction was performed following the proce-
multidetector allowed the extraction of three to four differentdures described in detail in Ref. 47.
adjacent q values within an overall detector range of
+0.27 nm ! per setting. Using a neutron wavelength)of |v. RESULTS AND DISCUSSION
=0.8 nm with a bandwidth oA\ pyym /N =0.10, theg reso-

lution
— In Fig. 2 the SAXS data obtained for the dendrimers are
— 1\2 2
Adewin= V(0.1 N5+ (G X AN pwrm /) (36 shown in a double logarithmic representation for all genera-
varied between 0.1 and 0.2 nthwith g. With 14 Fourier tionsg=0 to g=8. The solid lines give the results obtained
time settings, a time range between 0.&ms22 ns was from a fit of the data with the fuzzy edge model as discussed

A. SAXS—Structural properties
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TABLE |I. Summary of the results obtained from the SAXS data by inverse Fourier transformation and from
various model fits.

T Polydisperse sphere Rotational ellipsoid Fuzzy edge
Rq Rs os/R Ry Ry o IR
[100nm] [10nm] [%] [1071 nm] € [1071 nm] [%]

4.0+0.3 5.16-0.010 (22 4.36%-0.006 (0.518 4.621+0.009 (55
7.9£0.1 10.24:0.01 (21 8.03+0.01 (0.526 8.170+0.006 (59
11.8:0.2 15.22-0.01  20.6-0.2 11.80-0.04 0.536-0.004 11.680.03 533
15.09-0.05 19.470.02  19.6:0.2 15.05-0.04 0.547-0.004 15.5%0.02 52-2
18.60-0.07 24.350.04 18.2:0.1 18.62-0.04 0.554-0.003 19.640.04 50+ 2
23.0740.03 29.950.08 17.3:0.2 22.76:0.09 0.58-0.005 24.37%0.04 48t 1
27.50:0.03 35.540.05 12.7#0.09 27.220.05 0.6680.003 32.040.04 28.4:0.4
32.1%*0.05 41.6720.05 11.56:0.08 31.92-0.06 0.698-0.003 38.89-0.09 25.9-0.6
38.58:0.10 49.7%0.07 9.80:0.09 38.2:0.05 0.73%0.002 47.56:0.08 21.9-0.6

o~NO O~ WNE O| Q@

below. For better visibility the data are separated by a factonificant part of the blob contribution in thg range of our
1089, The absolute SAXS intensities are plotted versusexperiment is thgg=3 dendrimer. In Fig4 a comparison of
the generalized variablg R, to allow a direct visualization the experimental SAXS spectrum obtained der 3 with the
of changes in the general shape between particles indepetieoretical prediction for the form factor of a hard solid
dent of their dimensions. Fa=2 the radii of gyrationR sphere[Eqg. (29) with r'=R] and the form factor of an
are obtained from inverse Fourier transformation of theanalogous dendrimer under good solvent conditififgs.
SAXS data following the procedures described below and in(32)—(35)] are shown. In addition, we calculated the form
Sec. IIB1 and foig=<2 by a Guinier fit of the lowg region.  factor of a star with 4 and 32 branches corresponding to the
The results folRy obtained from these procedures are listednumber of dendrons and terminal units of the-3 den-
in Table I. The intensities measured at low polymer concendrimer, respectively. The star form factor is a special case
trations @ =1 wt%) represent the single-particle form fac- (g=1) of the dendrimer form factor. The sphere radius and
tor, since further dilution did not result in a change of thesegment length are chosen in such a way that the radius of
spectra, indicating that interparticle interaction can be ne-
glected. To ensure the best possible background correction,
the data in the higlgr range were obtained from samples 10'15----.--.-um-|----.----.-v--.--v-.----.--.-.-.-'.----E
with higher polymer concentrations so that the signal was ] ; ]
always 4 times larger than the background.

