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The pathological roles of bacterial DNA have been documented many decades ago. Bacterial DNAs are different from mammalian
DNAs; the latter are heavily methylated. Mammalian cells have sensors such as TLR-9 to sense the DNAs with nonmethylated
CpGs and distinguish them from host DNAs with methylated CpGs. Further investigation has identified many other types of
DNA sensors distributed in a variety of cellular compartments. These sensors not only sense foreign DNAs, including bacterial
and viral DNAs, but also sense damaged DNAs from the host cells. The major downstream signalling pathways includeTLR-9-
MyD88-IKKa-IRF-7/NF-κB pathways to increase IFN/proinflammatory cytokine production, STING-TBK1-IRF3 pathway to
increase IFN-beta, and AIM2-ASC-caspas-1 pathway to release IL-1beta. The major outcome is to activate host immune
response by inducing cytokine production. In this review, we focus on the roles and potential mechanisms of DNA sensors and
downstream pathways in sepsis. Although bacterial DNAs play important roles in sepsis development, bacterial DNAs alone are
unable to cause severe disease nor lead to death. Priming animals with bacterial DNAs facilitate other pathological factors, such
as LPS and other virulent factors, to induce severe disease and lethality. We also discuss compartmental distribution of DNA
sensors and pathological significance as well as the transport of extracellular DNAs into cells. Understanding the roles of DNA
sensors and signal pathways will pave the way for novel therapeutic strategies in many diseases, particularly in sepsis.

1. Introduction

Damage-associated molecular patterns (DMAPs), including
extracellular histones and DNAs, neutrophil extracellular
traps (NETs) and other factors, mediate multiple organ injury
and play key roles in critical illnesses, particularly in sepsis [1–
3]. Extensive immune cell death often occurs in sepsis and
becomes a major source of DMAPs [4, 5], but the underlying
molecular mechanism is not clear. We found that bacterial
DNAs play a major role in priming immune system and lead
to extensive death of immune cells if a second hit appears.

However, this is a neglected field because many reports on
DNA sensors and signalling pathways mainly focus on cancer
and viral infection [6–8]. Here, we will review the available
literatures of DNA sensors and signalling pathways that
are related to bacterial infection and sepsis.

During bacterial infections, bacterial DNA is released
after bacterial breakdown and enters the circulation. The
DNA in circulation can then be rapidly cleared by the spleen
and the liver with a half-life (t½) of approximately 4 minutes
[9, 10]. However, if the bacterial infection cannot be con-
trolled, large quantities of bacterial DNA could continuously
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enter the circulation and trigger severe immune responses
[11–13]. Circulating DNA taken up by the spleen stimulates
lymphocytes to release cytokines [14]. High levels of circulat-
ing bacterial DNAs have a direct association with the metrics
of clinical severity, suggesting that bacterial DNA levels are
highly reflective of bacterial load [15]. Bacterial DNA-
triggered immune responses play important roles in the
elimination of human pathogens [16–18].

2. Types of DNAs in Inflammation

CpG motifs in bacterial DNAs trigger B cell activation [11].
In eukaryotic DNA, CpG motifs have a high degree of meth-
ylation, which may allow the host to distinguish them from
the bacterial DNA [19], which is largely unmethylated. Meth-
ylation of CpG residues blocks their capacity of stimulating
immune responses [20]. Bacterial DNA has been demon-
strated to stimulate natural killer (NK) cells to increase lytic
activities and interferon γ (IFN-γ) production, stimulate
lymphocytes to secrete interleukin 6 and 12 (IL-6, IL-12) as
well as IFN-γ, stimulate macrophages to produce tumour
necrosis factor α (TNF-α) [11, 12, 21–24], and activate neu-
trophils [25]. Elevated TNF-α promotes the development of
shock, and elevated IFN-γ primes macrophage and natural
killer (NK) cells to increase the toxicity of lipopolysaccharides
(LPS) [23, 24, 26–28]. In the presence of DNA-binding pro-
teins, such as HMGB1, which is a CpG-DNA-binding protein,
B lymphocyte (B cells) activation is significantly enhanced
either by bacterial DNA [29] or by a synthesized 6-base nucle-
otide motif of an unmethylated CpG dinucleotide flanked by 2
purines (5′) and 2 pyrimidines (3′). This nucleotide motif is
present 20 times more in bacterial DNA than in vertebrate
DNA [11, 30, 31]. The sequence specificity was demonstrated
in direct DNA immunization using plasmid DNA carrying the
necessary sequences for immune activation [32–34].

