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The ice cover near the polar regions has been strongly affected as a result of global warming, particularly on
its margins, such that it consists of a mixture of discrete ice floes and open water. The ocean waves propagating
in such regions contribute not only to the break-up of the ice, but also stimulate their drift. Therefore, in addition
to melting, surface waves play a determining role in shaping the marginal ice zones [1].

The drift motion and hydroelastic response of a set of floating elastic ice sheets to incident nonlinear waves in

shallow water is studied by use of the Level I Green-Naghdi (GN hereafter) equations. The set of N deformable ice

sheets is presented by thin elastic plates of variable properties. The resulting governing equations together with

the appropriate boundary and matching conditions are solved in two-dimensions by the finite difference method.

Free surface elevation and ice sheet deformations are calculated. The effect of multiple plates on the wave-induced

loads and velocity field is investigated. Drift motion of the ice sheets is determined by calculating the instantaneous

wave-induced force on the bodies, and by solving Newton’s second law. Only horizontal motion is considered.

Problem formulation. The plane flow of inviscid fluid of constant depth h is considered in the
Cartesian coordinate system Oxy with the horizontal axis lying on the undisturbed free surface and
vertical axis directed upwards. Incident waves propagate in the positive x–direction and excite the
motion of a set of floating deformable sheets being initially at rest. The sketch of the problem is shown
in Fig. 1. The ice sheets are homogenous and have arbitrary length Lk, mass per unit width mk and
flexural rigidity Dk, where subscript k = 1, 2, . . . , N indicates each ice sheet.
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At the leading x = xk
L and trailing x = xk

T edges of the ice sheets, the bending moments together with shear

stresses must vanish due to the free-free end boundary condition (⇣xx = ⇣xxx = 0). Applying this relations to

the first equation (1), we obtain another conditions under the edges of the plates:

3⌘xuxx + (1 � hk + ⌘)uxxx = 0, 4⌘xuxxx + (1 � hk + ⌘)uxxxx + ⌘xxxxu = 0, (x = xk
L, xk

T ), (3)

The appropriate jump conditions are demanded by the theory because the fluid surface is singular or discon-

tinuous at the juncture of regions I and II. The matching conditions, demanded by the physics of the problem,

include continous surface elevation, mass flux and bottom pressure across the discontinuity curves x = xk
L,

x = xk
T .

The system of equations (1) and (2), subject to appropriate boundary conditions (3) in each region, along

with the matching and jump conditions prescribe the motion of the fluid in the entire domain and are solved

simultaneously for the unknowns. Spatial discretization of the equations is carried out by a central-di↵erence

method and time marching is obtained by use of the modified Euler’s method. The system of equations are to

be solved by use of a Gaussian elimination method.

The underlying principle of this technique is that at a given time, equations (2) can be solved explicitly for

⇣t once u is known. Then, ⇣t is substituted into the second equation of the system (2) to solve for ut.

(1 � m⌘xx)ut � [⌘x(1 + ⌘) + 2m⌘x]uxt � [
1

3
(1 + ⌘)2 + m(1 + ⌘)]uxxt = �Yf � Yp,

Yf = ⌘x(1 � hk + ⇣)(u2
x � uuxx) +

1

3
(1 � hk + ⇣)2(uxuxx � uuxxx) + uux + ⇣x,

Yp = m[(1 � hk + ⇣)(3uxuxx + uuxxx) + D⇣xxxxx + ⇣xxxu2 + 5⇣xxuux + 4⇣x(u2
x + uuxx)].

(4)

The equation for ⌘ in RI can be obtained from (4) by simply equating the parameters mk, Dk and hk to zero.

The continuous variables ⌘(x, t) and u(x, t) in (4) are approximated by discrete variables ⌘n
i and un

i , respec-

tively, where i is the mesh point in the spatial domain and n specifies a mesh point on the time axis. At each

given time, such discretization results in an array of N unknowns, and an N ⇥N coe�cient matrix, where N is

the total number of mesh points in the computational domain. The coe�cient matrix is a banded matrix and

the Gaussian elimination algorithm for a banded diagonal matrix is used to solve the system of equations.

The higher derivatives in the jump and boundary conditions require the involvement of fictitious points

between each pair of regions.
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Abstract The present research is dedicated to the interaction of waves with multiple deformable ice sheets floating

in marginal ice zones. The simultaneous motion of the ice sheets and the fluid is regarded within the framework of linear

beam theory for the structures and the nonlinear Level I Green-Naghdi theory for the fluid. The resulting governing

equations, subjected to appropriate boundary and jump conditions, are solved by finite di↵erence method.

Green-Naghdi theory Nonlinear waves of solitary and cnoidal types propagating from left to right and

exciting the motion of the set of N floating elastic ice sheets are considered. The ice sheets have arbitrary width

lk, mass mk and elasticity Dk.

Figure 1. Scheme of motion.

The mathematical model employed in this study is provided by the Level I Green-Naghdi theory (Green &

Nahgdi, 1976) which is mostly apliacable to the propagation of fairly long waves in shallow waters. This theory

is also known as the restricted theory and assumes a linear distribution of the vertical velocity along the water

column. This assumption, which is the only one made about the kinematics of the fluid sheet, results in the

horizontal velocities being invariant in the vertical direction for an incompressible fluid.

In the analysis of this problem, it becomes necessary to consider two types of fluid regions: type I, for

which the top curve of the fluid sheet is free and on the top pressure p̂ is constant; and type II, for which the

upper pressure p̂ remains unknown. In type I regions, the governing equations for the motion of the fluid in

dimensionless variables can be written as follows (Ertekin, 1984)

⌘t + [(1 + ⌘)u]x = 0, u̇ + ⌘x = �1

3
[2⌘x⌘̈ + (1 + ⌘)⌘̈x]. (1)

The system (1) can be solved to find the two unknown functions, such as surface elevation ⌘(x, t) and depth

averaged horizontal velocity u(x, t). In type II region the motion of the fluid under the plate is prescribed by

equations where fluid and plate are coupled through the dynamic free-surface condition from the linear beam

theory

⇣t + [(1 � hk + ⇣)u]x = 0, u̇ + ⇣x + p̂x = �1

3
[2⇣x⇣̈ + (1 � hk + ⇣)⇣̈x], p̂ = mk⇣tt + Dk⇣xxxx + m. (2)

The system (2) is integrated for the unknown deformation of the plate ⇣, depth averaged horizontal velocity u

and pressure under the ice p̂. Then the pressure at the bottom surface of the fluid sheet and vertical component

of particle velocity can be determined from equations

p =
1

2

(
(1 + ⌘)(⌘̈ + 2), in RI

(1 � hk + ⇣)(⇣̈ + 2) + p̂, in RII
v(y) = (y + 1)

8
>><
>>:

⌘̇

⌘ + 1
, in RI

⇣̇

⇣ + 1
, in RII.
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tinuous at the juncture of regions I and II. The matching conditions, demanded by the physics of the problem,

include continous surface elevation, mass flux and bottom pressure across the discontinuity curves x = xk
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The system of equations (1) and (2), subject to appropriate boundary conditions (3) in each region, along

with the matching and jump conditions prescribe the motion of the fluid in the entire domain and are solved

simultaneously for the unknowns. Spatial discretization of the equations is carried out by a central-di↵erence

method and time marching is obtained by use of the modified Euler’s method. The system of equations are to

be solved by use of a Gaussian elimination method.

The underlying principle of this technique is that at a given time, equations (2) can be solved explicitly for

⇣t once u is known. Then, ⇣t is substituted into the second equation of the system (2) to solve for ut.

(1 � m⌘xx)ut � [⌘x(1 + ⌘) + 2m⌘x]uxt � [
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(1 + ⌘)2 + m(1 + ⌘)]uxxt = �Yf � Yp,
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x � uuxx) +
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x + uuxx)].

(4)

The equation for ⌘ in RI can be obtained from (4) by simply equating the parameters mk, Dk and hk to zero.

The continuous variables ⌘(x, t) and u(x, t) in (4) are approximated by discrete variables ⌘n
i and un

i , respec-

tively, where i is the mesh point in the spatial domain and n specifies a mesh point on the time axis. At each

given time, such discretization results in an array of N unknowns, and an N �N coe�cient matrix, where N is

the total number of mesh points in the computational domain. The coe�cient matrix is a banded matrix and

the Gaussian elimination algorithm for a banded diagonal matrix is used to solve the system of equations.

The higher derivatives in the jump and boundary conditions require the involvement of fictitious points

between each pair of regions.
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Abstract The present research is dedicated to the interaction of waves with multiple deformable ice sheets floating

in marginal ice zones. The simultaneous motion of the ice sheets and the fluid is regarded within the framework of linear

beam theory for the structures and the nonlinear Level I Green-Naghdi theory for the fluid. The resulting governing

equations, subjected to appropriate boundary and jump conditions, are solved by finite di�erence method.

Green-Naghdi theory Nonlinear waves of solitary and cnoidal types propagating from left to right and

exciting the motion of the set of N floating elastic ice sheets are considered. The ice sheets have arbitrary width

lk, mass mk and elasticity Dk.

Figure 1. Scheme of motion.

The mathematical model employed in this study is provided by the Level I Green-Naghdi theory (Green &

Nahgdi, 1976) which is mostly apliacable to the propagation of fairly long waves in shallow waters. This theory

is also known as the restricted theory and assumes a linear distribution of the vertical velocity along the water

column. This assumption, which is the only one made about the kinematics of the fluid sheet, results in the

horizontal velocities being invariant in the vertical direction for an incompressible fluid.

In the analysis of this problem, it becomes necessary to consider two types of fluid regions: type I, for

which the top curve of the fluid sheet is free and on the top pressure p̂ is constant; and type II, for which the

upper pressure p̂ remains unknown. In type I regions, the governing equations for the motion of the fluid in

dimensionless variables can be written as follows (Ertekin, 1984)

⌘t + [(1 + ⌘)u]x = 0, u̇ + ⌘x = �1

3
[2⌘x⌘̈ + (1 + ⌘)⌘̈x]. (1)

The system (1) can be solved to find the two unknown functions, such as surface elevation ⌘(x, t) and depth

averaged horizontal velocity u(x, t). In type II region the motion of the fluid under the plate is prescribed by

equations where fluid and plate are coupled through the dynamic free-surface condition from the linear beam

theory

⇣t + [(1 � hk + ⇣)u]x = 0, u̇ + ⇣x + p̂x = �1

3
[2⇣x⇣̈ + (1 � hk + ⇣)⇣̈x], p̂ = mk⇣tt + Dk⇣xxxx + m. (2)

The system (2) is integrated for the unknown deformation of the plate ⇣, depth averaged horizontal velocity u

and pressure under the ice p̂. Then the pressure at the bottom surface of the fluid sheet and vertical component

of particle velocity can be determined from equations

p =
1

2

�
(1 + ⌘)(⌘̈ + 2), in RI

(1 � hk + ⇣)(⇣̈ + 2) + p̂, in RII
v(y) = (y + 1)

�
���
���

⌘̇

⌘ + 1
, in RI

⇣̇

⇣ + 1
, in RII.
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2. Formulation of the problem

The plane irrotational flow of heavy inviscid fluid of constant depth h is considered in
the coordinate system Oxy with the horizontal axis lying on the undisturbed free surface
and vertical axis directed upwards. Incident waves propagate in the positive x–direction
and excite the motion of the set of N floating deformable sheets being initially at rest.
The k-th sheet has the width Lk, draft dk, mass per unit width mk and elasticity Dk.
Let Lk,k+1 denote the distance between adjacent sheets. It is useful to introduce the
clearence between the bottom of the plate and the sea floor as hk = h � dk. A sketch
of the problem is shown in Fig. 1. It is assumed that elastic sheets are restricted to the
vertical motion only and are always in contact with the fluid. The loss of energy due to
the structural damping is neglected and plate overwashing is disregarded.

