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Abstract 

Methodology of optimal power generation 

mix considering volatility and reliability risk 

 

Haein Kim 

Technology Management, Economics, and Policy Program 

The Graduate School of Engineering 

Seoul National University 

 

 

Long-term power planning has been focused primarily on cost minimization, 

which was the same in other countries as in Korea. Since 2000, several studies 

applied Markowitz's portfolio theory to the portfolio of power generation sources. 

However, many of the earlier studies only concentrated on finding the efficient 

frontier of the portfolio, and there has not been a study on the trade-off ratio value 

between the cost and its volatility. Therefore, in earlier studies, the optimal 

portfolios from the efficiency frontier were found through scenario analysis, and 

not the real value of the policymaker's trade-off ratio. 

The primary aim of this paper is to estimate reasonably the exchange ratio 

between costs and their volatility in the analysis of the optimal power mix using the 



iv 

mean-variance model. This study started from the microeconomic foundation, 

which the policy makers used to establish the power plan to maximize their social 

welfare, estimate the marginal rate of substitution (MRS) between these elements 

using the time series of the power structure in Korea, and derive the optimal power 

portfolio from this. The secondary aim of this paper is to include in the analysis 

model the reliability risks that must be considered in the optimal power generation 

mix. Several studies describe power generation assets in the same way as securities 

traded in the capital market, but it is very important to maintain power supply 

reliability as well as minimize cost, and avoid volatility in real-world power plant 

investment. In this study, the reliability risk was defined as the loss of load 

probability, and the mean-variance portfolio model was expanded by including it as 

an element of the social welfare function of policy-makers in establishing a power 

plan. 

The findings of the study are as follows: First, from the perspective of cost and 

volatility, the ratio of substitution between the two factors gradually changed from 

1992 to 2014 to take more volatility risk. This was a major reason for the expansion 

of combined cycle gas turbine, which was eco-friendly and continuously improved 

in thermal efficiency since the 1990s, whereas diversifying power sources with 

nuclear power and coal after the oil shock in the 1970s. 

Second, the actual power generation portfolio was gradually approaching the 

optimal portfolio during the analysis period, but the share of LNG combined cycle 
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power generation has increased significantly compared to the optimum level since 

2011 when a large-scale power outage occurred in Korea. This can be attributed to 

the fact that in the early 2010s, the approval for the construction of LNG combined 

cycle power plants increased significantly to cope with the electricity crisis because 

of a short construction time. 

Third, when considering power reliability, the ratio of the optimal power 

generation portfolio was found to increase in proportion to peak-load generator, 

especially LNG, as compared to the volatility-risk-only model. This is because the 

combined power generation technology is composed of several gas turbines and a 

steam turbine, and the unit capacity per generator is small, which has a considerable 

diversification effect even in the event of generator failure. 

Based on these results, it is expected that the proportion of LNG in the power 

generation portfolio will have to be increased in the future. This is because policy 

makers are gradually changing the viewpoint of allowing volatility risk in their 

utility, and LNG CC is superior to other power sources in terms of reliability. In 

particular, the expansion of renewable power sources, which will increase the risk 

of reliability, is expected to require more LNG facilities in the future. 

 

Keywords: Portfolio Theory, Optimal Power Generation Mix, Volatility, Reliability, 

National Power Planning, Loss of Load Probability 

Student Number: 2015-30247 



vi 

Contents 

Contents .................................................................................................................. vi 

List of Tables ........................................................................................................... ix 

List of Figures .......................................................................................................... x 

Chapter 1.  Introduction ......................................................................................... 1 

1.1 Research Background .............................................................................. 1 

1.2 Research Objectives ................................................................................. 4 

1.3 Research Outline ...................................................................................... 6 

Chapter 2.  Literature Review ................................................................................ 7 

2.1 Portfolio Theory ....................................................................................... 7 

2.1.1 Markowitz’s Concept ........................................................... 8 

2.1.2 Capital Asset Pricing Model ............................................... 10 

2.2 Application to Power Generation Mix ................................................... 14 

2.2.1 Application to Global Case ................................................ 14 

2.2.2 Application to Korean Case ............................................... 19 

2.3 Estimation of the Trade-off Ratio .......................................................... 23 

2.4 Limitations of Previous Research and Research Motivation ................. 25 

Chapter 3.  Methodology ..................................................................................... 29 

3.1 Volatility Risk Only Model (1-risk model) ............................................ 29 

3.1.1 Microeconomic Foundation ............................................... 29 



vii 

3.1.2 Econometric Method .......................................................... 35 

3.2 Reliability Risk Added Model (2-risk model) ....................................... 40 

3.2.1 Measure of Reliability risk ................................................. 40 

3.2.2 Microeconomic Foundation ............................................... 45 

Chapter 4.  Empirical Studies .............................................................................. 56 

4.1 Data Specification .................................................................................. 56 

4.1.1 Investment Cost .................................................................. 56 

4.1.2 O&M and Fuel cost ............................................................ 59 

4.1.3 Total Supply Cost ............................................................... 61 

4.2 Estimation of 1-risk Model .................................................................... 63 

4.2.1 Estimation of Covariance Matrix ....................................... 63 

4.2.2 Estimation of Share Equation ............................................. 69 

4.2.3 Empirical Results and Discussion ...................................... 70 

4.3 Estimation of 2-risk Model .................................................................... 79 

4.3.1 Calculation of LOLP .......................................................... 79 

4.3.2 Estimation of Share Equation ............................................. 84 

4.3.3 Empirical Results and Discussion ...................................... 86 

4.4 Implication for Electric Power Industry Policy ..................................... 94 

4.4.1 Revisit to the CAPM .......................................................... 95 

4.4.2 Intermittency of Renewable Energy ................................. 102 

4.4.3 Future Portfolio Including Renewable Energy ................. 107 



viii 

Chapter 5.  Summary and Conclusion ............................................................... 111 

5.1 Concluding Remarks and Contribution ............................................... 111 

5.2 Limitation and Future Studies .............................................................. 115 

Bibliography ........................................................................................................ 116 

Appendix 1 : Deriving Optimal Share Equation .................................................. 128 

Appendix 2 : Deriving Derivatives of LOLP Function ....................................... 130 

Appendix 3 : Data Set .......................................................................................... 133 

Appendix 4 : 8th Basic plan for supply and demand ............................................ 135 

Abstract (Korean) ................................................................................................ 139 

 



ix 

List of Tables 

 

Table 1. ADF test results of supply costs on the 4 power generation sources ................... 64 

Table 2. Estimation results of VAR model without exogenous variables ......................... 66 

Table 3. Estimation results of VAR model with exogenous variables............................... 66 

Table 4. LR test result of the VAR model with exogenous variables ................................ 67 

Table 5. Estimated covariance matrix of 4 generation sources (
3ˆ 10 ) ......................... 68 

Table 6. Estimation result of marginal rate of substitute in 1-risk model ......................... 69 

Table 7. Performance of share equation estimation result in 1-risk model ....................... 70 

Table 8. Excise tax of power generation fuel in Korea(2019) ........................................... 74 

Table 9. Additional environmental cost by power generation source ............................... 74 

Table 10. Comparison between the real generation mix and the optimal mix .................. 77 

Table 11. Total capacity and number of generators by power sources, 1992-2014 ........... 81 

Table 12. Estimation result of marginal rate of substitute in 2-risk model ....................... 85 

Table 13. Performance of share equation estimation result in 2-risk model ..................... 86 

Table 14. Literatures on the estimation of Value of Lost Load (VoLL) by countries ........ 89 

Table 15. Comparison between the real generation mix and the optimal mix .................. 93 

Table 16. Future portfolio comparison between optimal and government plan .............. 101 

Table 17. Approximation of multi-modal distribution using normal distribution. .......... 106 

Table 18. Future portfolio comparison between two optimal and government plan ....... 109 



x 

List of Figures 

 

Figure 1. Power generation capacity expansion in South Korea, 1990-2014 ..................... 2 

Figure 2. Efficient frontier of mean-variance asset portfolio ............................................ 10 

Figure 3. Selection of portfolio that achieved utility maximization in CAPM ................. 13 

Figure 4. Application of portfolio theory to power generation sector ............................... 15 

Figure 5. Optimal power generation portfolio of EU power sector .................................. 17 

Figure 6. Application of portfolio theory to power sector in the Netherlands .................. 18 

Figure 7. Efficient frontier of a generation company in Korea ......................................... 20 

Figure 8. How the change of trade-off ratio can alter the optimal portfolio ..................... 26 

Figure 9. Concept of Loss of Load Probability ................................................................. 42 

Figure 10. Concept of Loss of Energy Probability ............................................................ 45 

Figure 11. Concept and measurement of Loss of Load Probability .................................. 47 

Figure 12. Meaning of the inverse load duration curve .................................................... 48 

Figure 13. Optimal point change between 1-risk and 2-risk model .................................. 55 

Figure 14. Overnight capital costs by generation sources, 1990-2014 ............................. 57 

Figure 15. Trend of the interest rate of AA corporate bond, 1988-2018 ........................... 59 

Figure 16. O&M costs by generation sources, 1992-2014 ................................................ 60 

Figure 17. Fuel costs by generation sources (85% capacity factor), 1992-2014 ............... 61 

Figure 18. Total supply costs by generation sources, 1992-2014...................................... 62 



xi 

Figure 19. Estimated elasticity trend, 1992-2014 ............................................................. 71 

Figure 20. Efficiency frontier and optimal portfolio in 2014 ............................................ 73 

Figure 21. Trend of L2 norm between optimal and actual portfolios, 1992-2014 ............ 78 

Figure 22. Calculation result of LOLP by Monte Carlo integration, 1992-2014 .............. 82 

Figure 23. Conceptual graphs of the simulation for calculating ( )xiE in 2-dimesion ....... 84 

Figure 24. Comparison with trends of elasticity of variance between two models ........... 87 

Figure 25. Shift of the optimal portfolio from 1-risk to 2-risk model in 2014 .................. 91 

Figure 26. Superior portfolio set when renewable options are available (Case1) ............. 96 

Figure 27. Superior portfolio set when renewable options are available (Case2) ............. 98 

Figure 28. Investment cost trend of PV and wind turbine in Korea, 2006-2015 .............. 99 

Figure 29. Comparison between Capital Market Line and the MRS tangent ................. 100 

Figure 30. Generation output pattern of PV and wind turbine in summer ...................... 103 

Figure 31. Distribution of PV and wind turbine by time groups, 2013-2017 ................. 104 

Figure 32. Power output distribution of renewable energy at time 15h in Korea ........... 105 

Figure 33. AIC and BIC to approximate the distribution by the number of mode .......... 107 

Figure 34. Concept to apply renewable intermittency to LOLP simulation .................... 108 

 



1 

Chapter 1. Introduction 

Equation Chapter 1 Section 1 

1.1 Research Background 

 

Economic growth and electricity consumption affect each other bi-directionally 

(Yoo, 2005). In Korea, the primary goal of the electricity sector during the high 

growth period from 1970s to 1990s was to supply low-cost stable electricity to 

support the stable growth of other industries (Han, Yoo, & Kwak, 2004). Such an 

objective was not confined to Korea alone(Afful-Dadzie, Afful-Dadzie, Awudu, & 

Banuro, 2017). In the majority of developed countries, the main goal of electricity 

planning was cost minimization, but did not include cost volatility(Huang & Wu, 

2008).  

Electric power generation cost consists of fuel, capital, operation, and 

maintenance (O&M) costs. All these electricity cost generation components are 

exposed to volatility. Investment and O&M costs have varied continuously with 

uncertain technological changes, and fossil fuel prices have fluctuated wildly over 

time. Such cost volatilities have threatened energy security and hindered national 

economic development. Consequently, diversifying power sources to maintain 

national energy security has become an important decision-making criterion 

(Huang & Wu, 2008). Subsequent to the two oil crises in 1973 and 1979 which 

resulted in a significant increase in price volatility, South Korea gradually increased 
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the portion of low-cost-volatility sources to avoid supply cost fluctuations, mostly 

coal and nuclear power generation, and the energy portfolio to strengthen energy 

security was diversified (Masih, Peters, & De Mello, 2011). 

 

 

Figure 1. Power generation capacity expansion in South Korea, 1990-2014 

 

The power generation expansion planning has entered a new phase from the 

perspective of minimizing the costs, as the problem of climate change caused by 

greenhouse gases has emerged. The reason is that the renewable energy source, an 

alternative power source to reduce greenhouse gas in the power field, has a much 

higher generation cost than traditional energy sources, so there is little room to be 

included in the power plan. However, renewable power sources do not require 

variable costs, and if they are included in the power portfolio, policymakers can 
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alleviate cost volatility, which is one of the negative characteristics of existing fossil 

fuels. Awerbuch was the first researcher to pay attention to this area and to show 

that renewable power generation sources are well worth considering in the national 

energy portfolio by incorporating volatility as another decision criterion (Awerbuch, 

1993, 1995). 

Awerbuch (Awerbuch, 2000) applied Markowitz’s theory (Markowitz, 1952) of 

mean-variance portfolios, commonly known as the theory of asset allocation in 

finance, into the field of electric power generation. Portfolio theory states that the 

proper combination of two assets whose prices move in opposite directions can 

lower risk (volatility of rate of return) while maintaining the mean of the rate of 

return. The more diverse types of assets in the portfolio are considered, the more 

effective is the reduction of volatility at the same rate of return. This means that we 

can achieve an asset portfolio that minimizes risk while maintaining the same rate 

of return or maximizes the rate of return at the same level of risk. 

The pioneering work of Awerbuch (Awerbuch, 2000) by using portfolio theory 

played a significant role in addressing the need for volatility risk in the power sector. 

However, power assets are somewhat like securities in the financial market where 

portfolio theory is working well, but they are also quite different from other points 

of view. First, there are no risk-free assets in power generation assets. Because there 

are no variable costs in renewable power generation sources, renewable power 

generation sources look like a risk-free asset, but the total supply cost of renewable 
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power generation also changes due to the time-varying construction cost. 

Construction investment costs fluctuate and the discount rate, which we call 

weighted average cost of capital (WACC) can alter fixed costs. Since it is difficult 

to derive the market portfolio in general, capital asset pricing model (CAPM) theory 

in the power generation field is necessary to find the trade-off ratio between cost 

and volatility from the decision maker's social welfare function when finding the 

optimal portfolio. 

In addition, power generation facilities are real assets that have more restrictions 

than normal financial assets. In the case of power facilities, low cost and moderate 

volatility are important, but reliability is just as important. This is because, in the 

event of a power outage, it damages not only industrial facilities but also household 

consumers. If we do not consider the constraints of reliability and apply the 

portfolio theory of financial assets directly, we may not be able to obtain an 

optimum solution for the study. 

 

 

1.2 Research Objectives 

 

The research objective of this study is to develop a methodology to derive the 

optimal power generation portfolio in the environment closest to the power industry 

and compare the results with practical reality. As mentioned above, previous studies 
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that applied portfolio theory to power generation mix would derive only a market 

portfolio through the use of risk-free assets, as if they were like the financial assets, 

without deriving an appropriate exchange rate between cost and volatility. However, 

risk-free assets do not exist in the electricity sector, and since a strict regulatory 

authority determines optimal power mix, the social planner’s preference for 

volatility risk becomes an important decision criterion. 

The primary objective of this paper is to estimate the MRS reasonably between 

the mean of the cost and its volatility when analyzing the optimal power mix using 

the mean-variance model. This study assumes that the social welfare function of 

policy makers is to establish the long-term power expansion plan and derives the 

optimal power portfolio equation from the FOC of this social welfare maximization. 

