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Summary 
The serum metabolome contains a plethora of biomarkers and causative agents of various diseases, some 
endogenously produced and some uptaken from the environment1. The origin of specific compounds is known, 
including metabolites that are highly heritable2,3 or influenced by the gut microbiome4; lifestyle choices such 
as smoking5; and dietary consumption6. However, we still have a poor understanding of the key determinants 
of most metabolites. Here, we measured the levels of 1251 metabolites in serum samples from a unique and 
deeply phenotyped healthy human cohort of 491 individuals. We applied machine learning algorithms to 
predict metabolite levels in held-out subjects based on host genetics, gut microbiome, clinical parameters, 
diet, lifestyle and anthropometric measurements. Notably, we obtained statistically significant predictions for 
over 76% of the profiled metabolites. Diet and microbiome had the strongest predictive power, and each 
explained hundreds of metabolites, with over 50% of the variance explained in some metabolites. We further 
validated microbiome related predictions by showing a high replication rate in two geographically independent 
cohorts7,8 that were not available to us when building the algorithms. Using feature attribution analysis9, we 
uncover specific dietary and bacterial interactions. We demonstrate that some of these interactions may be 
causal, as some metabolites we predicted to be positively associated with bread increased following a 
randomized clinical trial of bread intervention. Overall, our results unravel potential determinants of over 800 
metabolites, paving the way towards mechanistic understanding of alterations in metabolites under different 
conditions and to designing interventions for manipulating circulating metabolite levels. 

 

  



Results 
We used mass spectrometry to profile serum samples from 491 healthy individuals for whom we previously 
collected extensive clinical, lifestyle, dietary, genetics and gut microbiome data10 (Extended Data Table 1; 
Methods). Our untargeted metabolomics measured the levels of 1251 metabolites, covering a wide range of 
biochemicals including lipids, amino acids, xenobiotics, carbohydrates, peptides, nucleotides and 
approximately 30% unidentified compounds (Extended Data Fig. 1a, Supplementary Table 1; Methods). Of 
note, to further interpret unidentified metabolites and aid in biomarker discovery, we designed models that 
accurately predict their candidate biological pathway (Supplementary Note 1, Extended Data Fig. 2, 
Supplementary Table 2-5). Most measured metabolites were prevalent across the cohort, including 498 
metabolites detected in all samples, and 1104 metabolites detected in over 50% of the samples (Extended 
Data Fig. 1b). Following quality control (Methods), 475 individuals with high quality data were included in 
subsequent analyses. 

To validate the accuracy of our metabolomic measurements, we compared the levels of creatinine and 
cholesterol to measurements obtained using standardized lab tests (Methods) performed independently on a 
second blood sample taken on the same visit, and found good agreement (R=0.87, creatinine; R=0.79, 
cholesterol, Extended Data Fig. 1c,d). We further found that samples taken one week apart for 20 participants 
were significantly correlated (median Spearman rho=0.68, std=0.06), in contrast to samples from different 
participants that showed no correlation (median Spearman rho=0.05, std=0.12; Methods; Extended Data Fig. 
1e). These results validate the reproducibility and accuracy of our data, are consistent with previous work 
showing long-term stability in the human metabolome11, and confirm that this metabolic profile is a unique, 
person-specific signature. 

Robust predictions of serum metabolites 

We trained gradient boosted decision trees12 (GBDT) algorithms that predict metabolite levels in held-out 
subjects (Methods; Supplementary Note 2). GBDT systematically outperformed linear models (Lasso; 
Methods), with a median and maximum Explained Variance (EV) gain of 8.3 and 43.2%, respectively, for 
prediction with diet data, and 4.6 and 14.9% for microbiome data (Extended Data Fig. 3). Notably, our 
predictions for over 76% of the metabolite groups tested were statistically significant with at least one feature 
group, following multiple hypothesis correction (Methods). The largest number of metabolites (335) were 
significantly explained by diet-related features, and 182 by the microbiome (Fig. 1a,b). Our models explained 
over 10% of the variance for 543 metabolite groups (Fig. 1d), with a median EV of 10.2% (range 0-73.5%; 
Supplementary Table 6), and over 50% of the variance explained for 17 metabolites.  

We next checked, for each feature group, whether any type of metabolites was enriched with superior 
predictions (Fig. 1c; Methods). We found that clinical data better predicted metabolites classified as blood 
lipids, amino acids and peptides as opposed to xenobiotics and unidentified compounds, on which it performed 
worse than on other metabolites. In contrast, microbiome data better explained levels of xenobiotics (p<10-4) 
and unidentified compounds (p<0.001), highlighting its potential for explaining the origin of the large number 
of unidentified compounds. We further found that predictions based on clinical data were significantly 
correlated with those of diet (Spearman rho=0.30, p<10-20), and had a weaker correlation with predictions 
made with the microbiome (R=0.21, p<10-11). Predictions based on microbiome data had the highest 
correlation to predictions based on diet (R=0.44, p<10-20). Finally, we found that metabolites associated with 
genetics could not be predicted by other feature groups, and there was a weak correlation between the 
prediction accuracy of a model containing all other features (“full model”, Methods) and the heritability of 
metabolites (R=0.09, p<0.005). Altogether, each feature group was especially informative with respect to a 
different set of metabolites (Extended data Fig. 4,5a). 



To estimate the relative predictive power of each feature group across all metabolites, we built models 
predicting the principal metabolomic components (Extended data Fig. 5b). Diet had the largest predictive 
power, inferring 48.9% of the variance explained by a model containing all features (Methods), while lifestyle 
factors explained only 1.9% of that EV (Fig. 1e). Notably, microbiome data had 30.8% of the full model 
predictive power. As a large portion of it did not overlap with the predictions of other data, these results 
highlight its importance in predicting and potentially determining serum metabolites levels. 

Replication in external cohorts  

To test the robustness and reproducibility of our gut microbiome-based models, we validated their accuracy 
in two geographically independent cohorts (Methods): 1,004 samples of healthy senior British participants 
(TwinsUK7) and 245 samples of northern Europeans with T2D (IMI-DIRECT8; Extended Data Table 1). 
Validation data were not available to us while developing the prediction models, which were trained only on 
samples from the Israeli cohort. We obtained predictions for metabolites that had statistically significant 
predictions (FDR<0.1) with R2>5% in the Israeli cohort (107 metabolites in TwinsUK, 50 in IMI-DIRECT), using 
only microbiome data from the validation cohorts. Notably, 95 of 107 and 28 of 50 predictions replicated 
(FDR<0.1) in the healthy TwinsUK and T2D IMI-DIRECT cohorts, respectively, including the top 60 and 28 of 
the top 50 predictions (Fig. 2; Supplementary Table 7,8). We note that most replicated associations are 
accompanied by a reduction in effect size, which is expected, particularly due to study specific biases. These 
results indicate that our models unravel robust associations between serum metabolites and the gut 
microbiome, despite the vast differences between both the populations and the protocols and staff used to 
assemble these cohorts. Finally, most significant associations between metabolite levels and body mass index 
(BMI) also replicated in the TwinsUK cohort13 with high accuracy (Pearson R=0.85, p<10-10, Extended Data 
Fig. 5c; Supplementary Table 9). 