3. Receptors and Signal Pathways

Mammalian cells express a variety of DNA sensors as one of
the first lines of defence against infection [35, 36]. TLR-9 is a
major receptor that recognises bacterial DNA and signals in
host cells [37]. The TLR family are pattern recognition recep-
tors activated by diverse conserved components of pathogens
called pathogen-associated molecular patterns (PAMPs). In
vertebrates, strong selective pressure maintains the highly
conservative TLR receptors’ recognition of and response to
PAMPs [38]. TLR-9 receptors are expressed in many tissues
including the spleen, where it is expressed most abundantly,
and in many types of immune cells, including macrophages,
lymphocytes, dendritic cells, natural killer cells, neutrophils,
and other antigen-presenting cells [39]. UNC93B1 [40–42],
PRAT4A [43, 44], and adaptor protein AP3 [45] transport
TLR-9 from the endoplasmic reticulum to the endosome or
the lysosome, where TLR-9 is matured after cleavage of its
ectodomain by cathepsins [41, 46, 47]. Specific innate
immune cells take up extracellular bacterial materials
into endosomes and phagosomes, where the N-terminal
domain of TLR-9 senses the unmethylated CpG DNA motifs
[48, 49]. HMGB1 also forms complexes with TLR-9, and this

causes translocation of TLR-9 to endosomes in response to
CpG-DNA and CpG-oligodeoxynucleotides (CpG-ODN),
which ultimately triggers cytokine responses [29]. CpG-
DNA activates TLR-9 to generate signalling through myeloid
differentiation primary response gene 88 (MyD88), which in
turn enhance IFN expression and activate proinflammatory
and antimicrobial signals via mitogen-activated protein
kinase (MAPK) and/or nuclear factor κB (NF-κB) pathways
[50, 51]. However, different cell types may vary in down-
stream pathways, for instance, in plasmacytoid DCs, myddo-
some forms to activate IRF-7 and increase IFNα production
[52]. In contrast, macrophages rarely produce type-1 IFN
in response to TLR9 ligands unless using DOTAP as the
transfection reagent to deliver CpG-DNA into the cells
[53]. However, TLR-9 and TLR-4 crosstalk amplifies macro-
phage responses through activation of the c-Jun N-terminal
kinases (JNKs) [54]. In lymphocytes, ligand-inducible high
expression of TLR-9 was found in activated B lymphocytes
[55]. DNA-containing antigen-triggered B cell responses rely
on a TLR-9-dependent immune checkpoint [56].

Cyclic GMP-AMP synthase (cGAS), a cytosolic DNA sen-
sor [57–59] also senses CpG DNA. However, cGAS recognises
cytosolic double-stranded DNA in a sequence-independent
manner and cannot distinguish microbial DNA from host
DNA. cGAS-binding DNA produces cyclic GMP-AMP
(cGAMP) to activate STING and signal via TBK1 and IFN
regulatory factor (IRF)-3 to induce expression of type I IFN
[60–62]. This signal also activates the NF-κB pathway to
enhance inflammatory cytokine release, including TNF-α
and IL-6, which mediate inflammatory and antimicrobial
responses [63–68]. STING also activates stress and cell death
pathways that lead to T cell [69] and B cell death [70]. In
chicken cells, DEAD box polypeptide 41 (DDX41) is an
important DNA sensor to induce IFN production, which also
depends on the STING pathway [71]. These observations
strongly suggest that signalling through the STING pathway
is a very important response to both cytosolic viral and bacte-
rial DNA and mediates IFN-dependent innate immunity [72].
A STING-independent DNA sensing pathway (SIDSP) has
also been identified. For example, DNA damage response pro-
tein DNA-PK was reported recently as the primary sensor in
the SIDSP, which mainly activates the pathway via
HSPA8/HSC70 in humans but is absent frommouse cells [73].

