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Abstract—A process plant can have multiple modes of op-
eration due to varying demand, availability of resources or
the fundamental design of a process. Each of these modes is
considered as normal operation. Anomalies in the process are
characterised as deviations away from normal operation. Such
anomalies can be indicative of developing faults which, if left
unresolved, can lead to failures and unplanned downtime. The
Field Kalman Filter (FKF) is a model-based approach, which
is adopted in this paper for monitoring a multimode process.
Previously, the FKF has been applied in process monitoring
to differentiate normal operation from known faulty modes of
operation. This paper extends the FKF so that it may detect
occurrences of anomalies and differentiate them from the various
normal modes of operation. A method is proposed for off-
line training an FKF monitoring model and on-line monitoring.
The off-line part comprises training an FKF model based
on Multivariate Autoregressive State-Space (MARSS) models
fitted to historical process data. A monitoring indicator is also
introduced. On-line monitoring, on the basis of the FKF for
anomaly detection and mode identification, is demonstrated using
a simulated multimode process. The performance of the proposed
method is also demonstrated using data obtained from a pilot-
scale multiphase flow facility. The results show that the method
can be applied successfully for anomaly detection and mode
identification.

Index Terms—Anomaly detection, Field Kalman Filter (FKF),
Multivariate Autoregressive State-Space (MARSS) models, mul-
timode process, mode identification

I. INTRODUCTION

IN process industries, the term normal operation refers to a
plant running in a desired mode of operation. The funda-

mental goal of anomaly detection and mode identification is to
differentiate various known operating modes, and to identify
anomalies in a timely way to reduce or avoid downtime
incidents. In order to enhance this monitoring performance,
accurate mathematical models are required.

A linear time-invariant model in state-space form is a
convenient approximation of a finite-order dynamic system in
time-domain analysis (see e.g. [1]). Such models are able to
describe the internal dynamics of a given physical process
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and its interaction with external inputs [2]. However, varying
process demand causes a plant to operate in multiple operating
modes. Single linear model approaches are inadequate for
approximating processes with multiple operating modes due to
the temporal relationships and correlations between variables
for each operating mode being different from one another.
Therefore, multiple linear models are required for monitoring
a multimode process [3]. The efficiency and reliability of
multiple model approaches for complex systems haven been
investigated and discussed previously [4].

A bank of Kalman filters is a multi-model approach, rooted
in the state-space formulation of a system with finite dimen-
sional, usually discrete-time, linear dynamic subsystems. Its
purpose is to recursively estimate the current states from the
previous states and current measurements concurrently over
multiple models. The residuals generated from a bank of
Kalman filters can be used for classification, and have been
used across a wide range of applications, such as differen-
tiating various sensors and actuators in aircraft engines [5],
[6], degrees of freedom of a quad rotor [7], detecting fading
channels in mobile communications [8] and mechanical failure
and sensor failure [9]. Further evaluation of the residuals com-
bined with Bayes’ theorem leads to a model-based statistical
decision approach which may be used, for example, for fault
diagnosis [10], [11].

The Field Kalman Filter (FKF) is a model-based approach
in which a system is described in a continuous-parameter-
dependent state-space form. It is a Bayesian algorithm, which
allows simultaneous estimation of the state, system parameters
and noise parameters [12]. In case of continuously distributed
system and noise parameters, FKF, while inherently infinite
dimensional, can be efficiently approximated using an ap-
propriately selected bank of Kalman filters and a Bayesian
updating scheme for reconstructing the joint posterior of state
and parameters. If parameters have discrete distributions no
approximation is needed, as a bank of Kalman filters is created
naturally while the posterior distribution is also reconstructed
properly.

The FKF holds a range of advantages related to other,
comparable approaches. Firstly, the FKF is able to handle
systems with unknown noise characteristics (but with known
distribution of their parameters). As a result, the operating
modes can be differentiated not only deterministically but also
stochastically. Secondly, the probabilistic monitoring results
are traceable and interpretable for operators. Finally, because
forgetting factors are incorporated into its formulation, the
FKF can continue to operate reliably even when the parameters
of the system change.
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In previous work [13], FKF was used for analysis of
problems where a discrete character of parameter distribution
came from the distinction of healthy/faulty operation. In that
approach, models of all possible parameter realisations had to
be known. In this paper, we extend FKF to allow not only
mode identification in a multimode process but also detection
of unknown modes.

In process monitoring applications, it is often challenging
to accurately model a process. One popular working direction
within the process industries is to use historical data to build
data-driven process models. The FKF requires models to be
provided in a state-space form. There are many data-based
approaches for obtaining the state-space formulation, such as
Gaussian regression [14], [15] and Canonical Variate Analysis
[16]. In this paper, the Multivariate Autoregressive State-
Space approach (MARSS) [17] is adopted. Autoregressive
(AR) models have been used for modelling a steady-state
process [18]. An AR model may be converted to a state-space
form [17].

Data obtained during periods of faulty operation are often
nonlinear in nature [19]. Models obtained using these data
may be inaccurate because simplifying assumptions have to
be made in order to provide a tractable solution [20]. In
addition, faults are rare occurrences and there may not be
any historical data for fault conditions. Conversely, sufficient
data from normal operation are often available from industrial
plants. Furthermore, the local dynamics in the normal process
may be well captured by a linear discrete model.

When applied to process monitoring, Bayesian methods for
classification are limited to known process models. Therefore,
the methods are unable to detect the occurrence of faults or
new operating modes. To address this problem, Song et al. [21]
proposed to build several statistical models corresponding to
normal operating modes and several monitoring indicators for
detecting anomalies. The monitoring structure is to perform
Bayes’ statistical decision-based classification and to detect
anomalies relying on its monitoring indicator. In addition,
other research efforts focus on strategies of integrating the
Bayes’ statistical decisions for detecting anomalies in a pro-
cess with multiple operating modes [19], [22].

