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Abstract

The relative simplicity and design of the Fortran 77 language allowed for reasonable 
interoperability with C and C++.  Fortran 90, on the other hand, introduces several new 
and complex features to the language that severely degrade the ability of a mixed 
Fortran and C++ development environment.  Major new items added to Fortran are 
user-defined types, pointers, and several new array features.  Each of these items 
introduce difficulties because the Fortran 90 procedure calling convention was not 
designed with interoperability as an important design goal.  For example, Fortran 90 
arrays are passed by array descriptor, which is not specified by the language and 
therefore depend on a particular compiler implementation.  This paper describes a set 
of software tools that parses Fortran 90 source code and produces mediating interface 
functions which allow access to Fortran 90 libraries from C++.

1.0 Introduction

Fortran is usually an integral part of the computing environment at a scientific 
institution like Los Alamos National Laboratory (LANL).  At LANL there are many 
legacy Fortran applications and libraries as well as scientific programmers who use 
Fortran as a language of choice.  Legacy Fortran applications have frequently been 
written in Fortran 77 using static arrays as the dominant data structure, e.g. [1].  These 
static arrays were well suited for the time as they easily mapped onto the fixed grid 
models of the legacy codes.

However, as scientific models have increased in complexity, it has been found that 
Fortran 77 is not expressive enough to provide the language support that many of the 
new models require.  For instance, the trend has increasingly been for computational 
fluid dynamic (CFD) models to require high resolution in certain regions of interest (to 
resolve the physics), but, in other modeled regions, physical parameters may vary 
slowly enough that a course grid is appropriate, e.g. [2].  Thus, the tendency has been 
for scientific models to move from static fixed grids to particle and fluid meshes that 
adapt to flow and other dynamic model parameters.



Fortran 90 provides many new features that are attractive to Fortran 77 programmers 
[3].  The most important of these include data structures and user-defined types, many 
new array features and operations, pointers, increased support for code 
modularization, and improved type safety.  The new array features include the ability 
to process entire arrays as a single object and to dynamically allocate (and deallocate) 
arrays.  While the rank (i.e., the number of dimensions) of an array must be specified at 
compile time, the shape (i.e., upper and lower bounds in each dimension) may be 
deferred until runtime.  These new features in Fortran 90 allow the increased 
complexity of the newer scientific models to be more easily and naturally expressed.

At the same time as scientific programmers have been migrating to Fortran 90, many 
were also beginning to use C++.  In addition, younger scientific programmers 
frequently use C++ because of the dominance of C and C++ in the educational and 
commercial environments.  This has led to a mixed programming environment of 
Fortran 90 and C++.  While Fortran 77 and C are largely able to coexist in a mixed 
programming environment (for example, libraries such as MPI frequently have both a 
Fortran and a C interface [4, 5]), this is not the case with Fortran 90 and C++.  One of 
the main problems arises when one wishes to share arrays and user-defined types 
between Fortran 90 and C++ modules.

Arrays and pointers to an array, for example, are passed via a descriptor to explicit 
procedure interfaces.  However, there is no Fortran standard that describes the layout 
of an array descriptor.  Thus, while a pointer to the memory address of a Fortran 90 
array may be passed to C++ (via an implicit interface), there is no standard way for C++ 
to call a Fortran 90 procedure that expects an array or a Fortran pointer to an array.  In 
essence, there is no way to cast a memory address to an array in Fortran.  As stated by 
Adams et al. [3], "currently, the only way to guarantee consistent interfaces across 
implementations is to write all procedures in standard Fortran.''

This paper addresses this situation by describing CHASM, a set of software tools and 
methods that use static code analysis to generate adapter functions that bridge the 
divide between C++ and Fortran 90 in a language-conforming way.  The general 
technique is to first parse Fortran source code to discover a list of procedures and their 
interfaces, including the number of arguments and their types.  The Program Database 
Toolkit (PDT) [6] is used to accomplish this task.  Then for each procedure in this list, an 
adapter procedure is automatically generated that allows C++ to call the desired 
Fortran procedure.  Within this adapter function, argument type conversion is 
performed if necessary and the associated Fortran 90 procedure is called (with return 
values converted as necessary).