The dimensionless variables use the fluid depth h as a length scale, the ratio
p

h/g
as a time unit, the quantity ⇢h as a mass unit. Here ⇢ and g are respectively the fluid
density and gravity acceleration.

The governing equations for the motion of the fluid are provided by the Level I Green-
Naghdi (GN) theory. They can be written in a compact form

It is conventional to divide the fluid domain into subregions of two types (RI and RII).
Subregion of the first type is formed by the flat floor at the bottom and by the free
surface at the top. The pressure on the top free surface is constant atmospheric pressure.
Subregion of the second type is formed by the flat floor at the bottom and by elastic
plate at the top. As opposed to region RI, the pressure on the top of region RII depends
on vertical displacement of the ice sheet. The Level I GN theory of the directed fluid
sheets will be adopted to treat the fluid problem and to use it with suitable matching
conditions on the juncture boundary between the subdomains RI and RII.

⌘t + [(hk + ⌘)u]x = 0, (2.1)

u̇ + ⌘x + p̂x = �1

3
[2⌘x⌘̈ + (hk + ⌘)⌘̈x] (2.2)

for k-th sheet, k = 1, . . . , N . The motion of the fluid and the plate is coupled through
the dynamic free-surface condition. The vertical displacement of the plate ⌘ is governed
by the thin elastic plate theory:

p̂ = mk⌘tt + Dk⌘xxxx + mk, (2.3)

The system (2.1)-(2.3) is integrated for the unknowns ⌘(x, t), u(x, t) and upper pressure
p̂(x, t). Then the pressure at the sea-floor (y = �1) and vertical velocity can be
determined from equations:

p̄ =
1

2
(hk + ⌘)(⌘̈ + 2) + p̂, (2.4)

v(y) =
1 + y

hk + ⇣
⌘̇. (2.5)

The formula (2.5) implies zero vertical velocity along the bottom (y = �1). The equation
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method developed demonstrates high e�ciency, performing calculation with multiple
sheets in seconds. Although the theory adopted in the paper was initally constructed for
studying the interaction between water waves and very large floating objects, the study
has shown that this method is also valid for small- and middle-sized floating surfaces.
The e↵ect of the multiple sheets and the distance between them is studied. The interplay
between individual e↵ects of the sheet properties can be explored more thoroughly than it
is attempted here. The obtained solution is validated by comparing with other numerical
solutions and experimental data obtained with use of alternative methods.
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stresses must vanish due to the free-free end boundary condition (⇣xx = ⇣xxx = 0). Applying this relations to

the first equation (1), we obtain another conditions under the edges of the plates:

3⌘xuxx + (1 � hk + ⌘)uxxx = 0, 4⌘xuxxx + (1 � hk + ⌘)uxxxx + ⌘xxxxu = 0, (x = xk
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T ), (3)

The appropriate jump conditions are demanded by the theory because the fluid surface is singular or discon-

tinuous at the juncture of regions I and II. The matching conditions, demanded by the physics of the problem,

include continous surface elevation, mass flux and bottom pressure across the discontinuity curves x = xk
L,
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T .

The system of equations (1) and (2), subject to appropriate boundary conditions (3) in each region, along

with the matching and jump conditions prescribe the motion of the fluid in the entire domain and are solved

simultaneously for the unknowns. Spatial discretization of the equations is carried out by a central-di↵erence

method and time marching is obtained by use of the modified Euler’s method. The system of equations are to

be solved by use of a Gaussian elimination method.

The underlying principle of this technique is that at a given time, equations (2) can be solved explicitly for

⇣t once u is known. Then, ⇣t is substituted into the second equation of the system (2) to solve for ut.
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The equation for ⌘ in RI can be obtained from (4) by simply equating the parameters mk, Dk and hk to zero.

The continuous variables ⌘(x, t) and u(x, t) in (4) are approximated by discrete variables ⌘n
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i , respec-

tively, where i is the mesh point in the spatial domain and n specifies a mesh point on the time axis. At each

given time, such discretization results in an array of N unknowns, and an N �N coe�cient matrix, where N is

the total number of mesh points in the computational domain. The coe�cient matrix is a banded matrix and

the Gaussian elimination algorithm for a banded diagonal matrix is used to solve the system of equations.

The higher derivatives in the jump and boundary conditions require the involvement of fictitious points
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Abstract The present research is dedicated to the interaction of waves with multiple deformable ice sheets floating

in marginal ice zones. The simultaneous motion of the ice sheets and the fluid is regarded within the framework of linear

beam theory for the structures and the nonlinear Level I Green-Naghdi theory for the fluid. The resulting governing

equations, subjected to appropriate boundary and jump conditions, are solved by finite di↵erence method.

Green-Naghdi theory Nonlinear waves of solitary and cnoidal types propagating from left to right and

exciting the motion of the set of N floating elastic ice sheets are considered. The ice sheets have arbitrary width

lk, mass mk and elasticity Dk.

Figure 1. Scheme of motion.

The mathematical model employed in this study is provided by the Level I Green-Naghdi theory (Green &
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In the analysis of this problem, it becomes necessary to consider two types of fluid regions: type I, for
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upper pressure p̂ remains unknown. In type I regions, the governing equations for the motion of the fluid in
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The system (1) can be solved to find the two unknown functions, such as surface elevation ⌘(x, t) and depth

averaged horizontal velocity u(x, t). In type II region the motion of the fluid under the plate is prescribed by
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At the leading x = xk
L and trailing x = xk

T edges of the ice sheets, the bending moments together with shear

stresses must vanish due to the free-free end boundary condition (⇣xx = ⇣xxx = 0). Applying this relations to

the first equation (1), we obtain another conditions under the edges of the plates:

3⌘xuxx + (1 � hk + ⌘)uxxx = 0, 4⌘xuxxx + (1 � hk + ⌘)uxxxx + ⌘xxxxu = 0, (x = xk
L, xk

T ), (3)

The appropriate jump conditions are demanded by the theory because the fluid surface is singular or discon-

tinuous at the juncture of regions I and II. The matching conditions, demanded by the physics of the problem,

include continous surface elevation, mass flux and bottom pressure across the discontinuity curves x = xk
L,

x = xk
T .

The system of equations (1) and (2), subject to appropriate boundary conditions (3) in each region, along

with the matching and jump conditions prescribe the motion of the fluid in the entire domain and are solved

simultaneously for the unknowns. Spatial discretization of the equations is carried out by a central-di↵erence

method and time marching is obtained by use of the modified Euler’s method. The system of equations are to

be solved by use of a Gaussian elimination method.

The underlying principle of this technique is that at a given time, equations (2) can be solved explicitly for

⇣t once u is known. Then, ⇣t is substituted into the second equation of the system (2) to solve for ut.

(1 � m⌘xx)ut � [⌘x(1 + ⌘) + 2m⌘x]uxt � [
1

3
(1 + ⌘)2 + m(1 + ⌘)]uxxt = �Yf � Yp,

Yf = ⌘x(1 � hk + ⇣)(u2
x � uuxx) +

1

3
(1 � hk + ⇣)2(uxuxx � uuxxx) + uux + ⇣x,

Yp = m[(1 � hk + ⇣)(3uxuxx + uuxxx) + D⇣xxxxx + ⇣xxxu2 + 5⇣xxuux + 4⇣x(u2
x + uuxx)].

(4)

The equation for ⌘ in RI can be obtained from (4) by simply equating the parameters mk, Dk and hk to zero.

The continuous variables ⌘(x, t) and u(x, t) in (4) are approximated by discrete variables ⌘n
i and un

i , respec-

tively, where i is the mesh point in the spatial domain and n specifies a mesh point on the time axis. At each

given time, such discretization results in an array of N unknowns, and an N �N coe�cient matrix, where N is

the total number of mesh points in the computational domain. The coe�cient matrix is a banded matrix and

the Gaussian elimination algorithm for a banded diagonal matrix is used to solve the system of equations.

The higher derivatives in the jump and boundary conditions require the involvement of fictitious points

between each pair of regions.

x1
L x2

L xN
L x1

T x2
T xN

T

References

1. Green A.E., Naghdi P.M., 1976a. A derivation of equations for wave propagation in water of variable depth.

Journal of Fluid Mechanics 78, 237–246.

2. Ertekin R.C., 1984. Soliton Generation by Moving Disturbances in Shallow Water: Theory, Computation and

Experiment (Ph.D. thesis, Ph.D. dissertation). University of California at Berkeley, May, v+352 pp.

3. Xia D., Ertekin R.C., Kim J.W., 2008. Fluid–structure interaction between a two-dimensional mat-type VLFS

and solitary waves by the Green–Naghdi theory. Journal of Fluids and Structures 24, 527–540.

4. Hayatdavoodi M., Ertekin R.C., 2015. Wave forces on a submerged horizontal plate – Part I: Theory and

Modelling. Journal of Fluids and Structures.

2

At the leading x = xk
L and trailing x = xk

T edges of the ice sheets, the bending moments together with shear

stresses must vanish due to the free-free end boundary condition (⇣xx = ⇣xxx = 0). Applying this relations to

the first equation (1), we obtain another conditions under the edges of the plates:

3⌘xuxx + (1 � hk + ⌘)uxxx = 0, 4⌘xuxxx + (1 � hk + ⌘)uxxxx + ⌘xxxxu = 0, (x = xk
L, xk

T ), (3)

The appropriate jump conditions are demanded by the theory because the fluid surface is singular or discon-

tinuous at the juncture of regions I and II. The matching conditions, demanded by the physics of the problem,

include continous surface elevation, mass flux and bottom pressure across the discontinuity curves x = xk
L,

x = xk
T .

The system of equations (1) and (2), subject to appropriate boundary conditions (3) in each region, along

with the matching and jump conditions prescribe the motion of the fluid in the entire domain and are solved

simultaneously for the unknowns. Spatial discretization of the equations is carried out by a central-di↵erence

method and time marching is obtained by use of the modified Euler’s method. The system of equations are to

be solved by use of a Gaussian elimination method.

The underlying principle of this technique is that at a given time, equations (2) can be solved explicitly for

⇣t once u is known. Then, ⇣t is substituted into the second equation of the system (2) to solve for ut.

(1 � m⌘xx)ut � [⌘x(1 + ⌘) + 2m⌘x]uxt � [
1

3
(1 + ⌘)2 + m(1 + ⌘)]uxxt = �Yf � Yp,

Yf = ⌘x(1 � hk + ⇣)(u2
x � uuxx) +

1

3
(1 � hk + ⇣)2(uxuxx � uuxxx) + uux + ⇣x,

Yp = m[(1 � hk + ⇣)(3uxuxx + uuxxx) + D⇣xxxxx + ⇣xxxu2 + 5⇣xxuux + 4⇣x(u2
x + uuxx)].

(4)

The equation for ⌘ in RI can be obtained from (4) by simply equating the parameters mk, Dk and hk to zero.

The continuous variables ⌘(x, t) and u(x, t) in (4) are approximated by discrete variables ⌘n
i and un

i , respec-

tively, where i is the mesh point in the spatial domain and n specifies a mesh point on the time axis. At each

given time, such discretization results in an array of N unknowns, and an N �N coe�cient matrix, where N is

the total number of mesh points in the computational domain. The coe�cient matrix is a banded matrix and

the Gaussian elimination algorithm for a banded diagonal matrix is used to solve the system of equations.

The higher derivatives in the jump and boundary conditions require the involvement of fictitious points

between each pair of regions.

x1
L x2

L xN
L x1

T x2
T xN

T

References

1. Green A.E., Naghdi P.M., 1976a. A derivation of equations for wave propagation in water of variable depth.

Journal of Fluid Mechanics 78, 237–246.

2. Ertekin R.C., 1984. Soliton Generation by Moving Disturbances in Shallow Water: Theory, Computation and

Experiment (Ph.D. thesis, Ph.D. dissertation). University of California at Berkeley, May, v+352 pp.