The statistical decisions in Bayes’ theorem refer to posterior
probabilities. In practice, there may be a numerical problem
when the numerator and the denominator in the fraction
for calculating the posterior probability are extremely small
values [13]. In Bayes’ theorem, the denominator is the sum
of products of the likelihood probability and prior probability.
An extremely small denominator can indicate the occurrence
of anomalies and is the same across all the known operating
modes. A unified monitoring indicator for anomaly detec-
tion in the FKF framework can be designed. The detection
of anomalies removes the necessity of mode identification,
thereby sidestepping the calculation of posterior probabilities,
thus the numerical problem caused by the anomalies can be
avoided.

The main contributions of this paper are as follows:

• The FKF is applied for monitoring multimode processes
including anomaly detection and mode identification;

• A method comprising off-line training of an FKF mon-
itoring model and on-line monitoring is proposed. The
off-line training of an FKF monitoring model includes
the derivation of the FKF model and a unified monitoring
indicator. The FKF model is trained with MARSS models
incorporating historical data. A unified monitoring indica-
tor extends the FKF so that it may also used for anomaly
detection applications;

• The performance of the FKF monitoring model is demon-
strated in a simulated multimode process consisting of
three models, having the following behaviours:

1) same steady-state, with three different dynamics,
2) three different steady-states with the same dynam-

ics,
3) three different steady-states and three different dy-

namics;
• The proposed method is validated on data obtained from

a pilot-scale multiphase flow facility [23] with multiple
operating modes and a fault.

The rest of paper is organised as follows: Section II in-
troduces the identification of MARSS models incorporating
historical data, the theoretical formulation of FKF, and the
use of FKF for anomaly detection and mode identification.
The procedure of off-line training an FKF monitoring model
and on-line monitoring is given in Section III. Section IV
evaluates the training of the FKF model using a simulated
multimode process. Section V validates the proposed method
on data recorded from an industrial scale multiphase flow
facility. Also in Section V, a comparison study is conducted
with other process monitoring methods. The paper ends with
conclusions.

II. METHODOLOGY

A. Preliminary

1) Field Kalman Filter (FKF): A parameter-dependent
state-space model is defined as:

x[t+ 1] = A(θ)x[t] +B(θ)u[t] + w[t]

y[t] = C(θ)x[t] + v[t]

w[t] ∼ N (0,W (θ)),v[t] ∼ N (0, V (θ))

(1)

where x[t] ∈ Rm is the state, y[t] ∈ Rr is the measurement,
w[t] ∈ Rm is the state noise, v[t] ∈ Rr is the measurement
noise, u[t] ∈ Rl is the system input, θ ∈ Ω ⊂ Rp is a vector
of parameters and N represents the Gaussian distribution.
m is the number of state variables and r is the number of
measurement variables. The matrix functions A,B,C,W, V
are of C1 class 1 w.r.t. θ. A(θ), B(θ), C(θ), W (θ) and V (θ)
respectively denote the state transition matrix, input-control
matrix, measurement-control matrix, state noise covariance
and measurement noise covariance, and are of appropriate
dimensions.

Let yt = y[t] and xt = x[t]. Considering a se-
quence of measurements y1,y2, . . . and corresponding states
x1,x2, . . . , the main objective of the FKF is to simultaneously

1C1 class refers to all of the differentiable functions whose derivative is
continuous.
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estimate the distribution of state xt and parameter θ, P (xt, θ).
The past measurements for the time interval (0, t− 1] can be
written as

Yt−1 =

{
{y1, . . . ,yt−1}, for t = 2, 3, . . .

∅, for t = 1.
(2)

The FKF estimates P (xt, θ) in a recursive manner incor-
porating the information of past measurements Yt−1 as well
as the current measurement yt. There are two main steps for
each iteration in the recursive process summarised as:
• Prediction of joint distribution P (xt, θ|Yt−1);
• Correction of joint distribution P (xt, θ|Yt−1,yt) =
P (xt, θ|Yt).

Assuming Ω = {θj , j = 1, . . . , J} converts model (1)
into a set of θj-dependent state-space models, resulting in a
structure similar to other multiple model approaches. As these
θj-dependent state-space models are obtained from the FKF,
they are referred to as the FKF model. Under the assumption of
P (θ1|Yt) 6= · · · 6= P (θJ |Yt), P (xt, θ|Yt−1) and P (xt, θ|Yt)
both are probability mass functions for the variable θ that can
take J discrete values, which is the key property of the FKF
being utilised for anomaly detection and mode identification.

In the application of monitoring a process with J oper-
ating modes, parameters in (1) are drawn from sets with J
members. The FKF model does not require the explicit values
of θ1, . . . , θJ , instead only the matrix functions of θj are
of interest, which are expressed as ∀j, A(θ) = {A(θj)},
B(θ) = {B(θj)}, C(θ) = {C(θj)}, W (θ) = {W (θj)} and
V (θ) = {V (θj)}. This paper also considers the case when
j /∈ {1, . . . , J}, related to the appearance of anomalies.

2) Data preparation: Historical data-based approaches for
monitoring multimode processes typically begin with a data
partitioning step [24]. Data recorded from various operating
modes can be partitioned manually by experts, and outliers
existing in the historical data can be discarded using appropri-
ate techniques [25]. Given healthy data, the partition can also
be automated by clustering algorithms, for example, Dirichlet
Process (DP) [26]. The DP is able to cluster the data automat-
ically with respect to operating modes without knowing the
number of modes in advance, leading to a reasonable value of
J . As a result, historical data YH are partitioned according to
operating modes as YH = {Y (j)

H , j = 1, 2, . . . , J} where J is
the number of operating modes and Y (j)

H denotes the historical
data for the j-th operating mode. For the j-th operating mode,
historical data Y (j)

H are further split into a training dataset Y (j)
Tr

and a validation dataset Y (j)
Va .