Diet and microbiome models are independent 

As the diet modulates the gut microbiome14, we compared the EV of metabolites obtained by models based 
on either. Although some metabolites, mostly related to coffee consumption, were significantly predicted by 
both the diet and the microbiome, many were not (Supplementary Table 10). Furthermore, adding 
microbiome data to a diet-based prediction model improved its accuracy in 66% of cases (median and max 
gain of 2.1 and 62.6% respectively; Supplementary Table 11), while adding permuted data reduced 
performance in 82% of cases (median and max gain of -1.7, and 7.4% respectively; Extended Data Fig. 5d-
f). Finally, 34 metabolites were significantly predicted only by the microbiome. Altogether, these results 
suggest that the gut microbiome may be modulating the production of many circulating metabolites, 
independent of diet. 

We next used feature attribution analysis (SHAP9; Methods) to interpret these models, infer the drivers 
of each prediction, and examine interactions between different predictive factors (Supplementary Note 3, 
Extended Data Fig. 6). We found dozens of diet and bacterial features that were strongly predictive of blood 
metabolites in our models (Fig. 3a; Extended Data Fig. 7a-g). Notably, the reported consumption of coffee 
(both long- and short-term; Methods) had higher importance compared to other dietary features for a large 
number of xenobiotics and unidentified compounds. This included metabolites from the xanthine metabolism 
pathway such as paraxanthine (Diet prediction Pearson R=0.64, p<10-20) and caffeine (R=0.68, p<10-20), as 
previously reported15. These metabolites were also significantly predicted using microbiome data, with a 
Clostridiceae species being the main predictor. Another strong feature was long-term fish consumption which 
accurately predicted the levels of several blood lipids such as 3-carboxy-4-methyl-5-propyl-2-furanpropionic 
acid (Diet R=0.71, p<10-20), a uremic toxin that accumulates in the serum of chronic kidney disease (CKD) 
patients16 and was also suggested to prevent and reverses steatosis17. X-16124 (Microbiome R=0.77, p<10-

20) and X-11850 (R=0.7, p<10-20), are two unidentified metabolites which were accurately predicted by 



microbiome data, and specifically by bacteria from the Eggerthellaceae family and Clostridium genus, 
respectively. Microbiome data was also highly predictive of the uremic toxins phenylacetylglutamine (R=0.63, 
p<10-20) and indoxyl sulfate, (R=0.37, p<10-20) previously reported in association with cardiovascular disease18 
and CKD19; these predictions were driven by a Lachnospiraceae species.  

To assess if a few important taxa are sufficient for accurate prediction, we defined the “main predictor” 
of each metabolite as the taxa with the maximal mean absolute SHAP value. 19 bacterial taxa were the main 
predictors for the top 50 microbiome-predicted metabolites (Prediction R>0.4; Supplementary Table 12). 
One Clostridiceae species was the main predictor of 22 of these, which are also strongly associated with 
coffee consumption in diet-based models. Clostridium sp. CAG:138 was the main predictor of 5 metabolites, 
including phenylacetylcarnitine (R=0.47, p<10-20) and p-cresol-glucuronide (R=0.64, p<10-20) as previously 
reported20. Other taxa, however, were the “main predictor” of only 1-2 top metabolites, demonstrating that 
many different bacteria are required to accurately predict the levels of different metabolites. Among the main 
bacterial predictors of the top 100 metabolites, 89 belonged to Firmicutes, highlighting their strong predictive 
power. Of note, although Bacteroidetes is the second most abundant phylum in our cohort (Extended Data 
Fig. 8a), none of its species were among these main predictors. 

To check whether “main predictors” are sufficient for accurate prediction, we compared, for each 
metabolite, the accuracy of a full microbiome model to the accuracy of a model based only on its main predictor 
(Fig. 3b). We found that a “main predictor”-based model could only explain a median of 36% of the full model 
EV. Cinnamoylglycine, for example, is significantly predicted using microbiome data (R=0.49, p<10-20), yet its 
main-predictor-based model fails to provide a significant prediction. In contrast, some metabolites are 
exclusively predicted by a single bacterial species, such as the unidentified metabolite X-16124, for which a 
model based on an Eggerthellaceae species explained 93% of the variance of a full model. Indeed, in 95% of 
the individuals where this bacteria was detectable, X-16124 was also detectable in serum, compared to only 
23% of individuals for which this bacteria was not detected (Mann-Whitney U, p<10-20; Extended Data Fig. 
8b). 

Novel genetic-metabolomics associations 

Multiple genome wide association studies found that human genetics influence serum metabolites2,3,21–24. The 
median serum metabolite ACE-heritability, using the traditional twin model, was estimated to be 25%, while 
the median narrow-sense heritability, based only on discovered genetic loci, was estimated to be 2.1%2. As 
we measured multiple molecules which were not yet identified in these studies, we searched for associations 
between their levels and single nucleotide polymorphisms (SNPs; Supplementary Note 4). Notably, we found 
68 statistically significant associations (p<5×10-11 for all), of which, to the best of our knowledge (Methods), 
22 have not been previously reported (Supplementary Table 13). These include ethylmalonate, a branched 
fatty acid which was reported in association with anorexia nervosa25, and was associated with rs2066938, that 
explained 50% of its variance. This SNP is a 3’ UTR variant of the gene UNC119B, which we also found to 
be associated with butyrylcarnitine, replicating previous reports2. Other examples include 2’-O-methyluridine 
and 2’-O-methylcytidine, both nucleotides involved in pyrimidine metabolism, which we found to associate 
with a missense variant in the PHYHD1 gene, and were previously reported to be negatively correlated with 
PHYHD1 expression26. We further found that X-21441, which we predicted as an androgenic steroid 
(Supplementary Note 1), was associated with rs8187710, a missense variant in the ABCC2 gene, explaining 
11% of its variance (Extended Data Fig. 9). rs8187710 was previously demonstrated to be associated with 
nonalcoholic fatty liver disease (NAFLD)27. Interestingly, X-21441 was also negatively correlated with age in 
our cohort (Pearson R=-0.3, p<10-7), independent of the genotype (Extended Data Fig. 9c), suggesting that 
X-21441 might be an independent metabolic risk factor, mediating the genetic susceptibility of NAFLD and 
chronical age, a known risk factor for NAFLD28. 