3. Xia D., Ertekin R.C., Kim J.W., 2008. Fluid–structure interaction between a two-dimensional mat-type VLFS

and solitary waves by the Green–Naghdi theory. Journal of Fluids and Structures 24, 527–540.

4. Hayatdavoodi M., Ertekin R.C., 2015. Wave forces on a submerged horizontal plate – Part I: Theory and

Modelling. Journal of Fluids and Structures.

2

At the leading x = xk
L and trailing x = xk

T edges of the ice sheets, the bending moments together with shear

stresses must vanish due to the free-free end boundary condition (⇣xx = ⇣xxx = 0). Applying this relations to

the first equation (1), we obtain another conditions under the edges of the plates:

3⌘xuxx + (1 � hk + ⌘)uxxx = 0, 4⌘xuxxx + (1 � hk + ⌘)uxxxx + ⌘xxxxu = 0, (x = xk
L, xk

T ), (3)

The appropriate jump conditions are demanded by the theory because the fluid surface is singular or discon-

tinuous at the juncture of regions I and II. The matching conditions, demanded by the physics of the problem,

include continous surface elevation, mass flux and bottom pressure across the discontinuity curves x = xk
L,

x = xk
T .

The system of equations (1) and (2), subject to appropriate boundary conditions (3) in each region, along

with the matching and jump conditions prescribe the motion of the fluid in the entire domain and are solved

simultaneously for the unknowns. Spatial discretization of the equations is carried out by a central-di↵erence

method and time marching is obtained by use of the modified Euler’s method. The system of equations are to

be solved by use of a Gaussian elimination method.

The underlying principle of this technique is that at a given time, equations (2) can be solved explicitly for

⇣t once u is known. Then, ⇣t is substituted into the second equation of the system (2) to solve for ut.

(1 � m⌘xx)ut � [⌘x(1 + ⌘) + 2m⌘x]uxt � [
1

3
(1 + ⌘)2 + m(1 + ⌘)]uxxt = �Yf � Yp,

Yf = ⌘x(1 � hk + ⇣)(u2
x � uuxx) +

1

3
(1 � hk + ⇣)2(uxuxx � uuxxx) + uux + ⇣x,

Yp = m[(1 � hk + ⇣)(3uxuxx + uuxxx) + D⇣xxxxx + ⇣xxxu2 + 5⇣xxuux + 4⇣x(u2
x + uuxx)].

(4)

The equation for ⌘ in RI can be obtained from (4) by simply equating the parameters mk, Dk and hk to zero.

The continuous variables ⌘(x, t) and u(x, t) in (4) are approximated by discrete variables ⌘n
i and un

i , respec-

tively, where i is the mesh point in the spatial domain and n specifies a mesh point on the time axis. At each

given time, such discretization results in an array of N unknowns, and an N �N coe�cient matrix, where N is

the total number of mesh points in the computational domain. The coe�cient matrix is a banded matrix and

the Gaussian elimination algorithm for a banded diagonal matrix is used to solve the system of equations.

The higher derivatives in the jump and boundary conditions require the involvement of fictitious points

between each pair of regions.

x1
L x2

L xN
L x1

T x2
T xN

T

References

1. Green A.E., Naghdi P.M., 1976a. A derivation of equations for wave propagation in water of variable depth.

Journal of Fluid Mechanics 78, 237–246.

2. Ertekin R.C., 1984. Soliton Generation by Moving Disturbances in Shallow Water: Theory, Computation and

Experiment (Ph.D. thesis, Ph.D. dissertation). University of California at Berkeley, May, v+352 pp.

3. Xia D., Ertekin R.C., Kim J.W., 2008. Fluid–structure interaction between a two-dimensional mat-type VLFS

and solitary waves by the Green–Naghdi theory. Journal of Fluids and Structures 24, 527–540.

4. Hayatdavoodi M., Ertekin R.C., 2015. Wave forces on a submerged horizontal plate – Part I: Theory and

Modelling. Journal of Fluids and Structures.

2

At the leading x = xk
L and trailing x = xk

T edges of the ice sheets, the bending moments together with shear

stresses must vanish due to the free-free end boundary condition (⇣xx = ⇣xxx = 0). Applying this relations to

the first equation (1), we obtain another conditions under the edges of the plates:

3⌘xuxx + (1 � hk + ⌘)uxxx = 0, 4⌘xuxxx + (1 � hk + ⌘)uxxxx + ⌘xxxxu = 0, (x = xk
L, xk

T ), (3)

The appropriate jump conditions are demanded by the theory because the fluid surface is singular or discon-

tinuous at the juncture of regions I and II. The matching conditions, demanded by the physics of the problem,

include continous surface elevation, mass flux and bottom pressure across the discontinuity curves x = xk
L,

x = xk
T .

The system of equations (1) and (2), subject to appropriate boundary conditions (3) in each region, along

with the matching and jump conditions prescribe the motion of the fluid in the entire domain and are solved

simultaneously for the unknowns. Spatial discretization of the equations is carried out by a central-di↵erence

method and time marching is obtained by use of the modified Euler’s method. The system of equations are to

be solved by use of a Gaussian elimination method.

The underlying principle of this technique is that at a given time, equations (2) can be solved explicitly for

⇣t once u is known. Then, ⇣t is substituted into the second equation of the system (2) to solve for ut.

(1 � m⌘xx)ut � [⌘x(1 + ⌘) + 2m⌘x]uxt � [
1

3
(1 + ⌘)2 + m(1 + ⌘)]uxxt = �Yf � Yp,

Yf = ⌘x(1 � hk + ⇣)(u2
x � uuxx) +

1

3
(1 � hk + ⇣)2(uxuxx � uuxxx) + uux + ⇣x,

Yp = m[(1 � hk + ⇣)(3uxuxx + uuxxx) + D⇣xxxxx + ⇣xxxu2 + 5⇣xxuux + 4⇣x(u2
x + uuxx)].

(4)

The equation for ⌘ in RI can be obtained from (4) by simply equating the parameters mk, Dk and hk to zero.

The continuous variables ⌘(x, t) and u(x, t) in (4) are approximated by discrete variables ⌘n
i and un

i , respec-

tively, where i is the mesh point in the spatial domain and n specifies a mesh point on the time axis. At each

given time, such discretization results in an array of N unknowns, and an N �N coe�cient matrix, where N is

the total number of mesh points in the computational domain. The coe�cient matrix is a banded matrix and

the Gaussian elimination algorithm for a banded diagonal matrix is used to solve the system of equations.

The higher derivatives in the jump and boundary conditions require the involvement of fictitious points

between each pair of regions.

x1
L x2

L xN
L x1

T x2
T xN

T

References

1. Green A.E., Naghdi P.M., 1976a. A derivation of equations for wave propagation in water of variable depth.

Journal of Fluid Mechanics 78, 237–246.

2. Ertekin R.C., 1984. Soliton Generation by Moving Disturbances in Shallow Water: Theory, Computation and

Experiment (Ph.D. thesis, Ph.D. dissertation). University of California at Berkeley, May, v+352 pp.

3. Xia D., Ertekin R.C., Kim J.W., 2008. Fluid–structure interaction between a two-dimensional mat-type VLFS

and solitary waves by the Green–Naghdi theory. Journal of Fluids and Structures 24, 527–540.

4. Hayatdavoodi M., Ertekin R.C., 2015. Wave forces on a submerged horizontal plate – Part I: Theory and

Modelling. Journal of Fluids and Structures.

2

At the leading x = xk
L and trailing x = xk

T edges of the ice sheets, the bending moments together with shear

stresses must vanish due to the free-free end boundary condition (⇣xx = ⇣xxx = 0). Applying this relations to

the first equation (1), we obtain another conditions under the edges of the plates:

3⌘xuxx + (1 � hk + ⌘)uxxx = 0, 4⌘xuxxx + (1 � hk + ⌘)uxxxx + ⌘xxxxu = 0, (x = xk
L, xk

T ), (3)

The appropriate jump conditions are demanded by the theory because the fluid surface is singular or discon-

tinuous at the juncture of regions I and II. The matching conditions, demanded by the physics of the problem,

include continous surface elevation, mass flux and bottom pressure across the discontinuity curves x = xk
L,

x = xk
T .

The system of equations (1) and (2), subject to appropriate boundary conditions (3) in each region, along

with the matching and jump conditions prescribe the motion of the fluid in the entire domain and are solved

simultaneously for the unknowns. Spatial discretization of the equations is carried out by a central-di↵erence

method and time marching is obtained by use of the modified Euler’s method. The system of equations are to

be solved by use of a Gaussian elimination method.

The underlying principle of this technique is that at a given time, equations (2) can be solved explicitly for

⇣t once u is known. Then, ⇣t is substituted into the second equation of the system (2) to solve for ut.

(1 � m⌘xx)ut � [⌘x(1 + ⌘) + 2m⌘x]uxt � [
1

3
(1 + ⌘)2 + m(1 + ⌘)]uxxt = �Yf � Yp,

Yf = ⌘x(1 � hk + ⇣)(u2
x � uuxx) +

1

3
(1 � hk + ⇣)2(uxuxx � uuxxx) + uux + ⇣x,

Yp = m[(1 � hk + ⇣)(3uxuxx + uuxxx) + D⇣xxxxx + ⇣xxxu2 + 5⇣xxuux + 4⇣x(u2
x + uuxx)].

(4)

The equation for ⌘ in RI can be obtained from (4) by simply equating the parameters mk, Dk and hk to zero.

The continuous variables ⌘(x, t) and u(x, t) in (4) are approximated by discrete variables ⌘n
i and un

i , respec-

tively, where i is the mesh point in the spatial domain and n specifies a mesh point on the time axis. At each

given time, such discretization results in an array of N unknowns, and an N �N coe�cient matrix, where N is

the total number of mesh points in the computational domain. The coe�cient matrix is a banded matrix and

the Gaussian elimination algorithm for a banded diagonal matrix is used to solve the system of equations.

The higher derivatives in the jump and boundary conditions require the involvement of fictitious points

between each pair of regions.

x1
L x2

L xN
L x1

T x2
T xN

T

References

1. Green A.E., Naghdi P.M., 1976a. A derivation of equations for wave propagation in water of variable depth.

Journal of Fluid Mechanics 78, 237–246.

2. Ertekin R.C., 1984. Soliton Generation by Moving Disturbances in Shallow Water: Theory, Computation and

Experiment (Ph.D. thesis, Ph.D. dissertation). University of California at Berkeley, May, v+352 pp.

3. Xia D., Ertekin R.C., Kim J.W., 2008. Fluid–structure interaction between a two-dimensional mat-type VLFS

and solitary waves by the Green–Naghdi theory. Journal of Fluids and Structures 24, 527–540.

4. Hayatdavoodi M., Ertekin R.C., 2015. Wave forces on a submerged horizontal plate – Part I: Theory and

Modelling. Journal of Fluids and Structures.

2

At the leading x = xk
L and trailing x = xk

T edges of the ice sheets, the bending moments together with shear

stresses must vanish due to the free-free end boundary condition (⇣xx = ⇣xxx = 0). Applying this relations to

the first equation (1), we obtain another conditions under the edges of the plates:

3⌘xuxx + (1 � hk + ⌘)uxxx = 0, 4⌘xuxxx + (1 � hk + ⌘)uxxxx + ⌘xxxxu = 0, (x = xk
L, xk

T ), (3)

The appropriate jump conditions are demanded by the theory because the fluid surface is singular or discon-

tinuous at the juncture of regions I and II. The matching conditions, demanded by the physics of the problem,

include continous surface elevation, mass flux and bottom pressure across the discontinuity curves x = xk
L,

x = xk
T .

The system of equations (1) and (2), subject to appropriate boundary conditions (3) in each region, along

with the matching and jump conditions prescribe the motion of the fluid in the entire domain and are solved

simultaneously for the unknowns. Spatial discretization of the equations is carried out by a central-di↵erence

method and time marching is obtained by use of the modified Euler’s method. The system of equations are to

be solved by use of a Gaussian elimination method.