B. Multivariate Autoregressive State-Space (MARSS) models

The acquisition of the state-space models of normal oper-
ating modes is conducted using historical process data.

1) Multivariate Autoregressive (MAR) models: In this pa-
per, the r-dimension MAR model having k autoregressive
terms and a constant term takes the form

y(j)[t+1] = Φ
(j)
1 y(j)[t]+ · · ·+Φ

(j)
k y(j)[t−k+1]+Φ

(j)
0 (3)

where y(j)[t+ 1],y(j)[t], . . . ,y(j)[t− k + 1] ∈ Rr represents
variable vectors equally spaced in time, Φ

(j)
1 , . . . ,Φ

(j)
k ∈ Rr×r

are coefficient matrices, and Φ
(j)
0 ∈ Rr is a coefficient vector

for the j-th mode.
Using a least squares fitting procedure [27], the coefficients

Φ
(j)
1 , . . . ,Φ

(j)
k ,Φ

(j)
0 can be obtained by fitting the model in

(3) to an ensemble of measurements Y (j)
H [28].

2) Conversion of an MAR model to state-space form: When
Ω = {θj , j = 1, . . . , J}, the desired state-space form is

x(θj)[t+ 1] = Â(θj)x(θj)[t] + B̂(θj)u[t] + w(θj)[t]

y(θj)[t] = Ĉ(θj)x(θj)[t] + v(θj)[t]

w(θj)[t] ∼ N (0, Ŵ (θj)),v(θj)[t] ∼ N (0, V̂ (θj))

j = 1, . . . , J

(4)

where Â(θj), B̂(θj), Ĉ(θj), Ŵ (θj) and V̂ (θj) are the es-
timates of state transition matrix, input-control matrix and
measurement-control matrix, state noise covariance and mea-
surement noise covariance of the j-th mode, respectively.
w(θj)[t] and v(θj)[t] are samples from zero-mean Gaussian
distributions with noise covariances Ŵ (θj) and V̂ (θj), re-
spectively. x(θj)[t] and y(θj)[t] are the calculated state and
measurement using (4). The variable u[t] is equal to 1, because
there is a constant term in (3).

As (3) is to be converted to a state-space model, it is
necessary to choose some states. There are many possible
choices for the states [17]. In this paper the states are given
by

x(θj)[t] =


x1[t]
x2[t]

...
xk[t]

 (5)

where

xi[t] =

{
y(j)[t] ∈ Rr, for i = 1

x1[t− i+ 1] ∈ Rr, for i = 2, 3, . . . , k.
(6)

With these definitions, Â(θj), B̂(θj) and Ĉ(θj) in (4) can
be given as:

Â(θj) =


Φ

(j)
1 Φ

(j)
2 . . . Φ

(j)
k

I 0 . . . 0
...

...
. . .

...
0 . . . I 0

 ∈ Rrk×rk

B̂(θj) =


Φ

(j)
0

0
...
0

 ∈ Rrk
Ĉ(θj) =

(
I 0 . . . 0

)
∈ Rr×rk,

(7)

where the dotted lines indicate that the vectors and matrices
have sub-blocks, I ∈ Rr×r is an identity matrix and 0 ∈ Rr×r
is a matrix with all elements of value 0.

The noises w(θj)[t] and v(θj)[t] for states and outputs
are assumed subject to zero mean, uncorrelated Gaussian
distributions. Thus, covariance matrices Ŵ (θj) and V̂ (θj) are
diagonal matrices, being estimated using validation dataset
YVa = {Y (1)

Va , . . . , Y
(J)

Va }.
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C. FKF for monitoring a multimode process

When Ω = {θ1, . . . , θJ}, the FKF model for a J-mode
process can be formulated as (4). Generally, the parameter
matrices in (4) are unknown. The FKF model can be trained
by the method in Section II-B. The FKF algorithm supporting
θ ∈ {θ1, . . . , θJ} is presented in Fig. 1.

The recursive process in FKF includes two main steps:

1) Prediction step. The prediction step determines the joint
probability distribution of xt and θ using past measure-
ments Yt−1:

P (xt, θ|Yt−1) = P (xt|θ, Yt−1)P (θ|Yt−1) (8)

where P (xt|θ, Yt−1) follows a mixture of Gaussian
distributions. Each Gaussian component is predicted in
the same way as in a Kalman filter, having a mean vector
x−t (θj) as equation (17a) in Fig. 1 and a covariance
S−t (θj) as (17b) in Fig. 1. P (θ|Yt−1) is the distribution
of Gaussian components. At t = 1, P (θ|Yt−1) = P+

0 (θ)
is presumed uniformly distributed as (16e).

2) Correction step. The correction step determines the joint
probability distribution of xt, θ with additional measure-
ment yt:

P (xt, θ|Yt−1,yt) = P (xt|θ, Yt−1,yt)P (θ|Yt−1,yt)
= P (xt|θ, Yt−1,yt)
× P (yt|θ, Yt−1)P (θ|Yt−1)

(9)
where P (xt|θ, Yt−1,yt) follows a mixture of corrected
Gaussian distributions where each Gaussian component
is parameterised by mean vector x+

t (θj) as (18b) and
covariance S+

t (θj) as (18c). At t = 1, since Yt−1 =
∅, often P (xt|θ, Yt−1,yt) = P (xt|θ,yt) in which
case the x+

t−1(θj) = x+
0 (θj) in (17a) is initialised

as a zero vector and S+
t−1(θj) = S+

0 (θj) in (17b) is
an identity matrix. P (yt|θ, Yt−1) can be estimated by
P (xt|θ, Yt−1,yt) because yt is linearly linked to xt
and both noise covariances of xt and yt are Gaussian.
Therefore, P (yt|θ, Yt−1) is also a mixture of Gaussian
distributions with mean vector y−t (θj) as (18d) and
covariance M−

t (θj) as (18e) for the j-th component.

