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Abstract: Pursuit-evasion games are used to define guidance strategies for multi-agent planning
problems. Although optimal strategies exist for deterministic scenarios, in the case when information
about the opponent players is imperfect, it is important to evaluate the effect of uncertainties on the
estimated variables. This paper proposes a method to characterize the game space of a pursuit-evasion
game under a stochastic perspective. The Mahalanobis distance is used as a metric to determine the
levels of confidence in the estimation of the Zero Effort Miss across the capture zone. This information
can be used to gain an insight into the guidance strategy. A simulation is carried out to provide
numerical results.

Keywords: pursuit-evasion games; missile guidance; differential games; observability; Mahalanobis
distance; Cramér–Rao lower bound

1. Introduction

Pursuit-evasion differential games have been applied to autonomous vehicles guidance problems
in various contexts ranging from missile guidance [1], to spacecraft orbital maneuvers [2], and mobile
robots [3]. Since their introduction in [4], other versions have been formulated, including stochastic [5]
and multi-agent [6] games.

A common solution for simplifying the architectures and reducing the weights and costs of
autonomous vehicles is to adopt a single instrument (bearing or range sensor) for target tracking or
navigation [7,8]. This work focuses on a missile application, but the results can be easily extended
to other scenarios and to different sets of measurements. In missile systems, passive sensors like
electro-optical or optical seekers are often used to provide the target direction with respect to the
vehicle. This bearings-only measurement system comes at the cost of not having information on the
range to the target when an optimal guidance law is employed. To enhance the observability of the
range and, therefore, to improve the performance of the engagement, it is necessary to deviate from the
optimal guidance strategy. Different strategies for optimizing these maneuvers have been extensively
studied in the literature. Reference [9] looks at the maneuver that maximizes the determinant of the
Fisher information matrix, while [10] maximizes the eigenvalues of the normalized error covariance
matrix; reference [11] tries to maintain the line of sight rate larger than a certain threshold, while [12]
imposes different intercept angles between consecutive pursuers, and [13] uses a performance measure
of observability based on geometric conditions.

Two stochastic metrics that have found application in the study of maneuvers effects on target
estimation with different sets of sensors are the Cramér–Rao lower bound (CRLB) [14,15] and the Fisher
information [16,17]. The CRLB returns an indication of the performance of a maximum likelihood
estimator in terms of error covariance. The Fisher information is related to the CRLB by an inverse
relationship, as will be shown later in the paper. An issue related to the use of these metrics in missile
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applications is that, for an unobservable system, their numerical computation can be prone to errors
because the Fisher information matrix would result in being nonsingular [18].

Rather than a new sub-optimal guidance law to optimize maneuvers, this paper proposes a
method for characterizing the game space of a pursuit-evasion game using another stochastic metric,
the Mahalanobis distance, which can be calculated independently from the CRLB and the Fisher
information and thus will suffer less from numerical issues. The proposed method allows for obtaining
a map of the confidence in the estimation of the main variable of a pursuit-evasion guidance law, called
the Zero Effort Miss (ZEM). This knowledge can be exploited as a cost to numerically minimize in
guidance algorithms or as an information to feed reinforcement learning algorithms [19]. An advantage
of this solution is that it is not computationally heavy, as it only involves the calculation of the
Mahalanobis distance from the covariance matrix of the Kalman filter.

The rest of this paper is organized as follows: Section 2 reviews the pursuit-evasion games
framework; Section 3 defines a method to characterize the capture zone of the game from a stochastic
point of view; a numerical example in presented in Section 4; conclusions are given in Section 5.

2. Statement of the Problem

2.1. Engagement Description

Consider the pursuer P and the evader E represented in Figure 1 in a Cartesian reference frame of
coordinates XY. P and E are assumed to be mass points, with constant speeds vP and vE, and lateral
accelerations aP and aE, respectively. The distance between P and E is the relative range r. The line of
sight (LOS) forms an angle λ with the horizontal reference. The flight path angles of the pursuer and
the evader are indicated as γP and γE, respectively. The vertical coordinates of the two players are yP
and yE

Figure 1. Engagement scenario.