The underlying principle of this technique is that at a given time, equations (2) can be solved explicitly for

⇣t once u is known. Then, ⇣t is substituted into the second equation of the system (2) to solve for ut.

(1 � m⌘xx)ut � [⌘x(1 + ⌘) + 2m⌘x]uxt � [
1

3
(1 + ⌘)2 + m(1 + ⌘)]uxxt = �Yf � Yp,

Yf = ⌘x(1 � hk + ⇣)(u2
x � uuxx) +

1

3
(1 � hk + ⇣)2(uxuxx � uuxxx) + uux + ⇣x,

Yp = m[(1 � hk + ⇣)(3uxuxx + uuxxx) + D⇣xxxxx + ⇣xxxu2 + 5⇣xxuux + 4⇣x(u2
x + uuxx)].

(4)

The equation for ⌘ in RI can be obtained from (4) by simply equating the parameters mk, Dk and hk to zero.

The continuous variables ⌘(x, t) and u(x, t) in (4) are approximated by discrete variables ⌘n
i and un

i , respec-

tively, where i is the mesh point in the spatial domain and n specifies a mesh point on the time axis. At each

given time, such discretization results in an array of N unknowns, and an N �N coe�cient matrix, where N is

the total number of mesh points in the computational domain. The coe�cient matrix is a banded matrix and

the Gaussian elimination algorithm for a banded diagonal matrix is used to solve the system of equations.

The higher derivatives in the jump and boundary conditions require the involvement of fictitious points

between each pair of regions.

x1
L x2

L xN
L x1

T x2
T xN

T

References

1. Green A.E., Naghdi P.M., 1976a. A derivation of equations for wave propagation in water of variable depth.

Journal of Fluid Mechanics 78, 237–246.

2. Ertekin R.C., 1984. Soliton Generation by Moving Disturbances in Shallow Water: Theory, Computation and

Experiment (Ph.D. thesis, Ph.D. dissertation). University of California at Berkeley, May, v+352 pp.

3. Xia D., Ertekin R.C., Kim J.W., 2008. Fluid–structure interaction between a two-dimensional mat-type VLFS

and solitary waves by the Green–Naghdi theory. Journal of Fluids and Structures 24, 527–540.

4. Hayatdavoodi M., Ertekin R.C., 2015. Wave forces on a submerged horizontal plate – Part I: Theory and

Modelling. Journal of Fluids and Structures.

2

At the leading x = xk
L and trailing x = xk

T edges of the ice sheets, the bending moments together with shear

stresses must vanish due to the free-free end boundary condition (⇣xx = ⇣xxx = 0). Applying this relations to

the first equation (1), we obtain another conditions under the edges of the plates:

3⌘xuxx + (1 � hk + ⌘)uxxx = 0, 4⌘xuxxx + (1 � hk + ⌘)uxxxx + ⌘xxxxu = 0, (x = xk
L, xk

T ), (3)

The appropriate jump conditions are demanded by the theory because the fluid surface is singular or discon-

tinuous at the juncture of regions I and II. The matching conditions, demanded by the physics of the problem,

include continous surface elevation, mass flux and bottom pressure across the discontinuity curves x = xk
L,

x = xk
T .

The system of equations (1) and (2), subject to appropriate boundary conditions (3) in each region, along

with the matching and jump conditions prescribe the motion of the fluid in the entire domain and are solved

simultaneously for the unknowns. Spatial discretization of the equations is carried out by a central-di↵erence

method and time marching is obtained by use of the modified Euler’s method. The system of equations are to

be solved by use of a Gaussian elimination method.

The underlying principle of this technique is that at a given time, equations (2) can be solved explicitly for

⇣t once u is known. Then, ⇣t is substituted into the second equation of the system (2) to solve for ut.

(1 � m⌘xx)ut � [⌘x(1 + ⌘) + 2m⌘x]uxt � [
1

3
(1 + ⌘)2 + m(1 + ⌘)]uxxt = �Yf � Yp,

Yf = ⌘x(1 � hk + ⇣)(u2
x � uuxx) +

1

3
(1 � hk + ⇣)2(uxuxx � uuxxx) + uux + ⇣x,

Yp = m[(1 � hk + ⇣)(3uxuxx + uuxxx) + D⇣xxxxx + ⇣xxxu2 + 5⇣xxuux + 4⇣x(u2
x + uuxx)].

(4)

The equation for ⌘ in RI can be obtained from (4) by simply equating the parameters mk, Dk and hk to zero.

The continuous variables ⌘(x, t) and u(x, t) in (4) are approximated by discrete variables ⌘n
i and un

i , respec-

tively, where i is the mesh point in the spatial domain and n specifies a mesh point on the time axis. At each

given time, such discretization results in an array of N unknowns, and an N �N coe�cient matrix, where N is

the total number of mesh points in the computational domain. The coe�cient matrix is a banded matrix and

the Gaussian elimination algorithm for a banded diagonal matrix is used to solve the system of equations.

The higher derivatives in the jump and boundary conditions require the involvement of fictitious points

between each pair of regions.
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The mathematical model employed in this study is provided by the Level I Green-Naghdi theory (Green &

Nahgdi, 1976) which is mostly apliacable to the propagation of fairly long waves in shallow waters. This theory

is also known as the restricted theory and assumes a linear distribution of the vertical velocity along the water

column. This assumption, which is the only one made about the kinematics of the fluid sheet, results in the

horizontal velocities being invariant in the vertical direction for an incompressible fluid.

In the analysis of this problem, it becomes necessary to consider two types of fluid regions: type I, for

which the top curve of the fluid sheet is free and on the top pressure p̂ is constant; and type II, for which the

upper pressure p̂ remains unknown. In type I regions, the governing equations for the motion of the fluid in

dimensionless variables can be written as follows (Ertekin, 1984)

⌘t + [(1 + ⌘)u]x = 0, u̇ + ⌘x = �1

3
[2⌘x⌘̈ + (1 + ⌘)⌘̈x]. (1)

The system (1) can be solved to find the two unknown functions, such as surface elevation ⌘(x, t) and depth

averaged horizontal velocity u(x, t). In type II region the motion of the fluid under the plate is prescribed by

equations where fluid and plate are coupled through the dynamic free-surface condition from the linear beam

theory

⇣t + [(1 � hk + ⇣)u]x = 0, u̇ + ⇣x + p̂x = �1

3
[2⇣x⇣̈ + (1 � hk + ⇣)⇣̈x], p̂ = mk⇣tt + Dk⇣xxxx + m. (2)

The system (2) is integrated for the unknown deformation of the plate ⇣, depth averaged horizontal velocity u

and pressure under the ice p̂. Then the pressure at the bottom surface of the fluid sheet and vertical component

of particle velocity can be determined from equations

p =
1

2

�
(1 + ⌘)(⌘̈ + 2), in RI

(1 � hk + ⇣)(⇣̈ + 2) + p̂, in RII
v(y) = (y + 1)

�
���
���

⌘̇

⌘ + 1
, in RI

⇣̇

⇣ + 1
, in RII.
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2. Formulation of the problem

The plane irrotational flow of heavy inviscid fluid of constant depth h is considered in
the coordinate system Oxy with the horizontal axis lying on the undisturbed free surface
and vertical axis directed upwards. Incident waves propagate in the positive x–direction
and excite the motion of the set of N floating deformable sheets being initially at rest.
The k-th sheet has the width Lk, draft dk, mass per unit width mk and elasticity Dk.
Let Lk,k+1 denote the distance between adjacent sheets. It is useful to introduce the
clearence between the bottom of the plate and the sea floor as hk = h � dk. A sketch
of the problem is shown in Fig. 1. It is assumed that elastic sheets are restricted to the
vertical motion only and are always in contact with the fluid. The loss of energy due to
the structural damping is neglected and plate overwashing is disregarded.

The dimensionless variables use the fluid depth h as a length scale, the ratio
p

h/g
as a time unit, the quantity ⇢h as a mass unit. Here ⇢ and g are respectively the fluid
density and gravity acceleration.

The governing equations for the motion of the fluid are provided by the Level I Green-
Naghdi (GN) theory. They can be written in a compact form

It is conventional to divide the fluid domain into subregions of two types (RI and RII).
Subregion of the first type is formed by the flat floor at the bottom and by the free
surface at the top. The pressure on the top free surface is constant atmospheric pressure.
Subregion of the second type is formed by the flat floor at the bottom and by elastic
plate at the top. As opposed to region RI, the pressure on the top of region RII depends
on vertical displacement of the ice sheet. The Level I GN theory of the directed fluid
sheets will be adopted to treat the fluid problem and to use it with suitable matching
conditions on the juncture boundary between the subdomains RI and RII.

⌘t + [(hk + ⌘)u]x = 0, (2.1)

u̇ + ⌘x + p̂x = �1

3
[2⌘x⌘̈ + (hk + ⌘)⌘̈x] (2.2)

for k-th sheet, k = 1, . . . , N . The motion of the fluid and the plate is coupled through
the dynamic free-surface condition. The vertical displacement of the plate ⌘ is governed
by the thin elastic plate theory:

p̂ = mk⌘tt + Dk⌘xxxx + mk, (2.3)

The system (2.1)-(2.3) is integrated for the unknowns ⌘(x, t), u(x, t) and upper pressure
p̂(x, t). Then the pressure at the sea-floor (y = �1) and vertical velocity can be
determined from equations:

p̄ =
1

2
(hk + ⌘)(⌘̈ + 2) + p̂, (2.4)

v(y) =
1 + y

hk + ⇣
⌘̇. (2.5)

The formula (2.5) implies zero vertical velocity along the bottom (y = �1). The equation
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method developed demonstrates high e�ciency, performing calculation with multiple
sheets in seconds. Although the theory adopted in the paper was initally constructed for
studying the interaction between water waves and very large floating objects, the study
has shown that this method is also valid for small- and middle-sized floating surfaces.
The e↵ect of the multiple sheets and the distance between them is studied. The interplay
between individual e↵ects of the sheet properties can be explored more thoroughly than it
is attempted here. The obtained solution is validated by comparing with other numerical
solutions and experimental data obtained with use of alternative methods.
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Figure 1. Schematic of the problem of nonlinear wave interaction with N number of plates of
arbitrary size and location. Also shown in this figure are the RI and RII regions refereed to in
the text.

GN theory for a flat and stationary seafloor. They can be written in a compact form as
(see Ertekin et al (1986)):

⌘,t +[(1 + ⌘)u],x = 0, (2.1)

u̇ +⌘,x = �1

3
[2⌘,x⌘̈ + (1 + ⌘)⌘̈,x]. (2.2)

Similarly, the governing equations for the coupled motion of the fluid and the elastic
sheet in RII can be written as:

⇣,t +[(hk + ⇣)u],x = 0, (2.3)

u̇ +⇣,x + p̂,x = �1

3
[2⇣,x⇣̈ + (hk + ⇣)⇣̈,x], (2.4)

In our notation subscript with comma denotes the partial derivative and upper dot
specifies the total time derivative (⌘̇ = ⌘,t + u⌘,x). The wave-induced pressure under the
plate is given by the thin elastic plate theory:

p̂ = mk⇣,tt + Dk⇣,xxxx + mk, (2.5)

where the flexural rigidity is defined by

Dk = Ek�
3
k/12(1 � ⌫2

k),

with �k, Ek, and ⌫k being the thickness, Young’s modulus and Poisson’s ratio of the k-th
plate, respectively. Eqs. (2.1)–(2.5) can be integrated for the unknowns: free surface ele-
vation ⌘(x, t), plate deflection ⇣(x, t), both measured from the still water level, horizontal
component of fluid velocity u(x, t) and pressure p̂(x, t) under the plate.