The empirical MRS is estimated from this equation using the time series of the 

power generation capacity and cost data in Korea.  

The secondary objective of this study is to add to the analysis model the 

reliability risks that should be important in the power industry when considering 

the optimal power generation configuration. To this end, this study defined the risk 

of reliability as the loss of load probability (LOLP), and extended the mean-

variance portfolio model by including it as the third factor of the Social Welfare 

function of policy makers in establishing a power plan. The microeconomic 

foundation of the model is the same as that of the volatility-risk-only model, and it 

was calculated using Monte Carlo simulation to derive the LOLP function in Korea. 
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1.3 Research Outline 

 

This dissertation consists of five chapters, as follows: Chapter 2 covers previous 

studies through a literature review related to its main topics: portfolio theory, capital 

asset pricing model, application to the power generation field, and econometric 

method of estimating MRS. Finally, Chapter 2 addresses the limitations of previous 

studies and the contribution of this dissertation. Chapter 3 illustrates the 

methodologies and two model types: the 1-risk model with the expectation of cost 

and its variance, and a 2-risk model that adds reliability risk to the 1-risk model. In 

the 2-risk model, this study regards the LOLP function as a reliability risk and 

proposes a calculation method through Monte Carlo simulation. Chapter 4 conducts 

the empirical studies of the proposed models through the Korean cost and capacity 

data from 1992 to 2014. At the end of chapter 4, the estimation results obtained 

from the two models are compared with the actual power generation portfolio, and 

the implications and policy implications are reviewed. Chapter 5 summarizes the 

implications and limitations of this study and suggests future research direction. 

Equation Chapter (Next) Section 1 
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Chapter 2. Literature Review 

Equation Section (Next)  

This chapter outlines previous studies in relation to subject of this dissertation: 

portfolio theory, capital asset pricing model, application to the power generation 

field and econometric method to estimate MRS. Moreover limitations of previous 

studies and contribution of this dissertation are addressed 

 

2.1 Portfolio Theory 

 

Reasonable investors who invest in financial instruments should choose assets 

with high returns, regardless of future risk, unless the future is uncertain. In many 

cases, however, investors are faced with uncertainty in the future, so they prepare 

for a combination of financial assets. Portfolio theory is a methodology that starts 

with the premise that a reasonable investor maximizes the expected rate of return 

under uncertain circumstances in the future. This is because not only the future rate 

of return, but also the frequency of risk is important as an asset selection criterion 

for investors. In other words, diversifying investment in multiple assets rather than 

intensively investing in one asset can significantly reduce the risk of investment 

loss due to uncertain circumstances. 
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2.1.1 Markowitz’s Concept 

 

When an investor makes an investment in an asset, it is reasonable to choose a 

high-yield asset when there is no uncertainty, but if there is uncertainty, it is rational 

to try to reduce uncertainty through a combination of assets. Portfolio theory is one 

of the simpler models used in finance to analyze investor behavior to maximize 

expected returns under these uncertain situations or to minimize uncertainty under 

constant expected returns. This financial model, proposed by Markowitz, provided 

an important clue as to how to allocate and manage a portfolio of assets in both 

financial and real product transactions(Markowitz, 1952). 

The return on the portfolio of the invested assets is the weighted average of the 

return on the individual assets by the holding ratio. 

 

1

( )
n

i i

i

Expected Return of Porfolio w E r


              Eq. (2.1) 

 

In this case, wi represents the holding ratio of individual asset i in the portfolio 

and E(ri) is the expected value of the return. Based on this, the variance of the 

investment portfolio return is as follows. 
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  Eq. (2.2) 

 

In this case, ij  is the covariance between the returns of individual assets i and 

j, and is sometimes expressed as a standard deviation to keep the same scale as the 

mean. When a specific portfolio share allocation vector 1 2 3( , , , )nw w w w w  is 

given based on these two equations (Eq. 2.1 and Eq. 2.2), the set of means and 

standard deviations obtained by solving the following optimization is referred to as 

an efficient portfolio set, that is, an 'efficiency frontier'. 

 

1

1

. . ( ) (c )

1 (0 1)

n

i i p

i

n

i i

i

Min w w

s t w E r E

w w









  





              Eq. (2.3) 

 

In Eq. 2.3, you find the point that is the minimum cost while changing (c )pE , 

the expected cost value of the first constraint little by little, as shown in Figure 2 

below. Each point corresponding to the boundary is the minimum return within the 

same risk or the minimum risk at the same return 



10 

 

 

Figure 2. Efficient frontier of mean-variance asset portfolio 

 

2.1.2 Capital Asset Pricing Model 

 

The Capital Asset Pricing Model (CAPM) is a general model that derives the 

equilibrium rate of return of a risky asset on the equilibrium of the capital market. 

Based on Markovitz's portfolio theory, it was developed by Sharpe, Lintner and 

Black, including assumptions of risk-free assets(William F. Sharpe, 1964)(Lintner, 

1965)(Fischer Black, 1972). In a broad sense, the concept includes the capital 

market line and the stock market line, but usually CAPM means the stock market 

line. 
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The CAPM describes how capital assets are priced under market equilibrium. 

Here capital assets mean securities such as stocks and bonds, which are assets that 

investors have the right to earn in the future, and the equilibrium of the market 

means that the demand and supply of all securities traded in the market are in 

agreement. In general, the demand and supply of securities are determined by the 

expected return and risk level of the securities. Therefore, when the appropriate 

expected return of the securities is determined according to the risk level of the 

securities, it can be said that the market is balanced. At that time, the price of each 

security is called the equilibrium price. 

Markowitz's portfolio theory is a normative model that explains how investors 

should invest in a portfolio of risk securities only to maximize their utility. Whereas 

CAPM is a theory that explains the mechanism of pricing to determine whether the 

price of a capital asset is determined while the capital market is balanced when 

investors act according to Markowitz's theory. CAPM theory adds two elements to 

the assumptions established by Markowitz in his portfolio theory. CAPM's 

assumptions are as follow. 

First, all investors choose securities according to Markowitz’ mean-variance 

criteria. Reasonable investors prefer securities with the highest expected return 

among securities with the same risk and securities with the lowest risk among 

securities with the same expected return. Therefore, when investing in risky 

securities, investors choose the optimal portfolio on Markowitz's efficient frontier. 
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Second, All investors prefer homogeneous expectation of capital assets. All 

investors make the same predictions about the expected return and variance of 

securities before investing in them. 

Third, there are risk-free assets, and investors can borrow or lend any amount 

of investment at a risk-free rate. Risk-free assets are those of reliably predicting 

future cash flows from an investment, and the expected rate of return from these 

assets are the risk-free capital rate. 

Forth, the stock market is a perfect market. A perfect market is a market in which 

all investors become price-takers, and no single individual investor can affect the 

market price of securities due to a single transaction. In addition, there are no 

frictional factors such as transaction costs, taxes, and market restrictions that restrict 

free trading in the complete market and all investors can immediately obtain the 

information of interest at no cost and can make a split investment. 

Fifth, the securities market is in an equilibrium condition. The price of each 

security is determined at a level where the demand and supply of all securities 

traded in the stock market match. 

 

( )
: ( )

M f

p f p

M

E R R
CML E R R 




                Eq. (2.4) 

 

Based on these premises, a Capital Market Line (CML) is derived, which is 
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shown in Eq. (2.4). The Capital Market Line means an efficient investment line that 

minimizes the unsystematic risk, which means diversifiable risk in the market, 

when risk-free assets exist. It means that we can create a new portfolio by including 

risk-free assets in an efficient frontier derived from Markowitz's portfolio theory. 

This new portfolio set is called as the Capital Allocation Line (CAL), and the 

special CAL that satisfies the dominant principle is called as the Capital Market 

Line. 

 

 

Figure 3. Selection of portfolio that achieved utility maximization in CAPM 

 

Finally, the most superior portfolio that hedged the market's unsystematic risk 

under the CAPM model is the tangent point between Capital Market Line and 

Markowitz's efficiency frontier. We call this point the market portfolio, which is the 
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point of M in Figure 3. In the CAPM model, the optimal portfolio is determined by 

the point E in which the derived capital market line and the social welfare function 

of the investor, that is the exchange ratio between return and risk, are tangent. 

 

2.2 Application to Power Generation Mix 

 

The first study to introduce a portfolio theory perspective into the power 

industry is Bar-Lev & Katz(Dan Bar-Lev and Steven Katz, 1976). When electric 

power utilities experienced an oil shock and sudden fluctuations in oil prices, they 

applied portfolio theory to find the optimal point of procurement in the power 

industry sector. The power sources used in this study were oil, coal, and gas, and 

they evaluated how close the fossil fuel portfolios of utilities in each region of the 

United States are to the efficiency frontier. However, since the 1980s, as the global 

low-growth phase, the price of primary energy sources has been kept low for a long 

period, interest in volatility has decreased, and no further studies have been 

conducted. 

 

2.2.1 Application to Global Case 

 

However, as the global interest in climate change was concentrated in the late 

1990s, the role and meaning of renewable energy in the portfolio composition in 
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the energy conversion sector emerged, and portfolio theory was re-examined. 

Awerbuch suggested that the volatility of generation costs should be considered in 

the decision-making process of the national energy portfolio(Awerbuch, 1993). 

Awerbuch also suggested that renewable sources are worth considering in the 

national energy portfolio to resolve price volatility of power generation, even 

though its generation cost is relatively more expensive than other comparative 

technologies(Awerbuch, 1995). Awerbuch highlighted the importance of the 

generation portfolio with the perspective that the relative value of generation 

technology should be determined not by alternative resources, but by alternative 

resource portfolios, which encounter the value of supply cost risks(Awerbuch, 2006). 

 

 

     Source : S. Awerbuch, "Getting it Right: The Real Cost Impacts of a Renewables Portfolio 

Standard" ,Public Utilities Fortnightly, February 15, 2000 

Figure 4. Application of portfolio theory to power generation sector 
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Awerbuch first applied the mean-variance portfolio theory (CAPM) that had 

been suggested by Markowitz (1952) in financial research, in the power-planning 

field (Awerbuch 2000). The superiority of the mean-variance model lies in 

considering both asset prices and risks together. The overall objective of the mean-

variance portfolio theory is the maximization of the risk-weighted present value of 

profit, or minimization of the risk-weighted present value of the cost. In 

Markowitz's theory, a combination of multiple alternatives of investment can reduce 

the variance of return, while retaining its level. 

Awerbuch (Awerbuch, 2000) adopted the mean-variance portfolio with the 

perspective of cost and its variance, and suggested that appropriately mixing gas 

and coal in electricity generation can reduce volatility while maintaining the fuel 

cost level, but the study did not consider capital and O&M costs, and considered 

only fuel costs. Here, Awerbuch used the reciprocal of the cost while applying the 

mean-variance portfolio theory to convert the cost into the profit maximization 

concept of the portfolio theory). In addition, Awerbuch suggested the possibility 

that adding renewables such as wind turbines and solar generation in the power 

generation mix may reduce the risk of the price, while maintaining the same cost 

level as before.   

Awerbuch and Berger applied the correlation coefficient between portfolio 

components with volatility risks with all kinds of costs including fuel price, O&M 
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costs, and investment costs(Awerbuch & Berger, 2003). In addition, Awerbuch and 

Berger suggested a more realistic portfolio that was closer to the real world by 

utilizing actual EU data that added power sources such as nuclear and oil power 

generation. Awerbuch(Awerbuch, 2006) identified a comprehensive cost-risk 

change by regarding conventional power sources (nuclear, coal, gas, and oil) and 

renewable power sources (solar, hydro, and wind). These works concluded that the 

levelized cost of electricity (LCOE) of the optimal portfolio increased slightly, but 

the effect of reducing cost volatility was offsetting the increase in LCOE caused by 

renewable power sources.   

 

 

Source : S. Awerbuch and M. Berger, "Applying Portfolio Theory to EU Electricity Planning 

and Policy-Making” IEA, 2003 

Figure 5. Optimal power generation portfolio of EU power sector 
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Jansen, Beurskens, and Tilburg pointed out that cost and its variance in power 

generation are different from return and variance concepts in the financial asset 

portfolio, because both cost and its variance have undesirable properties(Jansen, 

Beurskens, & Van Tilburg, 2006). As a result, Jansen et al. estimated the optimal 

portfolio by using energy-based portfolios 

 

 

Source : Jansen et. al., " Application of portfolio analysis to the Dutch generating mix Reference 

case and two renewables cases: year 2030-SE and GE scenario Acknowledgement” 

Energy research centre of the Netherlands, 2006 

Figure 6. Application of portfolio theory to power sector in the Netherlands 

 

Delarue el. (2011) separate the concepts of the generation capacity (MW) and 

the generation (MWh) and apply the mean-variance portfolio theory considering 
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the technical limitations of power generation to model it closer to reality(Delarue, 

De Jonghe, Belmans, & D’haeseleer, 2011). Fixed and variable terms among each 

cost factor were classified to derive a variance matrix. In addition, in order to reflect 

the output fluctuation of the wind turbine generator, the volatility was measured by 

subtracting the power of the wind turbine generator from the total power demand 

load. Based on this premise, they analyzed the effect of real-time wind power 

generation on the decision change in the optimal portfolio by comparing the results 

using a standard mean-variance model. 

 

2.2.2 Application to Korean Case 

 

As a Korean case study, Yun studied the asset portfolio of a power generation 

company in Korean by applying the Markowitz theory(Yun, 2009). From the 

company's point of view, he judged whether it would be economically feasible to 

invest in coal power generation and gas-combined power generation in the future.  
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Source : Yun, W. Ch. “Selection of new power facilities using portfolio techniques (in Korean)”. 

Korean Energy Economic Review, 2009 

Figure 7. Efficient frontier of a generation company in Korea 

 

First, based on the existing portfolio, Yun (2009) constructed an efficiency 

frontier using the mean and standard deviation of the cost of equalizing power 

generation. Then, by changing the exchange ratio between cost and risk from 1 : 9 

to 9 : 1, the comparative advantage of coal and gas combination was selected when 

selecting a new power source, and sensitivity was analyzed when additional cost 

factors such as greenhouse gas were included. However, this is limited to a specific 

company's portfolio, and there is a limit not to analyzing the volatility of the overall 

cost, limiting the main causes of volatility to only fuel costs. 

Lee (2012) applied the portfolio theory from the perspective of the whole 
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country energy mix in the same way(Y. Lee, 2012). It is a new step forward from 

Yun (2009) in that it targets the entire country's power mix, not a specific company. 

However, there is the limitation that it use the transaction price of each power 

generation source from Korean Power Exchange instead of the levelized power 

generation cost to measure costs. The levelized generation cost directly considers 

the life-cycle cost of the generation, whereas the settlement price for each power 

source in the power exchange is calculated through observation of the spot market, 

which causes measurement error. This is because the exchange settlement price is 

based on the transaction amount, and thus includes not only the net cost but also the 

profit margin. 