The dynamics of the engagement assumes that the physical systems implementing the guidance
commands u and v can be represented as first order systems with time constants τP and τE, respectively.
The set of nonlinear equations that describes the dynamics of the engagement is resumed in
Equation (1):

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎩

ṙ = vE cos(γE − λ) − vP cos(γP − λ) ≜ Vr

λ̇ =

vE sin(γE − λ) − vP sin(γP − λ)

r
≜

Vλ

r
ȧP =

u − aP

τP
γ̇P =

aP

vP
ȧE =

v − aE

τE
γ̇E =

aE

vE

(1)

Under the assumption of small LOS angle λ, the miss y can be approximated as
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y = yE − yP = vE sin γE − vP sin γP (2)

Assuming also that γP and γE are small, the nonlinear model of Equation (1) can be linearized
obtaining a new system [20]:

Ẋ = AX + Bu +Cv (3)

whose state vector X is defined as:

X = [ y ẏ aP γP aE γE ]
T

(4)

and the matrices are:

A =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 0 0 0 0
0 0 −1 0 1 0
0 0 −1/τP 0 0 0
0 0 1/vP 0 0 0
0 0 0 0 −1/τE 0
0 0 0 0 1/vE 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(5)

B = [ 0 0 amax
P /τP 0 0 0 ]

T
(6)

C = [ 0 0 0 0 amax
E /τE 0 ]

T
(7)

The control inputs u and v are normalized with the maximum lateral acceleration values amax
P and

amax
E , respectively, resulting in a system with bounded controls (u/amax

P ≤ 1, v/amax
E ≤ 1).

2.2. Pursuit-Evasion Games

A differential game can be set up to obtain optimal guidance strategies u∗ and v∗ for the linear
system with bounded controls of Equation (3). This kind of differential game is called a pursuit-evasion
game because the optimal strategies aim at minimizing (the pursuer) or maximizing (the evader) the
relative distance at the final time t f , called miss distance. One of the most important features of the
pursuit-evasion games formulation is the definition of a structure for the game space with capture
and avoidance regions where finite miss is guaranteed. Depending on the characteristics of the two
players (time constants and maximum accelerations), a number of structures can be defined [20] with

semipermeable bounds Z∗± that can be calculated integrating backwards the derivative
dZ
dt

from its

final condition Z(t f ):
dZ
dt

= Γsign(Z)

Γ = −amax
P cos (γP0 − λ0)Ξ(tgo/τP)τP + amax

E cos (γE0 − λ0)Ξ(tgo/τE)τE
Ξ(x) = e−x

+ x − 1

(8)

where γP0 − λ0 and γE0 − λ0 are the values of the relative angles around which the linearization has
been performed.

Figure 2 shows a game structure with the bounds Z∗± plotted against the time-to-go tgo to the
interception for the case where amax

P > amax
E and amax

P τE > amax
E τP. The capture zone D0, in this case, is a

region where optimal strategies are arbitrary and zero miss is guaranteed. The avoidance zone D1 is a
region where zero miss can not be achieved and the optimal commands are

{
u∗ = amax

P sign(ZEM)

v∗ = amax
E sign(ZEM)

(9)

The ZEM in the previous equation is the final distance between the two players at the end of
the engagement assuming no further maneuvers from the players. The ZEM expression for the
engagement of Equation (1) is given by:
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ZEM = −ṙλ̇tgo + aE cos (γE − λ)Ξ(tgo/τE)τ2
E − aP cos (γP − λ)Ξ(tgo/τP)τ2

P (10)

with tgo being approximated as:

tgo = −
r
ṙ

(11)

If the pursuer starts the engagement in the capture zone and, if it adopts the guidance strategy of
Equation (9), the level of ZEM will remain close to 0. A different guidance command will produce a
larger ZEM, approaching the bounds Z∗±.

tgo - [s]

Z
 -

 [
m

]

D0

D1

D1

Z
+

*

Z
-

*

Figure 2. A pursuit-evasion game structure.

