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NON-LOCAL MULTISCALE APPROACHES FOR TUMOUR-ONCOLYTIC

VIRUSES INTERACTIONS

ABDULHAMED ALSISI, RALUCA EFTIMIE, AND DUMITRU TRUCU

Abstract. Oncolytic virus (OV) therapy is a promising treatment for cancer due to the OV selective

ability to infect and replicate inside cancer cells, thus killing them, without harming healthy cells.

In this work, we present a new non-local multiscale moving boundary model for the spatio-temporal

cancer-OV interactions. This model explores an important double feedback loop that links the macro-

scale dynamics of cancer-virus interactions and the micro-scale dynamics of proteolytic activity taking

place at the tumour interface. The cancer cell-cell and cell-matrix interactions are assumed to be

nonlocal, while the cell-virus interactions are assumed local. With the help of this model we inves-

tigate computationally various cancer treatment scenarios involving oncolytic viruses (i.e., the effect

of injecting the OV inside the tumour, or outside it). Moreover, we investigate the effect of different

cell-cell and cell-matrix interaction strengths on the success of OV spreading throughout the tumour,

and the effect of constant or density-dependent virus diffusion coefficients on viral spread.

1. Introduction

Oncolytic virotherapy (OV-therapy) represents an emerging treatment approach for cancers, which

involves a naturally or genetically modified viral strain that selectively infects and damages malignant

cancer cells without causing harm to the surrounding healthy cells [21, 30, 40, 41]; see Figure 1. The

capacity of viruses to kill cancer cells has been acknowledged for almost a century [21], but the detailed

mechanisms behind tumour-virus interactions have started to be understood only over the last few

decades. These oncolytic viruses can enter cancer cells either through receptor binding, or through fusion

with plasma membrane, and once inside they replicate by taking advantage of pathways disregulated

inside cancer cells, or by genetic modification of these cells [21]. Due to high viral replication, the

infected cancer cells burst open releasing new viral particles in the environment, which can infect new

cancer cells. Although the oncolytic viruses can enter also healthy cells, they do not usually replicate

inside these cells and thus do not kill them. Recent advances in the understanding of tumour-virus

interactions at molecular and cellular levels led in 2015 to the approval by the United States of America

Food and Drug Administration (FDA) of the first genetically engineered OV (a Herpex Simplex Virus)

that can be used for treating melanoma patients [40].

Even if multiple oncolytic viruses (OVs) are currently under clinical development [47, 21], the OV-

therapies still have some limitations [21]. These limitations are the result of many factors: from pre-

mature virus clearance due to circulating antibodies and various immune cells, to physical barriers

inside tumours (e.g., interstitial fluid pressure, extracellular matrix (ECM) deposits, tight inter-cellular

junctions, or stromal cells that hinder virus movement), and various cellular defences against viruses

(e.g., anti-viral innate immunity) [2, 20, 21, 51]. To overcome these limitations, numerous experimen-

tal and clinical approaches are currently being considered: from genetically manipulating natural OVs
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Figure 1. Caricature description of the interactions between oncolytic viruses (OVs)

and healthy and cancerous cells: the OVs replicate inside cancer cells, leading to their

lysis; the OVs do not usually replicate inside healthy cells.

to include additional features for improving safety and efficiency [47], to modifications of the immune

responses to enhance virus replication and tumour lysis, or modifications of the physical barriers (e.g.,

via ECM degradation) to improve virus spread [15, 51, 57].

Understanding the interactions between cancer cells and ECM during cancer invasion could shed

a light on the biological mechanisms that might help OV spread by overcoming the physical barriers

inside the tumour microenvironment (as OVs are usually administered during the late stages of cancer,

when cancer invasion is an important process). It is worth mentioning here that cancer invasion involves

several significant steps: reduction or loss of cell-cell adhesion, enhanced cancer cell adhesion to the

extracellular matrix, secretion of matrix degrading enzymes (MDEs) leading to extracellular matrix

degradation, which facilitate the movement of cancer cells [13]. However, the degradation of the ECM

can help also OV spread [51], and therefore a better understanding of the cancer-ECM-OV dynamics

might help improve current OV therapies.

Mathematical models can describe, in an abstract way, the interactions between the various com-

ponents of the tumour microenvironment [17, 42]. They can also be used to perform in silico (i.e.,

computational) experiments when in vivo or in vitro experiments are too expensive or too difficult to

be performed. There are currently many mathematical studies that focus on cancer growth and its

interactions with the oncolytic viruses; see, for example [14, 18, 19, 23, 26, 35, 32, 52, 55] and the

references therein. While most of these models focus on the temporal dynamics of OVs-tumour interac-

tions (mainly because of the availability of temporal data for tumour growth in the presence/absence of

various OV therapies), recent advances in tumour imaging have led to the recent development of models

investigating the spatio-temporal dynamics of tumour-OV interactions [7, 29, 33, 46, 56]. The large

majority of these temporal and spatio-temporal models focus tumour-OV interactions at single spatial

and/or temporal scale. However, since cancer invasion is a complex multiscale phenomenon occurring

across different spatial and temporal scales, it is important to capture and model these multiscale pro-

cesses also for tumour-OV interactions. The last two decades have seen the development of various

mathematical models for multiscale cancer dynamics [1, 34, 39, 48, 49, 50]. Nevertheless, there are



NONLOCAL MULTISCALE TUMOUR-VIRUS INTERACTIONS 251

not many multiscale mathematical models for oncolytic viral therapies and tumour-viral interactions;

among the very few multiscale models we mention those in [3, 4, 37, 38]. These models focus on local

cancer cell dynamics and local interactions between cells, ECM and viruses. In particular, the models

assume that cells move randomly and in a directed manner in response to local densities of other cells

or ECM.

In this study we develop further the multi-scale approach for modelling cancer-OV interactions

introduced in [3, 4], and consider non-local cell-cell and cell-matrix interactions for cancer dynamics.

We are particularly interested in investigating the role of cell-cell and cell-matrix adhesion on cancer cell

movement and degradation of ECM - since this further impacts the spread of OVs. These cell-cell and

cell-matrix adhesion forces are modelled with the help of non-local terms, which describe long-distance

interactions with other cells or with various components of the ECM, which occur when cells extend long

pseudopods to migrate [6, 10]. These non-local adhesive interactions create an adhesive flux that bias

significantly the direction of cell movement [5, 22, 16]. With the help of this new nonlocal multiscale

model for cancer-OV interactions we investigate the impact of cancer cell-cell and cell-matrix adhesion

to the spread of OV through the solid tumour.

In Section 2 we describe the new multiscale mathematical model. In Section 3 we describe the

numerical approach used to discretise the macroscale and microscale equations, while in Section 4

we present the results of the numerical simulations. We conclude in Section 5 with a summary and

discussion of the results.

2. Mathematical Model

Building on the multiscale moving boundary model for cancer invasion introduced in [50] and the

multiscale model of cancer response to OV proposed in [3], in this work we address the multiscale nature

of tumour-OV interactions through a new non-local modelling approach. This modelling captures the

complex tumour-virus-ECM dynamics by exploring the genuine multiscale character of this interaction.

