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A peptide with 42 amino acid residues (Aβ(1–42)) plays a key role in the pathogenesis of the
Alzheimer’s disease. It is highly prone to self aggregationleading to the formation of fib-
rils which are deposited in so-called amyloid plaques in thebrain of affected individuals. In
our study we established a method to analyze the aggregationbehavior of the amyloid-β pep-
tide with a combination of sedimentation velocity centrifugation and enhanced data evaluation
software as implemented in the software package Ultrascan.Important information which be-
comes accessible by this methodology is the s-value distribution and concomitantly also the
shape-distribution of the peptide aggregates generated inthe process of self-association. These
informations get especially valuable upon evaluating the properties of potential aggregation
inhibitors. With this method we characterized the aggregation modifying effect of a small or-
ganic molecule, designed as aβ-sheet breaker. This compound is built from three head-to-tail
connected aminopyrazole moieties and represents a derivative of the already described Tripyra-
zole. The compound showed reduction of aggregate formationmeasured by FCS and decreased
amyloid formation as measured by Thioflavin T measurements.By addition of this compound
to a solution of the Aβ(1–42) peptide the maximum of the s-value distribution calculated for
the formed amyloid-β aggregates experienced a clear shift to smaller s-values ascompared to
solutions where only the vehicle DMSO was added. This shift to smaller s-values was stable
for at least 5 days. It could be shown that the strength of the shift was related to the amount of
the added compound. The results will be discussed in terms oftheir significance regarding the
mechanism by which the compound interferes with the fibril formation of the Aβ peptide.

1 Introduction

Protein misfolding diseases pose a major health problem notonly because of their increas-
ing incidence but especially because they still have to be regarded as incurable1. One
of the major targets for therapy under study are the formed protein aggregates themself,
whether by enhancing their clearance or the inhibition of their formation. In the case of
Alzheimer’s disease the misfolded component is a protein fragment generated by prote-
olytic cleavage of the amyloid precursor protein and consists out of 39 to 43 amino acids.
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Figure 1. Raw data (yellow, blue) obtained from
sedimentation velocity centrifugation of 21µM
Aβ-42/Aβ-42-OG at 20,000 rpm, 20◦C in 10 mM
sodium-phosphate buffer, pH 7.4, 4 % DMSO. Fit-
ted data from 2D-SA are overlaid in red. Prior to
centrifugation samples were incubated slightly ag-
itated at room temperature for 5 d. The effect of 0,
50, 150 and 200µM compound (top to bottom) on
aggregate formation is shown.

Figure 2. G(S)-distributions obtained by Van-
Holde-Weischet Analysis. Yellow: 21µM Aβ-
42/Aβ-OG after 5 d incubation at room tempera-
ture without compound, with 50µM (blue), with
150µM (green) and with 200µM compound (red).

The most prominent peptide is the Aβ(1–42). It is highly prone to self-association leading
to different kinds of aggregates from which the mature amyloid fibril was long thought to
be solely responsible for the neurodegenerative processesas observed during the course of
the disease2. Our objectives are the development of aggregation inhibitors and the char-
acterization of their propertiesin vitro. In previous years increasing evidence arose that
probably smaller oligomeric assemblies3, 4 play a more decisive role as neurotoxic agents
than the mature fibril. Information about size and shape of Aβ peptide assemblies formed
during aggregation is therefore of high relevance.