Proof-of-concept clinical validation 

As a proof-of-concept analysis examining whether some of the feature-metabolite interactions we uncovered 
may be causal. We used our diet-based models to select the top 5% of metabolites that were either positively 
or negatively associated with normal consumption of white or whole-wheat bread (Fig. 4a,b; Methods). We 
then analyzed the serum metabolome from the beginning and end of a previously conducted week-long 
intervention29, in which two randomized groups of ten healthy individuals increased their consumption of either 
whole-grain sourdough bread or industrial white bread, respectively (Fig. 4a; Methods). Notably, we found 
that metabolites that were positively associated with the consumption of whole-wheat bread in our discovery 
cohort increased significantly more following the sourdough bread intervention (median fold-change (FC) 1.62) 
than metabolites that were negatively associated with it (median FC 0.66; Mann-Whitney U, p<10-10; Fig. 4c). 
Moreover, we found no statistically significant differences when comparing the mean FC of these metabolites 
under the white bread intervention (p>0.1; Fig. 4c). 

Some metabolites whose levels increased following the sourdough bread intervention were previously 
linked to consumption of whole-grain wheat flour. A notable example is betaine, an amino acid which has 
been shown to improve vascular risk factors30 and is also highly abundant in wheat bran and germ31. We 
found that the mean FC in betaine levels in the sourdough bread group was 6.16, as opposed to 0.82 in the 
white bread group (Mann-Whitney U, p<0.004; Fig. 4d). Another example is cytosine, for which the mean FC 
was far greater in the sourdough bread compared to the white bread group, 78.5 vs. 0.53, respectively 
(p<0.002; Fig. 4e). To the best of our knowledge, unlike betaine, cytosine levels were not previously linked to 
bread consumption. 

A similar analysis using metabolites that were associated with white bread consumption in our cohort 
could not find significant changes in these metabolites following intervention, potentially due to high baseline 
white wheat consumption in the typical diet of the study population. Overall, these results suggest that some 
of the associations that we found here might be causal. 

  



Discussion 
Although our cohort is not the largest in which serum metabolomics were measured, it is, to our knowledge, 
the only one in which these measurements were coupled with such a diverse array of potential determinants. 
Still, it has several limitations. First, while drug intake was shown to have a large effect on the serum 
metabolome profile32, our cohort was healthy, with limited drug intake. We are therefore likely underestimating 
its potential impact on blood metabolites. Second, replication of results are still required for predictions by 
most factors other than the microbiome. Third, due to the lack of reliable annotations, we have not associated 
metabolites with specific enzymes; this could be addressed in subsequent experimental studies by focusing 
on strongly predictive taxa. Finally, since this study is mainly based on observational data, interpretation of 
interactions should be made with caution, and the associations cannot be considered as causal.  

Taken together, our results unravel a comprehensive list of potential determinants for circulating blood 
metabolites. Many of the associations and interactions detected here replicated previously reported findings, 
supporting the validity of our results. The vast majority of them, however, are novel, making them a useful 
resource for future studies, either for improving molecular understanding of health and disease, or for forming 
the basis of interventional studies aimed at altering the levels of blood metabolites. 
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Main Figure Legends 
Figure 1 | Diet, gut microbiome, genetics and clinical data predict the levels of most serum 
metabolites. Figure refers to 5-fold cross validation predictions of metabolite levels based on separate models 
for each feature group. (a) Box and swarm plots (centre, median; box, interquartile range (IQR); whiskers, 
1.5×IQR) showing the EV (R2) of the top 50 significantly predicted metabolites (when available) of each feature 
group (group names below panel c). (b) Heatmap with color gradient from left to right corresponding to the 
95% confidence interval (CI) for EV, for each metabolite (y-axis) by every feature group (x-axis). Only 
metabolites with significant predictions (FDR<10%) are shown, and their number per group is shown on top. 
P-values and CIs were estimated using bootstrapping (Methods). (c) Enrichment of metabolite types in the 
predictions by each feature group (two-sided Mann-Whitney U test; Methods). Only significant enrichments 
are shown (p<0.05 after 10% FDR correction). Exact p-values are written in each cell. (d) A histogram of the 
number of metabolites (y-axis) with any value of EV (x-axis) obtained using the full model. Inset shows the EV 
range of 0.3-0.8. (e) The fraction of total EV (x-axis) of each feature group (y-axis) compared to the total EV 
of a model with all feature groups excluding genetics (full model). Total EV is the sum of the EV of the first 15 
metabolite principal components (PCs) weighted by the EV of each PC (Methods). 
 
Figure 2 | Validation of microbiome-based predictions of metabolites in two independent cohorts. (a, 
c) R2 of predicted metabolites in our cohort (x-axis), versus the rate of replicated associations in the replication 
cohorts (a, TwinsUK; b, IMI-DIRECT) computed as the fraction of significant replications out of all predictions 
with equal or higher prediction R2 in our cohort (left y-axis; blue; FDR<10%), and the cumulative number of 
metabolites (right y-axis; red). (b, d) Spearman correlation between true and predicted levels of metabolites 
in our cohort (x-axis) versus the same correlations in the replication cohorts (y-axis; b, TwinsUK; d, IMI-
DIRECT). Metabolites are colored by the replication success (replicated - blue, not replicated - red; 
FDR<10%). 
 
Figure 3 | Diet and gut microbiome data independently explain a wide range of biochemicals. (a) Subset 
of heatmap showing the directional mean absolute SHAP values (Methods) of various features (x-axis) 
computed from 5-fold cross validation models that predict metabolite levels (y-axis) using two separate 
models, one based on diet and another on gut microbiome data. Positive (negative) SHAP values indicate 
that higher (lower) feature values lead, on average, to higher predicted values. Shown are the top 100 
predicted metabolites using diet and gut microbiome, and the top 30 features by maximum mean absolute 
SHAP value across all metabolites. See extended heatmap in Extended Data Fig. 7g. (b) The EV of every 
metabolite from microbiome-based prediction models (x-axis) compared to using only the top predictor of that 
metabolite, selected as the feature with the largest mean absolute SHAP value (y-axis). Dashed red palette 
lines mark different y:x ratios. PAGln, phenylacetylglutamine. 
 
Figure 4 | Metabolites explained by bread increase following an intervention that increases bread 
consumption. (a) Measuring metabolites and routine white- and whole-wheat consumption. We analyzed 
samples from the first week of a randomized controlled trial29, in which 10 participants increased consumption 
of whole-grain sourdough bread and 10 others increased consumption of industrial white bread. (b) Histogram 
of directional mean absolute SHAP values of whole-wheat bread consumption for metabolites computed 
based on held-out samples from our cohort. The top 5% (n=59; blue) positively associated metabolites and 
the top 5% (n=59; red) negatively associated metabolites are used for further analysis. (c) Box plots (centre, 
median; box, IQR; whiskers, 1.5×IQR) showing the mean FC of the top 5% positively (blue) and negatively 
(red) associated metabolites, separated by intervention group. They show a significantly higher mean FC for 
the top 5% positively- vs. negatively- associated metabolites under sourdough bread intervention (two-sided 



Mann-Whitney U, p=5∙10-11). (d-e) The FC (y-axis) of both betaine (d; two-sided Mann-Whitney U, p=0.0036) 
and cytosine (e; p=0.0014) were higher in the sourdough bread group compared to the white bread group. 