Jung & Min (2012) evaluated the national power expansion plan’s portfolio 

based on the uncertainty of electricity demand(Chung & Min, 2012). The 

characteristic of this study was to analyze the change in power generation cost 

caused by the volatility of demand by measuring the risk using the VaR technique 

rather than variance. The analysis method was optimized as a single objective 

function presented by Van Zon and Fuss (2005), unlike the general mean-variance 

model. As shown in Eq. (2.5), this study expressed the coefficient that converts risk 

to cost in lambda(Zon & Fuss, 2006). In the empirical analysis, this number was 

assumed 0.01 to derive optimal portfolio. Here, K represents VaR (Value at Risk), 

which means the worst 5% of the total generator probability distribution. The 

distribution was derived through Monte Carlo simulation with each component 
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constituting power generation portfolio as a random vector. 
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Ahn, Woo, and Lee (2014) incorporated renewable energy in the mean-variance 

portfolio theory of electricity planning in the light of carbon emission values(Ahn, 

Woo, & Lee, 2015). They assumed that total cost consists of investment cost, fuel 

cost, and O & M cost as shown in Eq. (2.6). The applicable cost is the leveled cost 

of generating electricity expressed by converting the total cost required for power 

generation during the standard operation period of each power generation into a 

present value. As shown in Eq. (2.7), in order to measure volatility risk, they 

classified the cost into three factors and derived the correlation coefficient of each 

cost element. Some of the correlation coefficients for each cost are from Korea, but 

some of the US research data were used as a limitation of data acquisition. From 

the empirical studies, they addressed that the least-cost power allocation is sub-

optimal from the cost-risk perspective and hinders the adoption of renewables. 

Additionally, they implied that Korean electricity generation is far from the efficient 



23 

frontier (optimal portfolio) in both cost and risk perspectives.  
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2.3 Estimation of the Trade-off Ratio 

 

Huang and Wu (2007) used the trade-off relationship between generation costs 
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and their volatility risks to develop Taiwan's optimal power generation portfolio. 

They assumed a fixed exchange rate that converts volatility risks to monetary values, 

and constructed an optimal portfolio that minimizes the risk-reflected cost function 

that was created by adding the value of this converted risk to the generation cost. 

Their analysis showed that renewables are included in the generation portfolio 

within 15% as they mitigate volatility risks despite their expensive generation costs. 

However, this study, too, failed to derive a statistical estimate of the exchange rate 

between cost and risk, only considering the change in the portfolio through scenario 

analysis to vary the value of the exchange rate from 0.001 to 0.0075. 

Wolak and Kolstad(1991) empirically estimated the MRS between risk and cost 

in a homogeneous input demand under price uncertainty, which is not present in the 

electricity planning field(Wolak & Kolstad, 1991). They assumed that a firm with 

homogeneous input demand decides its optimal input supply allocation for 

maximizing its social welfare function considering the trade-off between the 

expected input cost and its volatility (risk of the cost). Wolak and Kolstad (1991) 

derived the first-order condition (FOC) of the social welfare function, and estimated 

the MRS, ф, between the risk and cost from historical data as shown in Eq. (2.8). 

The model estimated the MRS and risk premium of the inputs in the Japanese 

steam-coal import market. 
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2.4 Limitations of Previous Research and Research Motivation  

 

The approach for electric power capacity planning mostly focused on 

optimization methods such as least-cost method. Moreover, until now, numerous 

research adopted CAPM on the electricity fields to derive just efficient frontier of 

power generation portfolio. However, no research suggested that the interrelation 

between components on CAPM in the generation mix portfolio.  

The methodology adopted in this study considered both CAPM of power 

generation portfolio and the MRS of its components, namely supply costs and its 

variance, which is different from previous studies. Based on the above literature 

review, this study derived decision-makers’ social welfare function of supply cost 

and its variance while decision-maker decided the national generation fuel portfolio. 

Then, this study derived MRS by first-order-condition and empirically estimated 

the MRS between the risk and cost based on the planner’s social welfare function 

in a reasonable way before applying the CAPM of the optimal allocation. In order 
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to estimate the empirical MRS, we assumed that: (1) a policymaker’s social welfare 

is a function of two inputs, namely, expected total supply cost of generation and its 

variance, and (2) the realized generation mix vector was the result of social welfare 

maximization, even though there may be optimization errors. In this way, we 

obtained a statistically significant estimate of MRS.  

 

 

Figure 8. How the change of trade-off ratio can alter the optimal portfolio 

 

This study used the historical data of the Korea electricity generation market to 

measure the MRS between the generation costs and cost variances, assuming that 

the MRS is time-invariant and only one decision-maker exists in electricity 

planning. In the Korean case, for a decade, the planner has conducted electricity 
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supply planning in a consistent way, because the KEPCO (Korea Electric Power 

Corporation) is the only dominant player in the Korean electricity market that has 

been the national enterprise of electricity supply, and has consistently operated with 

a coherent plan. 

After estimating the MRS from historical data, this study found the optimal 

portfolio on the efficient frontier by tangent line (the MRS) on efficient frontier and 

concluded that the Korean national generation portfolio has become closer to the 

optimal portfolio, which implies that the social welfare maximization scheme of 

Korean government has worked well.  

Second, the contribution of this study is to take into account the risk of reliability 

of the power system in the traditional portfolio theory. The result of the optimal 

power generation portfolio using the mean-variance model was generally to suggest 

a much supply of renewables that is unacceptable in reality. The reason is that in 

the energy field, not only cost minimization and volatility minimization, but also 

supply stability, that is, reliability is an important value, because the reliability risk 

is overlooked. In particular, in the case of renewable power sources, unlike 

traditional thermal power sources, there is a disadvantage that the generation output 

cannot be controlled by itself. 

Therefore, in order to apply the risk to the portfolio of the energy sector, it is 

necessary to construct a portfolio that consider two risk factors, not only price 

volatility, but also supply and demand risk, that is, reliability risk. This study will 



28 

show how the optimal share of power supply composition is changed by 

considering another risk of reliability risk in addition to the average-variance model 

based on Awerbuch and Berger (2003). 

Equation Chapter (Next) Section 1 
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Chapter 3. Methodology 

 

This chapter proposes the microeconomic foundation of the MRS between cost 

and its volatility and econometric method to estate it. In the first section, the 

methodology of volatility risk only model, which is applied to traditional mean-

variance portfolio model. In the second section, Chapter 3.2 shows the methodology 

that we should add reliability risk to make up for the 1-risk model. At the front of 

each chapter, the microeconomic foundation is presented and next, the econometric 

method for estimation was represented. In addition, Chapter 3.2.1 section describes 

a methodological framework for computing LOLP. 

 

3.1 Volatility Risk Only Model (1-risk model) 

 

This section proposes the methodological framework of the derivation of MRS 

of variance to supply cost. In the first section, the microeconomic foundation that 

can borrow the rationale from the consumer’s choice behavior under constraint is 

presented. Next, the process to derive the optimal share equation and a way to 

estimate it efficiently is described.  

  

3.1.1 Microeconomic Foundation 
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Consider a government that systematically designs power allocation. A 

policymaking authority has a social welfare function of two components, the mean 

and variance of the cost. The authority wants to configure a generation portfolio 

that maximizes its social welfare under given budget constraints Eq. (3.3). At this 

time, the authority considers the average unit cost and the variance of the cost, 

including investment costs, O&M costs, and fuel costs of each power source as a 

whole. If the authority has a risk-averse tendency, it will want to reduce the portion 

of the generation sources that have significant volatility, and diversify to the other 

sources by easing its variance in order to increase its social welfare. 

We begin by defining the notations. Let the number of power sources be n . We 

use the following notations through the dissertation: 

 

Costt : Annual sum of investment, O&M, and fuel cost in period t (per kW) 

tc : n-dimensional vector of unit capacity investment cost in period t, which is 

annualized through discount rate (per kW) 

to : n-dimensional vector of unit O&M cost in period t (per kW)  

tf : n-dimensional vector of fuel price in period t (per kWh) 

ts : n-dimensional vector of unit gross supply price in period t 
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tq : n-dimensional vector of facility capacity in period t 

tQ : Total sum of facility capacity in period t (scalar) 

tI : Information set available in period t, set of price information until period t-1  

nμ : Conditional expectation of ts  in period t conditioned on tI , i.e.  |t tE S I   

Σt : Conditional variance of ts  in period t conditioned on tI ,  

i.e.    ' |t t t t tE  S μ S μ I   

 

All the cost components (i.e., investment cost, O&M cost, and fuel cost) are 

random variables. In many previous studies, investment and O&M costs have been 

regarded as non-stochastic terms. However, it is more rational to consider all the 

three cost components as stochastic variables because the investment and O&M 

costs have also historically fluctuated due to technology development. Here, 

capacity tq   is considered a non-stochastic vector. Expectation and variance of 

costs are shown in Eq. (3.1) and Eq. (3.2)  

 

( ) [ (c + o + f ) q | ] [s q | ] μ qt t t t t t t t t t tE Cost E I E I            Eq. (3.1) 

( | ) Σt t tVar Cost I            Eq. (3.2) 
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The authority’s social welfare is a function of expected cost and its variance (Eq. 

3.3). The authority decides the optimal power mix by solving the maximization 

problem of its social welfare under capacity constraint t tι ×qQ    to meet the 

electricity demand in period t. The difference between this optimization problem 

and the conventional firm's profit maximization problem is that the authority does 

not directly decide tQ  which maximizes its profit under the production function 

constraints. This is because the main purpose of the government is not to maximize 

profits, but to satisfy national demands; hence, tQ  is given. The policy maker’s 

social welfare maximization condition is shown in Eq. (3.4), and the Lagrangian of 

social welfare maximization is shown in Eq. (3.5).  

 

[ ( | ), ( | )]t t t tU U E Cost I Var Cost I   Eq. (3.3) 
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( μ q , q Σ q ) ( ι q )t t t t t t tL U Q          Eq. (3.5) 

 

The FOC of this social welfare maximization is shown in Eq. (3.7). Multiplying 
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with 1Σ ιt

   on both sides of Eq. (3.3), solving for the scalar  , substituting it to 

Eq. (3.3), and then solving it to q derives Eq. (3.7).  
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From the planner’s perspective, the main interest is the share of each facility, not 

the capacity level of each facility. Therefore, we are also interested in the share of 

the generation portfolio. Dividing Eq. (3.7) by tQ , and substituting 1 2t U U   , 

the optimal portfolio share equation can be derived as Eq. (3.8).  
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Here, t  refers to the MRS of the expected cost for its variance at time t. There 

are some specifications for t  in order to simplify the notation. One is that t  is 
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time-invariant (i.e., t   ), and another is that /t tQ   is time-invariant, which 

means the MRS is constant regardless of whether the total capacity tQ  changes. 

The second specification for t  is very useful because the optimal share of the 

generation portfolios remains constant, independent of the magnitude of tQ  . In 

reality, the main interest of the authority is the portfolio ratio of each power source, 

rather than the capacity of each source. Therefore, we assumed that the MRS t  

of the expected cost for variance is time-variant, but independent of the total 

capacity tQ . The marginal substitute rate   equals to /t tQ , and the final portfolio 

ratio equation with possible error term is shown in Eq. (3.9).  
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Eq. (3.9) shows that   is econometrically estimable by using the historical cost 

(calculate tμ  and tΣ ) and tq . Eq. (3.9) is a simultaneous equation in which error 

terms are correlated, because the increment of one share causes a decrease in other 

shares. Therefore, we estimate Eq. (3.9) with a non-linear seemingly unrelated 
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regression. Each μ t   and Σt   is the mean and variance of ts  , and estimation 

method will be explained in the next section. 

 

3.1.2 Econometric Method 

 

Supply costs of power generation data to be used in this study are time series 

data, not cross section data. In the case of time series, the value between adjacent 

times cannot be said to be completely independent of each other, because the 

present is dependent on the past. Particularly, in the case of fuel cost date, they 

feature to fluctuate up and down with a random trend. This characteristic is called 

a random walk process, and when the time series having this characteristic is 

analyzed with a general regression model, the result becomes unreliable. 

In the case of this random walk time series, they should be altered into a stable 

form through the first-order difference. Since the mean value applied in the general 

portfolio theory is already a return, it is stable time series data. However, since the 

cost of power generation does not have the stability of time series, the concept of 

Holding Period Return should be utilized. In the normal case, HPR should be 

subtracted from the current period from the previous period and then divided by the 

previous period. However, statistically, the natural logarithm of the current period 

and the previous period is subtracted, which approximates the HPR. Therefore, this 

study chooses the latter method for the convenience of analysis as shown in Eq. 
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(3.10). 
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    Eq. (3.10) 

 

This study derives a variance-covariance matrix of power generation costs using 

a VAR model through the HPR data. In general, the time series cost data converted 

to HPR does not have a dependent relationship between adjacent periods, but may 

have a systematic relationship with other power generation sources. In particular, 

coal and gas, and gas and oil have a substitution relationship with each other, so 

there is a possibility of showing a systematic relationship. In this respect, it is 

reasonable to replace the time series with a vector to create a system of equations 

in the form of simultaneous equations and to create a variance matrix from the error 

terms. It means that we should use Vector Autoregressive Model. 

The VAR is a model that extends the univariate autoregressive model to the 

multivariate autoregressive model, and is frequently used in relation to prediction 

and analysis of effects of changes in endogenous variables. The structural equation 

model based on the traditional regression uses the causal relationship between 

variables to define the dependent variable Y as several explanatory variables X1, X2, 

… Xn. However, the traditional regression model has an assumption that the 

influence of the explanatory variable is always constant even when the time t is 
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changed. Therefore, there is a weakness that the structural change is rapid and the 

influence of the explanatory variable cannot be properly reflected. In addition, the 

structure model has a disadvantage in that it builds a model based on economic 

theory, so that variable selection and selection of internal exogenous variables in 

the model are determined by the model designer’s subjectivity. 

Therefore, the method to overcome these rigidity and subjectivity can be said to 

be the ARIMA model of Box and Jenkins(George E. P. Box, 1976). The ARIMA 

model attempted to predict the future, assuming that the current observation Zt is 

reproduced by some regularity in the past, and that this regularity is maintained in 

the future. However, it ignores the interactions between variables although this 

model is easy to set up, and faces the limit of univariate analysis. A model that 

complements the limitations of this univariate regression is the VAR model of Sims 

(Sims, 1980). 

 

1 1 2log log log
t t 2 t t

s ρ δ s δ s νcrisisD 
              Eq. (3.11) 

νt iid
 

 

This study used a VAR model with natural logarithms to estimate tΣ , the 

variance of cost as shown in Eq. (3.11). In the model, the cost variables of each 

power generation are explained as the first and second lagged past variables, and in 
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addition to these endogenous relationships, they are influenced by exogenous 

variable crisisD , which means the economic crisis. This is because, during the global 

financial crisis in 2008, the international prices of coal and oil are largely fluctuating, 

which can distort the estimation of variance. As in equation 11, the economic crisis 

was treated as a dummy variable. 

As mentioned at the end of section 3.2.1, the optimal share equation from the 

FOC of the social welfare maximization is estimated with the Seemingly Unrelated 

Regression (SUR) model, which was first proposed by Zeller (Zellner, 1962). This 

model is used when all the error terms of system equations seems in correlation 

with each other. Apparently, there is no difference from the ordinary linear 

regression model and it looks like no correlation of each dependent variable, so it 

was named the SUR model. 

In general, when multiple equations need to be estimated at the same time, the 

SUR model is widely utilized in order that it guarantees more efficient results than 

estimating each equation independently like OLS. The structure of the SUR model 

can be said to be a system equation in which the general regression model is given 

by Eq. (3.12). 
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        Eq. (3.12) 

 

At this time, estimating the regression coefficients of each equation by the OLS 

(ordinary least square) method, it is assumed that each error term is not correlated 

with each other. However, if the error term k  is correlated with other error terms 

in the system equation, it violates the prerequisite of the regression model that the 

error terms are mutually independent. Therefore, in this case, the coefficients of the 

equations should be estimated through the alternative estimation process. 