For dendrimers of generatiop=6 to g=8, secondary
and ternary §=8) maxima are clearly visible, supporting =~—
the picture of a spherical shape for high-generation dendri- =
mers. The minima afy, R;=3.70, 6.12, 8.55 which are
most sensitive to measure the size of a spherical particle ar g
again in very good agreement with the values expected for ®
homogeneous spheresg,, Ry= J3/5(2n+1) /2= 3.65,
6.08, 8.52, withn being a positive integer. In the higi-
range R;=3.5), the scattering from thdoosg internal
polymeric structure called “blob scattering” becomes vis-
ible, and is especially evident for the low dendrimer genera- ~
tions g<5. The scattering intensity follows @ 52 power- =
law dependence as would have been expected for linea
polymers under good solvent conditions. For higher genera:
tions, the blob scattering leads to a smearing out of the
minima of the sphere form factor. These observations be-
come even more pronounced when the absolute intensitie
versusq Ry are plotted in a generalized Kratky representa-
tion, as shown in Fig. 3. For the high-generation dendrimers
(g=6), the first maximum in the Kratky plot appears at
1.48=q Ry;=<1.51, which compares very well with the value
of g Ry=1.49 expected for homogeneous spheres. With deFIG. 3. SAXS spectra for PAMAM dendrimers of generatign 0 to g

creasing generation the peak shifts towards somewhat highérS in methanol in semilogarithmic Kratky representation generalized to
~ _ good solvent conditions. For each generation ghaxis is scaled byR,

values up to aboug Rg . 1.66 for g, 3. determined by IFTor Guinier fif) of the SAXS data. Data are separated by

The lowest generation for which we are able to resowea multiplicative constant® * for visibility. The solid lines represent fits of

not only the overall shape of the dendrimer but also a sigthe spectra using the fuzzy sphere model.

units

5/3 -1
29
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Yy
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B as LS LA AN LA LS LA Table I. The only difference is that the model of the rota-

16 . 3 tional ellipsoid as well as the model of the spheres with
15 ‘\.\ 3 Gaussian form polydispersity lead to a rather small effective
id e Star (1=4) blob radius ofé=(0.6+0.1)nm, which would contain only

about four segments, whereas the fuzzy edge model gives a

value of £&=(1.5+=0.1)nm with about 22 segmeniseter-
mined from Eq.(27); see the discussion belgwFrom pre-
3 vious publications on high-functionality stars, we consider
3 the latter result to be more reasonatfidn addition, with
3 only four segments contributing to the blob scattering the
dendrimer.ﬁ normal picture of chain statistics, based on a random coiled
3 structure, might not be applicable. Therefore, we would like
to focus the following discussion on the fuzzy edge model.
For theg=28 dendrimer in Fig. 1 the different contribu-
" tions to the overall scattering stemming from the blob scat-
Tl tering P(Q)p0p @nd from the globular shaﬁé(q);ﬁape(with
------- fuzzy edge of relative widtho;/R;=21.7%) are plotted
separately. All curves incorporate instrumental resolution ef-
fects, which even though very small are considered in the fit
routines. For the highest generations we are most sensitive to
distinguish between effects rising from the blob scattering
and the detailed character of the surface, respectively. In a
q [nm " separate fit for each generatiog=6, 7, 8), leaving all pa-
_ _ rameters including the Flory—Huggins parameteadjust-
FIG. 4. Generalized Kratky representation of the SAXS spectrumgfor . . e e
=3 (markers compared with the theoretical predictions for star polymers able, it turned out that neither nor £ changes significantly
(f=4 and 32 and a dendrimerg=3, f=4, m=2) under good solvent ~and/or systematically around the average valugs=1.6
conditions. In addition, the theoretical results for a homogeneous sphere anii 0.1 andga\,= (1.5i 0‘1)nm. Therefore, we kepgtfixed to

for a fuzzy sphere with internal density fluctuations are shown. . .
its average value and the Flory—Huggins parameter was set
to its good solvent value of=3/5. Hence, the only fit pa-