  



Methods 

Description of cohorts 

We analyzed banked samples from two previously collected cohorts10,29, for a total of 491 Israeli individuals. 
Studies were approved by Tel Aviv Sourasky Medical Center Institutional Review Board (IRB), approval 
numbers TLV-0658-12, TLV-0050-13 and TLV-0522-10; Kfar Shaul Hospital IRB, approval number 0-73. All 
participants signed written informed consent forms. Full study designs, including inclusion and exclusion 
criteria were described elsewhere10,29. In brief, participants in both studies were healthy individuals aged 
between 18 and 70. The participants answered detailed medical, lifestyle and nutritional questionnaires, 
provided stool and serum samples for metagenomic sequencing and metabolomics, were genotyped, 
underwent a comprehensive blood test, and for a period of at least one week, recorded all of their daily 
activities and nutritional intake in real-time using their smartphones with a specialized app provided to them29. 
Both blood and stool samples were not taken under strict fasting conditions. 16 samples of participants for 
which microbiome data was not available to us were excluded from all analyses. Meetings in which participants 
provided blood samples took place in two different centers, Weizmann (45% of participants) and Tel-Aviv 
(55% of participants). All meetings in Weizmann took place within the first half of the day, while most meetings 
in Tel-Aviv took place during the second half of the day (82% of the participants). 

Feature groups 

The “diet” feature group includes both answers for a detailed food frequency questionnaire (FFQ) aimed at 
capturing long term dietary habits, and the daily mean consumption of different food types, computed over a 
week based on real-time logging. In both cases we kept only items which were reported to be consumed at 
least once by at least 1% of our participants, resulting in 670 different food types from logging, and 141 
different items from the FFQ.  
The “macronutrients” feature group includes the daily mean consumption of macronutrients (lipids, proteins, 
carbohydrates), calories and water, calculated from real-time logging. 
The “anthropometrics” feature group includes weight, BMI, waist and hips circumference, and waist to hips 
ratio (WHR). 
The “cardiometabolic” feature group includes systolic and diastolic blood pressure, heart rate in beats per 
minute and a glycemic status as previously described33.  
The “drugs” feature group includes 30 binary features representing the intake of 20 common medications as 
reported in questionnaires, in addition to 10 medication groups as previously described33. We included only 
drugs reported to be used by at least 1% of our participants. 
The “clinical data” feature group includes the age and sex of the participants, and the following feature groups 
described above: anthropometrics, cardiometabolic, and drugs. 
The “lifestyle” feature group includes smoking status (current, past), stress levels obtained from 
questionnaires, and the daily mean sleeping time, exercise time and midday sleep time based on real time 
logging. 
The “time of day” feature is a binary feature indicating whether the sample was taken during the first half of 
the day.  
The “seasonal effects” feature is the month in which the sample was taken. In some analyses we also grouped 
months by season (Winter: December - February; Spring: March - May; Summer: June - August; Fall: 
September - November). 
The “microbiome” feature group includes bacterial relative abundance calculated both by considering 
coverage (see below), and by MetaPhlAn234, as well as the first 10 principal components computed over the 



log transformed relative abundance of a bacterial gene catalog35 as previously described33,36. Preprocessing 
steps are described below. 
We further defined a full model that included all of the above. 

Metabolomics profiling and preprocessing 

Metabolite concentrations were measured in serum samples by Metabolon, Inc., Durham, North Carolina, 
USA, by using an untargeted LC/MS platform as previously described2,37,38. A total of 540 serum samples 
were profiled, 19 of which were control samples (technical replicate) pooled from several individuals. The 
other 521 serum samples belonged to 491 participants. 

We removed from further analysis 27 metabolites with less than 10 measurements across our cohort, 
and 54 metabolites that we found to have significantly different distributions in samples collected in two 
different recruitment centers (Mann-Whitney U p<0.05/1251; Bonferroni corrected; Supplementary Table 
14). For the remaining 1170 metabolites, we performed robust standardization (subtracting the median and 
dividing by the standard deviation) over the log (base 10) transformed levels, followed by clipping outlier 
samples which were farther than 5 standard deviations. We next used two separate normalization schemes, 
one for single metabolites, which we subsequently used in the feature attribution analysis, and the second for 
metabolite groups, which we used for global and enrichment analyses.  

For single metabolites, we regressed metabolite levels against storage times (only for metabolites 
present in at least 50 samples), and finally, imputed missing values as the minimum value per metabolite. For 
the second scheme, metabolites were grouped by correlation with a Spearman rho threshold of 0.85. This is 
done in order to handle possible bias resulting from uncertainty of metabolite assignments and a high rate of 
highly correlated mass spectrometry peaks, and resulted in 1067 metabolite groups, 982 of which are 
singletons. The value of the metabolite group was set to the mean. The category of each metabolite group 
was assigned based on majority vote, where unidentified compounds were excluded from the vote unless all 
metabolites in the group were unidentified. 

Microbiome preprocessing 

Sample collection, DNA extraction, and sequencing of the samples in this study was previously 
described10,29,33. Briefly, we used only samples which were collected using swabs, filtered metagenomic reads 
containing Illumina adapters, filtered low-quality reads and trimmed low-quality read edges. We detected host 
DNA by mapping with GEM39 to the human genome (hg19) with inclusive parameters, and removed human 
reads. We subsampled all samples to have 10 million reads. 

Bacterial relative abundance estimation was performed by mapping bacterial reads to species-level 
genome bins (SGB) representative genomes (Supplementary Table 15)40. We selected all SGB 
representatives from groups with at least 5 genomes, and for these representatives genomes kept only unique 
regions as a reference data set. Mapping was performed using bowtie241 and abundance was estimated by 
calculating the mean coverage of unique genomic regions across the 50 percent most densely covered areas 
as previously described36,42. Feature names include the lowest taxonomy level identified. 

Comparing metabolomics to lab tests 

We compared the levels of both creatinine and cholesterol which we previously obtained via standard lab 
tests10 with their metabolomic levels. Since the lab tests were performed by two different labs, we centered 
the tests by reducing from the value of each sample the mean of all tests taken in the lab in which it was 
performed. We then performed a standardization of the resulting measurements. The metabolomic profiling 
and the lab tests were performed on two samples taken at the same blood draw. 