The primary focus of this paper is to describe the adapter functions that are used as a 
bridge in CHASM to call Fortran 90 procedures from C++.  The emphasis will be on the 
passing of arrays as parameters to Fortran procedures.  Similar techniques could be 
used to generate adapter functions to allow Fortran 90 to call C++ or to share user-
defined types between the two languages, but this is outside the focus of this paper and 
will be addressed later.

The paper proceeds as follows.  First, the PDT and associated tools are described that 
allow for the static analysis of Fortran 90 source code.  Then, the general design of the 



adapter functions is covered, with particular attention given to the passing of array type 
parameters.  Finally, a C++ array class is described, that is used to wrap Fortran 90 
arrays so they can be shared with the C++ environment.

2.0 Program Database Toolkit

The Program Database Toolkit (PDT) [6] provides a framework in which application 
developers can access programming language constructs and modify and generate 
object-oriented software.  As such, it is an extremely useful tool and can be used in a 
variety of different settings.

Two existing libraries that make use of the PDT are TAU (Tuning and Analysis Utilities) 
[7] and SILOON (Scripting Interface Languages for Object-Oriented Numerics) [8].  TAU 
uses the PDT to gather information about the location of function entry and exit points, 
and uses this information to insert calls to profiling and tracing routines so that existing 
source code can be automatically instrumented for performance behavior.  SILOON 
automatically generates bridging code to provide users with the ability to program in a 
high-level scripting language (such as Python and Perl) while accessing existing C++ 
libraries.  SILOON uses the PDT to gather information about methods and functions in 
C++ source code (including the number and type of function parameters), and uses this 
information to generate bridging code so that these functions can be called from a 
scripting language.

The PDT framework works by first parsing source code (utilizing commercial compiler 
front ends) and then processing the resulting intermediate language (IL) trees.  As it 
traverses an IL tree, a Fortran 90 (or C++) IL Analyzer extracts information on high-
level constructs and source code locations that is needed by analysis tools and code-
generating applications.  This information is then made available in a human-readable 
"program database" (PDB) file. The DUCTAPE library [6] is then used to access the 
contents of the PDB file.  The second release of PDT extends support to Fortran 90 and 
enhances the handling of C++ templates and template instantiations.

The IL Analyzers processes IL trees that are constructed during the parsing of source 
code.  Based on the Mutek Fortran 90 [9] and Edison Design Group (EDG) C++ v2.45 
[10] front ends, respectively, the Fortran 90 and C++ IL Analyzers work similarly but 
operate on language-specific constructs.  Both traverse IL trees, reporting information 
on designated, high-level constructs as they are encountered. Separate traversals for 
source files, routines, user-defined types, other types, and other entities allow 
restructuring of the reported information.

The output of the IL Analyzers is a "program database" (PDB) file consisting of 
descriptions for various language entities. Each description identifies an item and lists its 
features. Information on source files, routines, Fortran 90 user-defined types and 
modules, C++classes, structs and unions, other types, as well as templates, namespaces, 
and macros, is contained in a PDB file. A number of changes in the database format 
(from PDT version 1.0) were necessary to accommodate the addition of the Fortran 90 
IL Analyzer.



DUCTAPE is a C++ library that provides a common, object-oriented API to the PDB 
files produced by both IL Analyzers. Each item type of the PDB format is represented 
by a class having a corresponding name (e.g., the pdbRoutine class describes routines). 
Information about the PDB items is accessible through member functions of the 
DUCTAPE classes. Common attributes are factored out into generic base classes. A 
single class hierarchy accommodates both Fortran 90 and C++.  With the DUCTAPE 
library, PDT provides some useful static analysis tools.  These include:

• pdbconv converts PDB files to a more readable format;
• pdbhtml creates web-based documentation;
• pdbmerge merges PDB files from separate compilations; and
• pdbtree displays file inclusion, class hierarchy, and call graph trees.

Figure 1.  A schematic diagram of the static analysis of an application library by the 
PDT.  Source code is parsed and the resulting intermediate language is processed and 
written to a PDB file that can be read using DUCTAPE, as shown in the left hand side of 
the figure.  Examples of existing applications making use of the final output are shown 
in the right hand side of the figure.



3.0 General Design

Perhaps the easiest way to understand the design of the CHASM C++ to Fortran 90 
interface is to compare it with a client/server relationship.  Imagine that the C++ code is 
a client making calls on a Fortran 90 server.  In traditional client/server software, there 
would be client-side stub and server-side skeleton code to provide an adaptive 
connection between differing client and server computer architectures and languages.  
These stub and skeleton interfaces must marshal function parameters in a way that 
accommodates existing differences between computer architectures and languages.