Since θ ∈ {θ1, . . . , θJ}, each time instant yields J condi-
tional probabilities with respect to xt and θ. As a plant may
run at only one operating mode at a time, only one conditional
probability is the best-fit to reflect the current operation. The
inference of the best-fit conditional probability is equivalent
to finding the θj at time t to give the best estimates of
measurement yt. It should be noted that actual dependence
of the MARSS model on parameters θ is strongly implicit. In
the considered case, it is not necessary to explicitly estimate
parameters, as the interest is in the mode classification and
anomaly detection.

Let It ∈ {1, . . . , J} be the mode identity at time t.
It = j implies that all the past measures yt−1,yt−2, . . . ,y1

were from the j-th mode associated with system information
A(θj), B(θj), C(θj),W (θj), V (θj). The posterior probability

of a plant running at the j-th mode given yt can be formulated
according to Bayes’ theorem:

P (yt−1,yt−2, . . . ,y1,A(θj), B(θj), C(θj),W (θj), V (θj)|yt)
= P (It = j|yt)

=
P (yt|It = j)P (It = j)∑J
j=1 P (yt|It = j)P (It = j)

(10)
where P (It = j) is the prior probability of a plant running
at the j-th mode before yt is measured, P (yt|It = j) is the
likelihood probability of measuring yt when a plant is running
at the j-th mode and P (It = j | yt) is the posterior probability
of a plant running at the j-th mode given yt.

Under the assumption of Gaussian distribution, the likeli-
hood probability can be calculated by

P (yt|It = j) = P (yt|yt ∼ N (y−t (θj),M
−
t (θj)))

= det(2πM−
t (θj))

− 1
2

× exp−
1
2 (yt−y−t (θj))

>
(M−

t (θj))
−1

(yt−y−t (θj)).
(11)

In this paper, there is no prior assumption regarding the
probabilities between operating modes. The common way of
assigning P (It = j) is recursive. Before having any measure-
ments, the prior probability P (It = j) for j = 1, . . . , J are set
equal to 1

J due to lack of prior knowledge. Once measurements
arrive, the prior probability P (It = j) is updated with the pos-
terior probability P (It−1 = j|yt−1). However, the drawback
of this simple posterior-to-prior updating is that if any prior
is updated with its posterior of value 0 (or numerically indis-
tinguishable from it), both prior and posterior values will be
locked to 0 for further computation. This can be problematic
in cases of mode switching. In similar approaches [10], [11],
[29], prior probabilities are artificially lower bounded by a
small value, which is a design parameter. In the case of FKF,
to overcome this issue the prior distributions are updated using
the forgetting operator [13]:

F (α) =
1

2



1 + α 1− α
1− α 2α 1− α

1− α 2α 1− α
. . . . . . . . .

1− α 2α 1− α
1− α 1 + α


(12)

where F (α) ∈ RJ×J , α ∈ (0, 1) is a forgetting factor and
the unfilled entries are zeros. The use of forgetting factor still
guarantees that the sum of priors is 1. Then instead of directly
taking over the posterior values, the prior values are predicted
by (17c) in Fig. 1 where

P−t (θ) =


P (It = 1)
P (It = 2)

...
P (It = J)

 (13)
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P+
t−1(θ) =


P (It−1 = 1|yt−1)
P (It−1 = 2|yt−1)

...
P (It−1 = J |yt−1)

 . (14)

If the forgetting factor α is set close to its upper bound value
1, it means that the prior values of time t are updated with
the posterior values of time t− 1. If α is close to 0, the prior
probability of time t is no longer influenced by its posterior
probability at time t − 1, and instead is predicted using the
sum of other weighted posterior probabilities at time t−1. The
reason is that the stationary distribution for F (α) is uniform:

lim
t→∞

F (α)
t
P0 = (

1

J
,

1

J
, . . . ,

1

J
)> ∈ RJ

for any P0 ∈ RJ .
(15)

In practice, α can be adjusted according to specific appli-
cations. Here, we set α = 0.99.

D. Anomaly detection and mode identification

Bayes’ theorem has limitations when measurements have
large variance [13], or when the measurements are from
a mode j /∈ {1, . . . , J} (e.g. new operating modes or
faults) [19], [22]. The likelihoods of the measurements given
j /∈ {1, . . . , J} will be close to 0, leading to a numerical
problem in calculating the posterior probability because the
denominator in (10) will be close to 0. Bayes’ theorem can
still be applied to anomaly detection by utilising a small value
as the monitoring threshold.

This paper proposes a monitoring indicator Lt

Lt =

J∑
j=1

P (yt|It = j). (19)

An anomaly is detected when the following condition holds
for Lt:

Lt < LLML. (20)

where LLML is the lower monitoring limit estimated from the
validation data YVa = {Y (1)

Va , . . . , Y
(J)

Va }. LLML is set with the
fifth percentile of the values of Lt. These monitoring indicators
are obtained by feeding YVa to the Algorithm 1 in which the
calculation of the predicted and corrected prior probabilities
in (17c), (18f) and (18g) are skipped and Lt is calculated by
(19). The usage of validation data here is to simulate the on-
line data of normal operation. The LLML is a cutoff point in
the validation data for flagging anomalies.