Ertekin (1984) provided explicit relations for the vertical velocity of the fluid and
pressure on the bottom (y = �1), given as:

v (y) =
1 + y

1 + ⌘
⌘̇ (x, y) 2 RI, v(y) =

1 + y

hk + ⇣
⇣̇ (x, y) 2 RII, (2.6)

p̄ =
1

2
(1 + ⌘)(⌘̈ + 2) (x, y) 2 RI, p̄ =

1

2
(hk + ⇣)(⇣̈ + 2) + p̂ (x, y) 2 RII. (2.7)

The nonlinear kinematic and dynamic conditions on top and bottom boundaries of the
flow domain are satisfied exactly by Eqs. (2.1)–(2.7).

In order to formulate the problem fully, suitable matching conditions at the fixed
positions of the leading (x = xL

k ) and traling edges (x = xT
k ) of each floating sheet must

be specified. Since the elastic sheets are floating freely, the bending moment and the
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Floating elastic surfaces are observed in nature and are widely utilized in industry.

Therefore the study of wave action on elastic floating bodies has received considerable
attention. Floating ice sheets of di↵erent sizes, for example, are commonly observed in
marginal ice zones, see Squire et al (1995). Wave interaction with floating ice sheets is
of interest due to the e↵ect that the ice sheets have on the wave field, and the impact
of waves on the ice sheets, particularly when it results in breaking of the ice sheet to
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Discussion of results. Results of the level I GN model for wave interaction with N number of floating
and deformable ice sheets are presented here. The results include plates deformations, time series of wave
induced forces, and variation of the forces with wave conditions. In these preliminary cases, we assume
that the plates are fixed in their horizontal locations.

Figure 2 shows velocity vectors of fluid particles plotted on contours of fluid velocity module
(u2 + v2)1/2 in case of interaction of solitary wave with two plates, floating at a short distance �L = 5
from each other, at three successive time moments. Small-amplitude leading waves propagate with higher
speed along the elastic surfaces, and hence the fluid domain feels the wave motion long before the wave
itself reaches the end of the second plate. These elastic waves cause greater wave attenuation in a longer
plate with higher rigidity. Another contribution to the wave attenuation is due to the e↵ect of multiple
plates (see [8]).

Fig. 2. Vector field and module contours of dimensionless fluid velocity for the interaction of a solitary wave
(A = 0.25) with the set of two plates with the same properties (Lk = 30, mk = 0.1, Dk = 5) divided by the
fluid gap (�L = 5).

Figure 3 shows the interaction of a cnoidal wave with a set of three elastic plates of the same properties
for two values of plate rigidity. Also shown in figure 3 are the time series of the wave-induced horizontal
cnoidal forces on these deformable ice sheets. The amplitudes of plates displacement and horizontal force
reduces downwave. The higher rigidity Dk of each plate contributes to the higher wave attenuation by
the floating system and to the lower drift of it’s elements.

Figure 4 shows the variation of the peak cnoidal wave horizontal force on the ice sheets F+
1 with the

incoming wave length � and height H for the cases of a single plate and two plates located at di↵erent
distances �L from each other. The e↵ect of multiple plates is greater for shorter distance. The first
plate in the group of plates experiences greater drift force than a single plate of the same properties if the
distance is small. For larger distance, the second plate has less impact on the first plate and experiences
less horizontal force itself. Figure also 4 shows that drift force varies almost linearly with the wave height
and slight deviation of force from the straight line in the case of two plates can be observed.

More detailed discussion of results, including the interplay between individual e↵ects of each plate
in more complex plate systems and the drift motion of the plates, will be presented at the workshop.

�L1
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At the leading x = xk
L and trailing x = xk

T edges of the ice sheets, the bending moments together with shear

stresses must vanish due to the free-free end boundary condition (⇣xx = ⇣xxx = 0). Applying this relations to

the first equation (1), we obtain another conditions under the edges of the plates:

3⌘xuxx + (1 � hk + ⌘)uxxx = 0, 4⌘xuxxx + (1 � hk + ⌘)uxxxx + ⌘xxxxu = 0, (x = xk
L, xk

T ), (3)

The appropriate jump conditions are demanded by the theory because the fluid surface is singular or discon-

tinuous at the juncture of regions I and II. The matching conditions, demanded by the physics of the problem,

include continous surface elevation, mass flux and bottom pressure across the discontinuity curves x = xk
L,

x = xk
T .

The system of equations (1) and (2), subject to appropriate boundary conditions (3) in each region, along

with the matching and jump conditions prescribe the motion of the fluid in the entire domain and are solved

simultaneously for the unknowns. Spatial discretization of the equations is carried out by a central-di↵erence

method and time marching is obtained by use of the modified Euler’s method. The system of equations are to

be solved by use of a Gaussian elimination method.

The underlying principle of this technique is that at a given time, equations (2) can be solved explicitly for

⇣t once u is known. Then, ⇣t is substituted into the second equation of the system (2) to solve for ut.

(1 � m⌘xx)ut � [⌘x(1 + ⌘) + 2m⌘x]uxt � [
1

3
(1 + ⌘)2 + m(1 + ⌘)]uxxt = �Yf � Yp,

Yf = ⌘x(1 � hk + ⇣)(u2
x � uuxx) +

1

3
(1 � hk + ⇣)2(uxuxx � uuxxx) + uux + ⇣x,

Yp = m[(1 � hk + ⇣)(3uxuxx + uuxxx) + D⇣xxxxx + ⇣xxxu2 + 5⇣xxuux + 4⇣x(u2
x + uuxx)].

(4)

The equation for ⌘ in RI can be obtained from (4) by simply equating the parameters mk, Dk and hk to zero.

The continuous variables ⌘(x, t) and u(x, t) in (4) are approximated by discrete variables ⌘n
i and un

i , respec-

tively, where i is the mesh point in the spatial domain and n specifies a mesh point on the time axis. At each

given time, such discretization results in an array of N unknowns, and an N ⇥N coe�cient matrix, where N is

the total number of mesh points in the computational domain. The coe�cient matrix is a banded matrix and

the Gaussian elimination algorithm for a banded diagonal matrix is used to solve the system of equations.

The higher derivatives in the jump and boundary conditions require the involvement of fictitious points

between each pair of regions.
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Abstract The present research is dedicated to the interaction of waves with multiple deformable ice sheets floating

in marginal ice zones. The simultaneous motion of the ice sheets and the fluid is regarded within the framework of linear

beam theory for the structures and the nonlinear Level I Green-Naghdi theory for the fluid. The resulting governing

equations, subjected to appropriate boundary and jump conditions, are solved by finite di↵erence method.

Green-Naghdi theory Nonlinear waves of solitary and cnoidal types propagating from left to right and

exciting the motion of the set of N floating elastic ice sheets are considered. The ice sheets have arbitrary width

lk, mass mk and elasticity Dk.

Figure 1. Scheme of motion.

The mathematical model employed in this study is provided by the Level I Green-Naghdi theory (Green &

Nahgdi, 1976) which is mostly apliacable to the propagation of fairly long waves in shallow waters. This theory

is also known as the restricted theory and assumes a linear distribution of the vertical velocity along the water

column. This assumption, which is the only one made about the kinematics of the fluid sheet, results in the

horizontal velocities being invariant in the vertical direction for an incompressible fluid.

In the analysis of this problem, it becomes necessary to consider two types of fluid regions: type I, for

which the top curve of the fluid sheet is free and on the top pressure p̂ is constant; and type II, for which the

upper pressure p̂ remains unknown. In type I regions, the governing equations for the motion of the fluid in

dimensionless variables can be written as follows (Ertekin, 1984)

⌘t + [(1 + ⌘)u]x = 0, u̇ + ⌘x = �1

3
[2⌘x⌘̈ + (1 + ⌘)⌘̈x]. (1)

The system (1) can be solved to find the two unknown functions, such as surface elevation ⌘(x, t) and depth

averaged horizontal velocity u(x, t). In type II region the motion of the fluid under the plate is prescribed by

equations where fluid and plate are coupled through the dynamic free-surface condition from the linear beam

theory

⇣t + [(1 � hk + ⇣)u]x = 0, u̇ + ⇣x + p̂x = �1

3
[2⇣x⇣̈ + (1 � hk + ⇣)⇣̈x], p̂ = mk⇣tt + Dk⇣xxxx + m. (2)

The system (2) is integrated for the unknown deformation of the plate ⇣, depth averaged horizontal velocity u

and pressure under the ice p̂. Then the pressure at the bottom surface of the fluid sheet and vertical component

of particle velocity can be determined from equations

p =
1

2

(
(1 + ⌘)(⌘̈ + 2), in RI

(1 � hk + ⇣)(⇣̈ + 2) + p̂, in RII
v(y) = (y + 1)

8
>><
>>:

⌘̇

⌘ + 1
, in RI
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At the leading x = xk
L and trailing x = xk

T edges of the ice sheets, the bending moments together with shear

stresses must vanish due to the free-free end boundary condition (⇣xx = ⇣xxx = 0). Applying this relations to

the first equation (1), we obtain another conditions under the edges of the plates:

3⌘xuxx + (1 � hk + ⌘)uxxx = 0, 4⌘xuxxx + (1 � hk + ⌘)uxxxx + ⌘xxxxu = 0, (x = xk
L, xk

T ), (3)

The appropriate jump conditions are demanded by the theory because the fluid surface is singular or discon-

tinuous at the juncture of regions I and II. The matching conditions, demanded by the physics of the problem,

include continous surface elevation, mass flux and bottom pressure across the discontinuity curves x = xk
L,

x = xk
T .

The system of equations (1) and (2), subject to appropriate boundary conditions (3) in each region, along

with the matching and jump conditions prescribe the motion of the fluid in the entire domain and are solved

simultaneously for the unknowns. Spatial discretization of the equations is carried out by a central-di↵erence

method and time marching is obtained by use of the modified Euler’s method. The system of equations are to

be solved by use of a Gaussian elimination method.

The underlying principle of this technique is that at a given time, equations (2) can be solved explicitly for

⇣t once u is known. Then, ⇣t is substituted into the second equation of the system (2) to solve for ut.

(1 � m⌘xx)ut � [⌘x(1 + ⌘) + 2m⌘x]uxt � [
1

3
(1 + ⌘)2 + m(1 + ⌘)]uxxt = �Yf � Yp,

Yf = ⌘x(1 � hk + ⇣)(u2
x � uuxx) +

1

3
(1 � hk + ⇣)2(uxuxx � uuxxx) + uux + ⇣x,

Yp = m[(1 � hk + ⇣)(3uxuxx + uuxxx) + D⇣xxxxx + ⇣xxxu2 + 5⇣xxuux + 4⇣x(u2
x + uuxx)].

(4)

The equation for ⌘ in RI can be obtained from (4) by simply equating the parameters mk, Dk and hk to zero.

The continuous variables ⌘(x, t) and u(x, t) in (4) are approximated by discrete variables ⌘n
i and un

i , respec-

tively, where i is the mesh point in the spatial domain and n specifies a mesh point on the time axis. At each

given time, such discretization results in an array of N unknowns, and an N �N coe�cient matrix, where N is

the total number of mesh points in the computational domain. The coe�cient matrix is a banded matrix and

the Gaussian elimination algorithm for a banded diagonal matrix is used to solve the system of equations.

The higher derivatives in the jump and boundary conditions require the involvement of fictitious points

between each pair of regions.
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The system of equations (1) and (2), subject to appropriate boundary conditions (3) in each region, along

with the matching and jump conditions prescribe the motion of the fluid in the entire domain and are solved

simultaneously for the unknowns. Spatial discretization of the equations is carried out by a central-di↵erence

method and time marching is obtained by use of the modified Euler’s method. The system of equations are to

be solved by use of a Gaussian elimination method.

The underlying principle of this technique is that at a given time, equations (2) can be solved explicitly for

⇣t once u is known. Then, ⇣t is substituted into the second equation of the system (2) to solve for ut.
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The equation for ⌘ in RI can be obtained from (4) by simply equating the parameters mk, Dk and hk to zero.