In a similar manner, the CHASM C++ to Fortran 90 interface procedures must accept 
client (C++) calls, marshall function parameters into Fortran 90 types, and, finally, to 
make the Fortran 90 procedure call.  The CHASM generated software fulfills the role of 
an adapter pattern as described by Gamma et al. [11].  The call sequence is shown 
schematically in Figure 2.

   

C++ Client

CHASM C++
Stub Interface

CHASM Fortran
Skeleton Interface

Fortran Server

Figure 2.  A schematic diagram showing the client/server analogy of the C++ to 
Fortran call sequence.  The C++ client makes a call to a Fortran procedure through
C++ stub and Fortran skeleton intermediaries.  The C++ stub and Fortran skeleton 
interfaces marshal procedure parameters between C++ and Fortran.



A key distinction between traditional client/server code (e.g., the Common Object 
Request Broker Architecture (CORBA) [12, 13]) is that no interface definition language 
(IDL) is required to generate the adapter procedures.  All information necessary to 
generate the adapters is discovered during the CHASM static analysis stage using tools 
from the PDT.

The client stub adapters are inline C++ functions that hide users from the different 
symbol-naming conventions used by Fortran compiler vendors.  For instance, some 
compilers require one or more leading underscores before symbol names, while others 
do not.  Likewise, some Fortran compilers write symbols in all upper-case letters, while 
others do not.  The CHASM convention is to use the procedure name as it is written in 
the Fortran code, but prepend the C++ F90 namespace.  Suppose the original Fortran 
procedure is named Compute(), within a Fortran module named CFD.  Then this 
procedure would be callable from C++ with the fully resolved name, 
F90::CFD::Compute().

The server skeleton procedures are written in Fortran 90.  This allows the server calls to 
be made entirely within the Fortran language and in a compiler-independent fashion.  
The interfaces to these procedures are C-callable (implicit Fortran functions), and only 
standard C data types are passed in.  This implies that special consideration must be 
given to Fortran 90 array data types in order to marshal to and from C++ and Fortran 
90 as explained below.  Standard data types (integers, floating point numbers, etc.) are 
easily handled and are not discussed further.

3.1 Arrays, Fortran Pointers and Dynamic Memory Allocation

As noted in the introduction, a major problem to overcome is that Fortran 90 arrays are 
passed by descriptor, which have no standard (compiler-independent) representation.  
To overcome this problem within the Fortran 90 language, several assumptions and 
design choices are made:

1. All allocation of array memory must be made from Fortran (at least for those arrays 
that are to be shared between Fortran and C++).  This allows these arrays to be 
accessible in Fortran and prevents the compiler type system from complaining.  
Memory allocation within Fortran is necessary because Fortran 90 has no notion of 
type casting; it is simply not part of the language to be able to cast a memory address to 
a Fortran 90 array.  To overcome this, a series of C-callable functions (based on array 
rank and element type) are provided for array memory allocation from C++.  These 
functions are usually not called directly by users, who should access arrays through the 
provided C++ array class (described below).  Array memory allocation is normally 
done within the constructor of the C++ array class.  This class is a proxy (see [11]) of the 
Fortran 90 array.

2. A consequence of point 1 is that arrays are laid out in column major (as opposed to 
standard C, row major) ordering.  Users are isolated from this by the C++ array proxy 
class, but should be aware of the memory layout for performance considerations.

3. A Fortran 90 arrays is represented by an integer handle in C++, maintained as an 
instance variable in the C++ array wrapper class.  The C++ stub interfaces automatically 



marshal an array reference to an integer handle when an array is required as a 
parameter to a Fortran 90 procedure.

4. Because Fortran arrays are represented by integers in C++ (point 3), there must be an 
association between the integer handle and the actual array in Fortran.  This is 
accomplished via a set of global arrays (based on array rank and element type) in 
Fortran containing what are essentially pointers to the actual Fortran 90 arrays.  The 
C++ integer handle is an index into one of these arrays.  There is an array for each 
dimension and array element type seen in the static analysis of the Fortran 90 code by 
the PDT.  There must be separate arrays to meet the type requirements (no casting) of 
the Fortran language.  What is stored in the arrays of handles is not a Fortran 90 
pointer type, but a user-defined type wrapping a Fortran array pointer, as the language 
does not allow for arrays of pointers.