gyration is equal to the value obtained from the IFT of thef@meters left are the radiug, the width of the density
experimental data. The number of segments was fixed to b&ecay in the surface regiono2, and the relative amplitude
equal to that of the dendrimer. It is obvious that in the inter-Of the blob scatteringy, . In Fig. 2 and Fig. 3 the curves
mediateq region the decay of the measured dendrimer fornfitted to the SAXS spectra are represented by the solid lines.
factor with g is much steeper than predicted from the theo-Very good agreement between experimental data and fit is
ries for the different polymer architecturéstar and den- o©btained for all dendrimer generations.
drimen, but weaker than predicted for a hard solid sphere.  In the top part of Fig. &, is shown as a function of the
Even though the evaluabteregion (before the blob scatter- dendrimer generation. The solid line represents a fit with Eq.
ing comes into playis too small for a correct determination (27) with the number of segmentg;, in one blob as the only
of the fractal dimensiof® of the g=3 dendrimer, we deter- parameter. Since the blob size is not a functiongpfwe
mined P from the decay of the form factor<q ) in the  assume alsi, to be independent of the generation. With
intermediateq region to be close td®=4, and definitely N,=21.7+0.1 segments per blob, a very good description of
much larger thar®=3 predicted for high-functionality stars. the data is achieved. For dendrimers with generatpsag
Therefore, we conclude that even the low-generation denwe either barely reach or do not access the lygtegion
drimers are surface fractals rather than mass fractals. where we would be sensitive to the density fluctuations. This
Note that for an ideal homogeneous sph&gg) would  can be easily seen from the Kratky representation of the mea-
decay faster thag™~* in this intermediate] range, as can be sured SAXS spectra in Fig. 3. Fgr=2 the fit still gives a
seen in Fig. 4. In principle, we can imagine three differentreasonable result, but fg<1 we kepta,, fixed to the theo-
scenarios which would lead to a reduced slope in the interretical value which is given in Fig. 5 in brackets.
mediateq region and to a smearing of the minima of the In the bottom part of Fig. 5 the ratie; /R; of the (half)
sphere form factor in addition to the smearing caused by theidth of the surface region relative to the radis of the
blob scattering contributiond) the dendrimers are polydis- corresponding solid sphere is plotted versus the generation.
perse, homogeneous spheré) their shape is ellipsoidal The exact values are summarized in Table |. Decreasing the
rather than spherical or, last but not le&3} their density = generation fromg=8 to g=6 or g=5 to g=3 results in
profile is not perfectly sharp but shows a fuzzy, outer surfacenly a slight extension of the surface region. The relative
region. For more details on the different models see Seawidth o /R; increases linearly from about 21.9% to 28.4%
Ici. and 48% to 51%, respectively. Between the sixth and the
In principle, all three models lead to a description of thefifth generation we observe a rather drastic stepwise increase
data of similar quality with consistent results summarized inof about 20%. Fog=1 the fit is no longer sensitive to the

=y
w

iy
N

[ Gu—y
o =t

I(q) q°'° [ arb. units ]

O = N W A~ OO O N 0 ©
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4 4
14
— 3 1
E
g 2
o
© 01 £
[
o
14 4
0.8 4
001 — g+3_ ]
=N /(2 3) 0.6 -
. . . : : . : : 04' o 0 R, (IFT/Guinier)
41 0E ® R (fuzzy edge model) ]
(.) { { 1 1 1 1 1 1 1 1 1
0.5 $ - o 1 2 3 4 5 6 7 8
¢ generation g
0.4 FIG. 6. Radius of gyratiolR, determined by IFT and Guinier fit and the
~. ] ) radiusR; obtained by fitting the fuzzy sphere model to the SAXS data as a
o Ap(r) 2csf function of the generation. The solid line shows the result expected for
homogeneous spheres with generation-independent density.
0.3 4
]
L] . .
\ face region becomes abruptly smaller and is constantly de-
0.2] R, P L creasing up to the eighth generation. A larger number of

. . : . . - - - segments are closer to the center and as a consequence the
increase iRy is smaller than for the lower generations. The
results for the fit parameters of the sphere with Gaussian
FIG. 5. Results obtained from a fit of the SAXS spectra using the fuzzyform polydispersity and for the rotational eIIipsoid are con-
sphere model plotted as a function of the generagjofop: Amplitude of  Sistent with the findings obtained for the fuzzy edge model
the blob scattering relative to the shape contribution. The parenthetical valu(asee Table )[ The relative form polydispersityrS/RS in-

for g=1 was kept fixed in the fit. The solid line shows the dependencyCreases significantly and the aspect it plays the same

expected for a constant number §f,,=21.7 segments per blob. Bottom: . . .
Half-width o; of the fuzzy shell region relative to the radil of the role as the polyd|sperS|ty of the spheres or the fuzziness of

analogous homogeneous sphere. The inset shows the model parameters A€ shell region also shows a stepwise increase to a more
the excess electron density profile obtained forgke? dendrimer. asymmetric form between the sixth and fifth generation. The

radii of gyration of the ellipsoids are in good agreement with
the IFT results. It is interesting that the rafy /R, where

width of the surface region. Therefore, we kept/R; fixed R are the sphere radii obtained for the polydisperse spheres,
to the extrapolated values given in Fig. 5 and Table | indoes not change significantly with generation around the av-
brackets. erage value oRy/Rs=0.772£0.004. The latter is close to