The mode identity at time t is determined by:

arg max
j
P (It = j|yt). (21)

Fig. 2 presents the workflow of anomaly detection and mode
identification based on the FKF. Given the FKF model and
LLML, the monitoring indicator at time t for the measurement
yt is calculated using (19). If Lt < LLML, It /∈ {1, . . . , J}
denotes that yt is an anomaly. There is no need to conduct
mode identification. Hence, let P+

t (θj) = 0 ∀j as (22a) be
indicative of the appearance of an anomaly. The predicted

Algorithm 1: Field Kalman Filter (FKF)
Initialisation

θ ∈ {θ1, . . . , θJ} (16a)
t = 1, ∀j = 1, . . . , J (16b)

x+
0 (θj), S

+
0 (θj) (16c)

P+
0 (θ1) = . . . , P+

0 (θJ ) =
1

J
(16d)

P+
0 (θ) = (P+

0 (θ1), . . . , P
+
0 (θJ ))

> (16e)

Prediction step

Predicted state:

x−t (θj) = A(θj)x
+
t−1(θj) +B(θj)u[t] (17a)

Predicted noise covariance of state:

S−t (θj) = A(θj)S
+
t−1(θj)A(θj)

> +W (θj) (17b)

Predicted prior distribution of It = 1, . . . , It = J :

P−t (θ) = F (α)P+
t−1(θ) (17c)

Correction step

Kalman gain:

Kt(θj) = S−t (θj)C(θj)
>M−t (θj)

−1 (18a)
Corrected state:

x+
t (θj) = Kt(θj)(yt − y−t (θj)) + x−t (θj) (18b)

Corrected noise covariance of state:

S+
t (θj) = (I −Kt(θj)C(θj))S

−
t (θj)

× (I −Kt(θj)C(θj))
> +Kt(θj)V (θj)Kt(θj)

>

(18c)
Predicted measurement:

y−t (θj) = C(θj)x
−
t (θj) (18d)

Predicted noise covariance of measurement:

M−t (θj) = V (θj) + C(θj)S
−
t (θj)C(θj)

> (18e)
Posterior probability of It = j:

P+
t (θj) = P (It = j|yt)

=
P (yt|It = j)P−t (It = j)∑J
j=1 P (yt|It = j)P−t (It = j)

(18f)

Posterior distribution of It = 1, . . . , It = J :

P+
t (θ) = (P+

t (θ1), . . . , P
+
t (θJ ))

> (18g)
t = t+ 1 (18h)

Go to prediction step until process stops

Fig. 1. The algorithm of the FKF when θ ∈ {θ1, . . . , θJ}. The superscript
+ denotes the corrected variable and − denotes the predicted variable.

prior distribution of all the known operating modes for the
next time instant are set to a uniform distribution as (22b).
If yt is recognised as normal operation, the mode identity is
determined by (21).

III. WORKFLOW FOR ANOMALY DETECTION AND MODE
IDENTIFICATION

The proposed workflow in Fig. 3 illustrates how to prac-
tically apply the FKF for monitoring multimode processes.
The left side of Fig. 3 shows the off-line training of the
FKF monitoring model, including the acquisition of the FKF
model and the determination of an LLML. Training the FKF
model entails MARSS learning using training data and noise
estimation using validation data. During on-line monitoring,
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Algorithm 2: Anomaly detection and mode identification
The FKF model as (4) is trained according to the Section II-B.
The lower monitoring limit LLML is derived according to the Section II-D.
Time stamp t is initialised to 1.
while Process continues do

Lt =
∑J

j=1 P (yt|It = j)

if Lt < LLML then
yt is an anomaly, indicating It /∈ {1, . . . , J}.
Instead of (17c) and (18f), the predicted and corrected prior
probabilities are calculated using the following equations:

P+
t (θj) = P (It = j|yt) = 0 ∀j (22a)

P−t+1(θj) = P (It+1 = j) =
1

J
∀j. (22b)

else
yt is recognised as normal operation.
∀j = 1, . . . , J , the predicted and corrected prior probabilities
are calculated using (17c), (18f) and (18g).
The mode identify It is determined by (21).
t = t+ 1

end
end

Fig. 2. On-line monitoring with the FKF monitoring model

a new incoming measurement yt is checked for normal or
anomalous operation using LLML. If yt is recognised as normal
operation, it will be classified to one of the known operating
modes. The prior distribution of known operating modes is
updated according to Algorithm 2 so that it may be used for
anomaly detection and mode identification of the next data
sample.

IV. SIMULATED CASE STUDY

A. Dynamic and steady-state models

The simulation example investigates the performance of the
FKF algorithm with data from a simulated multimode process.
Output data from the process are derived from three multimode
simulation models that have the following behaviours: 1) same
steady-state with three different dynamics, 2) three different
steady-states with the same dynamics and 3) three different
steady-states and three different dynamics. Fig. 4 shows the
step responses of the models as dashed-lines. Parameter spec-
ifications of these models are shown in the Appendix.

These models were defined to give a range of under-damped
and over-damped transient dynamics, as shown in Fig. 4.
Applied with unit step inputs and uncorrelated, white Gaussian
noise N (0, 0.1), starting at zero initial conditions, all of the
state-space models were run separately to obtain training
and validation data. Data of both transient response and
fluctuations around steady-states were included in training and
validation datasets. The test data were generated by running
one of the simulation models with a unit step, noise N (0, 0.1)
and a zero initial condition, then sequentially running the other
two models. Since the jump from one simulated mode to
another is instantaneous, the test data fluctuate around steady-
state values.

Fig. 5 gives scatter plots of the test data described above. As
the data points in each case overlap, it is difficult to visually

distinguish each mode from one another, particularly in the
first case shown in Fig. 5(a).