Absent in melanoma 2 (AIM2), a protein with a N-
terminal pyrin domain and a C-terminal HIN-200 domain,
is an important component of the inflammasome [74, 75].
AIM2 senses cytoplasmic DNA to activate ASC (apoptosis-
associated speck like protein) pyroprotosomes and caspase-
1 to ultimately cause cell death [76–81]. LL37 peptide can
neutralize cytosolic DNA and block AIM2-mediated inflam-
masome activation [82]. IFI16 is another member of the HIN
family and binds viral DNA to regulate IL-1β maturation,
but does not associate with ASC [83]. IFI16 is predominantly
a nuclear protein which translocates to the cytosol to recog-
nize DNA and induces IFN-β production. IFI16 also forms
complexes with viral DNA in the nucleus, and these
complexes translocate to the cytosol to trigger STING-
dependent signalling [83–88]. Many other DNA sensors have
been reported, including DNA-dependent activator of IFN-
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regulatory factor (DAI, also called Z-DNA binding protein-
1, ZBP1) [89], leucine-rich repeat interacting protein-1
(Lrrfip1) [90], RNA polymerase III [91, 92], Ku70, and
DExD/H box helicases (DHX9 and DHX36) [93]. DAI rec-
ognizes both the B-form and Z-form of cytosolic ds-DNA.
LRRFIP1 induces IFN production via a β-catenin-dependent
pathway [90], whilst RNA polymerase III transcribes DNA
into 5′-ppp RNA to activate RIG-1-STING pathway, which
triggers IFN production [91, 92]. Ku70 acts as a cytosolic
DNA sensor to promote type III IFN-λ1 production via
activation of IRF1and IRF7 [94]. DHX36 detects CpG-A
DNA using the DEAH domain to mediate IFN-α production
via the MyD88-IRF7 pathway, whilst DHX9 senses CpG-B
DNA using the DUF domain to increase TNF-α and IL-6
production via the MyD88-NF-κB pathway [93, 95, 96].
Recently, heterogeneous nuclear ribonucleoprotein A2/B1
(hnRNP-A2B1) has been shown to recognise viral double-
stranded DNA inside the cell nucleus but not the host
DNA that is packed as nucleosomes. The hnRNP-A2B1-

DNA complexes translocated into the cytosol induce IFN
production via STING-dependent pathways [97]. The major
pathways initiated by DNA sensors are summarized in
Figure 1.

4. Compartmental Distribution of DNA Sensors

As mentioned above, each DNA sensor is located in a specific
compartment (see Figure 1). TLR-9 exists in endosomes and
phagosomes to detect DNAs that entered the cell via endocy-
tosis or phagocytosis [53]. There are many cytosolic DNA
sensors, including DAI, Ku70, RNA pol III, DHX9/36, and
LRRFIP1, to detect cytosolic DNA. AIM2 is located in the
inflammasome, hnRNP-A2B1 in nucleus, and IFI16 in the
nuclear plasma. cGAS attached to the plasma membrane by
N-terminal phosphoinositide-binding domain detects viral
DNAs, whilst mutant cGAS in the cytosol mainly responds
to host stress instead of viral DNAs [98]. In contrast,
chromatin-bound cGAS inhibits DNA repair to increase
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Figure 1: Compartmental distribution of DNA sensors and internalization of external DNAs. TLR-9 is the most important sensor for
bacterial DNAs and is located on the membrane of endosomes and phagosomes. AIM2 binds to cytosol DNAs, which initiate the
assembly of inflammasomes by activating ASC. Many other cytosolic DNA sensors have been identified, and most of them activate STING
pathways, including cGAS, IFI16, DAI, Ku70, DHX9, DHX36, DHX41, and RNA Pol-III. LRRFIP1 is also a cytosolic DNA sensor but it
mainly triggers the beta-catenin pathway. cGAS and IFI16 also exist in cell nuclei but cGAS binds to chromosome to enhance its stability
whist nuclear cGAS and IFI16 plus hnRNP-A2B1-DNA can detect viral DNAs which enter nuclei and form complexes with DNAs. The
complexes are exported to the cytosol to activate STING pathways. Most DNA sensors are situated inside cells, and the extracellular
DNAs from virus, bacteria, or host cells enter cells by many different ways, including endocytosis and phagocytosis, or are facilitated by
HMGB1-RAGE, cationic lipids, or OMVs. Viruses enter cells via different membrane proteins.
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genome stability and promotes cell death [99], indicating
the importance of compartmentalisation of DNA sensor
proteins.

DNA sensors distributed in a variety of cell compart-
ments may play an important role in sensing bacterial and
viral DNA that enter cells via different mechanisms so as to
ensure swift recognition by the host. However, T and B cells,
unlike macrophages, do not take up DNA which limits their
response to bacterial DNAs, particularly high molecular
weight DNA [100]. When DNA is physically linked to hen
egg lysozyme (HEL), the resulting complex was efficiently
taken up by B cells in the experimental setting [100]. In
bacterial infections, besides endocytosis, many other factors,
such as HMGB1-RAGE [101], cationic lipids [102], and
outer membrane vesicles (OMVs) [103], may facilitate bacte-
rial DNA uptake by host cells and trigger DNA sensors and
downstream signal pathways.