Correlation of metabolic profiles within and between individuals 

We compared the Spearman correlations between standardized metabolomic profiles of the same participant 
taken one week apart (n=20) to correlations between standardized metabolomic profiles of different individuals 
(n=475). Each pair of samples taken from the same participant was run in the same metabolomic batch. In 
the group of different individuals, only pairs of individuals from the same batch were included (resulting in a 
total of 3835 such pairs), and were further stratified by sex. 

Predictive models of metabolite groups 

We used gradient boosting decision trees from the LightGBM (version 2.1.2) package12, in order to predict the 
levels of 1067 metabolite groups based on 7 feature groups in held-out subjects. In order to estimate the EV 
of each metabolite group we ran a 5-fold cross validation (CV) model using each feature group as input, and 
evaluated the results using the coefficient of determination (R2). For all prediction results except those based 
on human genetics (Methods) we computed 95% confidence intervals and p-values via 1000 iterations of 
bootstrapping43. In each bootstrap iteration, we performed a random 5-fold cross validation, where in each 
fold we randomly sampled (with replacement) a group of subjects from the training set to have the same size 
as the current training set. We next used this set in order to train our model and evaluated the model’s 
performance on the set of subjects in the remaining fold. Finally, we computed the coefficient of determination 
between the measured values of the metabolite and the concatenation of the CV’s predicted values as 
obtained from the bootstrapping iteration. We applied the Fisher transformation to the estimations of the 
explained variance we got from bootstrapping in order to induce normality44, and then computed a standard 
error, and estimated the p-values via the normal CDF using the Wald test45, such that our null hypothesis is 
that the explained variance should distribute normally with zero mean. Confidence intervals were computed 
empirically from the bootstrapping results. We corrected p-values of predictions for multiple hypotheses using 
the Benjamini-Hochberg procedure over all feature groups (10% FDR). In all CV and bootstrapping runs we 
used a fixed and predetermined set of hyperparameters: For the microbiome and diet feature groups: 
learning_rate=0.005, max_depth=default, feature_fraction=0.2, num_leaves=default, min_data_in_leaf=15, 
metric=L2, early_stopping_rounds=None, n_estimators=2000, bagging_fraction=0.8, bagging_freq=1; for 
other feature groups: learning_rate=0.01, max_depth=5, feature_fraction=0.8, num_leaves=25, 
min_data_in_leaf=15, metric=L2, early_stopping_rounds=None, n_estimators=200, bagging_fraction=0.9, 
bagging_freq=5. 

Human genetics based prediction models 

To obtain the predictions based on human genetics, we used a similar 5-fold CV scheme, in which in every 
fold we calculated the associations between SNPs and metabolite levels within the training fold, and then 
trained a model only on the top 10 SNPs which reached genome-wide significance (Bonferroni adjusted). For 
folds where no SNP reached the significance level, we assigned every sample in the test fold with the mean 
metabolite level of the training fold. Due to high complexity and running time issues, p-values and confidence 
intervals were not computed based on bootstrapping, rather we estimated the p-values of the Pearson 
correlation between the true and predicted metabolite levels. Metabolites for which the R2 was negative were 
assigned a p-value of 1.  

Testing for SNP associations with metabolites 

Genotype processing and imputation of 413 individuals were described previously33. We performed genome 
wide associations for single metabolites (n=1170) and calculated the p-value and the estimated effect sizes 
using plink (v1.07). When declaring a genome-wide significance for the SNP-metabolite associations we used 



a conservative Bonferroni adjustment procedure to control for the false discovery rate due to the large number 
of SNPs tested (p<(5×10-8)/1170). We performed all genome wide associations using imputed genotypes. 
 For named molecules, their chemical identification, super and sub pathways are presented as provided 
by Metabolon. For unidentified molecules, super and sub pathways are estimated based on our biological 
pathway classifier. We did our best to scan the available literature for known associations between genetic 
loci and metabolites before reporting an association as novel. The main resources included the GWAS 
Catalog46 and the GWAS server2,22. 

Pathway category enrichment analysis 

For each pathway category we used a Mann-Whitney U test comparing the prediction accuracy of metabolites 
from that category compared to prediction accuracy of metabolites from other categories. Direction of 
enrichment was determined by the sign of the Mann-Whitney U test statistic. We considered only metabolite 
groups for which at least one feature group had a significant prediction (after correcting for multiple 
hypotheses), resulting in 982 metabolite groups. 

Validation of metabolite predictions based on microbiome 

We validated the robustness of the associations between the gut microbiome composition and the levels of 
circulating metabolites in two independent cohorts in which we had access to both metagenomics sequencing. 
Serum metabolomics in these cohorts were performed using the same Metabolon platform that we used for 
the discovery cohort. The first validation cohort included 1,004 samples of healthy participants from the 
TwinsUK cohort7, for which there was an average of 0.9 ± 1.3 years gap between the collection of faecal and 
blood samples. The second validation cohort included 245 samples of participants of European ancestry with 
type 2 diabetes (T2D) from the IMI-DIRECT consortium8. Data from both these validation cohorts were not 
available to us while developing the prediction models. The metagenomics samples from both cohorts went 
through the exact same analysis pipeline as our discovery cohort to extract the bacterial features which our 
prediction models were based on. We then applied our models on these data to obtain the metabolite 
predictions for both cohorts. Only metabolites which were significantly predicted based only on microbiome 
data with R2>5% (FDR<0.1) in our discovery cohort were considered for further analysis (107 metabolites out 
of 678 in TwinsUK, 50 metabolites out of 261 in IMI-DIRECT). Within every validation cohort, we performed 
robust standardization (subtracting the median and dividing by the standard deviation) over the log (base 10) 
transformed levels, followed by clipping outlier samples which were farther than 5 standard deviations, and 
finally, imputed missing values as the minimum value per metabolite. The analysis of these geographically 
distinct cohorts holds multiple potential sources of noise, including different methods, centers and staff 
involved in assembling these cohorts, as well as different cohort demographics, clinical manifestations, 
different genetic background and dietary and lifestyle preferences. Therefore, we defined a successful 
replication as one which restores the original ranking of the participants as dictated by the true levels of the 
metabolite in hand. Hence, for every metabolite, in each validation cohort, we computed the Spearman 
correlation between its true levels and its predicted levels. A replication was considered significant if the FDR 
adjusted p-value of the Spearman correlation was lower than 0.1 and the correlation coefficient was strictly 
positive. 

Feature attribution analysis 

In order to explain the output of our machine learning models and find specific associations between features 
and metabolite levels we used SHAP (SHapley Additive exPlanations)47, a recently introduced framework for 
interpreting predictions, which assigns each feature an importance value for a particular prediction. Briefly, for 
a specific prediction, a feature’s SHAP value is defined as the change in the expected value of the model’s 



output when this feature is observed vs when it is missing. It is computed using a sum that represents the 
impact of each feature being added to the model averaged over all possible orderings of features being 
introduced. Shapley values based analysis in gut microbiome data was recently demonstrated to be useful, 
as it allowed for the estimation of complex contributions of gut microbiome taxa to functional shifts, while 
maintaining global community composition properties48.  