The continuous variables ⌘(x, t) and u(x, t) in (4) are approximated by discrete variables ⌘n
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tively, where i is the mesh point in the spatial domain and n specifies a mesh point on the time axis. At each

given time, such discretization results in an array of N unknowns, and an N �N coe�cient matrix, where N is

the total number of mesh points in the computational domain. The coe�cient matrix is a banded matrix and

the Gaussian elimination algorithm for a banded diagonal matrix is used to solve the system of equations.

The higher derivatives in the jump and boundary conditions require the involvement of fictitious points
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Abstract The present research is dedicated to the interaction of waves with multiple deformable ice sheets floating

in marginal ice zones. The simultaneous motion of the ice sheets and the fluid is regarded within the framework of linear

beam theory for the structures and the nonlinear Level I Green-Naghdi theory for the fluid. The resulting governing

equations, subjected to appropriate boundary and jump conditions, are solved by finite di�erence method.

Green-Naghdi theory Nonlinear waves of solitary and cnoidal types propagating from left to right and

exciting the motion of the set of N floating elastic ice sheets are considered. The ice sheets have arbitrary width

lk, mass mk and elasticity Dk.

Figure 1. Scheme of motion.

The mathematical model employed in this study is provided by the Level I Green-Naghdi theory (Green &

Nahgdi, 1976) which is mostly apliacable to the propagation of fairly long waves in shallow waters. This theory

is also known as the restricted theory and assumes a linear distribution of the vertical velocity along the water

column. This assumption, which is the only one made about the kinematics of the fluid sheet, results in the

horizontal velocities being invariant in the vertical direction for an incompressible fluid.

In the analysis of this problem, it becomes necessary to consider two types of fluid regions: type I, for

which the top curve of the fluid sheet is free and on the top pressure p̂ is constant; and type II, for which the

upper pressure p̂ remains unknown. In type I regions, the governing equations for the motion of the fluid in

dimensionless variables can be written as follows (Ertekin, 1984)

⌘t + [(1 + ⌘)u]x = 0, u̇ + ⌘x = �1

3
[2⌘x⌘̈ + (1 + ⌘)⌘̈x]. (1)

The system (1) can be solved to find the two unknown functions, such as surface elevation ⌘(x, t) and depth

averaged horizontal velocity u(x, t). In type II region the motion of the fluid under the plate is prescribed by

equations where fluid and plate are coupled through the dynamic free-surface condition from the linear beam

theory

⇣t + [(1 � hk + ⇣)u]x = 0, u̇ + ⇣x + p̂x = �1

3
[2⇣x⇣̈ + (1 � hk + ⇣)⇣̈x], p̂ = mk⇣tt + Dk⇣xxxx + m. (2)

The system (2) is integrated for the unknown deformation of the plate ⇣, depth averaged horizontal velocity u

and pressure under the ice p̂. Then the pressure at the bottom surface of the fluid sheet and vertical component

of particle velocity can be determined from equations

p =
1

2

�
(1 + ⌘)(⌘̈ + 2), in RI

(1 � hk + ⇣)(⇣̈ + 2) + p̂, in RII
v(y) = (y + 1)

�
���
���

⌘̇

⌘ + 1
, in RI

⇣̇

⇣ + 1
, in RII.
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2. Formulation of the problem

The plane irrotational flow of heavy inviscid fluid of constant depth h is considered in
the coordinate system Oxy with the horizontal axis lying on the undisturbed free surface
and vertical axis directed upwards. Incident waves propagate in the positive x–direction
and excite the motion of the set of N floating deformable sheets being initially at rest.
The k-th sheet has the width Lk, draft dk, mass per unit width mk and elasticity Dk.
Let Lk,k+1 denote the distance between adjacent sheets. It is useful to introduce the
clearence between the bottom of the plate and the sea floor as hk = h � dk. A sketch
of the problem is shown in Fig. 1. It is assumed that elastic sheets are restricted to the
vertical motion only and are always in contact with the fluid. The loss of energy due to
the structural damping is neglected and plate overwashing is disregarded.

The dimensionless variables use the fluid depth h as a length scale, the ratio
p

h/g
as a time unit, the quantity ⇢h as a mass unit. Here ⇢ and g are respectively the fluid
density and gravity acceleration.

The governing equations for the motion of the fluid are provided by the Level I Green-
Naghdi (GN) theory. They can be written in a compact form

It is conventional to divide the fluid domain into subregions of two types (RI and RII).
Subregion of the first type is formed by the flat floor at the bottom and by the free
surface at the top. The pressure on the top free surface is constant atmospheric pressure.
Subregion of the second type is formed by the flat floor at the bottom and by elastic
plate at the top. As opposed to region RI, the pressure on the top of region RII depends
on vertical displacement of the ice sheet. The Level I GN theory of the directed fluid
sheets will be adopted to treat the fluid problem and to use it with suitable matching
conditions on the juncture boundary between the subdomains RI and RII.

⌘t + [(hk + ⌘)u]x = 0, (2.1)

u̇ + ⌘x + p̂x = �1

3
[2⌘x⌘̈ + (hk + ⌘)⌘̈x] (2.2)

for k-th sheet, k = 1, . . . , N . The motion of the fluid and the plate is coupled through
the dynamic free-surface condition. The vertical displacement of the plate ⌘ is governed
by the thin elastic plate theory:

p̂ = mk⌘tt + Dk⌘xxxx + mk, (2.3)

The system (2.1)-(2.3) is integrated for the unknowns ⌘(x, t), u(x, t) and upper pressure
p̂(x, t). Then the pressure at the sea-floor (y = �1) and vertical velocity can be
determined from equations:

p̄ =
1

2
(hk + ⌘)(⌘̈ + 2) + p̂, (2.4)

v(y) =
1 + y

hk + ⇣
⌘̇. (2.5)

The formula (2.5) implies zero vertical velocity along the bottom (y = �1). The equation
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method developed demonstrates high e�ciency, performing calculation with multiple
sheets in seconds. Although the theory adopted in the paper was initally constructed for
studying the interaction between water waves and very large floating objects, the study
has shown that this method is also valid for small- and middle-sized floating surfaces.
The e↵ect of the multiple sheets and the distance between them is studied. The interplay
between individual e↵ects of the sheet properties can be explored more thoroughly than it
is attempted here. The obtained solution is validated by comparing with other numerical
solutions and experimental data obtained with use of alternative methods.
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stresses must vanish due to the free-free end boundary condition (⇣xx = ⇣xxx = 0). Applying this relations to

the first equation (1), we obtain another conditions under the edges of the plates:
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Abstract The present research is dedicated to the interaction of waves with multiple deformable ice sheets floating

in marginal ice zones. The simultaneous motion of the ice sheets and the fluid is regarded within the framework of linear

beam theory for the structures and the nonlinear Level I Green-Naghdi theory for the fluid. The resulting governing

equations, subjected to appropriate boundary and jump conditions, are solved by finite di↵erence method.

Green-Naghdi theory Nonlinear waves of solitary and cnoidal types propagating from left to right and

exciting the motion of the set of N floating elastic ice sheets are considered. The ice sheets have arbitrary width

lk, mass mk and elasticity Dk.

Figure 1. Scheme of motion.

The mathematical model employed in this study is provided by the Level I Green-Naghdi theory (Green &

Nahgdi, 1976) which is mostly apliacable to the propagation of fairly long waves in shallow waters. This theory

is also known as the restricted theory and assumes a linear distribution of the vertical velocity along the water

column. This assumption, which is the only one made about the kinematics of the fluid sheet, results in the

horizontal velocities being invariant in the vertical direction for an incompressible fluid.

In the analysis of this problem, it becomes necessary to consider two types of fluid regions: type I, for

which the top curve of the fluid sheet is free and on the top pressure p̂ is constant; and type II, for which the

upper pressure p̂ remains unknown. In type I regions, the governing equations for the motion of the fluid in

dimensionless variables can be written as follows (Ertekin, 1984)

⌘t + [(1 + ⌘)u]x = 0, u̇ + ⌘x = �1

3
[2⌘x⌘̈ + (1 + ⌘)⌘̈x]. (1)

The system (1) can be solved to find the two unknown functions, such as surface elevation ⌘(x, t) and depth
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Abstract The present research is dedicated to the interaction of waves with multiple deformable ice sheets floating

in marginal ice zones. The simultaneous motion of the ice sheets and the fluid is regarded within the framework of linear

beam theory for the structures and the nonlinear Level I Green-Naghdi theory for the fluid. The resulting governing

equations, subjected to appropriate boundary and jump conditions, are solved by finite di↵erence method.

Green-Naghdi theory Nonlinear waves of solitary and cnoidal types propagating from left to right and

exciting the motion of the set of N floating elastic ice sheets are considered. The ice sheets have arbitrary width

lk, mass mk and elasticity Dk.

Figure 1. Scheme of motion.
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At the leading x = xk
L and trailing x = xk

T edges of the ice sheets, the bending moments together with shear

stresses must vanish due to the free-free end boundary condition (⇣xx = ⇣xxx = 0). Applying this relations to

the first equation (1), we obtain another conditions under the edges of the plates:

3⌘xuxx + (1 � hk + ⌘)uxxx = 0, 4⌘xuxxx + (1 � hk + ⌘)uxxxx + ⌘xxxxu = 0, (x = xk
L, xk

T ), (3)

The appropriate jump conditions are demanded by the theory because the fluid surface is singular or discon-

tinuous at the juncture of regions I and II. The matching conditions, demanded by the physics of the problem,

include continous surface elevation, mass flux and bottom pressure across the discontinuity curves x = xk
L,

x = xk
T .

The system of equations (1) and (2), subject to appropriate boundary conditions (3) in each region, along

with the matching and jump conditions prescribe the motion of the fluid in the entire domain and are solved

simultaneously for the unknowns. Spatial discretization of the equations is carried out by a central-di↵erence

method and time marching is obtained by use of the modified Euler’s method. The system of equations are to

be solved by use of a Gaussian elimination method.

The underlying principle of this technique is that at a given time, equations (2) can be solved explicitly for

⇣t once u is known. Then, ⇣t is substituted into the second equation of the system (2) to solve for ut.

(1 � m⌘xx)ut � [⌘x(1 + ⌘) + 2m⌘x]uxt � [
1

3
(1 + ⌘)2 + m(1 + ⌘)]uxxt = �Yf � Yp,

Yf = ⌘x(1 � hk + ⇣)(u2
x � uuxx) +

1

3
(1 � hk + ⇣)2(uxuxx � uuxxx) + uux + ⇣x,

Yp = m[(1 � hk + ⇣)(3uxuxx + uuxxx) + D⇣xxxxx + ⇣xxxu2 + 5⇣xxuux + 4⇣x(u2
x + uuxx)].

(4)

The equation for ⌘ in RI can be obtained from (4) by simply equating the parameters mk, Dk and hk to zero.

The continuous variables ⌘(x, t) and u(x, t) in (4) are approximated by discrete variables ⌘n
i and un

i , respec-

tively, where i is the mesh point in the spatial domain and n specifies a mesh point on the time axis. At each

given time, such discretization results in an array of N unknowns, and an N �N coe�cient matrix, where N is

the total number of mesh points in the computational domain. The coe�cient matrix is a banded matrix and

the Gaussian elimination algorithm for a banded diagonal matrix is used to solve the system of equations.

The higher derivatives in the jump and boundary conditions require the involvement of fictitious points

between each pair of regions.
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The appropriate jump conditions are demanded by the theory because the fluid surface is singular or discon-

tinuous at the juncture of regions I and II. The matching conditions, demanded by the physics of the problem,

include continous surface elevation, mass flux and bottom pressure across the discontinuity curves x = xk
L,

x = xk
T .