The SUR model estimates the regression coefficient of the same independent 

variable included in the m regression equations using the GLS (general least squares) 

method. If the correlation coefficient between error terms is zero, the result 

estimated using the SUR model is the same as the result obtained by estimating 

each regression model individually. 

The share equations derived in section 3.1.1 of this study has exactly these 

properties. The optimal share of each power source is explained by the mean and 

the variance of their cost. However, if a certain power generation share increases, 

then the proportions of other power sources become smaller, which means that all 
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the kinds of power source’ shares interfere with each other. This means that the 

error terms of the share equations of each power source are linked to each other. In 

addition, the regression coefficients of each equation are also the same as γ , and 

this situation is the same as the conditions assumed by the SUR model. As shown 

in Eq. (3.9), the optimal shares are composed of nonlinear functions of tμ  and tΣ , 

so a nonlinear sur model is used. 

 

3.2 Reliability Risk Added Model (2-risk model) 

 

3.2.1 Measure of Reliability risk 

 

The power system's reserve power is closely related to its reliability. In order to 

maintain a stable power supply in the operation of the power system, which means 

that power system reliability is good, supply capacity exceeding the maximum 

demand, that is, reserve power is required. It is because that a period of preventive 

maintenance on a regular basis to keep the generators operating is need and the 

supply capacity decreases due to the failure of the generators. In addition, electricity 

demand may increase more than expected. Therefore, the more reserve power, the 

higher the supply reliability. 

The indexes used for the determination of reserve power in the long-term power 

planning are largely deterministic reliability index and probabilistic reliability index. 
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A representative deterministic reliability index is a reserve ratio that expresses the 

relative size of the total equipment capacity and the expected maximum load as a 

ratio. Probabilistic reliability indices include Loss of Load Probability, Loss of 

Energy Probability, and Frequency and Duration(Prada, 1999). 

In this study, LOLP was used as a stochastic index to analyze. The reason is that 

the ratio of the optimal power portfolio to be drawn in this study is based on the 

power plant capacity, not the amount of energy for each power source. LOLP is the 

result of calculating the probability of supply disruption from the load perspective, 

while LOEP is the result of calculating the probability of supply disruption from 

the energy perspective. The method of mathematically modeling the LOLP 

followed Prada (Prada, 1999). 

 

(1) LOLP 

 

In case that total system load exceeds the total available capacity, a loss of load 

appears. The total sum of probability in one year that a system load is greater than 

system capacity is Loss of Load Probability (LOLP). The mathematical formulation 

of LOLP is shown as Eq. (3.13) for an expected total system load, available total 

generation capacity, and the realized system capacity in a specific event j of event 

set K. 
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( ) ( )A j j

j K

LOLP P Capacity Capacity P Load Capacity


                       

Eq. (3.13) 

 

For convenience of calculation, consider the load curve that accumulates the 

system load from the maximum to the minimum of the year. This cumulative load 

curve is called the Load Duration Curve (LDC), where the largest load per year is 

located in the y-intercept and the smallest load per year is located at the right end. 

 

 

Note. This conceptual figures is rearranged from the chapter 2 in Prada (1999) 

Figure 9. Concept of Loss of Load Probability 
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Figure 9 shows the LDC curve and supply disruption situation. Assume that the 

total size of the supply interruption when the k event occurs in the set K of total 

events that can cause a generator failure is called Outage k, and the probability at 

that time is pk. At this time, the total system capacity in service is the capacity 

obtained by subtracting the Outage k from the total installed capacity. Then, a load 

having the same size as the total system capacity of this service state is found in the 

LDC curve. As a result, all daily peak loads larger than that load will cause the loss 

of load events, so the number of applicable days, tk, is the number of days of annual 

power outage. 

Therefore, in the equation Eq. (3.13), the first term means the probability of a 

specific event k being realized among the total failure events, pk, and the second 

term is the total number of days per year (365 days) when the k event occurs, tk. 

Therefore, Eq. (3.13) can be converted to Eq. (3.14.) 

 

k k

k

LOLP p t         Eq. 

(3.14) 

 

In the end, LOLP measured the generator failure event as a probability and took 

an expectation for the annual supply disruption probability that is the number of 

loss of load event days divided by 365 days. This is the so-called LOLE (Loss of 
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Load Expectation). In general, most countries are designed to meet certain 

standards of LOLE when making long-term power generation plans. In Korea, it 

was 0.7day/year until 1992, 0.5day/year until 2013, and recently it was changed to 

0.3day/year. Both revisions are due to the electricity supply crisis. 

 

(2) Loss of Energy Probability 

 

The Loss of Energy Probability is the energy version of the Loss of Load 

Probability. In LOEP's formula, we only need to change tk to the total amount of 

outage energy occurring by the supply disruption, not the supply interruption time. 

Figure 10 shows the concept of LOEP. In the figure, the hatched area is the amount 

of outage energy that appears in the system when the k event occurs. Therefore, 

LOEP is the expected value of the hatched area as the probability measure of the 

generators’ failure. If this is expressed as an equation, it becomes Eq. (3.15). 

 

k k

k K

E p
LOEP

E


      Eq. (3.15) 

 

Here, the shaded area Ek is the sum of the demands exceeding the capacity in 

service when the k event occurs, so it can be expressed as an integral such as Eq. 

(3.16). 
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8760

0 0

( )
kt

k kE Load Capacity dt and E Load dt       

                                                Eq. (3.16) 

 

 

Note. This conceptual figures is rearranged from the chapter 2 in Prada (1999) 

Figure 10. Concept of Loss of Energy Probability 

 

 

3.2.2 Microeconomic Foundation 
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The LOEP is mainly used to evaluate the total value of the energy generated by 

the supply disturbance. Representing the reliability risk of the power supply as 

frequency is the LOLP index. Therefore, in this study, Reliability risk will be 

modeled as LOLP 

LOLP is the expected value of a specific function that uses the probability 

distribution of available generators as a probability measure. Here, the specific 

function refers to the Load Duration Curve function in which power demands are 

arranged in order of size, as shown in Figure 11. When this LDC function is 

converted to an inverse function, as shown in Figure 12, it means a function that is 

mapping the number (or frequency) of power load greater than that load during the 

year. 
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Figure 11. Concept and measurement of Loss of Load Probability 

 

To derive this integral function, we first assume the available probability 

distribution of generators as follow. x is a probability vector representing the 

operation status of each power source and g(x) is the joint probability distribution, 

q’x can be expressed as the total amount of power generation capacity that can be 

supplied. 

 

1 2 3( , , , ) ~ ( )x xnx x x x g
    Eq. (3.19) 

 

When a failure event occurs, the generator produces zero output. Therefore, the 
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probability distribution ( )xg   of the probability vector x   becomes a combined 

binomial distribution. The parameters of this distribution are the total number of 

power generation units and the probability of annual failure by power generation 

sources 

 

 

Figure 12. Meaning of the inverse load duration curve 

 

If the inverse function of the load duration curve is defined as ( )q xD  , the value 

of this function means 
kt  that is the total number of the days that the supply 

disruption occurred. Therefore, when LOLP is defined in a continuous function, it 

can be expressed as follows Eq. (3.20). 
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( ) ( ) ( )q x x qk k

k

LOLP p t D g dx R     
             Eq. (3.20) 

 

In the Lagrangian formulation of the two-risk model, the 3rd term of the first 

order condition, r(q), means the first derivative of LOLP for q. Therefore, the first 

order condition of the utiltiy maximization problem that includes the reliability risk 

in the social welfare function is as shown in Eq. (3.21). 

 

1 1 32 ( ) ι = 0μ q Σ q
q

t t t t

t

L
U U U r 

           


       Eq. (3.21) 

( ) ( )
( ) ( ) ( )

q q
q q x x

q q q

R LOLP
where r D g dx

  
   

   
 

 

This study approximates the inverse demand function, ( )q xD  , as the sum of the 

linear functions for convenience of calculation. This can be done by using the 

indicator function to divide by many intervals, which is well shown in Equation 

(3.22). 
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





  

     




 Eq. (3.22) 
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The approximated invers LDC function is substituted to the LOLP function and 

then, it is arranged as follows Eq. (3.23). Here, Monte Carlo integration method 

was used to derive the integral value of the inverse load duration curve separated 

by intervals. 
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            Eq. (3.23) 

 

where    𝐴𝑖= {𝐱|𝑧𝑖 ≤ 𝐪′
𝐭
𝐱 ≤ 𝑧𝑖+1} 

 

LOLP is a function of q, x vectors. r(q) is a function, which differentiates LOLP 

function to q, which is integrated into x. It is extension of the rule known as 'Leibniz 

Rule' into vector space to develop the equation(Sims, 1980). (Refer to the appendix 

for related equation development.) Finally, the first order derivative of the LOLP 

function as a q vector is derived as in Equation (3.24). This means the weighted 

average of the expected value of the random vector x at a specific weight in every 

demand load interval. At this time, the weights are b, which are the slopes when the 

inverse LDC function is approximated with a linear function. 
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    Eq. (3.24) 

 

Finally, the following is a rearrangement of 2-risk model optimization FOC by 

replacing r(q) with β as shown in Eq. (3.25). 

 

1 1 32 ι = 0μ q Σ β
q

t t t t

t

L
U U U 

           


           Eq. (3.25) 

 

Multiplying with 
1Σ ιt

   on both sides of FOC equation, solving for the scalar λ, 

substituting it to the FOC, and then solving it to q derives optimal capacity for each 

power source with consideration for reliability, we can derive the optimal q vecter 

equation as shown in Eq. (3.26). 
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      Eq. (3.26) 

 

From the planner’s perspective, the main interest is the share of each facility, not 

the capacity level of each facility. Dividing optimal power capacity equation as 

above by tQ , and substituting 1 2t U U    , 3 1t U U   , the optimal portfolio 

share equation can be derived as follow in Eq. (3.27) 
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      Eq. (3.27) 

 

Like 1-risk model, this study represent that /t tQ  is time-invariant value  , 

which means the MRS is constant regardless of whether the total capacity tQ        

changes. Whereas the trade-off ratio between cost and reliability risk, t , is 

assumed to be time-invariant value,  , by itself as shown in Eq. (3.28). 
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As the 1-risk model, this study estimate it with seemingly unrelated regression 

(SUR model) and nonlinearity was considered in the estimation. 

 

*

0 1 2w = w ε x + x x εt t t t t t t                   Eq. (3.28) 
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This study compared the portfolios of the 1-risk model and the 2-risk model by 

changing 2-risk model to 1-risk model. It is possible by converting reliability into 

economic costs using MRS between reliability risk and supply cost. Eq. (3.29) is 

the equation given by converting the 2-risk model to the 1-risk model. As can be 

seen, tβ   is added to the supply cost as a penalty factor and it becomes a key 

element that changes the share of the optimal power supply. The optimal portfolio 

change resulting from this penalty is shown in Figure 13. 
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       Eq. (3.29) 
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Figure 13. Optimal point change between 1-risk and 2-risk model 
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Chapter 4. Empirical Studies 

 

4.1 Data Specification 

 

This section reports the data specification and its reference sources. The original 

meta-data set cannot be provided in public because of data security, but the refined 

cost data collected by each power source is provided in Appendix 1.   

This study assumed that there are four options that make up a portfolio for power 

generation facilities: nuclear, bituminous coal (coal), combined cycle gas turbine, 

and other fossil power plants (i.e., n=4). Other fossil power plants mostly consist of 

oil steam turbines and include a few gas steam and single-cycle combustion turbines. 

In Korea, some hydro and pumped storage power plants play a role in electricity 

supply. However, the installation of these plants is mainly decided by non-economic 

decisions such as water supply for agriculture and consumption. The total supply 

cost of each power generation facility is composed of construction cost, O&M cost, 

and fuel cost. To calculate the LCOE of each year, which is the annual supply cost; 

the construction cost is annualized by the cost recovery factor. 

 

4.1.1 Investment Cost 

 

The construction investment cost is based on past construction data from the 
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Korea Power Exchange(KPX, 2019). The actual construction cost of each type of 

plant was applied from 1990 to 2014. If a number of facilities with different 

construction costs were built each year, they were weighted by capacity. In certain 

cases of years, some kinds of the power plants did not have a construction, so we 

cannot obtain the accurate construction cost in those years. In this case, the 

construction data were generated by interpolation. The overnight capital cost 

(thousand Won/kW) of power generation is shown in Figure 14. 

 

 

Figure 14. Overnight capital costs by generation sources, 1992-2014 

 

To calculate the annual total power supply cost, the overnight construction cost 

was converted to the annualized cost for which we use capital recovery factor (CRF) 

in Eq. (4.1). The CRF consists of a discount rate(i) and the number of years to be 

able to operate plants(N), so the annual total power supply cost can vary by these 
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parameters significantly. In this study, 40 years of discounting period for nuclear 

and 30 years of discounting period for the other power generators such as coal, LNG, 

and oil were applied in according to the statutory standards. The discount rate was 

decided based on the corporate bond rate and capital cost by weighted average cost 

of capital (WACC).  

 

:(1 )

:(1 ) 1

N

N

i discount ratei i
CRF

N durable years of a generatori

 


 
       Eq. (4.1) 

 

 

The WACC data for annualized investment cost are applied as the discount rate 

in the government's long-term expansion plan, 'Basic Plan for Electricity Supply 

and Demand'(Ministry of Trade, 2017). However, data set prior to the 2000s were 

not available and other alternatives had to be sought. With analyzing the data since 

the 2000s, where the data could be collected, the WACC of the national expansion 

planning showed average spread of about 2%p against AA-class corporate bond 

interest rate. Therefore, this study was derived by adding the spread to the AA 

corporate bond interest rate, which obtained from the Bank of Korea statistical 

system for the 1990s WACC data. AA corporate bond interest rates are shown in 

the Figure 15. 
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Figure 15. Trend of the interest rate of AA corporate bond, 1988-2018 

 

4.1.2 O&M and Fuel cost 

 

O&M costs were based on the historical cost accounting data from KEPCO. 

O&M costs include fixed and semi-fixed costs such as labor, repair, and 

miscellaneous costs. Costs were converted on an annual basis and calculated in 

thousand KRW/kW. 

The biggest problem in collecting O & M cost data was too much noise in the 

data. Looking at the historical data of KEPCO, the cost is divided for each generator. 

In some generators, O & M costs sometimes fluctuate greatly due to changes in the 

aggregation method or cost divergence. These data were excluded when reconciling 

the data by unifying the aggregation criteria or when counting outliers that were too 
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large. The time series of O&M costs (thousand Won/kW) by power generation 

sources from 1992 to 2014 are shown in Figure 16. 

 

 

Figure 16. O&M costs by generation sources, 1992-2014 

 

We used the fuel costs from KEPCO and its subsidiary power producers. The 

calculation of fuel cost per unit capacity depends on the capacity factor. When 

calculating the annual fuel cost per kW for each power source, the actual capacity 

factor may be used. However, in this case, the lower the capacity factor is, the 

cheaper the fuel seems to be. This can provide a bias in estimating the cost of supply 

per power unit per kW. The reason is that in order to evaluate the economic 

efficiency of the power source based on the generator’s capacity, it should be based 
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on a common capacity factor. In this study, we adopted the capacity factor as 85%, 

which is used in the LCOE calculation(IEA, 2015). Time series of fuel costs by 

power generation sources from 1992 to 2014 are shown in Figure 17 

 

 

Figure 17. Fuel costs by generation sources (85% capacity factor), 1992-2014 

 

 

4.1.3 Total Supply Cost 

 

As a result, the total supply cost of the power plant combined with the yearly 

cost factors was calculated based on the above methods as shown in Figure 18.  
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Figure 18. Total supply costs by generation sources, 1992-2014 

 

Despite the change in time, the supply cost of nuclear power and coal power did 

not change significantly from 400,000KRW/kW, since the portion of the fixed costs 

in supply costs is higher than variable costs such as fuel costs in nuclear and coal 

power generation. The construction costs, which account for the majority of the 

fixed cost, gradually increased over time, and did not fluctuate in the period; 

however, the interest rate decreased significantly during the same period, which 

means that the annualized value of fixed costs remained almost constant. The 

construction cost increased about 1.8 times during the period, while the interest rate 

of federal bonds decreased from 15% (the 1990s) to 5% (late 2000s). However, due 

to the rapid increase in fuel costs, generation supply costs of coal increased after 

2007. Other fossil power plants, such as LNG and oil, have a relatively low 

proportion of fixed costs and high proportion of fuel costs, which tends to shift the 
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total supply costs as fuel costs change. Therefore, the supply cost showed almost 

similar movement to oil prices. 