Individual SHAP values were computed for held-out subjects in 5-fold CV using the module 
TreeExplainer (version 0.24.0)9,49, based on models trained only on features from the respective feature group. 
Before training, we standardized the levels of target metabolites, so that SHAP values from different models 
would be comparable (they are measured in the same units as the target). In each CV fold we ran a random 
hyperparameter search consistent of 10 iterations using the module RandomizedSearchCV from sklearn 
(version 0.20.4), and chose the best model for predicting the held out subjects and computing SHAP values. 
In all feature attribution analyses we used the ungrouped list of 1170 metabolites. 

For every feature, we computed the mean absolute SHAP value across all instances in a specific 
model, reflecting the mean impact of each feature on the predictions and serving as a feature importance 
measure. We further used these values to compute directional mean absolute SHAP values, by multiplying 
them with the sign of the Spearman correlation between the population feature and the target. Here, positive 
values indicate that higher feature values lead, on average, to higher predicted values, while negative values 
indicate that lower feature values lead, on average, to higher predicted values. 

When performing feature attribution analysis with gut microbiome data as input, we only included the 
relative abundance of SGB representative genomes as features, taking only features which were present in 
over 5% of the samples, resulting with 753 bacterial taxa. When using diet as input, we only considered 
features which were present in at least 5% of the samples, resulting with 398 food types from logging and 
items from the FFQ. 

Comparing gradient boosting decision trees with a linear model 

We compared the EV of every single metabolite obtained for a GBDT and a Lasso regression model. The EV 
of all models were calculated in 5-fold CV, where in each fold we ran a hyperparameter search consistent of 
10 iterations as described above. We used LightGBM as the GBDT model, and Lasso regression (sklearn, 
version 0.20.4) as the linear model, since its regularization scheme is better suited for a large number of 
features, as in the case of diet and gut microbiome composition. Since GBDT handles missing values well, 
we first imputed all missing values as the median of each feature to assure a fair comparison. When applying 
the models on the microbiome data, we used log10 transformed values. 

Estimating relative predictive power of feature groups 

In order to estimate the relative predictive power of different feature groups we first applied a principal 
component analysis over the metabolite groups data to get the first 400 PCs which constitute >99% of the 
total variance in the data (Extended Data Fig. 5b). We then used 5-fold CV prediction models as described 
above to predict the PCs based on the different feature groups independently. As baseline, we used the full 
model, which consists of all features combined to predict the levels of the PCs, and estimated the overall 

fraction of variance explained by: ∑ 𝐸𝐸𝑉𝑉𝑖𝑖×𝑃𝑃𝐶𝐶𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛
𝑖𝑖=1
∑ 𝑃𝑃𝐶𝐶𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛
𝑖𝑖=1

, where 𝐸𝐸𝑉𝑉𝑖𝑖 is the fraction of EV that the model recovers for PC 

𝑖𝑖. 𝑃𝑃𝐶𝐶𝑖𝑖 is the fraction of variance that PC 𝑖𝑖 explains out of the overall variation in the data. 𝑛𝑛𝑃𝑃𝐶𝐶 is the number 
of the first PCs, those which capture the most variation. For the features we have collected, we defined this 
sum obtained for the full model as the total explainable variance in circulating blood metabolites. Next, for 
every feature group we computed a similar expression and calculated the relative predictive power by dividing 
this expression by that of the full model. The estimates we present are for 𝑛𝑛𝑃𝑃𝐶𝐶 = 15, as the overall EV of the 



full model that we estimated using the first 15 PCs constitutes over 97% of the overall EV of the full model 
based on all 400 PCs. 

Biological sub pathway prediction 

We used gradient boosting decision trees from the LightGBM (version 2.1.2) package12, in order to build a 
multiclass classifier to predict the biological sub pathways of metabolites as annotated by Metabolon. When 
developing the classifier, we only considered named metabolites from biological sub pathways which include 
over 10 metabolites each in our data, resulting with 28 sub pathways covering a total of 572 named molecules 
(sub pathway size range 11-44). The rationale behind this is that we tried to find the balance between covering 
as many metabolites and types of metabolites possible while keeping the number of classes reasonable.  

We trained our model in a leave-out-out CV scheme, where in every training fold we used 20% of the 
training samples as internal validation to perform an early stopping of 50 rounds. We then obtained a soft max 
of size 28 per metabolite, representing the probabilities of every metabolite being labeled as one of the 28 
sub pathways. For the prediction of the unidentified molecules, we used a model trained once using all 572 
metabolites. The features used for the training of the model included the normalize levels of metabolites across 
our main discovery cohort, the mean raw count of the metabolite and the fraction of missing values across the 
discovery cohort. In addition, to capture the associations between metabolites and their predictive features, 
we included the directional mean absolute SHAP values for every pair of metabolite-feature computed from 
the “full model” as described above. The final vectors of probabilities were determined as an ensemble of 
three models, the first, trained only on the SHAP values, the second, trained only on metabolite levels, means 
and fraction of missing values, and the third, trained on all combined. Finally, the mean of these three models 
was computed.  

When evaluating the performance of our classifier on the named labeled molecules, we concatenated 
all vectors of probabilities resulting from the leave-one-out procedure. For every sub pathway we computed a 
classification report including the classification precision (TP / (TP + FP)), recall (TP / (TP + FN)) and f1-score 
(2 * (precision * recall) / (precision + recall)), to account for the imbalanced class sizes. The overall accuracy 
was computed as the fraction of metabolites with correctly assigned labels out of all metabolites from all sub 
pathways which were included in the training phase. In all runs we used a fixed and predetermined set of 
hyperparameters (objective=multiclass, num_leaves=25, max_depth=4, learning_rate=0.005, 
bagging_fraction=0.8, feature_fraction=0.8, bagging_freq=1, bagging_seed=2018, class_weight=balanced, 
n_estimators=2000, early_stopping_rounds=50);. TP, True Positive; FP, False Positive; FN, False Negative. 

Characterization of unidentified metabolites by Metabolon 

Characterization of unidentified metabolites was done as previously described21. Briefly, identification of 
tentative structural features for unidentified biochemicals incorporates a detailed analysis of mass spec data, 
i.e., gathering information such as the accurate monoisotopic mass, the elution time and fragmentation pattern 
of the primary ion, and correlation to other molecules. The accurate monoisotopic mass is used to identify a 
likely structural formula for the unidentified biochemical, which is then used to search against chemical 
structure databases. When a candidate structure fits the accurate monoisotopic mass and fragmentation data, 
an authentic standard is commercially purchased or synthesized (when possible). Conformation of a proposed 
structure is based on a match to three primary criteria, including co-elution with the unidentified molecule of 
interest, and a high degree match to both the accurate monoisotopic mass and fragmentation pattern. 