Indeed, the tissue-scale (macro-scale) dynamics of cancer cells, ECM and the virus particles, is inves-

tigated here in conjunction with the crucial cell-scale (micro-scale) proteolytic activity of the MDEs

occurring along the invasive edge of the tumour, while exploring the key double-feedback loop that links

these processes across the two spatial scales. This double feedback loop is realised via a top-down link

and a bottom-up link, as illustrated schematically in Figure 3. The top-down link leads to a MDE source

for the cell-scale proteolytic micro-dynamics occurring at the leading edge of the tumour. In turn, this

micro-dynamics induces a bottom-up link that describes how the tumour boundary moves.

2.1. Macro-Scale Dynamics. At the macro-scale, on a maximal tissue cube Y ⊂ RN (N = 2, 3),

we explore the coupled dynamics of a population density of uninfected cancer cells, c(x, t), and an

ECM density, e(x,t), which interact with a population density of oncolytic virus v(x, t), resulting in

an emergent density of infected cancer cells i(x, t). Denoting, for convenience, the total population of

infected and uninfected cancer cells by

c(x, t) := [c(x, t), i(x, t)],

as illustrated also in Figure 2, the evolving tumour domain Ω(t) ⊂ Y represents the support of c(·, t),
where the combined distributions of uninfected cancer cells c(x, t) and infected cancer cells i(x, t) exercise

their dynamics and interact with the oncolytic virus density v(x, t) within the supporting density of

ECM e(x, t). Thus, since the available macro-scale space is a key condition for this complex dynamics

to take place, denoting by u the total tumour vector, namely

u (x, t) = (c(x, t), e(x, t))T ,
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Figure 2. Schematic diagram showing the cubic tissue region Y . In yellow we illus-

trate the growing cancer cluster Ω(t0), and the small red cube εY belongs of the family

of micro-domains εY covering the tumour boundary ∂Ω(t0).

Figure 3. Schematics showing the interactions between the macroscale (tissue-level)

dynamics of solid tumours and the proteolytic MDEs microscale dynamics which con-

trols tumour boundary relocation. The top-down link describes the interactions be-

tween various cells and their production of MDEs for the proteolytic micro-dynamics.

The bottom-up link focuses on the boundary relocation triggered by the micro-

dynamics. All the notation in this figure were chosen to be consistent with the ones

used in [50], and in this context, x∗
εY

represents a “midpoint” boundary location on

εY ∩ Ω(t0), as determined in [50], whose spatial relocation is representative for the

choreographic movement exercised by the localised tumour interface εY ∩Ω(t0) over a

small time interval [t0, t0 + ∆t].

then the volume fraction of space occupied by the tumour is given as

ρ(x, t) ≡ ρ(u(x, t)) := νee(x, t) + νc
(
c(x, t) + i(x, t)

)
. (2.1)

Here νe represents the fraction of physical space occupied by the ECM and νc is the fraction of physical

space occupied by c and i.
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Throughout this study we assume that cancer cells proliferate logistically. Moreover, we assume that

the uninfected cell population exercises a random movement that is biased by emerging cell adhesion

fluxes (enabled by the underlying cell-cell and cell-matrix processes [8, 11, 28, 31, 54]). This cancer cell

population can be infected by the oncolytic virus at a rate % > 0. We can recast these assumptions

mathematically through the non-local equation

∂c

∂t
= ∇ · [Dc∇c− cA(t, x,u(t, ·))] + µ1c(1− ρ(u))− %cv, (2.2)

where Dc > 0 is a constant diffusion coefficient, µ1 > 0 is a constant proliferation coefficient, while

A(t, x, u(t, ·)) is a non-local term accounting for cell adhesion processes for which we adopt a formulation

similar to the one proposed in [5, 16, 22, 43]. Indeed, at each spatio-temporal point (x, t), the cell

adhesion flux captures cumulative influence of the cell-cell and cell-matrix adhesion junctions established

between the cells distributed at (x, t) and the cells and the ECM distributed at any spatial position y

within a maximal sensing region B(x,R), of radius R > 0, and so this can be mathematically formulated

as

A(t, x,u(t, ·)) =
1

R

∫
B(0,R)

n(y)K(‖y‖2)[Scc c(x+ y, t)

+ Sce e(x+ y, t)] (1− ρ(u))+ χ
Ω(t)

(x+ y, t)dy. (2.3)

Here χ
Ω(t)

(·) is the characteristic function of Ω(t), the term (1− ρ(u))+ := max{(1− ρ(u)), 0} enables

the avoidance of local overcrowding, and n(y) denotes the unit vector originating from x and pointing

to x+ y that is given by:

n(y) :=

{
y
‖y‖2

if y ∈ B(0, R) \ {(0, 0)},
(0, 0) otherwise,

(2.4)

with ‖ · ‖2 representing the usual Euclidean norm. Furthermore, the radially symmetric kernel K(·)
explores the fact that the adhesion junctions established with both cells and ECM distributed at y ∈
B(x,R) decrease as the distance r :=‖ x− y ‖

2
increases, and so this is taken here as

K(r) :=
3

2πR2

(
1− r

2R

)
. (2.5)

Finally, Scc > 0 and Scv > 0 are the strengths of cell-cell and cell-ECM adhesion bonds that are

Figure 4. Graphical description of the cell-cell adhesion strength as given by equation (2.6).

established between the cancer cells distributed at x and the cells and ECM phase distributed at x+ y,

respectively. While the cell-matrix adhesion Scv is considered to be constant, the cell-cell adhesion

strength Scc models the ability of the cell distributed at x to establish cell-cell adhesive junctions with

the cells distributed at the other locations y ∈ B(x,R), which depends on the amount of intercellular
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Ca2+ ions available within the ECM [24, 27]. Adopting a similar approach to the one in [44], we assume

here that Scc is dependent on the ECM density and it takes the form

Scc(e) = Smax exp

(
1− 1

1− (1− e(x, t))2

)
, (2.6)

with Smax representing the maximum strength of cell-cell adhesive junctions, as shown in Figure 4.

Finally, as the non-local adhesion flux is effectively formed by summing up the radially distributed ad-

hesive interactions between the cells at x and the cells and ECM distributed at x+ y with y ∈ B(0, R),

and since the influence of the interaction distance is accounted for through the radially symmetric dif-

fusion kernel K, the term 1
R that appears in the front of the expression is simply here an interaction

range normalisation factor.

The infected cancer cell population that emerges due to the OV presence exercises also a spatio-

temporal dynamics in which the spatial redistribution per unit time is driven by local random motility

that is biased by the haptotactic movement against ECM gradients. Simultaneously, the infected cell

population expands due to the viral infection of uninfected cancer cells at rate % > 0, and reduces due

to infected cells dying at rate δi > 0. Therefore, the dynamics of the infected cancer cell population

can be formulated mathematically as

∂i

∂t
= Di∆i− ηi∇·(i∇e) + %cv − δii, (2.7)

where Di > 0 is a constant random motility coefficient, and ηi > 0 is a constant haptotactic coefficient.

Further, the ECM is degraded by both uninfected and infected cancer cell populations and is remod-

elled within the limit of available space. Thus, its dynamics can be captured mathematically by the

following equation,
∂e

∂t
= −e(αcc+ αii) + µ2e(1− ρ(u)), (2.8)

where µ2 > 0 is a constant ECM remodelling rate, while αc and αi are the ECM degradation rates

caused by the uninfected and infected cancer cells populations, respectively.