2.3. Estimator in the Loop

The implementation of the guidance strategy of Equation (9) requires the knowledge of an estimate
of the ZEM, which is made up of information on both the pursuer and the evader states. Pursuer’s
related variables such as vP, γP, and aP can be provided by the on-board navigation system, but the
other variables need to be reconstructed through an estimator, in most cases a nonlinear Kalman filter.
The vector X̂ of variables that need to be estimated is therefore:

X̂ = [ r λ aE γE vE ]
T

(12)

In the case of a seeker measuring the LOS angle λ (bearings-only measurements, BOM):

zBOM = λ + νλ = [ 0 1 0 0 0 ] X̂ + νλ = HBOMX̂ + νλ (13)

If a relative range measurement is available too, Equation (13) is updated as:

zRB = [
r + νr

λ + νλ
] = [

1 0 0 0 0
0 1 0 0 0

] X̂ + [
νr

νλ
] = HRBX̂ + [

νr

νλ
] (14)

The noise signals νr and νλ, are defined as zero-mean Gaussian sequences with variance σνr and
σνλ

, respectively. The model provided to the Kalman Filter includes a shaping filter to represent target
maneuvers, which are assumed as maximum acceleration maneuvers whose starting time is uniformly
distributed over the flight time. The maneuvers model provided to the filter is a white noise ω with
spectral density ψ through an integrator [21]. The complete model is given by:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎩

ṙ = Vr

λ̇ =

Vλ

r
γ̇T = aT/vT
ȧT = ω

v̇T = 0

(15)
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The Jacobian matrix J associated with the previous model can be found in [10] and it is used along
with the sample time ∆T to calculate the state transition matrix Φ:

Φ = eJ∆T (16)

It is well known that, in the case of bearings-only measurements, tgo becomes unobservable if
the pursuer is maintained on the collision triangle, i.e., if an optimal guidance law such as that of
Equation (9) is applied. To gain an insight on range observability, one should maneuver away from the
collision triangle, at the cost of increasing the ZEM. This does not preclude capture until the D0 region
is not abandoned, but since the ZEM is only available as an estimation, there is the risk of getting too
close to the borders of D0 or even to pass in the D1 zone.

3. Characterization of the Game Structure

It is very important for the pursuer to have a good estimate of the ZEM so as to apply the best
guidance command possible. In addition, if the adopted guidance strategy does not intend to maintain
the ZEM around 0, it is crucial to know how good its estimate is. Although Z∗ can be calculated
exactly using a regressive tgo value, its distance from the estimated ZEM is random, since ˆZEM is
itself a random variable. It seems interesting, therefore, to characterize the D0 region in terms of a
stochastic metric. To this purpose, the concept of Mahalanobis distance will be introduced in this
section, along with the CRLB of the estimator considered in this study.

3.1. Mahalanobis Distance

The Mahalanobis distance dM(θ) between a random variable θ̂ ∈ Rn and a point θ ∈ Rn is
defined as:

dM(θ) =
√

(θ̂ − θ))P−1
θ̂θ̂

(θ̂ − θ)T (17)

where Pθ̂θ̂ is the covariance matrix associated with the random variable θ̂. dM(θ) represents a region in
the neighborhood of θ̂ where θ should be. In other words, dM(θ) is a measurement of the confidence in
the estimation of the real parameter θ: a null dM(θ) means that θ coincides with the mean of θ̂; a larger
dM(θ) means that the estimation of θ is less correct. The interest of this work lies in determining the
confidence on the estimation of the ZEM at each value of tgo. To this end, a Mahalanobis distance for
ZEM is defined as:

dM(ZEM(tgo)) =
√

( ˆZEM(tgo) − ZEM(tgo))P−1
ZEM( ˆZEM(tgo) − ZEM(tgo))T (18)