Interaction networks 

We used a graphical layout in order to visualize the associations of features with the levels of metabolites. 
The nodes are either metabolites or features, and the edges are the directional mean absolute SHAP values 



computed from models trained only on features from the respective feature group as described above. All 
networks were constructed using Cytoscape50. The threshold for presenting SHAP values as edges was 
determined as 0.12, keeping the network sparse enough for convenience of visualization. 

Analysis of bread intervention 

In order to find the associations between metabolite levels and the consumption of both types of bread in the 
study cohort we computed the directional mean absolute SHAP values of the reported consumption of both 
white and whole-wheat bread for all metabolites. The SHAP values were computed in cross validation from 
models based only on the reported consumption of each type of bread. We ranked the metabolites according 
to their directional mean absolute SHAP value for each type of bread and used the top 5% positively and 
negatively driven metabolites for further analysis. The prediction models were constructed using 458 samples 
of distinct individuals, a subset of our cohort from which we excluded all samples of individuals which 
participated in the intervention study. 

For each metabolite in every individual, we computed the FC of metabolite levels between the samples 
taken at the end of the first week of intervention and the start of that week. Prior to computing FC we imputed 
missing values with the minimum per metabolite and standardized their log (base 10) transformed levels. 
Furthermore, for each intervention group, we computed the mean FC of every metabolite based on the 10 
samples from that group. We then compared the mean FC of the top 5% positively and negatively driven 
metabolites mentioned above within each intervention group by performing a rank sum test (two-sided Mann-
Whitney U) over the mean FC. 

For comparing the FC of betaine and cytosine between the two intervention groups, we used a two-
sided Mann-Whitney U test. 

LMM-based estimates of the explained variance of metabolites using gut microbiome 

For the in-sample estimation of EV for metabolites based on gut microbiome we used a linear mixed model 
framework that we had recently developed33. Briefly, we used GCTA51, a tool used in statistical genetics for 
the estimating of SNP-based genetic kinship. Instead of a matrix of host SNPs, as is commonly used in GCTA, 
we used a kinship matrix computed over the presence-absence of microbial species which were also used as 
features in the out-of-sample prediction models. We added the storage time as a covariate to the model. P-
values were computed using RL-SKAT52. 

Statistical analysis 

For all statistical analysis and prediction models we used Python 2.7.8 with packages: pandas 0.23.4, numpy 
1.14.2, scikit-learn 0.20.4, scipy 1.1.0, shap 0.24.0, LightGBM 2.1.2. 

  



Data Availability 
The raw metagenomic sequencing data is available from the European Nucleotide Archive (ENA; 
https://www.ebi.ac.uk/ena): PRJEB11532, PRJEB17643, and for the TwinsUK: PRJEB32731. The raw 
metabolomics data and the phenotypic data is available from the European Genome-phenome Archive (EGA; 
https://ega-archive.org/): EGAS00001004512. Known links between genetic loci and serum metabolites were 
taken from the GWAS Catalog46 (https://www.ebi.ac.uk/gwas/) and the GWAS server2,22 
(http://metabolomics.helmholtz-muenchen.de/gwas/). 

Code Availability 
Analysis source code is available at https://github.com/noambar/SerumMetabolomePredictions. 
  

https://github.com/noambar/SerumMetabolomePredictions
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Extended Data Legends 
Extended Data Table 1 | Basic characteristics and demographics of our main and validation cohorts.  

Extended Data Figure 1 | Accurate and reproducible untargeted serum metabolomics. (a) Breakdown 
of the 1251 measured metabolites by type. (b) Number of samples (y-axis) in which each metabolite (x-axis) 
was identified, sorted by prevalence. (c-d) Mass-spectrometry measurements (y-axis) versus standardized 
lab tests results (x-axis; Methods) for creatinine (a; Pearson R=0.87, p<10-20) and cholesterol (b; R=0.79, 
p<10-20). (e) Spearman correlations (y-axis; centre, median; box, IQR; whiskers, 1.5×IQR) between 
standardized metabolomic profiles (Methods) of different individuals (n=475; median Spearman rho 0.05, 
standard deviation [std]=0.12) stratified by sex, and between standardized metabolomic profiles of the same 
participant (n=20; median Spearman rho 0.68, std=0.06) taken one week apart. C&V, cofactors and vitamins; 
a.u., arbitrary units.  
 
Extended Data Figure 2 | Biological sub pathway prediction of unidentified molecules. Figure panels 
refer to the results of a leave-one-out cross validation prediction model of metabolites’ sub pathways based 
on their normalized levels, raw mean, percentage of missing values, and SHAP values (Methods). Results 
shown are for a model trained using only sub pathways which include over 10 molecules in our data (28 sub 
pathways, 572 named metabolites). (a) The overall accuracy of the sub pathway classifier (y-axis) when a 
success is considered as having the true label in one of the top k predictions (x-axis). (b) The log loss of the 
classifier (y-axis) computed over the resulting soft max (raw probabilities; blue) and a dichotomous matrix 
where for every metabolite we only keep the top predicted sub pathway as 1 and zero-out all other predictions 
(red). (c) The overall accuracy of the model (left y-axis; blue) and the corresponding fraction of metabolites 
(right y-axis; red) when considering only metabolites for which the classifier predicted a maximal probability 
above some threshold (x-axis). (d) A confusion matrix showing the predicted sub pathways (x-axis), 
determined as the label with the highest probability per metabolite, versus the true annotated sub pathways 
(y-axis). Each cell in the matrix counts the number of metabolites of a certain true sub pathway (y-axis) which 
were assigned with some predicted sub pathway (x-axis) by our model. The rightmost column is the sum of 
every row and represents the number of metabolites annotated for every sub pathway. The matrix is ordered 
by the higher order biological pathway (super pathway). Cell colors are log scaled. (e) Classification results 
summarizing the f1-score, precision and recall per sub pathway. Rows correspond to the sub pathway 
annotation in panel d. (f) For every sub pathway (y-axis) shown are the fraction of metabolites truly annotated 
as such (black), predicted as such by the classifier (blue; out of the named molecules in the support of the 
model), and the fraction of unidentified molecules predicted as such (out of all unidentified molecules). M., 
Metabolism; Xeno., Xenobiotics; Ptds, Peptides; AAs, Amino Acids. 
 