In Fig. 6,R; is plotted versus the dendrimer generation.the theoretical value/5/3~0.775 for an ideal, homogeneous
From the basic relation that the volume R®) is propor-  sphere.
tional to the molecular weight (29*3—3) for dendrimers In the following, we would like to discuss the results
with constant density in the core region, we can derivefhat obtained from the SAXS spectra by inverse Fourier transfor-
has to follow the curve given by the solid line. The experi-mation (IFT) and by the square-root deconvolution method
mental values foR; follow the calculated dependence very (SQDEQ described in more detail in Sec. 11B. The main
well down to the second generation. Only the experimentagoal of applying the IFT and SQDEC method is to compare
values obtained fog=1 andg=0 are smaller than pre- the results from this model-independent approach to our re-
dicted by this simple relation, which would correspond to asults obtained from the model fits described above. Again,
higher density if the same overall shape is maintained. In theve first consider thgg=3 dendrimer. In Fig. 7 the pair dis-
same figure the radii of gyration obtained by IFT and Guiniertance distribution functiop(r) which gives the probability
fit are also included. The observation that for high generato find two segments in a distancefrom each other in the
tionsRy is smaller than predicted Hyoc (2973 —3)Y3 but Ry interior of a single dendrimer is plotted as a function of the
still satisfies the condition can be explained from the definiintersegmental distance normalized to the radius of gyration
tion of the radius of gyrationRg=E{\‘:1<ri2>/N, whereN is  Ry. The data are compared to the theoretical curves for a
the total number of segments in the molecule gnarre their  homogeneous sphere, for a sphere with a fuzzy edge, and for
position vectors measured from the center of gravity. For the dendrimer under good solvent conditions. The predictions
dendrimers with generatiog=6, the extension of the sur- for a star with functionalityf =4 andf=232 in good solvent

generation ¢
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FIG. 7. Comparison of the pair distance distribution functjg{m) of the FIG. 8. Pair distance distribution functigr(r) determined by IFT from the

g=23 dendrimer determined by IFT of the SAXS data to various theoreticalSAXS data for dendrimer generatiogs=2 to 8 as a function of the nor-

predictions:(a) stars(f=4 and 32; (b) dendrimer =3, f=4, m=2) in malized intersegmental distanceR, . They axis is normalized to the peak

good solvent{c) homogeneous sphere with sharp edge; @dphere with  value of theg=8 dendrimer. The peak positions are marked by the crosses.

fuzzy shell region. All curves are normalized to the same radius of gyrationThe solid lines represent the predictions of the fuzzy sphere model calcu-

Ry and molecular weight. lated with the parameters previously determined by the fit of the SAXS
spectra.

are also included. All curves are normalized to the s&tye

and the same molecular weight. It is obvious th@t) for  mined so that there are no free parameters left. Very good
the g=3 dendrimer with the exception of a small tail to agreement is achieved for all dendrimer generations.
longer distances is rather symmetric likér) of the homo- The excellent agreement between our fit results and the
geneous sphere. The small tail and the shift of the peak pgesults obtained by the model-independent IFT approach is
sition to smaller distances are due to the fuzziness of theurther outlined in Fig. 9, where the density profiles are plot-
surface region. The shape jofr) theoretically calculated for ted as a function of the radial distancefrom the center
the dendrimer under good solvent conditions as well as ofjormalized to the radii of gyratioR, for each generation.
those calculated for the star polymers are much more asyniwe normalized the experimentally determined absolute ex-
metric with a much more extended tail to longer distances. Iitess electron density pey, t0 its theoretical valued pye,
addition, the peak position is shifted to smaller distances ok 3,63 10'° cm™2, which has been calculated from the elec-
aboutr <Ry instead ofr~1.18<R, as found for theg=3  tron densities and the bulk densifit®f the pure compo-
dendrimer. NENtS.A peyp/Apineo Jives the polymer volume fractiohp in