5. The arrays of pointers to arrays (discussed in point 4) are filled lazily whenever seen 
by an adapter interface.  Suppose a Fortran procedure that is called from C++ returns a 
Fortran 90 array.  The adapter code first checks if this array has been seen before (based 
on memory address, see point 6).  If so, it simply returns the integer handle for this 
array.  If not, it creates a pointer wrapper for the array, stores it in the proper array of 
handles (based on type and rank), and passes the index of the wrapper on to C++.

6. Fortran 90 must be coerced into giving up the memory address of a Fortran array.  
To maintain backward compatibility with Fortran 77, a Fortran array is passed by 
address to an implicit procedure.  The memory address of a Fortran array obtained in 
this fashion is stored within the C++ array proxy for efficient memory access within 
C++.  Note that Fortran array access from C++ is via an address into memory rather 
than a series of function calls for each individual element of the array.

7. A copy of what is essentially the Fortran array descriptor is stored in the C++ array 
proxy.  This makes array meta information (rank, shape, and index ranges) accessible 
within C++.  The interface for this information is given in the Appendix as the 
ArrayDesc class.

8. Each Fortran compiler has its own naming convention for procedure names written 
to object files and accessed by the linker.  Normally, users must be directly aware of this 
convention, and call the proper symbol name from C when calling Fortran.  Inline C++ 
stub interfaces are automatically generated to hide this nuisance from the user.

9. Fortran 90 pointers within C++ are treated the same as arrays.  In other words, no 
distinction is made between pointers and arrays in the C++ environment.

3.2 Code Generation

There is a substantial amount of information unique to each Fortran 90 module that is 
analyzed by the PDT, and code that must be generated to allow for C++ calls of Fortran 
procedures.  This information includes the number and types of arrays that are used in 
the Fortran 90 environment, specifically those that are passed in procedure calls.  It also 
includes a list of procedure calls declared within the module and the parameter and 
return types for each procedure.  Adapter stub and skeleton functions must be 



generated for each Fortran procedure to provide the CHASM bridge between C++ and 
Fortran.  For each array rank and array type, code for a pointer wrapper must be 
generated and an array must be created to store these wrappers.  Inline C++ code 
isolating the user from the Fortran compiler symbol-naming convention must also be 
generated.

Fortunately, the information required is readily available from the PDT once the 
Fortran code has been analyzed.  Code generation is also easily accomplished.  The 
steps of static analysis and code generation are similar to those already encountered in 
Figure 1.

3.3 Potential Problems

While the power of static code analysis allows for many of the traditional language 
interoperability issues to be overcome within the respective C++ and Fortran 90 
languages, there still exist some potential problems.

A major problem is inherent in the management of memory assigned to each array.  A 
C++ array proxy contains a pointer directly to Fortran array memory.  Errors arise if 
this memory is deallocated in Fortran, leaving a dangling reference in C++.  
Unfortunately, nothing can be done to avoid this without direct user involvement.  
Before freeing an array in Fortran, a user should call F90ArrayDealloc(), a procedure 
provided to notify the C++ environment that an array is being freed and to nullify any 
potential proxies to this array.

As with any memory management scheme without direct garbage collection support, 
users should clearly document the usage of their code so that safe memory 
management is possible.

4.0 C++ Array Proxy Class

A C++ array class has been created to provide an object-oriented interface to Fortran 90 
arrays.  This is a proxy class since much of the functionality (e.g., memory storage) of 
the C++ class is actually provided by an associated Fortran 90 array.  There are several 
issues that the array proxy class must handle: memory management, static typing 
properties, and array indexing.  A discussion of these issues and their solution via the 
array proxy class is contained in this section.

There are two categories of Fortran functions that form the basic interface for memory 
management of arrays that are shared between C++ and Fortran.  First, since all array 
memory is allocated by Fortran (to appease the strict type requirements of Fortran 90), 
there is a family of C-callable functions that is used to allocate arrays.  These functions 
have names like F90MallocXY, where X is a placeholder for the type of the array 
element and Y is a placeholder for the rank of the array.  For instance, F90MallocINT3 is 
used to allocate an integer array of rank 3. The result of a call to F90MallocXY is an 
instance of the class ArrayDesc (see the Appendix), which contains a pointer to the raw 
memory that is associated with the Fortran array, along with additional meta 
information describing the array.  Similarly, the F90FreeXY family of functions free 
array memory when required.