 

 

4.2 Estimation of 1-risk Model 

 

This section reports the results of estimating the MRS between cost and 

volatility when the model consider only volatility risk and finds the implications. 

First, the stability of the time series is statistically tested on the unit root of the total 

supply cost time series, and then the HPR is derived from the time series of the cost. 

From these data, the VAR model estimates the variance matrix, from which the 

share equation is estimated using the SUR model. 

 

4.2.1 Estimation of Covariance Matrix 

 

The supply cost of each of the four power generation sources showed a form of 

unstable time-series that increases or decreases with time (Figure 18). Unit root 

tests were conducted for a more precise statistical confirmation. The Augmented 

Dickey Fuller (ADF) test was used for the unit root test method, which is a 

representative unit root test method to determine stationarity of a time series(Fuller, 

1976). The null hypothesis used in the test is that the unit root exists in the time 
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series, and the alternative hypothesis is that the time series satisfies normality. 

Before performing an ADF test, we should find the appropriate number of lags and 

decide whether to include time trends and constant terms. In this study, the two lags 

were found to be proper, and the time trend was not included, but the constant term 

was included. 

As a result of the test, the unit-roots were found in the level variables, but not 

observed in first-order differential variables in all the four fuel types as shown in 

Table 1.  

 

Table 1. ADF test results of supply costs on the four power generation sources 

Source 

Level ( st ) First difference (△st ) 

Statistics P-value Statistics P-value 

Nuclear -2.241 0.1917 -7.232 0.0000 

Coal  -0.686 0.8503 -4.299 0.0004 

LNGCC -0.179 0.9410 -6.820 0.0000 

Other  0.159  0.9699 -6.312 0.0000 

Note: P-value is the MacKinnon approximate p-value for Z(t) 

 

Therefore, we needed to derive the variance-covariance matrix from the 

differential variable, rather than the level variables. This study derived the variance-

covariance matrix using holding period rate of return, differential variables of costs, 
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as used in the previous researches that applied CAPM to the electricity sector. 

A vector autoregressive regression (VAR) was used to estimate the variance-

covariance matrix of the total supply costs. In this study, the logarithm of each time 

series was taken so that the differential time series represented the holding period 

rate return. This is shown in Eq. (4.1). The model's lag was analyzed in two, and 

the 2008 dummy variable was added as an exogenous variable to reflect the 

peculiarity of international energy prices fluctuating due to the 2008 global 

financial crisis. In particular, LNG and oil prices were very high in the summer of 

2008, just before the crisis 

 

1 1 2 2log s log s log s crisis νt t t t t   
                Eq. (4.1) 

tcrisis : a dummy variable indicating the 2008 energy price fluctuation 

 

As expected, the log-likelihood showed a higher value, and coefficients ( k ) 

were statistically significant when the crisis dummy was included, as shown in 

Tables 2 and 3. Nuclear costs were not statistically significant for the economic 

crisis, but coal, gas, and oil were all statistically significant for the financial crisis 

dummy. The reason is that nuclear power has a small share of fuel cost, but fossil 

fuel has a high share of total fuel cost.  
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Table 2. Estimation results of VAR model without exogenous variables 

 

Table 3. Estimation results of VAR model with exogenous variables 
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. In the total supply cost of coal, LNG, and oil power generation, fuel costs 

accounted for 50.3%, 75.4%, and 65.1% respectively on average, which means that 

the global financial crisis directly affected supply costs of those power generations. 

On the contrary, the fuel cost of nuclear power generation only accounted for 10.2% 

of the supply cost. Therefore, crisis coefficients showed statistical significance in 

coal, LNG, and other fossil fuels, but not in nuclear power 

In addition, the LR test showed that the model including the crisis dummy is 

significantly different from the model not including the crisis dummy, as shown in 

Table 4. 

 

Table 4. LR test result of the VAR model with exogenous variables 

` VAR with Crisis VAR without Crisis 

Log-Likelihood 116.452 101.387 

LR chi square(4) 28.14 

Prob. > chi2 0.000 

 

Table 5 shows the result of the estimated variance matrix from Eq. (3.11). The 

sizes of the covariance between the power source costs was smaller than those of 

the individual variance of each power source. The covarinaces between nuclear 

power and fossil power generators were very small, especially close to zero in case 
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of coal. It is because the investment cost and fixed O&M cost of nuclear power are 

much higher than those of fossil power generators, which is relatively less volatile 

than other thermal power plants. In the case of coal, the covariances with LNG or 

other thermal power (most of oil) were also very small, compared to the size of the 

own variance of coal. It is also because the proportion of fixed costs is relatively 

higher than that of LNG and oil power generators although not comparable to 

nuclear power. What is different is that it has a weak negative relationship with 

LNG, while it has a weak positive relationship with oil thermal power 

In contrast, LNG and oil thermal power plants show a relatively strong positive 

correlation, unlike other power sources. This is because the LNG import contracts 

in Korea has been linked to oil price index, so their volatility are similar to each 

other. 

 

Table 5. Estimated covariance matrix of 4 generation sources (
3ˆ 10 ) 

  Nuclear Coal LNG Other 

Nuclear 3.870    

Coal 0.070 3.710   

LNG 0.168 -0.340 4.020  

Other fossil 0.121 0.320 2.720 2.750 
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4.2.2 Estimation of Share Equation 

 

The MRS of expected cost for its variance (   ) described in Eq. (3.9) was 

estimated by using the mean supply cost vector (μ t ) and the variance-covariance 

matrix ( Σt  ) derived from the previous section. Eq. (3.11) is a system of the 

nonlinear equations where each equation share the coefficient MRS ( ) in common. 

Therefore, we estimated the MRS by using the non-linear system equation model 

with Seemingly Unrelated Regression Model as mentioned in section 3.1. The 

estimation results and performance of the model are shown in Table 6, and Table 7. 

 

Table 6. Estimation result of marginal rate of substitute in 1-risk model 

  Coefficient Standard Error z 

610   -0.646*** 0.19 -10.6 

Note: *** means significance at the 1% level 

 

The estimated value of MRS was - 0.646×10-6, and statistically significant at the 

1% level as shown in Table 6. The estimated value of the MRS was considered a 

reasonable result since the relation between supply costs and their variance was 

substitutional, which means that it was a negative value.  
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Table 7. Performance of share equation estimation result in 1-risk model 

Equation Obs. RMSE R2 

Nuclear 23 0.052023 0.9694 

Coal 23 0.103427 0.8902 

LNC 23 0.102619 0.8498 

Other 23 0.058738 0.8401 

 

The estimation performance of each share equation was good. The R square of 

the nuclear power share equation was the highest at 0.9694, and the R square of the 

remaining thermal power sources was from 0.84 to 0.89. 

 

4.2.3 Empirical Results and Discussion 

 

In the CAPM model, the horizontal axis is the variance and the vertical axis is 

the average price, which means that the MRS of the expected cost for its variances 

in the CAPM model is an inverse of the estimated value (1/  ), estimated at about 

1,547,748. The reason for which gamma has a large value is that the time series of 

the cost is a level variable, while the variance is measured as a differential time 

series value, holding a period rate of return.  

To overcome the difference in scale between the level value and differential 

value, and express it intuitively, the estimated MRS was transformed into the 
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elasticity between cost and its variance, as shown in Eq. (4.2). 

 

2 2

2 2 2

1
:elasticity

    


     

 
       

 
        Eq. (4.2) 

 

As a result of estimating the elasticity for each year, the elasticity gradually 

decreased from 6 in 1992 to 3 in 2014. In the 1990s, about a 6% increment of supply 

cost was allowed to decrease 1% of cost volatility. However, in the 2010s, only 3% 

increment of supply cost was allowed to decrease 1% of cost volatility. It means 

that the relative value of cost volatility gradually decreased twice as much. 

 

 

Figure 19. Estimated elasticity trend, 1992-2014 
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In 1992, the share of nuclear power generation was about 35.9%, and that of 

coal and LNG was about 17.4% and 17.5% respectively. In 2014, nuclear power 

was lowered to 25.7%, and coal and LNG increased to 32.6% and 37.5%, 

respectively. This suggests that the attitude toward volatility risk shifted from risk-

averse to risk-taking. 

The estimated MRS of expected cost for its variance (  ) can be used to derive 

the optimal power portfolio and compare it with the actual portfolio to assess the 

effectiveness and efficiency of the portfolio. The optimal portfolio can be 

interpreted as the tangent point of contact of the slope of the inverse of the estimated 

MRS with the efficient frontier. The optimal portfolio for 2014 consisted of 30.5% 

of nuclear, 43.6% of coal, 20.9% of LNG, and 5.0% of other fossil fuels, while the 

actual portfolio is in the same year: 25.7% of nuclear, 32.6% of coal, 37.5% of LNG, 

and 4.1% of other fossil fuels. The actual portfolio was 11.0%p less in coal than 

optimal portfolio; LNG resulted in 17.2%p more. This is because private LNG 

generators have increased significantly in the metropolitan area around Seoul in 

order to solve the shortage of reserve power capacity that have occurred since 2009. 

This is because LNG can be urgently connected to power grid in the event of an 

electricity crisis due to the short construction period. Such cases also occurred in 

the early 1990s when the Korean government under-forecasted electricity demand 

due to policy failure. These historical experiences prove that it is difficult to show 
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the reality properly considering only the price volatility risk, and that it reflects the 

reality properly when considering the reliability risk together. 

 

 

Figure 20. Efficiency frontier and optimal portfolio in 2014 

 

However, the proportion of nuclear and coal power generation in the optimal 

portfolio was slightly higher than the actual and that of LNG power plants was 

lower in the opposite direction. This difference is because until 2014, the Korean 

government did not fully reflect the environmental cost from air pollution damage 

and the cost of greenhouse gas emissions in fossil fuel power plants. The cost of 

damage caused by air pollution was replaced by the excise tax of power generation 

fuel. It is because Korea's fuel excise tax comes from the estimates of air pollution 
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costs to internalize external costs. The estimates are partially reflected in tax rates. 

Fuel consumption tax reflects the unit cost of coal and LNG for power generation 

through three revisions in 2017, 2018, and 2019. 

 

Table 8. Excise tax of power generation fuel in Korea (2019) 

  Nuclear Coal LNG Oil 

Excise tax 

(Won/kg) - 46 36.2 17 

(Won/kWh) - 16.73 4.54 4.61 

Note: The LNG fuel excise tax was lowered from 60 won/kg to 12 won/kg in 2019, and 36.2 

won includes import charges of 24.2 won/kg. 

 

In addition, since Japan's nuclear accident in 2011, the accident risk cost of 

nuclear power plants has been considered as another external cost of nuclear power 

plants. Considering these costs, the optimal portfolio can be expected to change 

somewhat. 

 

Table 9. Additional environmental cost by power generation source 

 Nuclear Coal LNG Oil 

Environmental 

Cost 
29.9 46.4 17.5 30.1 

Note: We considered the expected cost of accident risks for nuclear power generation and the 

cost of air pollution and GHG emissions for thermal power generation as external costs 
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Table 8 shows the environmental costs of nuclear, coal, LNG, and other fossil 

fuel power plants. We took the data reported by KEPCO1 as the accident risk cost 

of nuclear power plants(KEPCO, 2018), and Parry et al.(2014)’s data, which was 

adjusted by taking into consideration the inflation and growth rate of real GDP per 

capita, as the air pollution damage cost of thermal power generation(Parry, Heine, 

Lis, & Li, 2014). The price of carbon credits was used as 34,500 won/ton(KEPCO, 

2018). In this case, the optimal portfolio was 28.0% of nuclear, 41.5% of coal, 22.4% 

of gas, and 8.1% of other fossil fuel power. As a result, considering environmental 

costs, the optimal portfolio and the actual portfolio were slightly more similar. 

Although it has a value close to reality, it still has a higher proportion of coal and a 

lower proportion of LNG than reality. This is because reliability risks and other 

limitations in reality have not been fully reflected. 

Finally, in order to evaluate the closeness of the historical portfolios to the 

estimated optimal portfolio, this study measured the distance between the actual 

portfolio and the estimated optimal portfolio during the sample period by applying 

the L2-norm as shown in Eq. (4.3). 

 

                                      
1 Nuclear accident risk costs consist of compensation for damages, decontamination and decommission costs. 

We referred to the methodology of JCER and re-estimated the costs according to Korean conditions. 
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The calculated value of L2-norm from Eq. (4.3), which is the measure of the 

distance between the actual and the estimated optimal portfolio, fell until the late 

2000s, and then increased since the early 2010s. It is because authority decide to 

increase LNG generator due to easing generation capacity shortage after 2011 

power crisis. Since the 1990s, the Korean government has developed large-scale 

coal-fired power plant complexes to cope with the rapid increase in electricity 

demands due to economic growth, and the oil-oriented peaking power plants have 

been replaced with high-efficiency combined cycle gas turbines. The transition of 

the power mix showed that the Korean government has effectively transitioned to 

the optimal configuration of power during the observed period. 
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Table 10. Comparison between the real generation mix and the optimal mix 
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Figure 21. Trend of L2 norm between optimal and actual portfolios, 1992-2014  

  



79 

4.3 Estimation of 2-risk Model 

 

In this section, we consider a two-risk model that cover the reliability risk of the 

power system in addition to the volatility risk. From this model, this section report 

the results of estimating MRSs between cost and volatility risks, cost and reliability 

risks, and find their implications.  

The process of estimation is as follows. First, the LOLP function, which is a 

definition of reliability risk in this dissertation, is derived through numerical 

integration with Monte Carlo simulation, and the results are shown from 1992 to 

2014. Next, the share equation is then estimated using the cost and variance matrix 

estimated in Section 4.2 and the first-order derivative of LOLP estimated in this 

section. Compare the estimated value of each MRS with the 1-risk model and find 

the implications. 

 

4.3.1 Calculation of LOLP 

 

To obtain the numerical integral value for deriving the LOLP in this study, we 

remind the definition of LOLP again, as shown in Eq. (4.4). The inverse Load 

Duration Curve, ( )q xD  , included in the LOLP function has several linear values 

for computational convenience. It is expressed as the sum of the functions as stated 

in Section 3.2. The x , which is a probability vector representing the state of the 
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generator, follows joint probability distribution function ( )xg . 
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       Eq. (4.4) 

 

Unlike renewable power generation, traditional generators can be operated at 

any point in time just by starting the generator. However, when a failure event 

occurs, the generator produces zero output. Therefore, the probability distribution 

( )xg  of the probability vector x  becomes a combined binomial distribution. The 

parameters of this distribution are the total number of power generation units and 

the probability of annual failure by power generation sources. If they are 

represented by n and 1-p respectively, g(x) can be expressed as Eq. (4.5). 
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The failure probability of the generator was the average value for each power 

source applied in the government's power expansion plans, and the number of units 

by the power generation source was the Korea Electric Power Statistics(KEPCO, 

2020), as shown in Table 11.  