5. STING Plays a Central Role in Both
Exogenous and Endogenous DNA Sensing

DNA-sensing receptor cyclic GMP–AMP synthase (cGAS)
activating the STING pathway plays a central role in sensing
and responding to cytosolic DNA from both exogenous and
endogenous sources. Endogenous nuclear DNA damage
caused by ionizing radiation, oxidative stress, drugs, telomere

shortening, chromosome mis-segregation, mitochondrial
damage, and viral/bacterial infection all lead to accumula-
tion of DNA in the cytosol [104]. Once the DNA is
exposed to the cGAS sensor, cGAS forms dimers and syn-
thesizes cyclic guanosine monophosphate-adenosine mono-
phosphate (cGAMP). The cGAMP acts as a second
messenger to activate STING on the ER surface, which ulti-
mately activates IRF3 and NF-κB through the kinases TBK1
and IKK, respectively, so as to increase expression of the
cytokines including IFN and TNF-α [73, 104, 105] (see
Figure 2). On the other hand, STING can also mediate
IFI16 degradation by reducing type I interferon production
[106]. Many other factors, such as cyclic di-nucleotides from
intracellular pathogens, DHX41, RNA Pol-III, DAI, or IFI16,
also activate STING pathway (Figure 1) and initiate different
responses mediated by IRF3, NF-κB, STAT6 [107], and
autophagy [108] pathways (Figure 2). Therefore, the cGAS-
STING pathway is an important regulator of free DNA result-
ing from infection, inflammation, or cancer [104, 109, 110].

Activation of the STING pathway not only causes
cytokine release, but also induces apoptosis in immune
cells, including in T and B lymphocytes [111], myeloid lin-
eage cells, and in nonimmune cells, such as hepatocytes
[112, 113] and cardiomyocytes [114], and in cancer cells
[70, 110, 115]. STING pathway-induced apoptosis involves
ER stress and Bak/Bax-mediated macropores in the
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Figure 2: Major signalling pathways of DNA sensors. TLR-9-MyD88, STING, and AIM2-ASC are the major pathways initiated by DNA
sensors. TLR9 preferentially binds bacterial and viral DNAs to trigger NF-κB and IRF7 signaling cascades via MyD88 adaptor and lead to
a proinflammatory cytokine response. STING is a common pathway of many DNA sensors to induce IFN and other proinflammatory
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mitochondrial outer membrane or leakage of lysosomal
content into the cytosol [69, 114, 116]. Recent reports
demonstrate that STING signalling plays an important role
in the induction of necrosis via the synergistic effect
between IFN and TNF-α pathways [118; 119].

6. Syngeneic Effects with Other Toxic Factors

Although bacterial CpG DNA triggers an immune response
via DNA sensors, incubation of cells with the bacterial
DNA or injection of DNA into mice is not sufficient to cause
cell or animal death [117]. CpGDNAmotifs were reported as
sensitizing agents for lipopolysaccharide-induced toxic shock
in animal models [117]. CpG-DNA and LPS can act synergis-
tically to induce inflammatory cytokines and nitric oxide
release, and to increase cell-surface DNA binding and
internalisation in monocytes and macrophages [118–122].
CpG DNA and LPS synergistically induce TNF-α production
via activation of NF-κB [120, 123]. High doses of D-
galactosamine is lethal in animal models [124], whilst lower
doses (nonlethal) are used to sensitize animals [125]. In sen-
sitized mice, CpG DNA or LPS is able to induce acute liver
injury via the mitochondrial apoptotic pathway involving
TLR pattern recognition receptors [126–128]. Galactosamine-
induced sensitization also contributes to endotoxin-induced
immune response and lethality [129, 130].

7. Roles of Bacterial DNAs in Disease

Bacterial infection causes variety of diseases with different
mechanisms and manifestations. The majority of bacteria
do not enter host cells, but releases DNAs which are trans-
ported into cells via endocytosis or phagocytosis to meet
TLR-9 receptor [37]. Some bacteria could enter host cells
and release DNAs directly into cytosol to trigger cytosolic
DNA sensors [131].

It was reported that bacterial DNA could cause septic
shock via induction of high levels of TNF-α [132]. However,
no confirmatory report has since been published. In general,
bacterial DNA causes a variety of immune responses, but no
lethal effects, although blocking TLR-9 reduces bacterial
load, inflammation, and mortality in mouse poly-microbial
sepsis [133]. Kukoamine B, a novel dual inhibitor of LPS
and CpG-DNA, has been reported to be effective in treating
animals with sepsis [134]. Intratracheal admission of syn-
thetic CpG-ODNs leads to acute lung inflammation and
injury with systemic inflammatory response via activation
of TLR-9 [135, 136]. Bacterial DNA induces pulmonary
damage via TLR-9, and suppressing CpG-ODNs and TLR-9
could significantly reduce inflammation in the mouse lungs
[137, 138]. The same effect has also been reported in cardiac
injury and malfunction caused by bacterial DNA [10].