These function families are generated as needed by CHASM, but are not called directly 
by users.  All that is required of users is to instantiate an instance of the F90Array class. 
All issues relating to memory management and the creation of the Fortran 90 array 
counterpart are handled in the constructor and destructor methods of the F90Array 
class (see the Appendix).

To make memory management more user-extensible, the F90Memory template class 
has been provided, which contains two static methods, malloc and free.  In general, 
these methods just allocate/deallocate memory by using the C++ built-in memory 
management facilities (e.g. new/delete or malloc/free). For every type/rank 
combination for which an instance of F90Array exists, we produce a specialization of 
the F90Memory class, whose static functions call the appropriate F90MallocXY and 
F90FreeXY functions, and thereby allocate and free a Fortran array. This scheme makes 
use of external polymorphism and, thus, is very extensible [14].

A positive side-effect of using templates for array management is that the type and the 
rank of the array become visible to the C++ compiler. We can therefore provide 
indexing operators for the array class that return elements of the correct type and 
thereby help the C++ compiler in performing static type checking.

When developing algorithms, and when using the indexing operator, one must be 
aware that Fortran arrays are laid out in column-major order.  Rather than managing 
the details of this directly, we simply provide an interface to the Blitz++ array library 
[15] which provides this functionality.  Blitz++ is an expression template C++ library 
that provides very good support for high-performance array computations in C++.  
Blitz++ allows for a Fortran-like array syntax within C++, without introducing 
abstraction penalties during runtime.  

4.1 Arrays Passed as Procedure Parameters

The policy for passing arrays as parameters to procedures is that the C++ stub 
interfaces generated by CHASM pass array proxies by reference and by value.  
Specifically, three cases exist: (1) an F90Array reference is returned as a function 
parameter when intent out is specified for the Fortran array; (2) an F90Array reference 
is passed as a function parameter when intent in is specified; (3) an F90Array is returned 
(by value) when a Fortran function returns an array. 

An example of the first case is shown in the following code section:

  void returnAnArray(F90Array<int,2> &); 

  F90Array<int,2> A; 
  returnAnArray(A);

In this case, the default constructor creates an empty array, that is then filled by the 
returnAnArray() call.  The second case shown below is similar, except that an array is 
first constructed and memory allocated by calls to Fortran from C++: 

  



  void useAnArray(F90Array<int,2> &);

  long lower[2] = {1, 1};
  long upper[2] = {100, 100};

  F90Array<int,2> B(lower, upper);
  useAnArray(B);

The final code segment returns an array proxy by value:

  F90Array<int,2> returnAnArray();

  F90Array<int,2> C = returnAnArray();

5.0 Summary

CHASM is a set of software tools that help to bridge the divide between C++ and 
Fortran 90.  These tools first parse Fortran source code to discover a list of procedures.  
A pair of C++ stub and Fortran skeleton functions is then generated for each Fortran 
procedure found.  The C++ stub functions are used primarily to hide the symbol-
naming convention of the specific Fortran compiler, and to allow the passing of C++ 
arrays by reference to a Fortran skeleton procedure expecting an integer handle 
representing the array.  The Fortran skeleton functions are used to transform the 
integer array handle into a fully typed Fortran 90 array, and to make the call to the 
original Fortran procedure.

The CHASM tools must also generate additional functions and ancillary data structures 
to handle the sharing of arrays between C++ and Fortran 90.  For each combination of 
array element type and array rank, a set of memory allocation and deallocation 
routines must be generated, in addition to a set of globally accessible storage arrays 
that associate array pointers with integer handles.  

In addition, a C++ array template class is used to provide a consistent and easy to use 
interface for the sharing of arrays between Fortran and C++.  Users need not be 
concerned about the underlying details, but simply use normal C++ contructors and 
indexing mechanisms with shared arrays.  Meta information about the shared array, 
including the array rank and size, can also be accessed from C++.