In this paper, the number of autoregressive terms is de-
termined using the Partial Autocorrelation Function (PACF)
against a confidence bound of 5% [30]. For multivariate data,
the calculation of PACF can be based on the summed squares
of all measurements. In order to evaluate the MARSS models,
the estimated and predefined state-space models are tested
using step response and zero initial conditions without noise.
The results of step responses are shown in Fig. 4. It can be
observed that the step responses of the models estimated using
the MARSS learning agree well with the equivalent responses
obtained for the original state-space models.

It should be noted that the experiments in Section IV-B and
IV-C are separate. In Section IV-B, the training, validation and
test data from each of the models are used. In Section IV-C,
training and validation data are only from model 2.1 and 2.2
while the test set consists of the data from model 2.1, 2.2 and
2.3.

B. Mode identification within known operating modes

Results of mode identification within known operating
modes are demonstrated in this subsection. Fig. 6(a) shows
the trend plot of test data obtained by sequentially changing
the operating modes, with duration of 600 samples for each
mode. The on-line monitoring indicator result is presented in
Fig. 6(b). The posterior probability of each model conditional
on the measurements is calculated by (10) and shown in Fig.
6(c). The results of using models 2.1, 2.2 and 2.3 in Fig. 7
and models 3.1, 3.2 and 3.3 in Fig. 8 are obtained following
the same experiment operation.

Table. I presents the performance of mode identification
for the described models. The Mode Identification Accuracy
(MIA) and False Alarm Rate (FAR) metrics are:

MIA =
numj,I

numj,S − numj,A

FAR =
numj,A

numj,S

(23)

where only in (23), j denotes the model number (e.g. 1.1,
2.1), numj,A, numj,I and numj,S are respectively the number
of false alarms, the number of successfully identified samples
and the number of samples from the model j. The results in
Table I show that the FKF is capable of distinguishing data
points derived from various dynamic and steady-state models.

C. Anomaly detection and mode identification when a new
operating mode appears

This subsection demonstrates the monitoring performance
for a process containing known operating modes and one new
operating mode. Training and validation data were generated
from state-space models 2.1 and 2.2 while the data to be
classified were generated from models 2.1, 2.2 and 2.3.
The FKF model only contains the dynamic and steady-state
characteristics from models 2.1 and 2.2. Model 2.3 was treated
as a new mode.



IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. , NO. , 2019 7

Mode identification
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On-line monitoring

Anomaly detection

Yes
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Fig. 3. Flowchart of off-line training the FKF monitoring model and on-line monitoring.
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dynamics
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dynamics

Fig. 4. Step response comparison between the MARSS models (solid lines) and simulated models (dashed lines).
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Fig. 5. Scatter plot for test data from models defined in Table V.
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TABLE I
PERFORMANCE OF MODE IDENTIFICATION ON THREE MULTIMODE SIMULATION MODELS

Dynamic and steady-state models Model number numj,A
a FAR b numj,S

c− numj,A numj,I
d MIAe

Same steady-state,
with three different dynamics

Model 1.1 23 3.83% 577 499 86.48%
Model 1.2 18 3.01% 581 562 96.90%
Model 1.3 35 5.83% 565 557 98.58%

three different steady-states
with the same dynamics

Model 2.1 26 4.33% 574 574 100%
Model 2.2 30 5.01% 569 569 100%
Model 2.3 37 6.17% 563 563 100%

three different steady-states and
three different dynamics

Model 3.1 49 8.17% 551 551 100%
Model 3.2 18 3.01% 573 573 98.79%
Model 3.3 12 2.00% 588 588 100%

a The number of false alarms w.r.t. model j;
b False Alarm Rate;
c The number of samples from the model j;
d The number of successfully identified samples from model j;
e Mode Identification Accuracy;
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Fig. 6. Monitoring results: the operation scheme is model 1.1, model 1.3
and model 1.2.
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Fig. 7. Monitoring results: the operation scheme is model 2.1, model 2.3
and model 2.2.
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Fig. 8. Monitoring results: the operation scheme is model 3.1, model 3.3
and model 3.2.
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Fig. 9. Anomaly detection and mode identification when a new operating
mode appears.
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Fig. 10. Trend plots of training and validation data

Fig. 9 shows the monitoring results of test data including
known operating modes and an additional mode. The on-
line operating scheme is model 2.1, 2.3 and 2.2. Initially,
the posterior probability and Lt indicate that the process was
operating in the mode described by known model 2.1. It can
be seen that Lt quickly responds to the occurrence of model
2.3, dropping down below the red-dashed line of LLML, and
posterior probabilities for model 2.1, 2.3 and 2.2 are 0. When
model 2.2 occurs in the process, Lt returns to a level above
LLML and the maximal posterior belongs to model 2.2. The
results show that the proposed monitoring indicator Lt is able
to detect that the operating mode is unknown.

V. INDUSTRIAL CASE STUDY

This section demonstrates the effectiveness of anomaly
detection and mode identification based on FKF using data
recorded from an industrial scale multiphase flow facility.
Specifically in this paper we utilise the PRONTO benchmark
dataset [23].

A. Description of dataset

The PRONTO benchmark data were collected from a pilot-
scale multiphase flow rig which allows the study of trans-
portation, measurement and control of multiphase flows [23].
Various operating modes were implemented by adjusting the
water and air flow rate. Reference [23] gives more details on
the multiphase flow facility and the data.

The data used in this paper are from three normal operating
mode datasets and one fault. Specific set points for normal
operating modes are summarised in Table II. The air blockage
fault was induced by gradually closing a valve in the inlet
air line under Mode 1. There are eight variables are used for
monitoring, presented in Table III.