The system of equations (1) and (2), subject to appropriate boundary conditions (3) in each region, along

with the matching and jump conditions prescribe the motion of the fluid in the entire domain and are solved

simultaneously for the unknowns. Spatial discretization of the equations is carried out by a central-di↵erence

method and time marching is obtained by use of the modified Euler’s method. The system of equations are to

be solved by use of a Gaussian elimination method.

The underlying principle of this technique is that at a given time, equations (2) can be solved explicitly for

⇣t once u is known. Then, ⇣t is substituted into the second equation of the system (2) to solve for ut.

(1 � m⌘xx)ut � [⌘x(1 + ⌘) + 2m⌘x]uxt � [
1

3
(1 + ⌘)2 + m(1 + ⌘)]uxxt = �Yf � Yp,

Yf = ⌘x(1 � hk + ⇣)(u2
x � uuxx) +

1

3
(1 � hk + ⇣)2(uxuxx � uuxxx) + uux + ⇣x,

Yp = m[(1 � hk + ⇣)(3uxuxx + uuxxx) + D⇣xxxxx + ⇣xxxu2 + 5⇣xxuux + 4⇣x(u2
x + uuxx)].

(4)

The equation for ⌘ in RI can be obtained from (4) by simply equating the parameters mk, Dk and hk to zero.

The continuous variables ⌘(x, t) and u(x, t) in (4) are approximated by discrete variables ⌘n
i and un

i , respec-

tively, where i is the mesh point in the spatial domain and n specifies a mesh point on the time axis. At each

given time, such discretization results in an array of N unknowns, and an N �N coe�cient matrix, where N is

the total number of mesh points in the computational domain. The coe�cient matrix is a banded matrix and

the Gaussian elimination algorithm for a banded diagonal matrix is used to solve the system of equations.

The higher derivatives in the jump and boundary conditions require the involvement of fictitious points

between each pair of regions.
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Figure 1. Scheme of motion.

The mathematical model employed in this study is provided by the Level I Green-Naghdi theory (Green &

Nahgdi, 1976) which is mostly apliacable to the propagation of fairly long waves in shallow waters. This theory

is also known as the restricted theory and assumes a linear distribution of the vertical velocity along the water

column. This assumption, which is the only one made about the kinematics of the fluid sheet, results in the

horizontal velocities being invariant in the vertical direction for an incompressible fluid.

In the analysis of this problem, it becomes necessary to consider two types of fluid regions: type I, for

which the top curve of the fluid sheet is free and on the top pressure p̂ is constant; and type II, for which the

upper pressure p̂ remains unknown. In type I regions, the governing equations for the motion of the fluid in

dimensionless variables can be written as follows (Ertekin, 1984)

⌘t + [(1 + ⌘)u]x = 0, u̇ + ⌘x = �1

3
[2⌘x⌘̈ + (1 + ⌘)⌘̈x]. (1)

The system (1) can be solved to find the two unknown functions, such as surface elevation ⌘(x, t) and depth

averaged horizontal velocity u(x, t). In type II region the motion of the fluid under the plate is prescribed by

equations where fluid and plate are coupled through the dynamic free-surface condition from the linear beam

theory

⇣t + [(1 � hk + ⇣)u]x = 0, u̇ + ⇣x + p̂x = �1

3
[2⇣x⇣̈ + (1 � hk + ⇣)⇣̈x], p̂ = mk⇣tt + Dk⇣xxxx + m. (2)

The system (2) is integrated for the unknown deformation of the plate ⇣, depth averaged horizontal velocity u

and pressure under the ice p̂. Then the pressure at the bottom surface of the fluid sheet and vertical component

of particle velocity can be determined from equations

p =
1

2

�
(1 + ⌘)(⌘̈ + 2), in RI

(1 � hk + ⇣)(⇣̈ + 2) + p̂, in RII
v(y) = (y + 1)

�
���
���

⌘̇

⌘ + 1
, in RI

⇣̇

⇣ + 1
, in RII.
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Figure 1. Scheme of motion.

2. Formulation of the problem

The plane irrotational flow of heavy inviscid fluid of constant depth h is considered in
the coordinate system Oxy with the horizontal axis lying on the undisturbed free surface
and vertical axis directed upwards. Incident waves propagate in the positive x–direction
and excite the motion of the set of N floating deformable sheets being initially at rest.
The k-th sheet has the width Lk, draft dk, mass per unit width mk and elasticity Dk.
Let Lk,k+1 denote the distance between adjacent sheets. It is useful to introduce the
clearence between the bottom of the plate and the sea floor as hk = h � dk. A sketch
of the problem is shown in Fig. 1. It is assumed that elastic sheets are restricted to the
vertical motion only and are always in contact with the fluid. The loss of energy due to
the structural damping is neglected and plate overwashing is disregarded.

The dimensionless variables use the fluid depth h as a length scale, the ratio
p

h/g
as a time unit, the quantity ⇢h as a mass unit. Here ⇢ and g are respectively the fluid
density and gravity acceleration.

The governing equations for the motion of the fluid are provided by the Level I Green-
Naghdi (GN) theory. They can be written in a compact form

It is conventional to divide the fluid domain into subregions of two types (RI and RII).
Subregion of the first type is formed by the flat floor at the bottom and by the free
surface at the top. The pressure on the top free surface is constant atmospheric pressure.
Subregion of the second type is formed by the flat floor at the bottom and by elastic
plate at the top. As opposed to region RI, the pressure on the top of region RII depends
on vertical displacement of the ice sheet. The Level I GN theory of the directed fluid
sheets will be adopted to treat the fluid problem and to use it with suitable matching
conditions on the juncture boundary between the subdomains RI and RII.

⌘t + [(hk + ⌘)u]x = 0, (2.1)

u̇ + ⌘x + p̂x = �1

3
[2⌘x⌘̈ + (hk + ⌘)⌘̈x] (2.2)

for k-th sheet, k = 1, . . . , N . The motion of the fluid and the plate is coupled through
the dynamic free-surface condition. The vertical displacement of the plate ⌘ is governed
by the thin elastic plate theory:

p̂ = mk⌘tt + Dk⌘xxxx + mk, (2.3)

The system (2.1)-(2.3) is integrated for the unknowns ⌘(x, t), u(x, t) and upper pressure
p̂(x, t). Then the pressure at the sea-floor (y = �1) and vertical velocity can be
determined from equations:

p̄ =
1

2
(hk + ⌘)(⌘̈ + 2) + p̂, (2.4)

v(y) =
1 + y

hk + ⇣
⌘̇. (2.5)

The formula (2.5) implies zero vertical velocity along the bottom (y = �1). The equation
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method developed demonstrates high e�ciency, performing calculation with multiple
sheets in seconds. Although the theory adopted in the paper was initally constructed for
studying the interaction between water waves and very large floating objects, the study
has shown that this method is also valid for small- and middle-sized floating surfaces.
The e↵ect of the multiple sheets and the distance between them is studied. The interplay
between individual e↵ects of the sheet properties can be explored more thoroughly than it
is attempted here. The obtained solution is validated by comparing with other numerical
solutions and experimental data obtained with use of alternative methods.
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Figure 1. Schematic of the problem of nonlinear wave interaction with N number of plates of
arbitrary size and location. Also shown in this figure are the RI and RII regions refereed to in
the text.

GN theory for a flat and stationary seafloor. They can be written in a compact form as
(see Ertekin et al (1986)):

⌘,t +[(1 + ⌘)u],x = 0, (2.1)

u̇ +⌘,x = �1

3
[2⌘,x⌘̈ + (1 + ⌘)⌘̈,x]. (2.2)

Similarly, the governing equations for the coupled motion of the fluid and the elastic
sheet in RII can be written as:

⇣,t +[(hk + ⇣)u],x = 0, (2.3)

u̇ +⇣,x + p̂,x = �1

3
[2⇣,x⇣̈ + (hk + ⇣)⇣̈,x], (2.4)

In our notation subscript with comma denotes the partial derivative and upper dot
specifies the total time derivative (⌘̇ = ⌘,t + u⌘,x). The wave-induced pressure under the
plate is given by the thin elastic plate theory:

p̂ = mk⇣,tt + Dk⇣,xxxx + mk, (2.5)

where the flexural rigidity is defined by

Dk = Ek�
3
k/12(1 � ⌫2

k),

with �k, Ek, and ⌫k being the thickness, Young’s modulus and Poisson’s ratio of the k-th
plate, respectively. Eqs. (2.1)–(2.5) can be integrated for the unknowns: free surface ele-
vation ⌘(x, t), plate deflection ⇣(x, t), both measured from the still water level, horizontal
component of fluid velocity u(x, t) and pressure p̂(x, t) under the plate.

Ertekin (1984) provided explicit relations for the vertical velocity of the fluid and
pressure on the bottom (y = �1), given as:

v (y) =
1 + y

1 + ⌘
⌘̇ (x, y) 2 RI, v(y) =

1 + y

hk + ⇣
⇣̇ (x, y) 2 RII, (2.6)

p̄ =
1

2
(1 + ⌘)(⌘̈ + 2) (x, y) 2 RI, p̄ =

1

2
(hk + ⇣)(⇣̈ + 2) + p̂ (x, y) 2 RII. (2.7)

The nonlinear kinematic and dynamic conditions on top and bottom boundaries of the
flow domain are satisfied exactly by Eqs. (2.1)–(2.7).

In order to formulate the problem fully, suitable matching conditions at the fixed
positions of the leading (x = xL

k ) and traling edges (x = xT
k ) of each floating sheet must

be specified. Since the elastic sheets are floating freely, the bending moment and the
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Floating elastic surfaces are observed in nature and are widely utilized in industry.

Therefore the study of wave action on elastic floating bodies has received considerable
attention. Floating ice sheets of di↵erent sizes, for example, are commonly observed in
marginal ice zones, see Squire et al (1995). Wave interaction with floating ice sheets is
of interest due to the e↵ect that the ice sheets have on the wave field, and the impact
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Discussion of results. Results of the level I GN model for wave interaction with N number of floating
and deformable ice sheets are presented here. The results include plates deformations, time series of wave
induced forces, and variation of the forces with wave conditions. In these preliminary cases, we assume
that the plates are fixed in their horizontal locations.

Figure 2 shows velocity vectors of fluid particles plotted on contours of fluid velocity module
(u2 + v2)1/2 in case of interaction of solitary wave with two plates, floating at a short distance �L = 5
from each other, at three successive time moments. Small-amplitude leading waves propagate with higher
speed along the elastic surfaces, and hence the fluid domain feels the wave motion long before the wave
itself reaches the end of the second plate. These elastic waves cause greater wave attenuation in a longer
plate with higher rigidity. Another contribution to the wave attenuation is due to the e↵ect of multiple
plates (see [8]).

Fig. 2. Vector field and module contours of dimensionless fluid velocity for the interaction of a solitary wave
(A = 0.25) with the set of two plates with the same properties (Lk = 30, mk = 0.1, Dk = 5) divided by the
fluid gap (�L = 5).

Figure 3 shows the interaction of a cnoidal wave with a set of three elastic plates of the same properties
for two values of plate rigidity. Also shown in figure 3 are the time series of the wave-induced horizontal
cnoidal forces on these deformable ice sheets. The amplitudes of plates displacement and horizontal force
reduces downwave. The higher rigidity Dk of each plate contributes to the higher wave attenuation by
the floating system and to the lower drift of it’s elements.

Figure 4 shows the variation of the peak cnoidal wave horizontal force on the ice sheets F+
1 with the

incoming wave length � and height H for the cases of a single plate and two plates located at di↵erent
distances �L from each other. The e↵ect of multiple plates is greater for shorter distance. The first
plate in the group of plates experiences greater drift force than a single plate of the same properties if the
distance is small. For larger distance, the second plate has less impact on the first plate and experiences
less horizontal force itself. Figure also 4 shows that drift force varies almost linearly with the wave height
and slight deviation of force from the straight line in the case of two plates can be observed.

More detailed discussion of results, including the interplay between individual e↵ects of each plate
in more complex plate systems and the drift motion of the plates, will be presented at the workshop.
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that the plates are fixed in their horizontal locations.