Analytical ultracentrifugation is an absolute method for retrieving structural informa-
tion about macromolecules by direct observation of their hydrodynamic properties in a
centrifugal field. Advanced data analysis permits the determination ofs-value, molecu-
lar weight and shape distributions for multicomponent systems5. In contrast to methods
quantifying only the amyloid content of a sample, as f. e. Thioflavin T or Congo Red based
fluorescence measurements, it will be possible to detect allaggregate species present in so-
lution, from monomers to multimers consisting of several thousands units. On this account
we believe that the method6 is especially helpful in determining the effects of potential
aggregation modulators. Here we present the results for a small organic compound, which
is a derivative of the previously describedβ-sheet binder molecules consisting of aminopy-
razole building blocks7.
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Figure 3. Results from 2-dimensional spectrum analysis of sedimentation velocity data in 3D representation.
Left: 21µM Aβ 42/Aβ 42-OG in 10 mM NaPi , pH 7.4, 4 % DMSO as control. Right: 21µM Aβ 42/Aβ 42-OG
in 10 mM NaPi , pH 7.4, 4 % DMSO with 200µM compound after 5 d incubation at RT (20,000 rpm, 20◦C).

Figure 4. Dose-dependence of the inhibitory
effect: Weight averaged s-values as calculated
by 2D-SA/MC analyses are plotted against the
compound concentration.

2 Methods

The aggregation mixture contained 17.5µM unlabeled and 3.5µM Oregon Green-labeled
Aβ (1–42) in 10 mM sodium phosphate buffer, pH 7.4 with 4 % final DMSO concentra-
tion. DMSO was needed in order to solubilize the inhibitor compound (KH61). Samples
(300µl volume) were incubated slightly agitated at RT for 5 d priorto sedimentation ve-
locity centrifugation. Sedimentation velocity experiments were performed with an XL-A
analytical ultracentrifuge (Beckman-Coulter), equippedwith absorption optics. Samples
were measured in standard double-sector aluminum cells at 20,000 rpm, 20◦C. Radial step
size was set to 0.002 cm. Scans were recorded at minimal time intervals. To increase the
sensitivity and the number of processable samples per run intensity instead of absorption
data were recorded in continuous mode. Detection wavelength was 493 nm.

The raw data were transformed to pseudo-absorbance data, processed and evaluated
using the UltraScan software package8 running on a 44 node AMD Opteron cluster under
Linux. Thev̄ value for the Aβ (1–42) as determined from the primary sequence is 0.7377
g/cm3, the solvent densityρ = 0.9998 cm3/g and viscosityη = 1.0004 centipoise. The 2-
dimensional spectrum analysis (2D-SA) solves the inverse problem of fitting sedimentation
velocity data to a linear combination of finite element solutions of the Lamm equation.
Each term of the linear combination reflects a solute in the 2-dimensional space overs and
f/f0. Finally Monte-Carlo (MC) simulations were used to identify statistically significant
solutes.

3 Results

A small organic compounds (<600 Da) designed asβ-sheet binder was selected for further
studies, which proved to be capable of lowering the amyloid content of Aβ 42 solutions
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as measured by a Thioflavin T fluorescence assay (data not shown). The comparative sed-
imentation velocity analysis (Fig. 1) of Aβ 42 solutions incubated either with or without a
2 to 10fold molar excess (referring to the monomer concentration of Aβ) of the compound
revealed a considerable shift of the determined s-values tosmaller values as seen in the
G(s) distributions determined by van-Holde-Weischet analysis (Fig. 2). This indicated an
inhibited growth of aggregates caused by the added compound. An indirect effect of the
compound by changing the solvent properties could be ruled out by control experiments
with a protein of known s-value in the presence or absence of the compound. The results
from 2D-SA/MC analysis (Fig. 4) showed the dependence of theweight averaged s-value
of Aβ 42 aggregates on the applied compound concentration. Obviously it is not a sin-
gle aggregate species which is stabilized by binding of the compound. More probably the
measured relationship indicates an end capping mechanism of growing protofilaments or
fibrils, leading to a reduced mean length of aggregates. Sucha mechanism would also be
expected by the design of the compound as aβ-sheet binder. As can be seen in the 3D
plots (Fig. 3) the number of different species is clearly reduced by compound addition,
species with a frictional ratio of about 1.3 at s-values above 40 S are missing. Appropriate
models for the aggregates together with further experimental data will be needed in order
to interpret the determined shape related frictional ratios.
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