 

Table 11. Total capacity and number of generators by power sources, 1992-2014 

 

Note: LNG CC included facilities for cogeneration for heat and electricity. 
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Among the power generation sources, the LNG complex also included facilities 

for cogeneration. This is because, in recent years, the government's power policy 

direction has been decided to improve energy efficiency and expand distributed 

power, while LNG combined cycle power generation is built for cogeneration 

purposes. 

 

 

Figure 22. Calculation result of LOLP by Monte Carlo integration, 1992-2014 

 

Figure 22 shows the result of numerically integrating Eq. (4.4) through Monte 

Carlo simulation. As shown in the Figure 22, LOLP has cycled but meets 

government regulatory standards on average, for 23 years from 1992 to 2014. The 

government's regulatory standard of LOLP was 0.7 days/year until 1994, and after 

the power crisis in 1994, the reliability regulations were tightened to reduce the 

number of days per year of power outages to 0.5 days. This standard continued until 
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2012, but after the power shortage in 2011 caused a wide area power outage, the 

standard was changed to the strengthened standard of 0.3 day / year and it continues 

to this day. 

As shown in Figure 22, LOLP exceeded the legal thresholds in 1994-1995 and 

2010-2012, when the reserve rate of power capacity fell below 10%. In the year 

when the reserve rate was over 20%, LOLP had a value close to 0, and when it was 

12 ~ 22%, which is known as the appropriate level, the LOLP range was also stable 

at 0.1 ~ 0.5. 

In this way, the first-order derivative of LOLP in the share equation was also 

calculated. The first-order derivative of the reliability risk function by the capacity 

vector q can be expressed as Equation 4.6, as described in Section 3.2 above.  
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    Eq. (4.6) 

 

The Monte Carlo simulation was performed in the same way as the calculation 
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of LOLP to obtain the conditional expectation ( )xiE  according to the combined 

binomial probability distribution ( )xg . Figure 23 shows the available probability of 

total power generators as numbers of points in the interval where the electric power 

demand is from zi to zi+1 , assuming there are two types of power generation sources 

 

 

Figure 23. Conceptual graphs of the simulation for calculating ( )xiE in 2-dimesion 

 

 

4.3.2 Estimation of Share Equation 

 

The MRS1 of expected cost for its variance (  ) and MRS2 of expected cost for 

its LOLP ( ) in described in Eq. (4.7) was estimated by using three variables. They 

are the mean supply cost vector ( tμ  ) and the variance-covariance matrix ( t
Σ  ) 

derived from VAR model and the first order derivative of LOLP (
tβ ). Eq. (4.7) is a 
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system of the nonlinear equations where each equation share the coefficient MRS1 

( ) and MRS2 ( ) in common. Therefore, we estimated the MRSs by using the 

non-linear system equation model with Seemingly Unrelated Regression Model as 

mentioned in section 3.2. The estimation results and performance of the model are 

shown in Table 12, and Table 13. 

 

Table 12. Estimation result of marginal rate of substitute in 2-risk model 

  Coefficient Standard Error z 

610   -0.532 *** 0.083 -6.43 

  -18.981 * 10.56 -1.8 

Note: * and *** means significance at the 10%, 1% level respectively 

 

The estimate of MRS1 between cost and variance, γ , was strongly statistically 

significant at 1% level as - 0.532×10-6 , which was slightly less than that of 1-risk 

model, as shown in Table 11. In addition, the MRS2 estimate between cost and 

reliability risk, τ, was also statistically significant at the 1% level as -18.891 in Table 

12. The estimated value of the MRS1 was considered a reasonable result since the 

relation between supply costs and their variance was substitutional, which means 

that it was a negative value. However, the coefficient estimate of the 2-risk model 

slightly decreased in terms of absolute values, compared to that of the 1-risk model, 
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which seems to be because the reliability risk was added as a new variable and 

improve the specification of model. The estimated value of the MRS2 was also 

considered a reasonable result since the relation between supply costs and reliability 

risk was substitutional, which means that it was a negative value.  

 

Table 13. Performance of share equation estimation result in 2-risk model 

Equation Obs. RMSE R2 

Nuclear 23 0.04236 0.9788 

Coal 23 0.08535 0.9318 

LNC 23 0.10496 0.8620 

Other 23 0.06614 0.6184 

 

The estimation performance of each share equation was good. The R square of 

the nuclear power share equation was the highest at 0.9788, and the R square of the 

remaining thermal power sources was from 0.61 to 0.93. What is noticeable is that 

the share equations of nuclear, coal and gas generators improves explanatory power 

when reliability risks are included, while the explanatory power of oil, which is R 

squared, decreases from 0.84 to 0.61. 

 

4.3.3 Empirical Results and Discussion 
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In the same way as the 1-risk model, to overcome the difference in scale between 

the level value and differential value, and express it intuitively, the estimated MRS 

was transformed into the elasticity between cost and its variance, as shown in Eq. 

(4.2). 

As a result of estimating the elasticity for each year, the elasticity gradually 

decreased from 9 in 1992 to 4 in 2014, which is from 6 in 1992 to 3 in 2014 in 1-

risk model, as shown in Figure 24. It means that about a 9% increment of supply 

cost was allowed to decrease 1% of cost volatility in the 1990s, but only 4% 

increment of supply cost was allowed to decrease 1% of cost volatility in the 2010s.  

 

 

Figure 24. Comparison with trends of elasticity of variance between two models 

 



88 

The estimation results of 2-risk model are not very different from the 1-risk 

model, but it should be noted that the elasticity of volatility risk to cost in the 2-risk 

model was somewhat higher than in the 1-risk model. That is why the reliability 

should be included in this model. Because the optimal power generation share based 

on ordinary portfolio theory underestimate the risk of volatility if the importance of 

reliability in the power generation industry is ignored. This implies that the share 

of power sources that can lower reliability risks even with high volatility, may 

account for more of the optimal portfolio. 
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Table 14. Literatures on the estimation of Value of Lost Load (VoLL) by countries 

 

 

Tau is the unit cost of the reliability risk, that is, the exchange value of the risk. 

Tau's estimate indicates that 18.991 is willing to pay an additional cost of about 

18.991 thousand won/kW for a 1-unit reduction in reliability risk. This result shows 

that the estimate does not deviate significantly in spite of the methodological 

difference between the microscopic estimation studies based on the questionnaire. 

Compared with the estimates of several past documents shown in Table 14, the 

results estimated by the WTP and WTA methods were found to seem the same, 
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while those of the Direct Worth method were not.2 
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Since this study assumed that the social welfare function has three elements, the 

space for determining the optimal portfolio should also be determined in the three-

dimensional space, not the two-dimensional plane. However, since LOLP can 

derived through numerical integration, it is virtually impossible to calculate all the 

numbers for each portfolio that can be expressed on a 3-dimensional space. 

Therefore, this study compared the portfolios of the 1-risk model and the 2-risk 

model by changing 2-risk model to 1-risk model. It is possible by converting 

reliability into economic costs using MRS2 between reliability risk and supply cost, 

which means VoLL (Value of Lost Load). Eq. (4.7) is the equation given by 

converting the 2-risk model to the 1-risk model. As can be seen, tβ   is added 

to the supply cost as a penalty factor and it becomes a key element that changes the 

                                      
2 The Direct Worth method is calculated based on a questionnaire that asks the direct cost of damage suffered 

by customers for a virtual outage. Depending on the environment, culture, and the condition of respondents, 

there is a possibility of a biased response, and excessive damage costs are often reported, so VoLL estimates 

tends to be large compared to other survey methods such as WTP. 
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share of the optimal power supply. 

 

 

Figure 25. Shift of the optimal portfolio from 1-risk to 2-risk model in 2014 

 

Figure 25 shows the change in the optimal portfolio in a two-dimensional plane 

of cost and variance in three-dimensional space. Due to the addition of a penalty 

factor that converts the reliability risk to cost, the efficiency frontier of the 2-risk 

model has risen above the 1-risk model. In addition, as the γ, which is the MRS 

estimate of volatility risk, slightly decreased in the 2-risk model, the slope was 

somewhat modest. Figure 25 shows the optimal portfolio for 2014. When 

comparing the portfolios between the two models, the base load generator, such as 

nuclear power and coal, remains almost unchanged, but the gas generator increases 
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by 1%p and the oil generator decreases by 1.3%. 

This trend of change in the optimal portfolio appears throughout the analysis 

period. Compared over the entire period of the analysis sample, nuclear power and 

coal did not show much difference, but the proportion of the gas generator, the peak 

facility, increased slightly. The average shares of nuclear power and coal during the 

entire sample period showed 25.9%, 40.1% respectively in the 1-risk model, and 

26.4% and 40.6% in the 2-risk model. However, the gas generator was 15.5% in the 

1-risk model, but increased by 3.1%p to 18.6% in the 2-risk model. 

It is noteworthy that these results showed a more pronounced difference 

between high and low reliability conditions. In 1994, when the power reserve rate 

fell to the level of 8%, the optimal portfolio of gas generation shown by the 1-risk 

model was 13.2%, but in the case of the 2-risk model with added reliability risk, it 

was about 31.5%. This was the same in 2011, when the recent power crisis occurred, 

while it was about 22.3% in the 1-risk model, while it rose to 25.2% in the 2-risk 

model, as shown in Table 15. 



93 

Table 15. Comparison between the real generation mix and the optimal mix 
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We previously compared the results of the MRS of the variances in the 1- and 

2- risk models, and concluded that a model that does not take into account the 

reliability risk can result in underestimating volatility risk in the optimal portfolio.  

After all, the 2-risk model recommends increasing the proportion of gas power 

plants that are superior in terms of reliability even if their risk of volatility is high 

 

 

4.4  Implication for Electric Power Industry Policy 

 

In this section, we review the meaning of renewable energy when the existing 

portfolio theory is applied in the power generation sector, and describe alternative 

methodologies to find an appropriate level of renewable energy. Section 4.4.1 

describes the implications of risk-free assets in the existing CAPM theory and the 

role of renewable energy in the power generation sector. At the same time, it shows 

that the area of optimal choice is limited due to the characteristics of power 

generator as real assets rather than general financial assets. In addition, from the 

viewpoint of price volatility, renewable energy has an advantage, but it is argued 

that if only one of those risk factors is considered, there is the possibility of 

excessively including renewable in the power generation portfolio. Section 4.4.2 

shows how the negative utility of renewable energy in the context of the power 

industry, that is, intermittent power generation patterns, affects the reliability of the 
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entire power system. In addition, we examine the change in LOLP when renewable 

energy is included in the power system. Section 4.4.3 examines the change in the 

appropriate portfolio when the proportion of renewable energy in the next 2030 is 

expanded as a result of this analysis.  

 

4.4.1 Revisit to the CAPM 

 

CAPM model extended Markowitz's portfolio theory as it considers risk-free 

assets. When a risk-free asset exists in a financial market, the Capital Market Line 

(CML) becomes an efficient investment portfolio set for all investors in the market. 

When the capital market line is established, investors can build a portfolio by 

lending or borrowing according to their preferences. At this time, the risky asset 

portfolio that is selected by investors becomes the portfolio that the capital market 

line meets in the efficiency frontier, that is, the market portfolio. 

This is different from Markowitz's claim of efficient investment, where 

investors choose different risk assets according to their own indifference curves. It 

is because the portfolio to be chosen in CAPM should be determined in the market 

regardless of the individual's utility, and the investor only needs to maximize his 

utility through borrowing or lending the market portfolio. 

However, the choice of the power generation facilities is different from that of 

the financial market. The decision-maker who chooses the portfolio of the power 
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generation facility is not an investor who participates in the market, but a power 

policy official. It is similar to the fact that there is no trading counterparty and only 

one investor. In addition, unlike financial assets, power generation facilities are 

unable to borrow and lend the each other. For example, even if policy makers have 

a utility structure that considers the risk of volatility to be low, renewable energy 

assets cannot be rented or swapped with thermal power in real world. 

Due to these characteristics of real assets, it is the right strategy to make optimal 

selection of the development portfolio based on the individual utility function 

according to Markowitz's theory. However, if decision makers can select renewable 

energy without volatility risk as a portfolio option, it is necessary to find a superior 

portfolio set by using the information of MRS, the trade-off ratio, obtained from 

one's utility function. 

 

 

Figure 26. Superior portfolio set when renewable options are available (Case1) 
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Figures 26 and 27 show the superior choice area when renewable energy can be 

included in the portfolio of power generation assets. The black straight line, which 

is the same as the Capital Market Line, starts at the supply cost of renewable energy, 

a non-risk asset, and touches the efficiency frontier. The blue curve is the 

indifference curve of the policy maker's social welfare function, and the tangent line 

is the marginal rate of substitution (MRS). In the case of Fig. 26, the supply cost of 

renewable energy is very huge, which is higher than the y-intercept of the MRS 

tangent. In this case, the set that is superior to the optimal portfolio obtained from 

the social welfare function is a straight red line. That portfolio set means an area in 

which the proportion of the market portfolio has been more than 100% by 

borrowing risk-free assets. However, it is not possible in real power generation 

assets. Therefore, the policy maker cannot help selecting the rest area of the Capital 

Market Line, but they are inferior to the optimal portfolio, Woptimal. This means that 

in case that renewable energy becomes too expensive, including renewables in the 

power generation portfolio will further reduce social welfare. 
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Figure 27. Superior portfolio set when renewable options are available (Case2) 

 

However, as in the case of Figure 27, the situation is different in which the 

supply cost of renewable energy is lower than the y-intercept of the tangent with 

the estimated MRS as the slope. In this case, the points on the red straight line of 

the portfolio above the capital market line are superior to the optimal portfolio 

Woptimal that does not contain renewable energy. In addition, according to the weak 

axiom of the theory of revealed preference, the W* point where the capital market 

line meets the MRS connection point is the portfolio that has the minimum ratio of 

renewable energy in the superior portfolio set. This is because the red straight 

section is superior to Woptimal. That is, when estimating MRS from the utility 

function of policy makers, it provides information on how much it is superior to 

include renewable energy. 
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In this background, this study tried to calculate the appropriate ratio of 

renewable energy by using renewable costs and the estimated MRS in Korea. Figure 

28 shows the investment cost trend of the solar and wind power generation in Korea 

during 2006-2015. In the case of wind power generation, it did not show much 

change, but solar power fell sharply due to a decrease in solar cell module prices.  

 

 

Figure 28. Investment cost trend of PV and wind turbine in Korea, 2006-2015 

 

The annual supply cost of renewable energy includes the annualized investment 

cost and the fixed O&M costs. To simplify the discussion, renewable energy is 

considered as only PV, which is the most important source of power for the Korean 

government. Investment costs were referred to Korea Power Exchange(KPX, 2019). 

The annual operating and maintenance cost was applied as 37,365 KRW/kW 

according to the actual survey results of Lee(2017)’s 100kW facility(C. Lee, 2017). 
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Unlike traditional power generation facilities, renewable energy shows a low 

capacity factor, so the cost was adjusted according to the difference of capacity 

factors between them. In the data details of Section 4.1, the traditional power 

sources assume a capacity factor of 85% to estimate the annual supply cost per kW, 

so they produce about 5.31 times more electricity than renewable energy that has 

about 15% utilization rate. Therefore, the scale was adjusted by multiplying the 

renewable energy cost by 5.31 times. 