In Fig. 8 p(r) obtained by IFT is plotted for dendrimers each subshell. The solid lines show the curves determined by
with generations betweeg=2 and g=8. The condition inverse Fourier transformation of the amplitufisee Eq.
wherer is equal to the fitted sphere radiRg and the sphere (31)] of the theoretical scattering intensity calculated in the
diameter (2¢Rs) are marked by solid lines. Note that for an framework of the fuzzy edge model. Again, we kept all pa-
ideal homogeneous sphere we would exgec) to have its  rameters fixed to the previously determined fit results. The
maximum atr~1.05<xRs~1.36XRy. Due to the surface agreement between both approaches is excellent within the
fuzziness, the peak positiorisnarked by the crossgsare  error bars of the SQDEC method.
shifted to smaller distances for all dendrimer generations. The most significant conclusions we would like to draw
The shift becomes increasingly larger fg<6 and varies  from this section which are of vital importance for the inter-
from 1.30<Ry for the g=8 dendrimer to 1.18 Ry for the  pretation of the NSE data are the following: Down to the
g=2 dendrimer. The solid lines represent the theoreticathird generation the dendrimers have a rather globular, com-
curves calculated from the form factor of the fuzzy sphere bypact shape. Although the shell region with a smoothly decay-
inverse Fourier transformatiofsee Eq.(13)]. The para- ing density profile becomes increasingly larger for the lower-
meterso /R, R¢, & anday are taken as previously deter- generation dendrimers, the steep decayR{{y) in the
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FIG. 10. NSE spectra measured for thye 8 PAMAM dendrimer in deu-
terated methanol solution at a concentration of 5 wt%. The solid lines
correspond to a fit with a single exponential decay for eqahalue sepa-
rately. To answer the question how sensitive are the NSE measurements to
internal relaxation, the dashed lines represent the results usin@#q.

[ vol.% ]

intermediateg region indicates that down tg=3 the den-
drimers are surface fractal rather than mass fractals. Between
the sixth and fifth generation, we observe a major change in
the characteristics of the density profile—the extension of
the shell region compared to the overall dimension of the
dendrimer increases abruptly.

/ Ap theo = q)P

exp

Ap

B. NSE—Dynamic properties

Depending on the chosen scattering vector range, neu-
tron spin-echadNSE) spectroscopy can resolve the polymer
dynamics on different length scales. Tdpeange investigated
in our experiment covers length scales much smaller than the
radius of gyration, as well as length scales larger than the
. . overall dimensions of the dendrimers. Measurements were
performed on dendrimers with generations betwgerb to
g=28 in deuterated methanol at a polymer concentration of
d=5wt% and a temperature di=293 K. In Fig. 10 the
spectrum obtained for thg=8 dendrimer is shown in a
semilogarithmic plot showing five representatiy@alues. It
is obvious that the intermediate structure factor exhibits a
single exponential decay in the whaleand time range. The
solid lines correspond to fits to single exponential functions

r/R for eachq value separately from which the first cumulant
g Q(q) or the relaxation timer(q)=Q"%(q) can be deter-

mined. Limiting the fit to shorter time ranges does not sig-

nificantly change the results for the relaxation times. For
FIG. 9. Segment density profiles determined by SQDEC and IFT from thdNtensity reasons the NSE measurements were performed at a
SAXS data for dendrimer generatiogs=3 to g=8 as a function of the ~polymer concentration where for the smallegtvaluesq
normalized radial distance to the centéR,. ®p(r) as a measure for the  <(0.4 nm ! the structure factor influence due to interparticle
ponme_r volume fraction was calcu_lated from the ratio of the experlmgnta_lllyimeraction cannot be neglected. In the following, the intrin-
determined excess electron density to its theoretical value. The solid lines, . . .
represent the predictions of the fuzzy sphere model calculated with th§_IC relaxation rates are corrected for this effect via the rela-
parameters previously determined by a fit of the SAXS spectra. tion:
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FIG. 11. Relaxation rates obtained from a single exponential fit of the NSEFIG. 12. Diffusion coefficients scaled with the sphere radiiXqR;) as a

signal for PAMAM dendrimers with generatian=5 to g=8 as a function ~ function of the scattering vectar for dendrimers with generatiog=5 to

of the generalized variablgR; in a double-logarithmic representation. The g=38. TheR, were obtained from a fit of the SAXS spectra using the poly-

solid lines show the;~2 dependence predicted for simple Stokes—Einsteindisperse sphere model. The solid line represents the condition for simple

diffusion of hard spheres at finite concentration. Stokes—Einstein diffusion of hard spheres at finite concentration. The
dashed line marks the constant obtained by fitting all experimental relax-
ation rates simultaneously.