The covariance PZEM can be obtained at each time instant using the value of the error covariance
of the Kalman filter. This can be easily done on the go, i.e., in real time with the estimator, returning a
value of dM that depends on the features of the filtering algorithm (e.g., approximation of the nonlinear
dynamics, tuning parameters, etc.). As a mean of comparison, another covariance can be used in
the calculation, which is that obtained through the CRLB associated with the estimator. This can be
interpreted as an ideal performance test, as it would return the minimum value for PZEM, independent
from the filtering algorithm.

3.2. Cramér–Rao Bound

The CRLB is defined as the minimum estimation covariance bound of an unbiased estimator.
In practice, it tells how good an estimator can theoretically be, given a noisy measurement. An estimator
is called efficient if its variance is equal to the CRLB, meaning that its mean squared estimation error
is the lowest possible among all unbiased estimators. Such an estimator is sometimes called not
practical, as it would yield the best theorical performance. According to the Cramér–Rao theorem,
the minimum variance of an unbiased estimator θ̂ of the parameter θ is always larger than the inverse
of the associated Fisher information matrix F [22]:
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varθ = E [(θ̂ − θ)(θ̂ − θ)T
] ≥ F−1 (19)

F = E [(∇X ln f (z∣θ)) (∇X ln f (z∣θ))T
] (20)

where f is the likelihood function of the n measurements sequence z given θ.

f (z∣θ) =
1

(2π)
n/2σ2

ν

exp{−

(z − θ)2

2σ2
ν

} (21)

The CRLB of a function g(θ) of the parameter θ is given by:

varg(θ) ≥
∂g
∂θ

F−1 ∂g
∂θ

T
(22)

In this work, the function g is the ZEM of Equation (10), while θ is the vector X̂ of Equation (12).
When the estimation is carried out using a Kalman filter, as in this work, the Fisher information matrix
of Equation (20) at the k-th step can be written in a recursive form [23]:

Fk = (Φ−1
)

T Fk−1Φ−1
+ HTσ−1

ν H (23)

The initial condition on F is defined considering a filter with infinite initial error covariance
matrix, therefore:

F0 = 0 (24)

4. Numerical Example

Two numerical simulations, each one consisting of 200 Monte Carlo runs, were carried out to
calculate the values of dM(ZEM) across the D0 region. The first simulation uses both bearings and
range measurements as in Equation (14), while the second employs the bearings-only measurements
of Equation (13). Different paths are travelled in each run of the simulation in order to cover the
entire D0 region, as shown in Figure 3, where each colour represents a different run. The trajectories
of both players for a single run are shown in Figure 4. The Mahalanobis distance is calculated
in correspondence of each dot of Figure 3 in two ways: first using the values of the CRLB from
Equation (22) as the covariance PZEM in Equation (18), and then using the error covariance matrix
calculated by the filter. The numerical initial values (R0, λ0, γE0 , γP0 , aP0 , aE0 ) and parameters used in
the simulations are reported in Table 1.

Table 1. Simulation initial values and parameters.

Parameter Value Parameter Value

vP 3 km/s vE 1.2 km/s
amax

P 30 g amax
E 10 g

R0 10 km λ0 5○

γE0 ∼ U (30○, 10○) g 9.81 m/s2

aP0 0 m/s2 aE0 0 m/s2

τP 0.1 s τE 0.2 s
ψ amax

E
2/t f ∆T 0.02 s

σνλ 0.001 rad σνr 50 m
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Figure 3. True ZEM for the simulated cases.
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Figure 4. Trajectory of both players in the xy coordinates for one of the runs.