 

 

Figure 29. Comparison between Capital Market Line and the MRS tangent 
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As a result, the annual supply cost of photovoltaic power generation gradually 

decreased from 3,932 thousand KRW/kW in 2006 to 1,761 thousand KRW/kW in 

2014, which decreased to about 1/2 level for 10 years. As a result of analyzing the 

market portfolio facing the efficiency frontier with 1,311 thousand KRW/kW as the 

cost of a risk-free asset, 32.9% of nuclear power, 42.7% of coal, 24.3% of LNG, 

and 0% of other thermal power were recorded as market portfolio. In addition, as 

shown in Figure 29, the share of renewable energy at the point W* where the 

estimated MRS tangent meets the capital market line was found to be 16.7%. This 

means that based on the empirically estimated MRS, it is a superior option to 

include more than 16.7% of renewable energy. In the Korean government's eighth 

Basic Plan for Power Supply and Demand, the ratio of renewable energy capacity 

to 33% in 2030 is considered a good choice if it is expected that the cost of 

renewable energy will fall further than now. 

 

Table 16. Future portfolio comparison between optimal and government plan 

 Nuclear Coal LNG Oil Renewable 

8th Plan 11.7% 23.0% 27.3% 0.8% 33.7% 

1-risk Optimal 20.7% 26.9% 15.3% 0.0% 33.7% 

Note. In the eighth Basic Plan for Power Supply and Demand, the share 3.5% of pumping storage 

power generator is included in addition to the above-mentioned power sources. 
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Table 16 shows the proportion of each power source in the eighth Basic Plan for 

Power Supply and Demand and the proportion of the optimal portfolio based on 

portfolio theory. In the eighth plan, nuclear power was about 9%p more than 

optimal portfolio, and LNG was about 12%p less. This seems to be because the 

current government's policy direction has been making a policy shift to abolish 

nuclear power unlike the previous government. If the phase-out of the nuclear 

power plant was not decided in the eighth Basic Plan for Power Supply and Demand, 

the share of nuclear power in 2029 was about 23.4% according to the seventh supply 

and demand plan. It looks so similar to the optimal portfolio. 

 

4.4.2 Intermittency of Renewable Energy 

 

Renewable energy is a risk-free asset in terms of volatility risk. Therefore, the 

more renewables the policymaker includes, the more volatility risk he can reduce. 

In the power system, however, there is a structural difficulty, which cannot include 

renewable energy indefinitely. Some storage facilities such as pumping hydro 

generators and ESS exist, but electricity is not easy to store. Therefore, in order for 

the hourly power supply to match the power load, the generators should be able to 

control their own output by themselves, and must prepare a certain level of reserve 

power capacity. 

However, renewable energy has a characteristic that it cannot control its own 
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power generation. Since the output of the renewable energy generator is determined 

according to the natural environment, it is difficult to react to the power load in real 

time. For this reason, when renewable energy is gradually expanded, many 

generators with fast-acting characteristics are needed for real-time balancing. 

Mostly, small-sized gas turbines or pumping hydro generators do so because of the 

rapid ramping-up and -down of the output. Therefore, the more renewable energy 

is expanded into the power system, the more gas generators are needed. This 

suggests that the proportion of optimal power capacity may change if reliability risk 

is considered in a power generation portfolio that includes renewables. 

 

 

Figure 30. Generation output pattern of PV and wind turbine in summer 

 

To this end, it is necessary to identify intermittent features of renewable energy 

generation. In order to identify the output distribution of Korea's intermittent 

renewable generation sources, hourly output data of solar PV and wind turbine 

generators was obtained from the Korea Power Exchange. The data period is from 

January 1, 2013 to December 31, 2017. The total generator capacity was 2,062MW 
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for solar PV and 1,284MW for wind power generator, and the total number of sites 

was 1,807 for solar power and 98 for wind power. 

Figure 30 shows the generation patterns of solar PV and wind power generators 

in Korea's power system over the three weeks of August 2017. In the case of solar 

PV, the output of day and night is regular, whereas the wind power generator shows 

the appearance of random and difficult to find regularity of the output pattern of 

day and night. 

Figure 31 shows the distribution of hourly capacity factor of solar and wind 

power. Both solar PV and wind had skewed distributions compared to the normal 

distribution, but solar PV had a long tail on the left, while wind turbine had a long 

tail on the right. 

 

PV 

 

Wind 

 

Figure 31. Distribution of PV and wind turbine by time groups, 2013-2017 
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In order to simulate the effect of intermittence of renewable energy on the 

reliability of the power system, the capacity factor at 15 hour, which is the peak 

time period in Korean power system, is displayed as a histogram, as shown in Figure 

32 below. The reason for using the capacity factor data rather than the power 

generation output is that it should be normalized to one to eliminate the increase 

effect of the power generation due to the increase in the renewable capacity. As 

shown in the figure, the distribution of the output pattern at 15 hour is a multi-modal 

distribution with several peaks. 

 

 

Figure 32. Power output distribution of renewable energy at time 15h in Korea 
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In order to perform stochastic simulation, it is necessary to define the 

distribution using the histogram obtained from sampled data. In this study, the 

distribution of renewable energy was approximated by assuming a multi-modal 

distribution in which several normal distributions were synthesized.  

The approximation results are shown in Table 17 and Figure 33. It was found 

that the multi-modal distribution, which is the closest to the histogram from sample 

data set, is the 3-modal distribution. In the case of AIC, as the number of peaks 

increases, it tends to decrease more and more, but in the case of BIC, it has the 

smallest value in three modes. However, AIC also declined significantly from one 

to three and then decreased flatly from four. Based on these two facts, we assume 

that the renewable output distribution approximate a tri-modal distribution. 

 

Table 17. Approximation of multi-modal distribution using normal distribution. 

# of Mode Mean Variance 

1 0.435 - - - - 0.032 - - - - 

2 0.581 0.320 - - - 0.006 0.021 - - - 

3 0.401 0.603 0.140 - - 0.014 0.005 0.004 - - 

4 0.380 0.570 0.670 0.132 - 0.013 0.004 0.001 0.004 - 

5 0.665 0.098 0.406 0.241 0.558 0.002 0.002 0.004 0.006 0.003 
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Figure 33. AIC and BIC to approximate the distribution by the number of mode 

 

 

4.4.3 Future Portfolio Including Renewable Energy 

 

In order to derive the optimal portfolio in 2030 using the two-risk model, the 

reliability risk when the proportion of renewable energy was 33.7%, which is the 

share of the eighth Basic Plan for electricity supply and demand, was simulated. 

The reliability risk, LOLP, was calculated by Monte Carlo simulation using a 

portfolio composed of 66.3% of traditional power generation sources and 33.7% of 

renewable energy with an intermittent power generation pattern with a tri-modal 

distribution as shown in Figure 32. From this simulation, the beta, the first 
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derivative of the reliability risk in 2030 is calculated, and then applied to Eq. (4.7), 

the optimal portfolio in the two-risk model is derived. 

 

 

Figure 34. Concept to apply renewable intermittency to LOLP simulation 

 

Figure 34 is a conceptual diagram of how to simulate the reliability risk 

including intermittent renewable energy in this study. Traditional power generation 

sources show multivariate binomial distribution due to the probability of failure, 

whereas renewable energy shows a different distribution than these, so simulation 

was performed using a net load, which subtracts the renewable energy from the 

power load, and stochastic traditional power generation sources. Electricity demand 

was used in 2030, as suggested by the eighth Basic Plan for Electricity Demand. 
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As a result of the analysis, LOLP in 2030 was found to be 0.94 day/year, which 

is similar to the reliability in 1994. The optimal portfolio of 2-risk model using the 

beta derived from this simulation and the tau estimated in Section 4.3 was 29.8% 

for nuclear power, 37.8% for coal, 32.3% for LNG, and 0.1% for other thermal 

power. This shows 3.1%p and 4.9%p lower for nuclear and coal, respectively, than 

the optimal portfolio of 1-risk models, which has 32.9% of nuclear power, 42.7% 

of coal, 24.3% of LNG, and 0% of other thermal power. On the other hands, the 

share of LNG in 2-risk optimum increased by 8%p. This means that increasing the 

proportion of gas power generators, which are small power sources and good for 

coping with intermittency, are better for maximizing social welfare. 

 

Table 18. Future portfolio comparison between two optimal and government plan 

 Nuclear Coal LNG Oil Renewable 

8th Plan 11.7% 23.0% 27.3% 0.8% 33.7% 

1-risk Optimal 20.7% 26.9% 15.3% 0.0% 33.7% 

2-risk Optimal 18.7% 23.7% 20.3% 0.0% 33.7% 

Note. In the eighth Basic Plan for Power Supply and Demand, the share 3.5% of pumping storage 

power generator is included in addition to the above-mentioned power sources. 

 

Table 18 shows the optimal portfolio when renewable energy occupies a 33.7% 

share, as in the eighth Basic Plan for Power Supply and Demand. In the case of the 
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1-risk model, the optimal portfolio showed 15.3% of LNG, but in the 2-risk model, 

it was 20.3%, 5%p higher, showing a result closer to reality.  

However, it is still different from the results of the eighth Basic Plan for Power 

Supply and Demand. In the optimal portfolio of the two-risk model, the share of 

coal does not show much difference from the 8th Basic Plan for Power Supply and 

Demand, but the share of nuclear power is 7%p higher, and the share of LNG is 

about 7%p lower. This is because the current government has changed its policy 

toward gradually retiring nuclear power plants that have reached their end of life 

due to safety reasons. 
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Chapter 5. Summary and Conclusion 

 

5.1 Concluding Remarks and Contribution 

 

This dissertation developed a methodology for applying the portfolio theory 

widely used in general financial markets to the electric power industry, and 

estimated important parameters using actual data, thereby deriving practical policy 

implications. Prior to developing the methodology, this study established the 

microeconomic foundation for deriving the optimal portfolio in the power industry. 

We borrowed the main concept from the consumer’s choice theory—how much 

power generation equipment each source should build for policy makers to 

maximize their social welfare goals. 

By solving this optimization problem, we derive the social planner’s optimal 

power share equation as the FOC equation. Many studies have attempted to apply 

portfolio theory to the power generation sector since the pioneering research by 

Awerbuch (2002). However, there might be no case in which the optimal portfolio 

was derived by an economically valid trade-off rate of mean and variance based on 

the social welfare function of the policymaker. To the best of our knowledge, this 

is the first study to contribute to this knowledge. 
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The second contribution of this study is the development of a methodology to 

derive the optimal portfolio by reflecting the characteristics of the power industry. 

Ordinary portfolio theory only looks at both price and volatility risk. However, this 

method cannot be fully covered in the electric power industry, which is a real asset. 

Minimizing the cost and volatility risk are crucial decision factors for the 

optimal portfolio of the power generation facility, but it is also a very important 

decision to balance supply and demand factor to prevent power outages. This can 

be called the reliability risk of the power system, and this risk must be reflected in 

decision making to obtain an efficient portfolio. This study developed an optimal 

portfolio theory that fits the context of the power industry by incorporating the risk 

of reliability of the power system for the optimization problem. 

Using this methodology, this study estimated the marginal rate of substitution 

for policy makers using Korea's power generation data from 1992 to 2014. The 

estimation model was constructed by adding the optimization error term in the first 

order condition for the social welfare maximization problem. This is because 

Korea's policy makers who have implemented power expansion planning have 

chosen the portfolio based on their own optimization rule, thus the MRS derived 

from this equation becomes the exchange rate between the risk and cost to the 

Korean government. 

The estimation results of the methodology and policy implications for the 

Korean Electric Power Industry are as follows. First, as a result of the 1-risk model, 
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the actual power generation portfolio had fewer base load power sources such as 

nuclear power and coal, and a higher proportion of peak energy sources such as gas 

and oil than the optimum. However, the gap between these optimal and actual 

portfolios gradually decreased over time, meaning that the government's 

optimization efforts were strengthened. 

Second, the attitude of policy makers in Korea toward volatility risk has 

gradually changed over time to risk-taking tendencies. This can be observed as the 

elasticity of volatility to costs. The value of the final year fell to about half in the 

starting year. This change in attitude means that the proportion of peak power 

sources, which have a relatively high risk of volatility, gradually increased, and the 

actual proportion of LNG optimal power generation facilities has increased 

substantially from 12% in 1992 to 21% in 2014. 

Third, the GHG emission trading system was not introduced during the sample 

period, therefore, carbon costs were not reflected. When considering these costs, 

however, the share of the optimal power composition was found to increase the gas 

power slightly and reduce the oil power. 

Fourth, the MRS between cost and variance, cost and LOLP estimated through 

the 2-risk model was estimated reasonably, and the fit of the model was further 

improved. While comparing the estimation results of the 1-risk model, the study 

has shown a significant problem that the 1-risk model underestimates the volatility 

risk because of the relatively high elasticity to the volatility risk. 
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Fifth, the optimal power portfolio based on the 2-risk model did not show a 

significant difference in the base-load power sources such as nuclear power and 

coal, but the proportion of gas power plants increased. This characteristic is even 

more remarkable when the reliability of the power system has worsened, and the 

optimal proportion of gas has risen to around 30% at the time when the power crisis 

occurred. 

Based on these results, this study draws the following policy implications: First, 

policy makers' attitude toward volatility risk in Korea is gradually shifting toward 

a direction that is tolerant of volatility. This in reality appears toward further 

expansion of high volatility gas power plants. In this case, we can predict that 

fluctuations in the retail price of electricity for consumers will gradually increase. 

However, in Korea, retail consumer rates have been rigidly regulated for a long time. 

This is the reason that exacerbates the financial difficulties of social welfare, 

accordingly a transparent link between retail rates and wholesale price, which 

means power generation cost, is necessary. 

Second, when considering the reliability risk, the proportion of gas power 

generation should be higher than when it is not, which means that gas power 

generation has a negative effect on volatility but a positive effect on reliability. The 

Korean government is pursuing a policy to expand renewable power generation in 

the future, which will increase the reliability risk of the electricity system. To 

prepare for this increase in reliability risk, gas generation is expected to expand 
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further. 

 

5.2 Limitation and Future Studies 

 

This paper classifies power generation sources into nuclear power, coal, LNG, 

and others (petroleum). In recent years, renewables are being actively considered 

in the construction of power sources in Korea and abroad, therefore including the 

renewable as a type of power generation is a way to consider the recent trend. 

However, it has not been long since renewables were introduced in Korea, such as 

the RPS system starting in 2012, and renewable energy development cost statistics 

have not yet been compiled. In the future, as the electricity generation cost (LCOE) 

statistics for renewables will become reliable time series data, it is necessary to take 

it a step further with a model that includes renewable power. 