Finally, the virus is assumed here not only to diffuse but also to exercise a “haptotactic-like” spatial

transport towards higher ECM levels. Further, while exercising the spatial movement, the oncolytic

virus replicates itself at a given rate and is eliminated from the system not only by being untaken by

the uninfected cells during the infection process, but also via natural decay. Hence, its dynamics can

be formulated mathematically as

∂v

∂t
= ∇·(Dv(c)∇v)− ηv∇·(v∇e) + bi− %cv − δvv (2.9)

where ηv > 0 is a constant haptotactic coefficient, b > 0 is a viral replication rate, δv > 0 is the viral

decay rate, and Dv(c) > 0 is a diffusion coefficient that may be dependent on the presence of the cancer

population as only in the presence of cancer the virus exercise spatial transport.

Thus, in summary, the non-local model that we obtained for the macroscale dynamics is as follows:

∂c

∂t
= ∇ · [Dc∇c− cA(t, x,u(t, ·))] + µ1c(1− ρ(u))− %cv, (2.10a)

∂i

∂t
= Di∆i− ηi∇·(i∇e) + %cv − δii, (2.10b)

∂e

∂t
= −e(αcc+ αii) + µ2e(1− ρ(u)), (2.10c)

∂v

∂t
= ∇·(Dv(c)∇v)− ηv∇·(v∇e) + bi− %cv − δvv, (2.10d)
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This macro-dynamics will be addressed in the results section both for the case of constant Dv(c),

namely

Dv(c) := D̃v, (2.11)

and for the full cancer-dependent viral diffusion coefficient, Dv(c), which here is considered to be of the

Hill-type saturated form

Dv(c) =
αvc

1 + c
. (2.12)

2.2. Micro-Scale Dynamics and Its Top-Down and Bottom Up Connection to Macro-Scale.

While exercising their macro-scale dynamics, the cells from both the uninfected and infected cancer

populations that arrive close to the tumour interface (within the outer proliferating rim of the tumour)

secrete matrix degrading enzymes (MDE) such as the matrix metallo-proteinases [25, 53], enabling this

way the formation of an enzymatic source for a cell-scale (micro-scale) proteolytic micro-dynamics that

takes place along the invasive edge of the tumour. In the presence of this source, a cross-interface

micro-scale MDE spatial transport occurs within a micro-scale neighbourhood of thickness ε > 0 of the

tumour boundary, which we formally denote by Nε(∂Ω(t)). The pattern of propagation of the advancing

front of MDEs within the peritumoural region Nε(∂Ω(t)) \ Ω(t) corresponds to the areas of significant

ECM degradation, which will ultimately enable us to determine (from the micro-scale MDE dynamics)

the law of the macro-scale tumour boundary movement.

Adopting here the modelling approach introduced in [50], the micro-scale neighbourhood Nε(∂Ω(t))

is described by the union of a covering bundle of ε− size overlapping micro-domains {εY }εY ∈Pε(t), as

illustrated in Figures 2-3. These micro-domains εY “sit on the interface” and capture relevant parts of

both inside and outside regions of the tumour where the proteolytic activity takes place, enabling us to

decompose and explore the proteolytic dynamics on

Nε(∂Ω(t)) :=
⋃

εY ∈P(t)

εY

as a union of micro-dynamic processes occurring on each εY ∈ Pε(t). At any instance in time

t0 > 0, on each micro-domain εY ∈ Pε(t0), a source of MDEs emerges at every micro-scale location

z ∈ εY ∩Ω(t0) as a collective contribution of all the cells (both infected and uninfected) from the tumour

outer proliferating rim that arrive during their dynamics within a distance r > 0 from z. Thus, this

MDEs source induced by the macro-dynamics at micro-scale realises a key “macro-to-micro” top-down

link within the overall tumour dynamics. Mathematically, over a small time interval of length ∆t > 0

and at any micro-scale spatial location z ∈ εY , this MDEs source is therefore given as

fεY (z, τ) =


∫

B(z,r)∩Ω(t0)

γc c(x, t0 + τ) + γi i(x, t0 + τ) dx

λ(B(z, r) ∩ Ω(t0))
, z ∈ εY ∩ Ω(t0),

0, otherwise,

(2.13)

where λ(·) is the standard Lebesgue measure on RN , B(z, r) := {x ∈ Y : ‖z − x‖∞ ≤ r}, and γc > 0 and

γi > 0 represent the contributions (per unit time) of the uninfected and the infected cancer cells to the

formation of the micro-source of MDEs, respectively. Once secreted, these matrix degrading enzymes

exercise a diffusion transport process within the entire εY , and so, to describe mathematically their

spatio-temporal micro-dynamics, let us denote by m(z, τ) the MDEs distribution at (z, τ) ∈ εY ×[0,∆t].

With this notation, under the presence of the micro-source (2.13), the rate of change of the MDEs

distribution per unit time is therefore given by

∂m

∂τ
= Dm∆m+ fεY (z, τ) (2.14)
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where z ∈ εY , τ ∈ [0,∆t]. Furthermore, as we assume no memory of previous molecular proteolytic

dynamics within εY and that the molecular dynamics takes place entirely on εY , for (2.14) we as-

sume zero initial conditions as well as no-flux boundary conditions, and so these can be summarised

mathematically as

m(z, 0) = 0,

n · ∇m |∂Ω = 0,
(2.15)

where n is the outward unit normal.

Finally, during the micro-dynamics (2.14)-(2.15), the MDEs transported across the interface in the

peritumoural region εY \Ω(t0) interact with ECM distribution that they encounter, resulting in degra-

dation of its constituents. The pattern of this ECM degradation caused by the advancing front of

MDEs corresponds to the choreographic direction of movement of the tumour interface, and following

the derivation in [50], a direction of movement ηεY and a displacement magnitude ξεY is this way es-

tablished for the movement macro-scale cancer boundary. These key characteristics for the macro-scale

boundary movement that are determined at micro-scale realise therefore a “micro-to-macro” bottom-up

feedback link that is crucial within the overall tumour dynamics, with direct impact on the changes in

tumour morphology. This is represented back at macro-scale through the movement of appropriately

defined boundary mid-points x∗εY uniquely associated to each εY , which exercise their relocation in the

direction ηεY and with the displacement magnitude ξεY to the new spatial positions x̃∗εY , as illustrated

in Figure 3, leading to the expansion of the tumour boundary Ω(t0) to an evolved domain Ω(t0 + ∆t)

where the multiscale dynamics is continued.

3. Computational Approach

As discussed previously, the implementation of the novel multiscale moving boundary model require

a number of extensive computational steps, which were built within the multiscale moving boundary

computational framework initially introduced by [50] and further expanded in [44].

3.1. Macro-scale Computations on the Expanding Tumour Domain. For the computational

approach, we consider that the tumour growth and tumour- OV interaction takes place within a maximal

tissue domain Y ⊂ R2, which is taken here to be Y = [0, 4] × [0, 4]. This macro-scale domain Y is

discretised with a uniform grid {(xs, xp)}s,p=1...M of spatial step size ∆x = ∆y := h, see Table 1.

Further, considering a uniform discretisation {tl}l=0...k of time step δt > 0 for any given small macro-

scale time interval [t0, t0 + ∆t], with k := ∆t/δt, let us denote by cls,p, i
l
s,p e

l
s,p, Als,p, and vls,p the

discretised values of c, i, e,A, and v at any spatio-temporal node ((xs, xp), tl), respectively.