Figures 5 and 6 show the result of the simulation for the case of bearings and range measurements.
The levels of the Mahalanobis distance are associated with different colors in the maps, as indicated in
the sidebar. The red regions are those where the estimation of ZEM is worse, and the blue regions
where it is best. The maps are generated by merging the results of all the runs at each time instant.
The value of the Mahalanobis distance in Figure 5 is calculated using the CRLB, while that in Figure 6
is obtained from the filter. At the beginning of the engagement (tgo > 4 s), the value of dM(ZEM)

in Figure 5 is very low and increases as the engagement moves on. This is a consequence of the
initialization of the Fisher information in this method (Equation (24)). Since the CRLB is the inverse of
the Fisher information, the initial PZEM will be very large and, therefore, dM(ZEM) will be very small
at the beginning. Since in the case of Figure 6 the initial covariance is finite, the value of dM(ZEM) at
the beginning is larger than in Figure 5, which is more realistic, as the uncertainty over the estimation
of a variable is finite in practice. Another difference is that the levels of Mahalanobis distance obtained
with the CRLB are lower than those calculated through the filter. However, this was expected as the
CRLB is an ideal bound for the estimator and the performance of a practical filter is always worse.
A feature in common for the two cases is that dM(ZEM) is smaller in the proximity of the upper bound
Z∗+. This can be explained with the observability improvement obtained when maneuvering away
from the collision triangle, even though the range measurements here already provide a certain level
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of observability. The high levels of dM(ZEM) towards the end of the engagement suggest that then it
is risky to maneuver away from the collision triangle because a last-minute maneuver from the evader
might suddenly increase the ZEM and cause the passage to the avoidance zone.

Figure 5. dM(ZEM) calculated with CRLB—Bearings + Range measurements.

Figure 6. dM(ZEM) from the filter—Bearings + Range measurements.

The case of bearings-only measurements is presented in Figures 7 and 8. The results obtained
with the CRLB are prone to numerical issues due to the fact that the system in this case is unobservable,
and therefore a good portion of the data at the beginning of the engagement is missing in Figure 7.
The matrix computed through Equation (23) is not invertible and therefore the CRLB cannot be
initially calculated. The values of dM(ZEM) obtained from the filter (Figure 8) in the first instants of
the engagement (tgo > 4 s) are similar to those of Figure 6: this is no surprise as the filter is initialized
in the same way in both cases. As the engagement moves on, the tendency of having smaller values
of dM(ZEM) (and hence a better estimation of the ZEM) in the proximity of the bound is even more
evident than in the previous case: the 0 level of the ZEM is characterized by a red strip, while yellow
and even blue layers can be found next to the bound. Since there are no range measurements here, the
only way to enhance the observability is to maneuver away from the collision triangle, evidently. As in
the case of bearings and range measurements, the values of dM(ZEM) are larger when calculated
through the filter (Figure 8) than when computed through the CRLB (Figure 7).
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Figure 7. dM(ZEM) calculated with CRLB—Bearings only measurement.

Figure 8. dM(ZEM) from the filter—Bearings only measurement.

5. Conclusions

Pursuit-evasion games offer a compact solution to the problem of target interception or
rendez-vous for autonomous vehicles, but need to rely on a good estimation of the variables needed
in the guidance formulation. This is not always possible, as the number of on-board sensors is often
limited by weights and cost constraints.

This paper has presented a method for characterizing the capture region of a pursuit-evasion
game in terms of the confidence on the estimation of the ZEM. The method consists of calculating
the Mahalanobis distance associated with the ZEM estimated by the on-board nonlinear filter.
A comparison with the Mahalanobis distance obtained through the CRLB showed that the proposed
method provides consistent results, which are less prone to numerical issues than the other.

These results can be used to design modern guidance laws that consider observability issues
in their formulation, in addition to the classic considerations on miss distance and control effort
minimization. This is especially valuable in scenarios where not all the necessary sensors are available,
but there is a demand for high performance in terms of accuracy.
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