6.0 Appendix

The ArrayDesc class is used to access Fortran array descriptor information from C++.  
Public interfaces for this class are given below:

class ArrayDesc {
 public:

  enum DataType {    
    Int1 = 1, Int2, Int4, Int8, Logical1, Logical2, Logical4,
    Logical8, Real4, Real8, Real16, Complex4, Complex8, Character
  };



  //
  // Get accessor functions
  //

  int rank() const;
  DataType dataType() const;
  void* address() const;
  void getDimensionInfo(int r, long& lower, long& upper) const;

  //
  // Set accessor functions
  //

  void rank(int r);
  void dataType(DataType dt);
  void address(void* addr);
  void setDimensionInfo(int r, long lower, long upper);
};

The F90Array class is used to provide access to Fortran 90 arrays from C++.  Public 
interfaces for this class are given below:

template <typename ELEMENT_TYPE, int RANK>
class F90Array {
 public:

  //
  // Constructor and destructor methods.  The default constructor
  // creates an empty array to be filled in later by a call to a
  // Fortran function returning an array.  The lower and upper
  // parameters to the constructor are arrays containing the lower
  // and upper index for each dimension.
  //

  F90Array();
  F90Array(long* lower, long* upper);
  ~F90Array();

  //
  // Array indexing operators
  //

  ELEMENT_TYPE & operator[](const int& x);
  const ELEMENT_TYPE & operator[](const int&) const;
  operator ELEMENT_TYPE*();
  operator const ELEMENT_TYPE*() const;

  //
  // Accessor methods returning meta information about the array
  //

  int rank() const;



  ArrayDesc::DataType dataType() const;
  ELEMENT_TYPE* address() const;
  void getDimensionInfo(int r, long& lower, long& upper) const;
};

7.0 References

[1] A. Korosmezey, C.E. Rasmussen, T.I. Gombosi, and B. van Leer. Transport of 
Gyration Dominated Space Plasmas of Thermal Origin II: Numerical Solution. J. 
Computational Phys., 109, 16-29, 1993.

[2] K.G. Powell, P.L. Roe, T.J. Linde, T.I. Gombosi, and D. L. DeZeeuw. A Solution-
Adaptive Upwind Scheme for Ideal Magnetohydrodynamics. J. Computational Phys., 
154, 284-309, 1999.

[3] J.C. Adams, W.S. Brainerd, J.T. Martin, B.T. Smith, and J.L. Wagener. Fortran 90 
Handbook, Complete ANSI/ISO Reference.  McGraw-Hill, 1992.

[4] P.S. Pacheco. Parallel Programming with MPI. Morgan Kaufmann, 1997.

[5] Message Passing Interface Forum. MPI: A Message-Passing Interface Standard, 
version 1.1, June 12, 1995.  Available by anonymous ftp from ftp.mcs.anl.gov.

[6] K.A. Lindlan, J. Cuny, A.D. Malony, S. Shende, B. Mohr, R. Rivenburgh, and C. 
Rasmussen. A Tool Framework for Static and Dynamic Analysis of Object-Oriented 
Software with Templates. Proceedings of SC2000: High Performance Networking and 
Computing Conference, November 2000.

[7] S. Shende, A.D. Malony, J. Cuny, K. Lindlan, P. Beckman, and S. Karmesin.  Portable 
Profiling and Tracing for Parallel, Scientific Applications Using C++.  Proceedings of 2nd 
SIGMETRICS Symposium on Parallel and Distributed Tools, pp. 134-145, August 1998.

[8] R.D. Rivenburgh, C.E. Rasmussen, K.A. Lindlan, B. Mohr, and P.H. Beckman. 
Automatic Generation of Perl Extensions to C++ and Fortran 90 Class Libraries.  
O'Reilly Open Source Software Convention, July 2000.

[9] Mutek. Fortran 90 Front End Documentation. http://www.mutek.com/, 1999-2001.

[10] Edison Design Group. Compiler Front Ends for the OEM Market. 
http://www.edg.com/, 1998-2001.

[11] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of 
Reusable Object-Oriented Software. Addison-Wesley, 1995.

[12] Object Management Group. The Common Object Request Broker: Architecture and 
Specification. John Wiley & Sons, 1992.

[13] T.J. Bowbray and T. Brando. Interoperability and CORBA-based Open Systems. 
Object Magazine, September 1994.



[14] C. Cleeland. External Polymorphism: An Object Structural Pattern for 
Transparently Extending C++ Concrete Data Types.  
http://www.cs.wustl.edu/~cleeland/papers/External-Polymorphism/, 1996.

[15] T. Veldhuizen. Arrays in Blitz++. Proceedings of the 2nd International Symposium 
on Computing in Object-oriented Parallel Environments, 1998.