As the expansion of the macro-scale tumour interface ∂Ω(t) is induced by the boundary MDEs

micro-dynamics, to address the macro-dynamics on a continuously evolving domain Ω(t), our macro-

scale scheme follows the approach introduced in [44] and summarised in Appendix A. Focusing now on

the discretisation of the spatio-temporal operators in (2.10a)-(2.10d) over any given small macro-scale

time interval [t0, t0 + ∆t], we solve the macro-dynamics (2.10) via a finite differences Method of Lines

type scheme, using the non-local predictor-corrector method for time marching introduced in [44] (and

detailed for completeness in Appendix C), while the involved spatial operators are discretised via a

combination of local “on grid” and non-local “off grid” approaches that we will detail as follows.

For spatial operators of the same types appearing in (2.10a)-(2.10d) we adopt identical steps in

their discretisation. Indeed, except for the adhesion flux term A(t, x,u(t, ·)) which will be addressed in

Section 3.2, the diffusion and hapto-taxis terms ∇·(Dc∇c), Di∆i + ηi∇·(i∇e), and ηv∇·(v∇e) (with

constant coefficients Dc, Di, ηi, ηv), are all discretised through a combination of mid-point and central

differences schemes and are detailed in Appendix B. Finally, for the discretisation on the entire Y of
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the oncolytic virus diffusion operator involved in (2.10d), where the cell population dependent diffusion

Dv(c) defined in (2.12) is involved, we proceed as follows.

Using second-order midpoint rule accompanied by central differences applied at “virtual midpoints”

(s± 1
2 , p) and (s, p± 1

2 ) corresponding to ((xs, xp)+(xs±1, xp))/2 and ((xs, xp)+(xs±1, xp))/2, for every

s, p = 1 . . .M and l = 1 . . . k, we denote Dl
v,s,p := Dv(c

l
s,p) and we have that the diffusion coefficient

values at these midpoints are given by

Dl
v,s,p± 1

2
:=

Dl
v,s,p +Dl

v,s,p±1

2
, and Dl

v,s± 1
2 ,p

:=
Dl
v,s,p +Dl

v,s±1,p

2
, (3.1)

while the central differences for the derivatives of the virus distribution at these midpoints are

[vx]
l
s+ 1

2 ,p
:=

vls+1,p − vls,p
h

, and [vx]
l
s− 1

2 ,p
:=

vls,p − vls−1,p

h
,

[vy]
l
s,p+ 1

2
:=

vls,p+1 − vls,p
h

, and [vy]
l
s,p− 1

2
:=

vls,p − vls,p−1

h
.

(3.2)

Therefore, the approximation of the diffusion part in equation (2.10d) becomes:

(∇·(Dv(c)∇v))ls,p

'
Dl
v,s+ 1

2 ,p
[vx]

l
s+ 1

2 ,p
−Dl

v,s− 1
2 ,p

[vx]
l
s− 1

2 ,p
+Dl

v,s,p+ 1
2 ,j

[vy]
l
s,p+ 1

2
−Dl

v,s,p− 1
2

[vy]
l
s,p− 1

2

h
.

(3.3)

Finally, we note that the derivation of the discretisation of this term for the case when Dv(c) is constant

is only a particular of the approach exposed above.

3.2. Adhesive Flux Computation. An important part of our mathematical model is the non-local

adhesive flux term A(t, x,u(t, ·)), which addresses the effects of cell-cell and cell-ECM adhesion of the

uninfected cancer cell population and that requires a special numerical treatment. To that end, we

follow an approach initially introduced in [43] and further enhanced in [44], which involves a series of

off-grid computations on a particular decomposition of the sensing region B(x,R). Specifically, at any

given spatio-temporal node ((xs, xp), tl), we decompose the sensing region B((xs, xp), R) as a union of

q :=

s∑
j=1

2m+(j−1) annulus radial sectors S1, ..., Sq, (3.4)

which are obtained by intersecting each annulus j ∈ {1, ..., s} annuli with a corresponding dyadically

increasing number of 2m+(j−1) uniformly distributed radial sectors of B((xs, xp), R), while the circle at

the centre is considered of a numerically negligible radius, as shown in Figure 5(a). Further, for each

ν ∈ {1, . . . , q}, denoting by bSν the centroid of the sector Sν , from Figure 5(b) we observe that these are

distributed so that the position vectors indicating their associated normalised radial directions enables

are across the sensing region in a balanced manner, leading to a robust approximation of the adhesion

flux. On each annulus sector Sν we calculate the mean values of all the macro-scale densities of both
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Figure 5. (a) Sensing region B(0, R) approximated by the annulus radial sectors with

the barycentre bSp associated with each sector Sp highlighted in red and its centroid

points highlighted with a blue dot. (b)The normalised direction of each centroid point

corresponding to sub-panel (a); note that these directions are not overlapping, enabling

a balanced discretised covering of the radial vector field across the sensing region.

uninfected infected as well as ECM namely:

ωlSν ,c =
1

λ(Sp)

∫
Sν

c(ξ, tl)dξ, (3.5)

ωlSν ,i =
1

λ(Sp)

∫
Sν

i(ξ, tl)dξ, (3.6)

ωlSν ,e =
1

λ(Sp)

∫
Sν

e(ξ, tl)dξ, (3.7)

respectively. Furthermore, for each centroid bSν we evaluate the associated radial unit vector denoted

by nν := n(bSν ) (that points from the centre of the sensing region to bSp) and given as

nν =
bSν − (xs, xp)

‖bSν − (xs, xp)‖2
. (3.8)

Thus, finally, the approximation of the adhesion flux A(t, x,u(t, ·)) at the spatio-temporal node

((xs, xp), tl) is given by

Als,p =
1

R

q∑
ν=1

bSν∈Ω(t0)

uνK(bSν )
[
Sccω

l
Sν ,c + Sceω

l
Sν ,e

] (
1− ρ(ulbSν )

)+

λ(Sν), (3.9)

where ulbSν = [ωlSν ,c, ω
l
Sν ,i

, ωlSν ,e]
T , we have that ρ(ulbSν ) is a mean-value approximation of the tumour

volume fraction given in (2.1) associated to the centroid bSν . Figure 6 shows the simplified case of

“duro-taxis” that is mimicked by the cell-adhesion flux approximated in (3.9) where only the cell-ECM

adhesion is considered while assuming there the absence of cell-cell-adhesion (i.e., Scc = 0) and ignoring

the tumour volume fraction term. We observe that the adhesion vector field follows regions of high ECM

density, being directed out of low density into high density.
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Figure 6. Plot of the non-local cell-ECM adhesion flux given by (3.9), while ignoring

there the cell-cell adhesion and the effect of overcrowding.

3.3. Approximating the Micro-Dynamics and Its Impact on the Macro-Scale Tumour

Boundary Movement. Each of the boundary micro-domain εY ∈ Pε(t0) are considered here to

be squares of micro-scale size ε := 2h (where h is the step size used for the discretisation of the

macro-domain), which are centred at each of the interface point (xs, xp) from the discretisation of the

macroscopic tumour boundary ∂Ω(t0). Hence, we have that

εY := B‖·‖∞((xs, xp), ε) for some boundary point (xs, xp),,

where ‖·‖∞ is the usual ∞−norm, and so we simply have that εY is given by the union of the four

squares on the macro-grid that have (xs, xp) as a vertex. Thus, adopting a similar approach as this

stage as in [50], this enables us to use bilinear shape functions on each of these four squares (that have

(xs, xp) as a vertex) alongside midpoint averaging to evaluate the MDE source on the entire micro-

domain εY given in (2.13). Next, we solve MDEs system (2.14) by using backward Euler in time

combined with central differences for the spatial discretisation. After finding the MDE distribution

m(z, τ) on εY × [0,∆t], we then follow precisely the modelling and computational approach and steps

introduced by [50] to determine the direction and magnitude for the boundary movement as well as

to proceed with the actual expansion of the tumour boundary ∂Ω(t0) to its new spatial configuration

∂Ω(t0 + ∆t) that emerged over during multiscale tumour evolution over the time interval [t0, t0 + ∆t].