After the data labelling step, the training dataset contains
samples 1, 2, . . . , 500 from Mode 1, Mode 2 and Mode 3,
and the validation dataset contains samples 501, 502, . . . , 1000
from Mode 1, Mode 2 and Mode 3. Fig. 10 highlights the
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TABLE II
DETAILS OF NORMAL OPERATING MODES IN PRONTO BENCHMARK

DATASET

Mode identity Mode 1 Mode 2 Mode 3

Water flow rate (kg s−1) 0.1 0.5 1
Air flow rate (m3 h−1) 120 150 200

TABLE III
LIST OF PROCESS VARIABLES IN PRONTO BENCHMARK DATASET

Variable Number Variable description umit

1 Input air flow rate kg s−1

2 Air delivery pressure barg
3 Input water flow rate kg m3

4 Pressure in the mixing zone barg
5 Pressure at the riser top barg
6 2-phase separator output water flow rate barg
7 3-phase separator pressure barg
8 3-phase separator water level %

TABLE IV
QUANTITATIVE COMPARISON AMONG FKF, FGMM-BIP AND PCA-BASED

T 2 AND SPE

FKF FGMM-BIP PCA

Classified training data? 3 3 7

Mode identification 3 3 7

Anomaly detection? 3 3 3

Process models necessary? 7a 7 7

Unified monitoring indicator? 3 3 7

False alarm rate 2.67% 26.01%
T 2: 3.05%
SPE: 0.53%

Anomaly detection time 3375 2394
T 2: 3907
SPE: 4457

Identification time of Mode 2 507 1190 N/A

Identification time of Mode 3 658 1185 N/A

a Incorporating an MARSS learning step in the proposed FKF removes the
necessity of acquiring process model with first-principles;

trends of process variables in the training and validation
dataset. The test dataset contains additional samples from
Mode 1, Mode 2 and Mode 3, and all of the samples from
the air blockage fault. The sequence of valve opening and the
plot of test data are shown in Fig. 11(a) and 11(b).

B. Performance

In this demonstration, the FKF model for a multimode
process in the dataset was derived from training data using the
method in Section II-B. The performance of on-line anomaly
detection and mode identification is presented in Fig. 11(c)
and 11(d), respectively.

At time 0, since the FKF starts at artificially specified zero
initial conditions different from the set points of the normal
operating modes, it leads to a transient response in the Lt

indicator. After the initial transient, the monitoring indicator
goes above LLML and the probabilistic outcomes in Fig. 11(c)
indicate the current mode is Mode 1. Mode switches take place
at sample 503 (A1 in Fig. 11(d)) and 1185 (A2 in Fig. 11(d)),
causing a fast fall in monitoring indicators. After the FKF
is adapted to the switched mode, the monitoring indicators
return back to normal, and the maximal posterior probabilities
correctly indicate periods where the process was operating
in Mode 2 and Mode 3. The process variables have larger
variances when the process runs at Mode 2 and Mode 3,
relative to Mode 1, which can be seen in Fig. 11(b). Therefore,
the monitoring indicator Lt varies over a wide range.

The valve closure fault (Fig. 11(a)) starts at sample 1312
(A3 in Fig. 11(d)). The change from Mode 3 to a faulty
operation is unlearned, resulting in Lt falling below the
monitoring threshold. Then the monitoring indicator goes up,
and initially, the operating mode continues to be recognised
as Mode 1. This is likely because of a non-linear relationship
existing between the valve adjustment and the associated flow
changes. Adjustments to the valve cause only minor changes
in flow regime until the valve is almost half closed, thus the
incipient fault behaves similarly to Mode 1. At sample 2908
(A4 in Fig. 11(d)), the monitoring indicator Lt shifts to a lower
level, but does not trigger the monitoring threshold LLML.
When the valve opening degree decreases to 30 degrees, Lt at
sample 3375 (A5 in Fig. 11(d)) drops below LLML accounting
for the moderate fault. The posterior probability in Fig. 11(c)
indicates an unknown mode once the fault is identified. As the
fault becomes severe at sample 3900 (A6 in Fig. 11(d)), Lt
drops to a very small value, approaching to zero.

C. Comparison study
In this comparison study, process monitoring methods,

FGMM-BIP index and PCA-based T 2 and SPE are compared
against the FKF method. FGMM-BIP index [19] is a mul-
timode process monitoring approach possessing both mode
identification and anomaly detection abilities. In addition,
FGMM-BIP index also uses the Bayesian inference technique
and a unified monitoring indicator, similar to the FKF. PCA-
based T 2 and SPE are extensively applied to detecting faulty
operation in process industries [31].

1) Comparison with FGMM-BIP index : In [19], assuming
the process data within each operating mode may be described
by a multivariate Gaussian distribution, Finite Gaussian Mix-
ture Models (FGMM) are used for determining the parameters
(e.g. means, covariances and prior probabilities) associated
with each operating mode. Further, a unified monitoring in-
dex, BIP, is defined by integrating Bayesian inference-based
probability and distance-based probability.

In this comparison experiment, the code was implemented
as described in [19]. The training data and test data are the
same as the ones in Section V-A. Following [19], the monitor-
ing limit was set to 95%. The fault is detected when the BIP
index exceeds the monitoring limit. The mode identification
and anomaly detection results using FGMM-BIP are presented
in Fig. 12. Fig. 12(a) shows the on-line mode identification
result. Similarly to the FKF monitoring method, the current
operating mode is the one with the maximal posterior value.
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(b) Trend plot of test data
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Fig. 11. FKF for anomaly detection and mode identification on PRONTO benchmark dataset
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Fig. 12. FGMM-BIP for anomaly detection and mode identification on PRONTO benchmark dataset
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mode switch. C3/E3: the appearance of fault. C4/E4: fault detection.