P(q)
)= A 3 .
Tint @) = Tobd @) Sond ) 37 method. Insertion ofy,=0.65 mPas for deuterated metha-

whereP(q) is the dendrimer form factor obtained from the Nl = 293K, and®=3.69 vol% into Eq.(38) leads to
low-concentration(1 wt %) SAXS data.Sy,{q) denotes the Rs/(a77in) =0.30 nni/ns, which compares very well to the
observed static spectra measured for samples with a deN&lue of (0-28?0-02)””‘0’/”?’ obtained by fitting all experi-
drimer concentration of 5 wt% for which the observed re-mental relaxation rates simultaneously. Since NSE rather
laxation ratesr.,{q) have been determined in the NSE ex- Measures the “true” hydrodynamic rg_dii_, but the t_heoretical
periment. The raticS,,{)/P(q) gives the structure factor Value calculated from the sphere ragj gives the diffusion
which describes the interdendrimer interaction. Figure 11c0€fficients of the corresponding hard solid spheres, we ob-
shows a double-logarithmic representation of the fit resultd@in: Rh=(0.94£0.07)XRs. The values of the measured
for the (intrinsic) relaxation rates versus the generalized vari-diffusion coefficients are summarized in Table II.

ableqR, for all dendrimer generations. The radii of gyration  Therefore, we would like to conclude at this point: Even
are obtained from IFT of the corresponding SAXS spectrathough we are also covering length scales smaller than the
For all dendrimer generations the relaxation rates follow #lendrimer dimension, we do not see any contribution of in-
q~2 power-law decay. The solid lines correspond to a fit toternal relaxatl_on_processes to the decay of the dynamic struc-
such a power-law decay. As outlined in Sec. Il Aja2 de-  ture _factor:_Wlthln the error bars of the rr_lethod the hydrody-
pendence of the relaxation rates indicates a simple diffuf@mic radiiR, obtained from the short-time center-of-mass
sional process. For center-of-mass diffusion of ideal, homodiffusion coefficient equal the hard-sphere raiiobtained
geneous spheres, the Stokes—Einstein relation witffom the static SAXS investigations. Dendrimers with gen-

correction for finite concentration can be derived, leading tgfrations fromg=5 to g=8 show simple Stokes—Einstein

the following equation for the diffusion coefficieft: diffusion of hard spheres. . o
‘ We now consider whiclg range would yield sufficient
D=(q?7) l= B (1— kD), (39) signal from the internal structure to be sensitive to internal
67715 Ry relaxation processes. In Fig. 13, the relative contribution of

the blob scatterindg?(q) . to the contribution of the overall
scatteringP(q) is shown as a function of the scattering vec-
tor. It is obvious that for scattering vectors up
~0.9 nm ! the major contribution to the scattering stems

where »; is the viscosity of the solventp is the volume
fraction of the dendrimer, anBy is the sphere radius which
might be replaced for an arbitrary particle by the hydrody-
namic radiusRy, . For ideal hard-sphere interactiincan be
calculated to be equal to 2*1In Fig. 12 the inverse o7y
normalized to the sphere radi is plotted as a fun.Ctlon of TABLE II. Diffusion coefficients obtained from NSE spectroscopy for
g. The sphere radiRg are taken from the model fit of the papaM dendrimers in deuterated methanol.

SAXS data with the form factor of polydisperse spheisee
above. As expected for simple center-of-mass diffusion, in g 5 6 7 8
this representation the data for all dendrimer generations Sy [10-7 cne/s] 04+04 7.9+03 6802 57:0.2
perimpose to a horizontal line within the error bars of the
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1.0 — T T T tor at high scattering vectors and the relaxation rates should
0.9 ] show apure g° dependence as observed for the star poly-
mers. The slow internal dynamics of the dendrimers might be
0.8+ due to the extremely high polymer densities of about 70
— 0.7 vol % to 90 vol % in the rather extended core region. For star
n_E o6 polymers computer simulations have shown that the exten-
——— sion of the shell region compared to the overall star dimen-
£ 05 sion is much larger and contains relatively low polymer con-
T o4l centrations € 20%).">°
o As in the case of the star polymers, a calculation of the
0.3 first cumulant from the measured form factor using Egs.
02 (7), and (8) would predict a minimum of the first cumulant
(Q/g3 plotted versusy) close to the location of the form
el factor peak in the generalized Kratky representation. A
0.0 frpeepepramrat =2 207 power-law dependencg P of the form factor withP>5/3
02 05 04 05 06 0.7 ‘08 09 10 11 12 13 14 in the intermediateq region would alway lead to such a

q [nm’'] minimum. We have to keep in mind that the phenomenon of
, - , de Gennes narrowing originally denotes a collective phe-