In addition, this model is a supply-oriented model. Considering the reliability 

risk, this model assumes that only the supply sector is stochastically distributed. In 

fact, not only the supply but also the power demand is probabilistic. If the volatility 

of demand can be added to establish the LOLP function, it is expected that the 2-

risk model can better explain the reality.  
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Appendix 1: Deriving Optimal Share Equation 
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Appendix 2: Deriving Derivatives of LOLP Function 
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Appendix 3: Data Set 

 

1. Capacity(MW) 

  Nuclear Icoal Dcoal Oil LNG CC LNG ST Other 

1990 7,616  2,680  1,020  3,662  840  2,550  2,653  

1991 7,616  2,680  1,020  3,662  760  2,550  2,823  

1992 7,616  2,680  1,020  3,662  3,706  2,550  2,886  

1993 7,616  4,740  1,020  4,425  5,173  1,788  2,893  

1994 7,616  5,800  1,020  5,825  5,334  388  2,768  

1995 8,616  6,800  1,020  4,675  6,184  1,538  3,352  

1996 9,616  6,800  1,020  4,665  8,719  1,538  3,359  

1997 10,316  9,300  900  4,340  11,269  1,538  3,380  

1998 12,016  10,240  1,091  4,340  10,785  1,538  3,397  

1999 13,716  11,740  1,291  4,340  10,935  1,538  3,419  

2000 13,716  12,740  1,291  4,490  11,257  1,538  3,420  

2001 13,716  14,240  1,291  4,490  11,436  1,538  4,149  

2002 15,716  14,740  1,191  4,280  12,186  1,538  4,151  

2003 15,716  14,740  1,191  4,280  13,086  1,538  5,503  

2004 16,716  16,340  1,125  4,309  14,313  1,538  5,621  

2005 17,716  16,840  1,125  4,309  15,015  1,538  5,717  

2006 17,716  17,340  1,125  4,389  16,004  1,538  7,403  

2007 17,716  19,340  1,125  4,489  16,511  1,538  7,550  

2008 17,716  22,580  1,125  4,489  17,556  1,538  7,488  

2009 17,716  23,080  1,125  4,479  18,087  888  8,096  

2010 17,716  23,080  1,125  4,479  19,946  888  8,846  

2011 18,716  23,080  1,125  4,479  21,160  888  9,895  

2012 20,716  23,409  1,125  3,950  21,305  888  10,413  

2013 20,716  23,409  1,125  3,950  25,209  888  11,672  

2014 20,716  25,149  1,125  2,950  30,189  388  12,700  
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2. Investment Cost (KRW/kW) 

  Nuclear Icoal Dcoal Oil LNG CC 

1990 1,343,000  695,023  978,937  978,937  483,988  

1991 1,697,779  695,023  1,065,039  1,065,039  474,644  

1992 1,728,561  815,136  1,151,141  1,151,141  474,644  

1993 1,853,171  850,394  1,237,244  1,237,244  488,005  

1994 1,853,171  833,173  1,323,346  1,323,346  397,381  

1995 1,853,171  1,034,753  1,409,448  1,409,448  388,149  

1996 1,920,154  1,077,088  1,409,448  1,409,448  426,753  

1997 1,920,154  1,048,622  1,439,224  1,439,224  472,547  

1998 1,876,019  1,155,754  1,439,224  1,439,224  621,150  

1999 1,878,014  1,155,754  1,439,224  1,439,224  589,091  

2000 1,747,466  1,101,140  1,469,000  1,469,000  572,578  

2001 1,747,466  1,101,140  1,524,250  1,524,250  572,578  

2002 1,747,466  1,070,589  1,579,500  1,579,500  500,005  

2003 1,884,000  1,098,865  1,634,750  1,634,750  591,929  

2004 1,884,000  1,005,598  1,690,000  1,690,000  591,929  

2005 2,344,283  967,639  1,690,000  1,690,000  646,580  

2006 2,574,425  967,639  1,690,000  1,690,000  703,506  

2007 2,592,892  972,993  1,690,000  1,690,000  781,718  

2008 2,592,892  1,041,012  1,745,250  1,745,250  807,725  

2009 2,592,892  962,841  1,800,500  1,800,500  959,545  

2010 2,657,378  1,443,441  1,855,750  1,855,750  1,224,061  

2011 2,657,378  1,461,681  1,911,000  1,911,000  1,218,523  

2012 2,657,378  1,588,579  1,966,250  1,966,250  1,174,569  

2013 2,724,264  1,661,007  2,021,500  2,021,500  1,130,373  

2014 2,724,264  1,661,007  2,076,750  2,076,750  1,039,595  

Note. Icoal means Bituminous coal from import and Dcoal means hard coal by domestic 

from domestic coal industry 



135 

Appendix 4: 8th Basic plan for supply and demand 

 

1. Installed Capacity Trend, 2019-2031(MW) 

  Nuclear Coal LNG Renewable Oil Pumping Total 

2019 26,050 36,031 39,964 15,361 3,991 4,700 126,096 

 20.7% 28.6% 31.7% 12.2% 3.2% 3.7% 100.0% 

2020 26,050 37,281 42,050 17,761 3,991 4,700 131,832 

 19.8% 28.3% 31.9% 13.5% 3.0% 3.6% 100.0% 

2021 26,050 39,911 42,050 20,451 3,991 4,700 137,152 

 19.0% 29.1% 30.7% 14.9% 2.9% 3.4% 100.0% 

2022 27,450 42,041 42,050 23,341 2,791 4,700 142,372 

 19.3% 29.5% 29.5% 16.4% 2.0% 3.3% 100.0% 

2023 28,200 42,041 40,250 26,431 2,791 4,700 144,412 

 19.5% 29.1% 27.9% 18.3% 1.9% 3.3% 100.0% 

2024 27,250 40,921 43,310 30,696 1,391 4,700 148,267 

 18.4% 27.6% 29.2% 20.7% 0.9% 3.2% 100.0% 

2025 25,350 39,921 44,310 34,761 1,391 4,700 150,432 

 16.9% 26.5% 29.5% 23.1% 0.9% 3.1% 100.0% 

2026 23,700 39,921 44,310 38,826 1,391 4,700 152,847 

 15.5% 26.1% 29.0% 25.4% 0.9% 3.1% 100.0% 

2027 22,050 39,921 46,110 43,326 1,391 4,700 157,497 

 14.0% 25.3% 29.3% 27.5% 0.9% 3.0% 100.0% 

2028 21,100 39,921 47,460 48,226 1,391 4,700 162,797 

 13.0% 24.5% 29.2% 29.6% 0.9% 2.9% 100.0% 

2029 20,400 39,921 47,460 53,126 1,391 5,500 167,797 

 12.2% 23.8% 28.3% 31.7% 0.8% 3.3% 100.0% 

2030 20,400 39,921 47,460 58,461 1,391 6,100 173,732 

 11.7% 23.0% 27.3% 33.7% 0.8% 3.5% 100.0% 

2031 20,400 39,921 47,460 58,611 1,391 6,700 174,482 

  11.7% 22.9% 27.2% 33.6% 0.8% 3.8% 100.0% 
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2. Installed Capacity(Peak Contribution) Trend, 2019-2031(MW) 

  Nuclear Coal LNG Renewable Oil Pumping Total 

2019 26,050 35,098 39,961 3,704 3,853 4,700 113,366 

 23.0% 31.0% 35.2% 3.3% 3.4% 4.1% 100.0% 

2020 26,050 36,222 42,047 4,045 3,853 4,700 116,917 

 22.3% 31.0% 36.0% 3.5% 3.3% 4.0% 100.0% 

2021 26,050 38,852 42,047 4,398 3,853 4,700 119,901 

 21.7% 32.4% 35.1% 3.7% 3.2% 3.9% 100.0% 

2022 27,450 40,982 42,047 4,756 2,653 4,700 122,588 

 22.4% 33.4% 34.3% 3.9% 2.2% 3.8% 100.0% 

2023 28,200 40,982 40,247 5,117 2,653 4,700 121,899 

 23.1% 33.6% 33.0% 4.2% 2.2% 3.9% 100.0% 

2024 27,250 39,862 43,307 5,799 1,253 4,700 122,171 

 22.3% 32.6% 35.4% 4.7% 1.0% 3.8% 100.0% 

2025 25,350 38,862 44,307 6,245 1,253 4,700 120,717 

 21.0% 32.2% 36.7% 5.2% 1.0% 3.9% 100.0% 

2026 23,700 38,862 44,307 6,691 1,253 4,700 119,513 

 19.8% 32.5% 37.1% 5.6% 1.0% 3.9% 100.0% 

2027 22,050 38,862 46,107 7,191 1,253 4,700 120,164 

 18.3% 32.3% 38.4% 6.0% 1.0% 3.9% 100.0% 

2028 21,100 38,862 47,457 7,699 1,253 4,700 121,072 

 17.4% 32.1% 39.2% 6.4% 1.0% 3.9% 100.0% 

2029 20,400 38,862 47,457 8,208 1,253 5,500 121,680 

 16.8% 31.9% 39.0% 6.7% 1.0% 4.5% 100.0% 

2030 20,400 38,862 47,457 8,772 1,253 6,100 122,845 

 16.6% 31.6% 38.6% 7.1% 1.0% 5.0% 100.0% 

2031 20,400 38,862 47,457 8,796 1,253 6,700 123,468 

  16.5% 31.5% 38.4% 7.1% 1.0% 5.4% 100.0% 
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3. Base Scenario Trend of Demand, 2016-2031(GWh, MW) 

  Consumption Peak Load 

  Annual Growth Summer Growth Winter Growth 

2016 497,039 2.8% 85,183 10.7% 83,657 0.8% 

2017 508,994 2.4% 84,586 -0.7% 86,546 3.5% 

2018 523,505 2.9% 87,523 3.5% 88,907 2.7% 

2019 537,973 2.8% 89,750 2.5% 91,262 2.6% 

2020 552,291 2.7% 91,955 2.5% 93,594 2.6% 

2021 566,714 2.6% 94,173 2.4% 95,991 2.6% 

2022 579,611 2.3% 96,174 2.1% 98,148 2.2% 

2023 592,145 2.2% 98,122 2.0% 100,251 2.1% 

2024 604,066 2.0% 99,985 1.9% 102,325 2.1% 

2025 615,788 1.9% 101,819 1.8% 104,369 2.0% 

2026 627,064 1.8% 103,591 1.7% 106,342 1.9% 

2027 637,866 1.7% 105,297 1.6% 108,241 1.8% 

2028 647,946 1.6% 106,902 1.5% 110,023 1.6% 

2029 657,725 1.5% 108,466 1.5% 111,759 1.6% 

2030 666,955 1.4% 109,954 1.4% 113,407 1.5% 

2031 675,367 1.3% 111,327 1.2% 114,922 1.3% 
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4. Target Scenario Trend of Demand, 2016-2031(GWh, MW) 

  Consumption Peak Load 

  Annual Growth Summer Growth Winter Growth 

2016 497,039 2.8% 85,183 10.7% 83,657 0.8% 

2017 506,981 2.0% 84,586 -0.7% 85,206 1.9% 

2018 519,069 2.4% 86,114 1.8% 87,155 2.3% 

2019 530,358 2.2% 87,084 1.1% 88,538 1.6% 

2020 540,054 1.8% 88,779 1.9% 90,342 2.0% 

2021 548,898 1.6% 90,382 1.8% 92,104 2.0% 

2022 556,088 1.3% 91,464 1.2% 93,314 1.3% 

2023 561,700 1.0% 92,553 1.2% 94,525 1.3% 

2024 566,228 0.8% 93,527 1.1% 95,672 1.2% 

2025 569,824 0.6% 94,359 0.9% 96,670 1.0% 

2026 572,800 0.5% 95,104 0.8% 97,568 0.9% 

2027 575,229 0.4% 95,797 0.7% 98,404 0.9% 

2028 577,029 0.3% 96,399 0.6% 99,131 0.7% 

2029 578,515 0.3% 96,986 0.6% 99,839 0.7% 

2030 579,547 0.2% 97,533 0.6% 100,498 0.7% 

2031 580,443 0.2% 98,010 0.5% 101,065 0.6% 
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Abstract (Korean) 

 

지금까지 장기 전원계획은 주로 비용최소화를 바탕으로 이루어져왔다. 

하지만, 2000 년대 이후부터 Markowitz 의 포트폴리오 이론을 발전설비의 

포트폴리오에 적용하는 연구가 본격적으로 이루어지기 시작하면서 큰 

변화가 나타났다. 그러나 선행의 많은 연구들은 발전비용의 평균과 

분산을 통해 포트폴리오의 효율 경계를 찾는데 주된 목적을 두었고, 그 

두 요소 간의 교환비율이 어떻게 되는지에 대한 연구는 이루어지지 

않았다. 그래서 효율경계로부터 최적 전원구성의 찾아내는 방법은 

시나리오 기법에 의존하거나, 전통적인 CAPM 모형을 이용하여 시장 

포트폴리오를 도출하는데 그쳤다.  

본 논문의 첫 번째 목적은 평균-분산 모형을 적용한 최적 전원 믹스를 

분석함에 있어서, 비용의 평균과 그 변동성 간의 교환 비율, 즉 trade-off 

관계를 합리적으로 추정하는데 있다. 두 번째 목적은 최적 전원구성을 

고려함에 있어서, 전력산업에서 반드시 고려해야하는 신뢰도 위험을 분석 

모형에 반영하는 것이다. 기존의 많은 연구들은 발전 자산이 마치 

자본시장에서 거래되는 유가증권과 같은 방식으로 분석되었으나, 현실의 

발전설비 투자는 비용최소화와 변동성 회피뿐만 아니라, 전력 신뢰도를 

유지하는 것이 매우 중요하다. 본 논문에서는 신뢰도 위험을 

공급지장확률(LOLP)로 정의하여, 전원계획을 수립하는 정책당국자의 

효용함수의 한 요소로 반영하여 평균-분산 포트폴리오 모형을 
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확장시켰다. 모형의 미시적 기초는 변동성 위험만을 고려한 1위험 모형과 

동일하며, 우리나라의 LOLP 함수를 산출하기 위하여 몬테카를로 

시뮬레이션을 이용하였다. 

이러한 연구목표와 방법론으로부터 얻은 결과는 다음과 같다. 첫째, 

비용과 비용의 변동성의 관점에서 정책입안자가 바라보는 두 요소간의 

대체 비율은 1992~2014 년 동안 점차 변동성을 허용하는 쪽으로 선호가 

변경되었다. 이는 1970 년대 오일쇼크 이후 원자력과 석탄으로 발전원의 

다각화를 시도하였다가, 1990 년대 이후부터 친환경적이고 발전효율이 

지속적으로 개선된 LNG 복합발전이 확대된데 큰 이유가 있었다. 둘째, 

실제 전원구성은 분석기간 동안 점차 최적 포트폴리오에 근접해지고 

있었으나, 대규모 순환정전이 발생하였던 2011 년 이후로 LNG 복합 

발전의 비중이 최적에 비해 훨씬 늘어났다. 이는 2010 년대 초, 전력 

수급위기에 대응하여 건설 기간이 짧은 LNG 복합발전의 건설 승인이 

상당수 늘어난데 그 원인을 찾을 수 있다. 셋째, 전력신뢰도를 고려할 

경우 최적 전원구성 비율은 변동성만 고려한 모형보다 피크발전설비, 그 

중에서도 특히 LNG 의 비중이 늘어나는 것으로 나타났다. 이는 복합발전 

기술이 여러 대의 가스 터빈과 스팀터빈으로 이루어져, 발전기당 단위 기 

용량이 작아 고장 발생에도 상당한 분산 효과가 있기 때문이다.  

이러한 결과를 바탕으로 전원구성에의 정책적 시사점을 도출하면, 향후 

전원구성에는 현재보다 LNG 의 비중이 더 늘어나야 할 것으로 보인다. 

이는 정책입안자의 효용도 비용의 변동성을 점차 허용하는 관점으로 
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변하고 있고, 신뢰도 측면에서도 다른 전원에 비하여 우월한 특성이 있기 

때문이다. 특히, 온실가스 배출 비용의 증가와 신뢰도 위험을 증가시킬 

신재생 전원의 정책적 확대는 앞으로 더 많은 LNG 설비를 필요로 할 

것으로 예상된다. 

 

 

주요어: 포트폴리오 이론, 최적 전원구성, 변동성 위험, 신뢰도 위험, 

전력수급기본계획, 공급지장확률 
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