Extended Data Figure 3 | Comparative analysis of linear versus nonlinear models and in-sample 
versus out-of-sample predictions. (a) Metabolite prediction R2 of GBDT vs Lasso regression models using 
diet data. Shown are only metabolites for which both models achieved significant predictions with R2 above 
0.05. (b) Histogram of the differences between the R2 of GBDT compared to Lasso regression using the diet 
data. (c) The levels of the metabolite hydroxy-CMPF* (y-axis; centre, median; box, IQR; whiskers, 1.5×IQR)vs 
the monthly consumption of cooked, baked or grilled fish as reported in a food frequency questionnaire. The 
comparison of Spearman and Pearson correlation coefficients suggests that the relationship between the 
metabolite and the numerical values of the question are monotonic yet non-linear, which explains why GBDT 
performs better in predicting the levels of hydroxy-CMPF* from diet data. The x-axis is not in scale. (d, e) 
Same as a-b for microbiome. (f) Estimations of gut microbiome explainability (b2) of metabolite levels obtained 
via applying a linear mixed model on the bacterial species composition as previously described (y-axis) versus 
the explained variance (R2) of metabolites from out-of-sample prediction models based on the same gut 



microbiome data. Shown are only metabolites with significant b2 estimates (5% FDR). (g) Histogram of the 
differences between the b2 estimates and the R2 of out-of-sample prediction using the gut microbiome data. 
GBDT, Gradient Boosting Decision Trees; a.u., arbitrary units. 
 
Extended Data Figure 4 | Comparison of explained variance of metabolites for every pair of feature 
groups. Every panel shows a dot plot of the explained variance of the metabolite groups (y-axis) from models 
based on every pair of feature groups (x-axis). Panels on the diagonal shows the marginal distribution of 
explained variance of metabolite groups for a certain feature group. 
 
Extended Data Figure 5 | Comparative analysis of different feature groups. (a) Spearman correlations 
computed between the EV of metabolites for every pair of feature groups. (b) The proportion of variance 
explained by each of the first 400 principal components (left y-axis; black) and their cumulative EV (right y-
axis; blue). (c) R2 multiplied by the sign of the Pearson correlation coefficient (x-axis) between metabolite 
levels and BMI in our study, versus the mean R2 multiplied by the sign of the Pearson correlation coefficient 
(y-axis) of BMI associated metabolites recently reported by a different group13. Shown are 36 (out of 49) BMI 
associated metabolites that were also measured in this cohort. P-value for the Pearson correlation, p=7∙10-11. 
Line and shaded coloring represent the fitting of a linear model and the 95% confidence interval. (d) The EV 
of every metabolite from prediction models based on the gut microbiome (x-axis) versus diet (y-axis). Dashed 
red line is y=x. (e) Same for prediction models based on both gut microbiome and diet (x-axis) compared to 
using only diet (y-axis). (f) Same for prediction models based on diet and permuted gut microbiome (x-axis) 
compared to using only diet (y-axis). 
 
Extended Data Figure 6 | Networks of interactions between phenotypes explain diverse metabolites. 
Interactions between features from different feature groups predictive of similar metabolites are presented in 
a graphical layout, in which nodes are either metabolites or features, and edges are the directional mean 
absolute SHAP values (Methods) computed from models trained only on features from the respective feature 
group. Circular nodes - metabolites; predictive feature nodes - squares; both colored by relevant categories. 
Shown are only edges with a mean absolute SHAP value greater than 0.12. (a) Network of associations for 
the following feature groups: macronutrients, diet, microbiome, lifestyle, drugs and seasonal effects. (b) A 
large group of metabolites whose predictions are mainly driven by the reported consumption of coffee and the 
relative abundance of a bacteria from the Clostridiales order. (c) Metabolites explained by seasonal fruit 
consumption. (d) Selected examples of interactions between metabolites and features in predictive models. 
 
Extended Data Figure 7 | Specific dietary features and bacterial taxa underlie the accurate prediction 
of circulating metabolites. (a-f) Predicted (y-axis) vs measured (x-axis) levels (arbitrary units) of X-16124 
(a; Pearson R=0.77, p<10-20), phenylacetylglutamine (b; R=0.63, p<10-20), p-cresol-glucuronide (c; R=0.64, 
p<10-20), caffeine (d; R=0.68, p<10-20), hydroxy-CMPF (e; R=0.72, p<10-20) and stachydrine (f; R=0.5, p<10-

20). Predictions of a-c are based only on microbiome data, and colored by the relative abundance of the 
bacterial taxa having the highest mean absolute SHAP value for each metabolite. Predictions of d-f are based 
only on diet data, and colored by the reported consumption of the dietary item having the highest mean 
absolute SHAP value for each metabolite. P-values for prediction were estimated via bootstrapping. (g) 
Heatmap showing the directional mean absolute SHAP values (Methods) of various features (x-axis) 
computed from 5-fold cross validation models that predict metabolite levels (y-axis) using two separate 
models, one based on diet and another on gut microbiome data. Positive (negative) SHAP values indicate 
that higher (lower) feature values lead, on average, to higher (higher) predicted values. Shown are the top 
150 predicted metabolites using diet and gut microbiome, and the top 40 features by maximum mean absolute 
SHAP value across all metabolites. C&V, Cofactors and vitamins; AAs, Amino Acids. 
 



Extended Data Figure 8 | Distribution of phyla and a taxa from the Eggerthellaceae family. (a) Stacked 
bar plots per sample (x-axis) showing the relative abundance of bacterial phyla (y-axis). Samples are sorted 
by the relative abundance of the most abundant phylum, Firmicutes. Bacteroidetes is the second most 
abundant phylum in our cohort. Relative abundance of a phylum is computed as the sum over relative 
abundances of all bacterial features belonging to that phylum. (b) The levels of the unidentified compound X-
16124 in individuals for which the bacterial taxa from the Eggerthellaceae family was detectable in stool versus 
individuals for which it was not (p<10-20, two-sided Mann-Whitney U). 
 
Extended Data Figure 9 | The unidentified molecule X-21441 associates with rs8187710 independent 
of age. (a) A table showing the coefficients, standard errors and p-values resulted from a multiple linear 
regression model with levels of the unidentified molecule X-21441 as the dependent variable, the allele 
dosage of rs8187710 (0-2) and age (years) as the independent variables: 𝑦𝑦𝑋𝑋−21441 = 𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐 + 𝛽𝛽1 ∘
𝑟𝑟𝑐𝑐8187710 + 𝛽𝛽2 ∘ 𝐴𝐴𝐴𝐴𝐴𝐴. (b) The levels of X-21441 (y-axis) versus the genotype of the participants (x-axis). 
Number of participants with each genotype is indicated below the tick labels. The explained variance of X-
21441 by rs8187710 as estimated using plink (Methods) is indicated on the upper right corner of the panel. 
(c) The levels of X-21441 (y-axis; centre, median; box, IQR; whiskers, 1.5×IQR) versus the age of the 
participants (x-axis) colored by genotype of participants. Line and shaded coloring represent the fitting of a 
linear model and the 95% confidence interval. SE, Standard Error; a.u., arbitrary units. 
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