FIG. 1:_3. Relative cqntrlbutlon of the b_Iob scatterlﬁgob(q_) to the .overall nomenon due to collective movements of many particles. In

scattering as a function of the scattering veador dendrimers with gen- . . . .

erationg=>5 tog=8. P(q), andP(q) were calculated using the fit results the 'mermedmta region of the dendrimer form factor we

of the fuzzy sphere model. are not sensitive to the correlation between different blobs. In
contrast to star polymers, the dendrimers investigated here
are surface fractals rather than mass fractals. Therefore, it is

from the overall dendrimer shape, and therefore only centemot surprising that there is no direct relation between the

of-mass diffusion, can be observed. For scattering vector®rm factor and the dynamics of the dendrimers by the for-

larger therg~0.9 nn1 ! the internal relaxation should give a malism of dynamic random phase approximation.

significant contribution to the relaxation of the dynamic

structure factor at least for thg=7 andg=8 dendrimers. V. CONCLUSION

To test how sensitive the NSE measurements are to internal e investigated the structure and tkiaterna) den-

relaxation, we made the following ansatz: drimer dynamics by means of small-angle x-ray scattering
S(a.t) P(Dbiob excl —t/r) gr:d neutron spin-echo spectroscopy under good solvent con-
500 |t P(@=P(@un —UTem itions. o _
(9.0 (@)= P(Q)bion For the first time we formulated a model that describes
P () piob the single-particle scattering stemming from the overall com-
P(q)— P(Q)blobexq ~ U Tom) XA~/ 7iny), pact shape as well as the contribution from the internal den-

sity fluctuations for all generations consistently. The hybrid
(39 character of dendrimers between colloidal entities on one
where 7., and 7;; are the relaxation times of the center-of- hand and their polymeric structure on the other hand is ac-
mass diffusion and the internal relaxation dynamics, respeaentuated. In addition, we obtained the pair distance distri-
tively. In Fig. 10 the dotted lines mark the results fgf; ~ bution functions and the segment density profiles from a
=4X 1., under the assumption that the contribution of themodel-independent approach via inverse Fourier transforma-
blob scattering to the overall scattering is only 50%. It istion (IFT) and square-root deconvolutig8@QDEQ methods.
obvious that internal relaxations which are 4 times slower Both the model fit as well as the model-independent
than the center-of-mass diffusion still give a significant con-evaluation of our data reveal that the density profile of all
tribution to the decay of the dynamic structure factor. We cardendrimers §=3) decays monotonically from the center to
therefore conclude that the internal relaxation must be athe outside. The most consistent description of the data has
least 4 times slower than the diffusion of the overall den-been achieved with the fuzzy edge model. The results for the
drimer. pair distance distribution function and the density profile are
If we compare these results to those obtained on highin excellent agreement with those determined via IFT and
functionality star polymers by Richtet al,*®=?°our obser- SQDEC. Down tog= 3, the shape of(r) is rather symmet-
vations suggest that the internal dendrimer dynamics is muctic like those of homogeneous spheres; the shift of the peak
slower (at least one order of magnitudéhan the internal position to smaller values of Ry is fully taken into account
relaxation of the star polymers. The star polymers under inby the increasing fuzziness of the surface region. Even
vestigation had diffusion coefficients of the same or@®r though the smearing of the density profile in the shell region
even fasteras the dendrimers studied here. As shown in Secincreases with decreasing generation number, the steep decay
I A the relaxation rates for the center-of-mass diffusion in-of the form factor in the intermediatg region indicates that
crease with aj? dependence, but the internal Zimm dyna- even for the lower-generation dendrimers dowrgte3, the
mics becomes faster witlp®. Therefore, the internal dynam- dendrimers are surface fractals rather than mass fractals. So,
ics should dominate the decay of the dynamic structure facf a comparison is drawn between star polymers and low-
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