4. Computational Results

As mentioned in the previous section, the simulations are run on a spatial domain Y = (0, 4)× (0, 4).

The initial condition for the uninfected cancer cells population (c) is given by (see also Figure 7 (a)):

c(x, 0) = 0.5

(
exp

(
−
‖x− (2, 2)‖22

2h

)
− exp (−3.0625)

)(
χ

B((2,2),0.5−γ)
∗ ψγ

)
, (4.1)

where ψγ : RN → R+ is the standard mollifier that acts within a radius γ << ∆x
3 from ∂B((2, 2), 0.5−γ)

to smooth the characteristic function χ
B((2,2),0.5−γ)

. This way we assure that the uninfected cancer cell

population occupies the region Ωt0(0) = B((2, 2), 0.5) positioned in the centre of Y . This mollifier ψγ
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Figure 7. Initial conditions used for the numerical simulations: (a) uninfected cancer

cells density, as described by equation (4.1); (b) ECM density, as described by equation

(4.5); (c) OV density (one initial dose), as described by equation (4.6); (d) OV density

(two initial doses), as described by equation (4.10). The white curve indicates the

tumour boundary (uninfected and infected cells).

was introduced in [50]:

ψγ(x) :=
1

γN
ψ

(
x

γ

)
, (4.2)

where ψ is the smooth compact support function given by

ψ(x) :=

{
exp 1

‖x‖22−1
if ‖x‖2 < 1,

0 otherwise.
(4.3)

For the infected cancer cells (i), we assume that there are no such cells at the beginning of the simula-

tions:

i(x, 0) = 0. (4.4)

The initial condition for the ECM (e) is given by the following distribution that was previously intro-

duced in [44] (see also Figure 7(b)):

e(x, 0) =
1

2
min{h(x1, x2), 1− c(x, 0)}, (4.5)
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where c(x, 0) is the initial condition of uninfected cancer cells given by equation (4.1), and

h(x1, x2) =
1

2
+

1

4
sin (ξx1x2)

3 · sin
(
ξ
x2

x1

)
,

(x1, x2) =
1

3
(x+

3

2
) ∈ [0, 1]2 ∀x ∈ Y, ξ = 7π.

Finally, we consider two types of initial conditions for OV (v), describing current approaches for OV

administration: intravenous and/or intra-tumoural administration. The two cases considered here are:

(1) one OV dose is injected outside the tumour (via intravenous administration), and (2) two OV doses

are injected: one inside the tumour (via intra-tumoural administration) and one outside the tumour

(via intravenous administration); see Figure 7(c),(d).

(1) The one-dose initial condition for v(x, t), shown in Figure 7(c), is given as follows

v(x, 0) = Φ(x) · θ(v), (4.6)

where

Φ(x) =
1

8

(
exp

(
−
‖x− (2.5, 2.5)‖22

2h

)
− exp (−1.6625)

)
, (4.7)

θ(v) =

{
1 if Φ(x) > 5× 10−5,

0 otherwise.
(4.8)

Let Γ be the boundary of v(x, 0). In order to smooth the characteristic function θ(v), we take

the average of the boundary points of v(x, 0) ∈ Γ, as follows

v(x, y) =
1

8

∑
i

∑
j

v (x+ ih, y + jh)− v(x, y), ∀x, y ∈ Γ, where i, j = −1, 0, 1. (4.9)

(2) The two-dose initial condition, shown in Figure 7(d), is defined as follows

v(x, 0) := β(x) · θ̄(v), (4.10)

where

β(x) =
1

8

(
exp

(
−
‖x− (1.5, 1.5)‖22

2h

)
+ exp

(
−
‖x− (2, 2)‖22

2h

)
− 2 exp (−1.6625)

)
(4.11)

θ̄(v) =

{
1 if β(x) > 5× 10−5,

0 otherwise.
(4.12)

To smoothen the characteristic function θ(v), we are using the same boundary averaging men-

tioned previously in eq. (4.9).

The numerical results presented in this Chapter are obtained with the parameter values described in

Table 1. Whenever we vary these parameters, we state clearly the new values we use for the simulations.

4.1. Results of Baseline Parameters. In this section we investigate the effect of haptotactic cell

and virus movement (as given by parameters ηi and ηv) when one OV dose is administered (Figure 8)

or two OV doses are administered (Figure 9):

• One OV dose. In Figure 8(a) we show the dynamics of our multi-scale model in the absence of

haptotactic terms for the infected cells and virus particles (ηi = ηv = 0), while in Figure 8(b)

we show the dynamics of this model in the presence of such haptotactic terms (where ηi = ηv =

0.0285, as given in Table 1). We can see that, for the parameter values used in these simulations,
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Table 1. Baseline parameters values used for our multiscale computations.

Param. Value Description Reference

Dc 0.00035 Uninfected cancer cell diffusion coefficient [16]

Di 0.0054 Infected cancer cell diffusion coefficient [9]

D̃v 0.0036 Constant diffusion coefficient for OV [9]

ηi 0.0285 Infected cancer cell haptotaxis coefficient [3]

ηv 0.0285 OV haptotaxis coefficient [3]

µ1 0.5 Proliferation rate for uninfected cancer cells [12]

Smax 0.1 Maximum rate of cell-cell adhesion strength, i.e., Smax = max(Scc) [22]

Sce 0.5 Rate of Cell-ECM adhesion strength [36]

αc 0.15 ECM degradation rate by uninfected cancer cells [3]

αi
αc
2 ECM degradation rate by infected cancer cells [3]

αv 0.1 Maximum diffusion coefficient level for cancer-dependent Dv(c) estimated

µ2 0.02 Remodelling term coefficient [45]

% 0.079 Infection rate of cells by OV [3]

δi 0.05 Death rate of infected cancer cells [9]

b 20 Replicating rate of OVs in infected cancer cells [9]

δv 0.025 Death rate of OV [9]

νe 1 The fraction of physical space occupied by the ECM [44]

νc 1 The fraction of physical space occupied by cancer cells [44]

γc 1 MDEs secretion rate by uninfected cancer cell [45]

γi 1.5 MDEs secretion rate by infected cancer cell [45]

Dm 0.0025 MDE diffusion coefficient [39]

h 0.03125 spatial discretisation step size in both x and y directions [44]

there is no difference in the spatial distribution of uninfected cancer cells between panels (a) and

(b). However, the addition of haptotactic movement impacts the spatial distribution of infected

cancer cells and OVs, leading to more localised viral infections. Since the change in ECM

density follows the uninfected cancer cells distribution, we choose to show the ECM separately

in Figure 8(c), where we illustrate its distribution at two macro-micro stages: I) stage 50; II)

stage 75.

• Two OV doses. In Figure 9(a) we show the dynamics of our multi-scale model in the absence

of any haptotactic movement for the infected cells and virus particles, while in Figure 9(b)

we show what happens when we consider haptotactic movement. As for the one-dose case,
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50

Uninfected Cancer Cells 

St.