The FGMM-BIP detects the the valve-opening anomaly just
before sample 2394 (B4 in Fig. 12(b)), 981 samples before the
FKF method. On the other hand FGMM-BIP gives numerous
false alarms during normal operation, and also gives false
alarms after the mode change at sample 503 (B1 in Fig. 12(b)).

The switch of mode at sample 503 (B1 in Fig. 12(b)) is
interpreted by FGMM-BIP as faulty operation. In addition,
the BIP indicates anomalies until sample 658, even though
the new mode is normal. The FKF method identified the
switch of mode somewhat earlier at sample 507 and stopped
indicating anomalies. Similarly to the FKF, the FGMM-BIP
method identifies the period from sample 1312 (B3 in Fig.
12(b)) to 2394 (B4 in Fig. 12(b)) as normal operation in Mode
1. This is the period when the fault has started and is increasing
in severity. Neither method is able to detect the fault in its
early stages. Other studies using the same dataset, for example,
[23], [32], also presented and discussed the difficulties in
classifying and detecting this developing fault in early stages.
These studies highlighted that the relationship between the
valve position and flow rate is non-linear, and that there is
only a minor change in the flow rate as the valve closes.
Hence detection based on flow rate is delayed regardless of
the detection algorithm.

When compared with the monitoring obtained using the
FKF, the FGMM-BIP method shortens the delay of anomaly
detection. Although the FGMM-BIP can detect the actual fault
at an earlier stage than the FKF approach, the associated false
alarm rate is significantly higher.

2) Comparison with PCA-based T 2 and SPE: The MAT-
LAB code of computing T 2 monitoring statistic is from [33],
while SPE statistic was implemented by authors based on [34].
Due to the fact that T 2 and SPE are not capable of mode
identification, both were only applied to anomaly detection.
Fig. 13 plots the monitoring results. T 2 detects the fault at
sample 2907 (C4 in Fig. 13) while SPE only detects the fault
in a brief moment at sample 4457 (E4 in Fig. 13).

The quantitative comparisons are conducted among three
process monitoring methods, FKF, FGMM-BIP and PCA-
based T 2 and SPE, respectively. The comparison results are

given in Table IV.

VI. CONCLUSIONS

In order to systematically implement the FKF in the applica-
tion of monitoring a multimode process, this paper presented
a method of off-line training an FKF monitoring model and
on-line anomaly detection and mode identification.

In this paper, the FKF model for a multimode process is a
set of state-space models. Each state-space model is trained by
MARSS learning and noise estimation using historical data.
A universal monitoring indicator Lt is defined and a lower
monitoring limit LLML is trained off-line. The quality of the fit
of the MARSS models and the performance of the FKF-based
anomaly detection and mode identification are tested on sim-
ulated multimode processes. The results presented in Section
IV show that the the MARSS models trained using historical
data are capable of reflecting the dynamic and steady-state
characteristics and therefore are applicable for model-based
anomaly detection and mode identification. Particularly, the
case of same steady state, with three different dynamics show
that the FKF is sensitive to the dynamics, thereby showing
it is able to perform a mode identification task for dynamic
models. Experiments using data recorded from an industrial
scale multiphase flow facility confirmed that the proposed
workflow in Section III may also be applied in practical
settings. In addition, the comparison results in Section V-C
show that the proposed unified monitoring indicator is able to
detect anomalies while resulting in fewer false alarms.

The performance of anomaly detection relies on the sensitiv-
ity of the FKF monitoring model. If the FKF model is trained
using data that are not fully representative of normal operation,
the resulting model will not be accurate. As a result, the FKF
monitoring model will be less sensitive to the occurrences of
faulty operation.

APPENDIX

For the simulation case, the training and validation datasets
and test data to be classified are derived using the state-space
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TABLE V
MATRIX SPECIFICATION FOR STATE-SPACE MODELS.

Dynamic and steady-state model combinations Model number Matrix A Matrix B Matrix C steady-states

(1) Models with same steady- states and
different dynamics

Model 1.1

[
0.9267 −0.2183
0.3882 0.9558

] [
0.2917

−0.3440

] [
1 0

0 1

] [
1

1

]
Model 1.2

[
0.8791 −0.4239
0.1884 0.9566

] [
0.5521

−0.1451

] [
1 0

0 1

]

Model 1.3

[
0.0418 −0.0703
0.1250 0.9796

] [
1.0285

−0.1047

] [
1 0

0 1

]

(2) Models with different steady-states and
same dynamics

Model 2.1

[
0.9267 −0.2183
0.3882 0.9558

] [
0.6550

0.1327

] [
1 0

0 1

] [
0

3

]

Model 2.2

[
0.9267 −0.2183
0.3882 0.9558

] [
0.5834

−0.6879

] [
1 0

0 1

] [
2

2

]

Model 2.3

[
0.9267 −0.2183
0.3882 0.9558

] [
−0.1450
−0.4324

] [
1 0

0 1

] [
1

−1

]

(3) Models with different steady-states and
different dynamics

Model 3.1

[
0.9267 −0.2183
0.3882 0.9558

] [
0.4375

−0.5159

] [
1 0

0 1

] [
1.5

1.5

]

Model 3.2

[
0.8791 −0.4239
0.1884 0.9566

] [
1.5280

−0.2468

] [
1 0

0 1

] [
2

3

]

Model 3.3

[
0.0418 −0.0703
0.1250 0.9796

] [
2.5712

−0.2616

] [
1 0

0 1

] [
2.5

2.5

]

models in Table V. These models are predefined to give a
range of under-damped and over-damped transient dynamics.
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