On the other hand, synthetic oligonucleotides have also
been used as modulators of inflammation and immune
response [139]. Single-stranded DNA containing CpGmotifs
have also been shown to induce innate immune responses,
including production of poly-reactive immunoglobulin and
the production of T helper 1 (TH1)-type as well as release
of proinflammatory cytokines and chemokines [140] and to

activate B lymphocytes [11]. The innate immune responses
are able to increase host resistance to a wide range of patho-
genic bacteria, viruses, and parasites, and therefore, CpG-
ODNs have been tried with vaccines to enhance immunity
[141]. When mice are exposed to bacterial DNA before hem-
orrhagic shock, the systemic inflammation and gut barrier
loss via an IFN-γ-dependent route are strongly aggravated
[142]. CpG ODNs has also been shown to stimulate protec-
tive innate immunity, enhance the complement system,
protect immune cells, increase secretion of antibacterial anti-
body, and enhance phagocytosis against intracerebral E. coli
K1 infection, pulmonary Klebsiella, or Staphylococcus aureus
infections [143–148]. These observations indicate that there
are both harmful and beneficial effects of bacterial DNA.

8. Potential Diagnostic and Therapeutic
Strategy and Reagents

DNase, particularly DNase 1, has been used directly in many
animal models to digest extracellular DNAs, including DNAs
in dead bacteria and neutrophil extracellular traps (NETs)
[149–151]. It is very likely that DNase 1 will be used clinically
in the near future [152]. The other strategy is to target the
sensors of bacterial DNAs and downstream pathways,
mainly the TLR-9 and cGAS-STING pathways. As men-
tioned above, targeting TLR-9 improves the outcomes of
mouse sepsis [133]. Targeting the TLR-9-MyD88 pathway
is also used to regulate adaptive immune responses [153],
but the majority of studies were focused on cancer [154].
Many drugs targeting TLR-9 and other TLRs are under clin-
ical trials, mainly for cancer therapy [153, 155]. However,
targeting TLRs has demonstrated a great potential in sepsis
management and infection control, as well as optimisation
of vaccine efficacy [156, 157]. STING-knockout mice devel-
oped less severe acute pancreatitis than wild type mice, whilst
STING agonists cause more severe acute pancreatitis [158].
However, the STING ligand, c-di-GMP, can improve vacci-
nation results for metastatic breast cancer [159]. Recently,
the STING pathway has become much more attractive in tar-
geting both inflammation and cancer [160]. STING agonists
also reduce the burden of pancreatic cancer in mouse models
[161]. As such, many STING pathway agonists and antago-
nists have been developed [162–164]. Although the science
behind this pathway is becoming clearer, successful develop-
ment of medication targeting this pathway appears a long
way off.

Since the major outcome of DNA priming is the produc-
tion of IFN-γ and TNF-α, which are the key cytokines of the
generalized Shwartzman reaction [27], reports have been
accumulated that demonstrate the roles of IFN-γ and its
receptors in animal models of sepsis and endotoxemia.
IFN-γ-sensitized mice are more susceptible to LPS-induced
mortality [23, 27, 165]. Thus, IFN-γ-/- mice showed a signif-
icant reduction in infection-induced splenic cell apoptosis
[166]. Moreover, IFN-γ receptor-deficient mice gain resis-
tance to LPS-induced septic shock [167]. Anti-IFN-γ has also
been demonstrated to have protective effects in animal
models [168, 169]. However, no successful clinical trials on
sepsis have been reported yet, although some clinical trials
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on the roles of anti-IFN-γ in sepsis-induced immune dys-
function are nearing completion. There is no evidence to
demonstrate whether blocking the pathway of IFN-γ produc-
tion, such as using DNase 1, would be a better choice.

9. Conclusion

The roles of different DNAs and sensors are still a major area
of scientific research. How these sensors and pathways are
coordinated to function in different types of cells still needs
further clarification. Moreover, the cross-talk between the
inflammatory pathways and the cell proliferation or death
pathways has been shown to be very important in elucidating
the pathological mechanisms in the development of diseases.
In sepsis, there is a big gap between bacterial DNA priming
and immune cell death and subsequently disease develop-
ment, although it is known that the priming process is very
important. Thus, more work needs to be done both in vitro
and in vivo to elucidate the signalling pathways and to
identify the targets. Sepsis is a common disease with an unac-
ceptable mortality rate, but no specific therapy is yet avail-
able. Clarification of the roles and molecular mechanisms
of bacterial DNAs in development of sepsis may lead to the
creation of new therapies to increase the survival of patients
with sepsis.
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