75

Infected Cancer Cells OV

50

75

ECM:

(a)

(b)

(c) �) ��)

Figure 8. Simulations of system (3) using the parameters in Table 1 with one-dose

OV initial condition (see eq. (4.6)). Here we show the cell and virus distribution at two

different micro-macro stages: 50 and 75. (a) No haptotactic behaviours (ηi = ηv = 0);

(b) With haptotactic behaviours (ηi = ηv = 0.0285). In sub-panels (c) we show ECM

density when we consider haptotactic cell movement for I) stage 50, II) stage 75. (We

don’t show the ECM for the case without haptotactic cell movement, since the ECM

follows the uninfected cancer cells distribution, which is the same for both cases.)

the haptotactic terms do not affect the spatial distribution of the uninfected cancer cells. The

inclusion of the haptotaxis leads to slightly higher densities of infected cells and virus particles,



264 A. ALSISI, R. EFTIMIE, AND D. TRUCU

Stage

50

Uninfected Cancer Cells 

50

75

75

Infected Cancer Cells OV

(a)

(b)

Figure 9. Simulations of system (3) investigating the injection of two doses of OV

(see the initial condition given by eq. (4.10)). We show the densities of uninfected

and infected cancer cells, and the OV densities at two macro-micro stages (50 and 75).

(a) Without haptotactic movement (ηi = ηv = 0); (b) With haptotactic movement

(ηi = ηv = 0.0285). The rest of parameter values are as in Table 1.

compared to the case of no haptotaxis. Also the presence of haptotactic terms seems to lead to

more localised viral infections.

If we compare the one-dose OV case (Figure 8) with the two-dose OV case (Figure 9) we observe,

as expected, that the injection of two OV doses leads to better elimination of uninfected cancer cells
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through a much better viral replication. We also observe that the injection of two OV doses leads to a

faster movement of outside virus particles inside the tumour (e.g., in Figure 8 the outside viruses is still

entering the tumour at stage 50, while in Figure 9 the outside viruses have already entered the tumour

by stage 50).

4.2. The Impact of Adhesion Strength. In this Section we investigate the impact of cell-cell and

cell-matrix adhesion strengths on the spread of OV, and the elimination of tumour cells.

• Constant vs. density-dependent Scc. In equation (2.6), we defined the cell-cell adhesion strength

(Scc) as a function of the ECM density, with a maximum of Smax (see also Figure 4). In Figure

10 we investigate the assumption that this cell-cell strength is a constant: Scc = Smax. As with

the previous figures, in panels (a) we show model dynamics without haptotactic cell movement,

while in panels (b) we show model dynamics with haptotactic cell movement. Comparing Figure

8 (where Scc = Smax) with Figure 10 (where Scc = Scc(e)), we notice a difference in cancer

invasion, with a slightly larger invasion range when Scc = Smax. However, Scc seems to have no

impact on the densities of cells and virus particles. Regarding the role of haptotactic terms (i.e.,

panels (a) vs. (b)), we see again that these terms have no effect on the uninfected tumour cells,

but they impact the spatial distributions of infected tumour cells and virus particles, which

become more localised.

• Different adhesion strengths: Scc > Sce vs. Scc < Sce. In Figure 11, we vary the cell-cell

and cell-matrix adhesion strengths from the baseline values listed in Table 1 (i.e., max(Scc) =

Smax = 0.1, Sce = 0.5) to max(Scc) = Smax = 0.5, Sce = 0.01, to investigate the case where

Scc > Sce. In this Figure 11 we also investigate the effect of increasing the ECM degradation

on overall cancer invasion, by changing the baseline rate αc = 0.15 to αc = 2. Comparing

Figure 8(a) (where Scc < Sce) with Figure 11 we observe that high cell-cell adhesion (Scc > Sce)

leads to a very-high density tumour mass which does not spread too much. Moreover, as

expected, the increase in the ECM degradation rate αc leads to an almost complete degradation

of ECM in the regions with high tumour densities (see the ECM distribution in Figures 11

and 8(c)).

4.3. Non-Constant OV Diffusion Coefficient. In all previous simulations we assumed that the

diffusion coefficients were constant. However, in equation (2.12) we modelled the assumption that the

virus diffusion coefficient might depend on the uninfected cancer cell density (Dv(c)). In Figure 12 we

show numerically the dynamics of our multi-scale model (with haptotactic cell and virus movement)

when we assume that Dv(c) is given by equation (2.12) with αv = 0.1. In panels (a) we show cancer-OV

dynamics when we inject one-dose of OV, while in panels (b) we show model dynamics when we inject

two doses. Comparing Figure 12(a) with Figure 8(a), we see that the assumption of a density-dependent

diffusion allows the virus to spread faster through the whole tumour. However, in the absence of a higher

virus proliferation, the density of infected cancer cells is lower than for the baseline case. A similar

conclusion can be obtained when comparing Figure 12(b) with Figure 9(a).

4.4. Multiple Virus Shots at Different Times. In this final section, we explore the effect of multiple

virus injections when these are applied at the same location and with the same dose levels (as the initial

viral condition) but at different times during tumour evolution. To capture this multiple temporal viral

injections at the same initial location, we amend the virus equation (2.10d) by adding the following

viral source term

gv(x, t) =

p∑
i=1

r̄ti(t) · v(x, 0) (4.13)
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Stage

50

Uninfected Cancer Cells 

50

75

75

Infected Cancer Cells OV

(a)

(b)

Figure 10. Simulations of system (3) investigating the case of constant Scc: Scc =

Smax. We plot the macroscopic densities of uninfected and infected cancer cells, as well

as the densities of OVs at two macro-micro stages (50,75), when we inject two-dose

OVs (inside and outside the tumour; see eq. (4.6)). (a) Without haptotactic behaviours

(ηi = ηv = 0); (b) With haptotactic behaviours (ηi = ηv = 0.0285). The rest of the

parameters values are as in Table 1.

where, where p represents the number of shots distributed at different times, v(x, 0) are OV initial viral

conditions, and

r̄ti (t ) = exp

(
−θ2

θ2 − (ti − t)2
+ 1

)
, (4.14)
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Figure 11. Simulations of system (3) investigating the case Smax > Sce. We show the

densities of cancer cells, OVs (top two rows) and ECM (bottom row) at two macro-

micro stages (50 and 75), when we ignore the haptotactic movement of infected cells

and virus particles (i.e., ηi = ηv = 0). We consider only one dose of OV as initial

condition (see eq. (4.6)). Most of the parameters values are as in Table 1, with the

exception of max(Scc) = Smax = 0.5, Sce = 0.01, αc = 2.

represents the time distribution of OV shots which are localised in time in the neighbourhood of the

time instances {t1, . . . , tp}, each shot having a total time span of 2θ, i.e., occurring on the time interval

[ti − θ, ti + θ], for a very small θ > 0, so that consecutive injection intervals would not overlap. Thus,

with this amendment, equation (2.10d) becomes

∂v

∂t
= ∇·(Dv(c)∇v)− ηv∇·(v∇e) + bi+ gv(x, t)− %cv − δvv. (4.15)

We explored this numerically by considering virus injection of the same spatial distribution but admin-

istered at two different times t1 and t2 during the tumour evolution. These injection times were chosen

during the 25th and 50th stages of the tumour evolution as follows:

t1 = 25∆t+ 3δt and t2 = 50∆t+ 3δt,
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Stage

50

Uninfected Cancer Cells 

50

75

75

Infected Cancer Cells OV

(a)

(b)

Figure 12. Simulations of system (3) investigating the role of density-dependent viral

diffusion Dv(c) coefficient (given by eq. (2.12) with αv = 0.1). As for other cases

before, we ignore the haptotactic movement of infected cancer cells and virus particles

(ηi = ηv = 0). We show the densities of uninfected and infected cancer cells, and

densities of OVs at three macro-micro stages (25, 50, and 75), when we inject: (a)

one-dose OV (see initial condition given by eq. (4.6)); (b) two-dose OV (see initial

condition given by eq. (4.10)). The rest of parameter values are as in Table 1.
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and so the viral injections scheduling could therefore be captured by gv(x, t) = r̄t1(t) + r̄t2(t) while

taking θ := 3δt in (4.14). Figure 13 shows that when we give multiple virus injections at the same

position but at different times, we obtain better tumour control than the case where there is one viral

injection at one position in space (shown in Figure 8b). Moreover, as shown in Figure 13, increasing

the viral infection rate gives better tumour control results (i.e., the middle of the tumour is eliminated

by the viral therapy).