Figure 2 shows velocity vectors of fluid particles plotted on contours of fluid velocity module
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�L = 5 from each other, at three successive time moments. Small-amplitude leading waves propagate
with higher speed along the elastic surfaces, and hence the fluid domain feels the wave motion long before
the wave itself reaches the end of the second plate. These elastic waves cause greater wave attenuation
in a longer plate with higher rigidity. Another contribution to the wave attenuation is due to the e↵ect
of multiple plates (see [8]).
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Figure 3 shows the interaction of a cnoidal wave with a set of three elastic plates of the same properties
for two values of plate rigidity. Also shown in figure 3 are the time series of the wave-induced horizontal
cnoidal forces on these deformable ice sheets. The amplitudes of plates displacement and horizontal force
reduces downwave. The higher rigidity Dk of each plate contributes to the higher wave attenuation by
the floating system and to the lower drift of its elements.

Figure 4 shows the variation of the peak cnoidal wave horizontal force on the ice sheets F+
k with the

incoming wave length � and height H for the cases of a single plate and two plates located at di↵erent
distances �L from each other. The e↵ect of multiple plates is greater for shorter distance. The first
plate in the group of plates experiences greater drift force than a single plate of the same properties if the
distance is small. For larger distance, the second plate has less impact on the first plate and experiences
less horizontal force itself. Figure also 4 shows that drift force varies almost linearly with the wave height
and slight deviation of force from the straight line in the case of two plates can be observed.
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for two values of plate rigidity. Also shown in figure 3 are the time series of the wave-induced horizontal
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Fig. 1. Schematic of the problem of nonlinear wave interaction with N number of deformable plates of
arbitrary size and location. The plates may have horizontal motion due to the wave loads. Also shown in this
figure are the RI and RII regions referred to in the text.

In the context of using the GN equations, the problem is best studied by dividing the fluid domain
into two types of regions. Region I (RI) is formed by a flat floor at the bottom and by a free surface at
the top, where the fluid pressure is the constant atmospheric pressure. Region II (RII) is formed by a
flat floor at the bottom and by an elastic plate at the top, where, as opposed to Region RI, the fluid
pressure is unknown. Solutions, obtained in each region, are connected through the proper matching
conditions at the interfaces.

The governing equations for the motion of the fluid in RI are provided by the Level I GN theory for
a flat and stationary seafloor [2, 3]. Using density, ρ, gravitational acceleration, g, and fluid depth h,
the Level I GN equations can be written in dimensionless and compact form as [4]:

η,t + [(1 + η)u],x = 0, u̇+ η,x = −1

3
[2η,xη̈ + (1 + η)η̈,x], (1)

where η is the surface elevation measured from the still-water level and u is the horizontal particle
velocity. Subscripts after comma indicate differentiation, and superposed dots are the two-dimensional
total derivatives. Similarly, the governing equations for the coupled motion of the fluid and the elastic



sheet in RII Regions can be written as:

ζ,t + [(hk + ζ)u],x = 0, u̇+ ζ,x + p̂,x = −1

3
[2ζ,xζ̈ + (hk + ζ)ζ̈,x], (2)

where ζ is the plate deformation, hk = 1 − dk is dimensionless fluid depth under the k-th plate. The
wave-induced pressure p̂ under the plate is given by the thin elastic plate theory [5], usually adopted to
model ice floes and very large floating structures (VLFS), when they interact with surface waves:

p̂ = mkζ,tt +Dkζ,xxxx +mk. (3)

Here, the flexural rigidity is defined as Dk = Ekδ
3
k/12(1− ν2k), with δk, Ek, and νk being the thickness,

Young’s modulus and Poisson’s ratio of the k-th plate, respectively. Equations (1)–(3) are solved for free
surface elevation η, plate deformation ζ, horizontal component of fluid velocity u and pressure under the
plates p̂.

Ertekin [6] provided explicit relations for the vertical velocity of the fluid along the water column
and pressure on the bottom (y = −1), given as:

v(x, y) =

{
η̇ (1 + y)/(1 + η), (x, y) ∈ RI
ζ̇ (hk + y)/(hk + ζ), (x, y) ∈ RII,

p̄(x) =

{
1
2(1 + η)(η̈ + 2), (x, y) ∈ RI
1
2(hk + ζ)(ζ̈ + 2) + p̂, (x, y) ∈ RII.

(4)
In order to obtain continuous solution, suitable matching conditions at the leading (x = xLk ) and

trailing (x = xTk ) edges of each floating sheet must be specified. Since the elastic sheets are floating
freely, the bending moment and the shear stress should vanish at the edges, i.e. Dkη,xx = Dkη,xxx = 0.
Moreover, we assume no gap between the bottom surface of the sheets and the top surface of the fluid
layer, and hence the mass continuity equation (2) together with vanishing bending moment condition
imply:

3ζ,xu,xx + (hk + ζ)u,xxx = 0, 4ζ,xu,xxx + (hk + ζ)u,xxxx + ζ,xxxxu = 0. (5)

In the approach discussed above, the floating elastic surfaces cause discontinuities of the fluid layer
and velocity at the interfaces between regions. Consequently, the derivatives of η and u are also discon-
tinuous. Appropriate jump conditions should be called to provide the matching of the solution at the
interfaces between regions. The theory demands the conservation of mass and momentum (achieved by
continuity of bottom pressure across the discontinuity curves).

On the left side of the domain, numerical wavemaker capable of generating GN solitary and cnoidal
waves is installed. On the right side of the domain, Orlanski condition is used to minimise the wave
reflection back to the domain.

The system of equations of the entire domain, subject to appropriate boundary conditions in each
region, along with the matching and jump conditions, is solved simultaneously for the unknowns. Spatial
discretization of the equations is carried out by a central-difference method, second order in space, and
time marching is obtained by use of the modified Euler’s method. The system of equations are solved by
use of a Guassian Elimination method. Hayatdavoodi & Ertekin [7] applied successfully the same model
to nonlinear problem of the wave scattering by a submerged rigid plate.

In two-dimensions, the horizontal wave-induced force on the floating plate is calculated by considering
the pressure differential at the leading and trailing edges of each plate

Fk(t) = p̂(xLk , t)− p̂(xTk , t). (6)

We note here that since the plate is thin, the two-dimensional horizontal force is the force per unit width
(into the page) and per unit thickness, and thus has the same dimension as pressure. The force Fk has
positive and negative components. Drift motion of the floating ice sheets is determined by solving the
following equation of motion:

mkak,tt = Fk(t), (7)

where ak,tt is the instantaneous horizontal acceleration of k-th plate. Spatial location of each plate is
determined by integrating the horizontal acceleration twice.



Discussion of results. Results of the level I GN model for wave interaction with N number of floating
and deformable ice sheets are presented here. The results include plate deformations, time series of wave
induced forces, and variation of the forces with wave conditions. In these preliminary cases shown here,
we assume that the plates are fixed in their horizontal locations.

Figure 2 shows velocity vectors of fluid particles plotted on contours of fluid velocity module
(u2 + v2)1/2 in case of interaction of a solitary wave with two plates, floating at a short distance
∆L = 5 from each other, at three successive time moments. Small-amplitude leading waves propagate
with higher speed along the elastic surfaces, and hence the fluid domain feels the wave motion long before
the wave itself reaches the end of the second plate. These elastic waves cause greater wave attenuation
in a longer plate with higher rigidity. Another contribution to the wave attenuation is due to the effect
of multiple plates (see [8]).

Fig. 2. Vector field and module contours of dimensionless fluid velocity for the interaction of a solitary wave
(A = 0.25) with the set of two plates with the same properties (Lk = 30, mk = 0.1, Dk = 5) separated by
the fluid gap (∆L = 5).

Figure 3 shows the interaction of a cnoidal wave with a set of three elastic plates of the same properties
for two values of plate rigidity. Also shown in Fig. 3 are the time series of the wave-induced horizontal
cnoidal forces on these deformable ice sheets. The amplitudes of plates deformation and horizontal force
reduces downwave. The higher rigidity Dk of each plate contributes to the higher wave attenuation by
the floating system and to the lower drift of its elements.

Figure 4 shows the variation of the peak cnoidal wave horizontal force on the ice sheets F+
k with

the incoming wave length λ and wave height H for the cases of a single plate and two plates located at
different distances ∆L from each other. The effect of multiple plates is greater for shorter distance. The
first plate in the group of plates experiences greater drift force than a single plate of the same properties
if the distance is small. For larger distance, the second plate has less impact on the first plate and
experiences less horizontal force itself. Figure 4 also shows that drift force varies almost linearly with the
wave height and slight deviation of force from the straight line in the case of two plates can be observed.

More detailed discussion of results, including the interplay between of each plate in more complex
plate systems and the horizontal mean motion of the plates, will be presented at the workshop.
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Also shown in figure 3 are the time series of the wave-induced horizontal cnoidal forces on these
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Fig. 3. Surface elevation and plate displacement for the interaction of the cnoidal wave (H = 0.2,
� = 5) with the set of three identical plates (Lk = 3, mk = 0.01), equally spaced, having the
rigidity (a) Dk = 3 and (b) Dk = 0.1 at the time moment t = 200.

Figure 4 shows the variation of the peak (F+
1 ) cnoidal wave horizontal force on the ice sheets with

the incoming wave length � and height H for the cases of a single plate and two plates located at

di↵erent distances �L from each other. The e↵ect of multiple plates is greater for shorter distance.

The first plate in the group of plates experiences greater drift force than a single plate of the same

properties if the distance is small. For larger distance, the second plate has less impact on the first

plate and experiences less horizontal force itself. Figure also 4 shows that drift force varies almost

linearly with the wave height and slight deviation of force from the straight line in the case of two

plates can be observed.

More detailed discussion of results, including the interplay between individual e↵ects of each plate

in more complex plate systems and the drift motion of the plates, will be presented at the workshop.
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Fig. 3. Surface elevation and plate deformation for the interaction of the cnoidal wave (H = 0.2, λ = 5)
with a set of three identical plates (Lk = 3, mk = 0.01), equally spaced, having the rigidity of (a) Dk = 3 and
(b) Dk = 0.1 at time t = 200. (c) Time series of horizontal force acting on each plate in the set for different
values of rigidity Dk. The peak F+

1 of horizontal force F1 is indicated in the figure.
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� = 5) with the set of three identical plates (Lk = 3, mk = 0.01), equally spaced, having the
rigidity (a) Dk = 3 and (b) Dk = 0.1 at the time moment t = 200.

Figure 4 shows the variation of the peak (F+
x ) cnoidal wave horizontal force on the ice sheets with

the incoming wave length � and height H for the cases of a single plate and two plates located at

di↵erent distances �L from each other. The e↵ect of multiple plates is greater for shorter distance.

The first plate in the group of plates experiences greater drift force than a single plate of the same

properties if the distance is small. For larger distance, the second plate has less impact on the first

plate and experiences less horizontal force itself. Figure also 4 shows that drift force varies almost

linearly with the wave height and slight deviation of force from the straight line in the case of two

plates can be observed.
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Fig. 4. Variation of the peak of cnoidal wave horizontal force on floating ice sheets with wave
length and wave height, for two configurations of a single plate (L = 5, m = 0.01, D = 0.1) and
two identical plates of the same properties. In sub-plots (a) and (b), the distance between the two
plates is �L = L/2, and in (c) and (d) �L = L.

More detailed discussion of results, including the interplay between individual e↵ects of each plate

in more complex plate systems and the drift motion of the plates, will be presented at the workshop.
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Fig. 4. Variation of the peak of cnoidal wave horizontal force on floating ice sheets with wave length and
wave height, for two configurations of a single plate (L = 5, m = 0.01, D = 0.1) and two identical plates of
the same properties. In sub-plots (a) and (b), the distance between the two plates is ∆L = L/2, and in (c)
and (d) ∆L = L.
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