Stage

50

Uninfected Cancer Cells 

50

75

75

Infected Cancer Cells OV

(a)

(b)

Figure 13. Simulations of system (3) using the parameters in Table 1 with multiple-

dose OV initial conditions (see eq. (4.13)).Here we show the cell and virus distribution

at two different micro-macro stages: 50 and 75. (a) multiple OVs injections (b) multiple

OVs injections with increased rate of viral infection % = 0.158.
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5. Summary and Conclusions

In this study we presented a novel multi-scale moving boundary model introduced to characterise

the complex non-local macro-scale interactions between cancer cells (uninfected and infected), ECM,

and oncolytic viruses, in the presence of the micro-scale cancer-MDE interactions that control the

tumour invasive edge. The novelty of our approach was to incorporate the nonlocal cell-cell and cell-

matrix interactions that lead to an adhesive cancer cell flux, which impacted also local cancer-OV

interactions. With the help of this model we have investigated the impact of cell-cell and cell-matrix

adhesion strengths on the spread of the oncolytic virus, and showed that large cell-cell adhesion leads to

high cancer densities, and higher OV densities inside these solid tumours. But the virus cannot spread

efficiently through the tumour mass, and thus the tumour size cannot be reduced significantly.

Moreover, we used this new nonlocal multi-scale model to investigate numerically the role of hapto-

tactic behaviour for the infected cancer cells and virus particles, which seems to lead to more localised

regions infected by the oncolytic virus. Finally, we have investigated the impact of constant virus diffu-

sion versus cancer-dependent virus diffusion, and observed larger viral spread. However, this larger viral

spread did not lead to better tumour killing, due to the relatively lower infection rates. It is expected

that an increase in viral infection rate could lead to better outcomes (i.e., less uninfected tumour cells).

Our current work can be further generalised to investigate various aspects of the interactions between

virus particles and the tumour micro-environment: from the importance of fibrous component of the

ECM on virus spread, to the interactions between virus particles and other types of cells inside the

tumour microenvironment, or the local/nonlocal interactions between the infected cancer cells and

ECM (and the further spread of viruses released from the infected cells).

Appendix A. Indicator Function

To ensure that the macroscale computation exclusively on the evolving tumour Ω(t0) we define the

on-grid cancer indicator function Υ(·, ·) : {1, ...,M} × {1, ...,M} → {0, 1} given as usual by

Υ(s, p) :=

{
1 if (xs, xp) ∈ Ω(t0),

0 if (xs, xp) /∈ Ω(t0).
(A.1)

Further, let’s observe that the on-grid closest neighbour indicator functions Ψx,+1(·, ·), Ψx,−1(·, ·),
Ψy,+1(·, ·), Ψy,−1(·, ·) : {2, ...,M − 1} × {2, ...,M − 1} → {0, 1}, defined by

Ψx,±1(s, p) := |Υ(s, p)−Υ(s, p± 1)| ·Υ(s, p),

Ψy,±1(s, p) := |Υ(s± 1, p)−Υ(s, p)| ·Υ(s, p),
(A.2)

Using these functions we limit our computations for cancer cells inside the initial cancer region Ω(t0), as

the points of nonzero values along each spatial direction, given by the union of preimages Ψ−1
x,−1({1})∪

Ψ−1
x,+1({1}) ∪Ψ−1

y,−1({1}) ∪Ψ−1
y,+1({1}) for x-direction and y-direction respectively.

Appendix B. Finite Difference-midpoint Involving Indicator Function

At any spatial node (xs, xp) ∈ Ω(t0), the no-flux across the moving boundary dynamics is accounted

for via the indicators in equations (A.1,A.2) on the expanding spatial mesh, and results into the midpoint

approximations for both the uninfected cancer cells

cls,p± 1
2

:=
cls,p +

[
Ψx,±1(s, p)cls,p + Υ(s, p± 1)cls,p±1

]
2

,

cls± 1
2 ,p

:=
cls,p +

[
Ψy,±1(s, p)cls,p + Υ(s± 1, p)cls±1,p

]
2

,

(B.1)
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and for the infected cancer cells

ils,p± 1
2

:=
ils,p +

[
Ψx,±1(s, p)ils,p + Υ(s, p± 1)ils,p±1

]
2

,

ils± 1
2 ,p

:=
ils,p +

[
Ψy,±1(s, p)ils,p + Υ(s± 1, p)ils±1,p

]
2

,

(B.2)

as well as for the adhesion fluxes

Als,p± 1
2

:=
Als,p +

[
Ψx,±1(s, p)Als,p + Υ(s, p± 1)Als,p±1

]
2

,

Als± 1
2 ,p

:=
Als,p +

[
Ψy,±1(s, p)Als,p + Υ(s± 1, p)Als±1,p

]
2

,

(B.3)

while the central differences at the virtual nodes (s, p± 1
2 ) and (s± 1

2 , p) are given by:

for c:

[cx]
l
s,p+ 1

2
:=

[
Ψx,+1(s, p)cls,p + Υ(s, p+ 1)cls,p+1

]
− cls,p

∆x
,

[cx]
l
s,p− 1

2
:=

cls,p −
[
Ψx,−1(s, p)cls,p + Υ(s, p− 1)cls,p−1

]
∆x

,

[cy]
l
s+ 1

2 ,p
:=

[
Ψy,+1(s, p)cls,p + Υ(s+ 1, p)cls+1,p

]
− cls,p

∆y
,

[cy]
l
s− 1

2 ,p
:=

cls,p −
[
Ψy,−1(s, p)cls,p + Υ(s− 1, p)cls−1,p

]
∆y

,

(B.4)

for i:

[ix]
l
s,p+ 1

2
:=

[
Ψx,+1(s, p)ils,p + Υ(s, p+ 1)ils,p+1

]
− ils,p

∆x
,

[ix]
l
s,p− 1

2
:=

ils,p −
[
Ψx,−1(s, p)ils,p + Υ(s, p− 1)ils,p−1

]
∆x

,

[iy]
l
s+ 1

2 ,p
:=

[
Ψy,+1(s, p)ils,p + Υ(s+ 1, p)ils+1,p

]
− ils,p

∆y
,

[iy]
l
s− 1

2 ,p
:=

ils,p −
[
Ψy,−1(s, p)ils,p + Υ(s− 1, p)ils−1,p

]
∆y

,

(B.5)

for e:

[ex]
l
s,p+ 1

2
:=

els,p+1 − els,p
h

, and [ex]
l
s,p− 1

2
:=

els,p − els,p−1

h
,

[ey]
l
s+ 1

2 ,p
:=

els+1,p − els,p
h

, and [ey]
l
s− 1

2 ,p
:=

els,p − els−1,p

h
.

(B.6)

Hence, the discretisation of the spatial operator ∇ · [Dc∇c− cA(t, x,u(t, ·))] in (2.10a) is obtained by

(∇ · [Dc∇c− cA(t, x,u(t, ·))])ls,p

≈
Dc

(
[cx]

l
s,p+ 1

2
− [cx]

l
s,p− 1

2

)
− cl

s,p+ 1
2

· Al
s,p+ 1

2

+ cl
s,p− 1

2

· Al
s,p− 1

2

∆x

+
Dc

(
[cy]

l
s+ 1

2 ,p
− [cy]

l
s− 1

2 ,p

)
− cl

s+ 1
2 ,p
· Al

s+ 1
2 ,p

+ cl
s− 1

2 ,p
· Al

s− 1
2 ,p

∆y
.

(B.7)

Denoting now by F ls,p the discretised value of the flux F := Dc∇c − cA(t, x,u(t, ·)) at the spatio-

temporal node ((xs, xp), tl), we observe that the discretisation of ∇ · F = ∇ · [Dc∇c− cA(t, x,u(t, ·))]
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given in equation (2.10a) can therefore be equivalently expressed in a compact form as

(∇ · F)
l
s,p '

F l
s,p+ 1

2

−F l
s,p− 1

2

+ F l
s+ 1

2 ,p
+ F l

s− 1
2 ,p

h
, (B.8)

where

F ls,p± 1
2

= Dc [cx]
l
s,p± 1

2
− cls,p± 1

2
· Als,p± 1

2
,

F ls± 1
2 ,p

= Dc [cy]
l
s± 1

2 ,p
− cls± 1

2 ,p
· Als± 1

2 ,p
.

Finally, for the spatial operator Di∆i− ηi∇·(i∇e) in (2.10b) we obtain the discretizsation

(∇ · [Di∇i− ηii∇e])ls,p

≈
Di

(
[ix]

l
s,p+ 1

2
− [ix]

l
s,p− 1

2

)
− ηiils,p+ 1

2

· [ex]l
s,p+ 1

2

+ ηii
l
s,p− 1

2

· [ex]l
s,p− 1

2

∆x

+
Di

(
[iy]

l
s+ 1

2 ,p
− [iy]

l
s− 1

2 ,p

)
− ηiils+ 1

2 ,p
· [ey]l

s+ 1
2 ,p

+ ηii
l
s− 1

2 ,p
· [ey]l

s− 1
2 ,p

∆y
,

(B.9)

and for the haptotactic-like virus spatial operator ηv∇·(v∇e) is discretised as

(−ηv∇·(v∇e))ls,p ≈
−ηvvls,p+ 1

2

· [ex]l
s,p+ 1

2

+ ηvv
l
s,p− 1

2

· [ex]l
s,p− 1

2

∆x

+
−ηvvls+ 1

2 ,p
· [ey]l

s+ 1
2 ,p

+ ηvv
l
s− 1

2 ,p
· [ey]l

s− 1
2 ,p

∆y
,

(B.10)

Appendix C. The Predictor-Corrector

Let us start by denoting H(·, ·, ·) to be the right-hand side spatial operator of equation (2.10a). At

any instance in time and any corresponding triplet (F̄ , c̄, ū) of given spatially discretised values for the

flux F , the cell population c, and the tumour vector u, by ignoring for simplicity the time notation we

have that

H(F̄s,p, c̄s,p, ūs,p) :=
(
∇ · F̄

)
s,p

+ µ1c̄s,p(1− ρ(ūs,p))− %c̄s,pvs,p, (C.1)

where the spatial discretization
(
∇ · F̄

)
s,p

is given by equation (B.8) but applied to the spatial flux F̄ ,

and ρ(ūs,p) is the volume fraction defined in equation (2.1) evaluated for the discrete vector ūs,p =

[c̄s,p, īs,p, ēs,p],∀s, p = 1...M . On the time interval [tl, tl+1], we first predict c at tl+ 1
2

using an explicit

method as follows

c̃
l+ 1

2
s,p = cls,p +

∆t

2
H(F ls,p, cli,j ,uls,p), (C.2)

where uls,p = [cls,p, i
l
s,p, e

l
s,p],∀s, p = 1...M and ∆t is the time step. Next, using c̃

l+ 1
2

s,p we calculate the

corresponding predicted flux F̃ l+ 1
2 at tl+ 1

2
. Then, we construct a non-local corrector that involves the

average of the flux at the active neighbouring spatial locations

{(xs, xp±1)}, {(xs±1, xp)}, {(xs±1, xp−1)}, {(xs±1, xp+1)} ∩ Ω(t0). (C.3)

Now, let us denote the set of indices corresponding to these active locations by N , we have that the

corrector flux is calculated as

F∗l+ 1
2 =

1

card(N )

∑
(σ,ζ)∈N

F̃ l+
1
2

σ,ζ , (C.4)
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ultimately enabling us to use the trapezoidal approximation to obtain the corrected value for c at tl+ 1
2

as

c
l+ 1

2
s,p = cls,p +

∆t

4

[
H(F ls,p, cli,j ,uls,p) +H(F∗l+

1
2

s,p , c̃
l+ 1

2
s,p , ũ

l+ 1
2

s,p )
]
, (C.5)

where ũ
l+ 1

2
s,p = [c̃

l+ 1
2

s,p , ils,p, e
l
s,p],∀s, p = 1...M . By averaging we get

c̃
l+ 1

2
s,p :=

c
l+ 1

2
s,p + cls,p

2
, (C.6)

and then we compute the flux F l+ 1
2 at tl+ 1

2
, in which we use the values of c̃

l+ 1
2

s,p . Next, we use it to

initiate the predictor-corrector steps described above on this new time interval
[
tl+ 1

2
, tl+1

]
. Therefore,

the predictor step obtained as follows

c̃l+1
s,p := c̄

l+ 1
2

s,p +
∆t

2
H(F l+

1
2

s,p , c̄
l+ 1

2
s,p , ū

l+ 1
2

s,p ) (C.7)

where ū
l+ 1

2
s,p = [c̄

l+ 1
2

s,p , ils,p, e
l
s,p],∀s, p = 1...M . Finally, we correct these values at tl+1 with the same

non-local trapezoidal-type corrector as described in equation (C.5), here involving the corrector flux

calculated as average of the predicted flux values F̃ l+1 (corresponding to the predicted values c̃l+1) at

the active neighbouring locations given in equation (C.3)

F∗l+1 =
1

card(N )

∑
(σ,ζ)∈N

F̃ l+
1
2

σ,ζ , (C.8)

Thus, this last corrector step gives us ultimately the values that we accept at tl+1, namely

cl+1
s,p = c̄l+1

s,p +
∆t

4

[
H(F l+

1
2

i,j , c̄
l+ 1

2
s,p , ū

l+ 1
2

s,p ) +H(F∗l+1
s,p , c̃l+1

s,p , ũ
l+1
s,p )

]
, (C.9)

where ũl+1
s,p = [c̃l+1

s,p , i
l
s,p, e

l
s,p],∀s, p = 1...M .
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