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Abstract 

Multiscale Modeling Approach for 

Glassy Polymer Using Molecular 

Dynamics Simulations and 

Micromorphic theory 

Chanwook Park 

Department of Aerospace Engineering 

Aerospace Engineering Major 

The Graduate School 

Seoul National University 
 

This thesis starts with an investigation on the strain rate 

discrepancy of tensile experiments and molecular dynamics (MD) 

simulations for glassy polymers. It is postulated that MD tensile 

simulations conducted under super-fast strain rates represent the 

nanoscale craze region in the macro tensile specimen. By comparing 

the ductile-brittle transition of glassy polymers at experiments and 

simulations, the postulation is validated resulting in a conclusion that 

to understand the constitutive relation of a glassy polymer by using 
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the MD simulation, a multi-scale continuum approach must be 

employed which can incorporate MD results as the physics of the 

micro (or nano) scale. For this purpose, the two-scale micromorphic 

theory is adopted where tensile experimental results are applied to 

the macro-scale and MD results are applied to the micro-scale. With 

a proper choice of the length parameter of the micro-scale, the 

length scale of the continuum model became compatible with MD RUC. 

Finally, the multi-scale model exhibited the distinctive ductile and 

brittle plastic deformation when given with ductile and brittle MD s-

s curves respectively. Since it also returns the dynamic response 

from the s-s curves, the time-scale and the strain rate of the MD 

simulations and the continuum model can be comparable by choosing 

proper model parameters. This multi-scale approach is expected to 

be an essential method for the scale bridging between the 

nanomechanics and the continuum mechanics. 

 

Keywords : Multiscale simulation, molecular dynamics, glassy polymer, 

ductile-brittle transition, micromorphic theory 

Student Number : 2018-27299  
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1. Introduction 

1.1. Background and motivation 

Studies on polymeric nanocomposites aided by molecular 

dynamics (MD) simulations have proliferated over the past year [1-

4].  In particular, tensile simulations have been extensively 

conducted on MD simulations, which are expected to replace 

conventional mechanical tensile tests performed in experiments [5-

8]. In the meanwhile, the time scale discrepancy between MD 

simulations (~nano seconds) and real-time experiments, and the 

following huge gap of strain rates have been a recurring issue among 

researchers [9]. Most MD tensile strain rates are extremely fast (in 

the range of 107~1010/s) whereas conventional tensile experiments 

are conducted under the quasi-static condition. To resolve this, a 

time-shifting method have been extensively exploited [10-12]. For 

instance, Odegard et al.[10] conducted uniaxial tensile tests on 

thermoset polymers with various strain rates (~109 /s) to obtain 

young’s modulus and yield strength. Then they co-plotted the 

results with experimental results obtained under a quasi-static strain 

rate where they could define a relationship between strain rates and 
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mechanical properties. Park et al.[11] took one step further where 

they generated a global curve of the yield stress of thermoset 

polymers using the time-temperature superposition and Eyring 

theory [13]. They predicted the quasi-static yield stress of epoxy 

resin from the global curve of yield stress which was obtained from 

the temperature-accelerated MD simulation.  

The shifting methodology described above is based on a premise 

that the representative unit cell (RUC) in MD simulations can 

effectively represent the macroscale specimen under the periodic 

boundary condition (PBC). That is, they assume the macro specimen 

consists of duplicates of the same MD RUC. This premise seems 

reasonable in the elastic regime since they yielded accurate 

predictions about experimental results or the discrepancy between 

simulations and experimental results [12]. In the plastic regime, 

however, most materials (especially polymeric materials) deform 

heterogeneously, which means that the assumption of homogeneous 

deformation no longer holds [14]. When a macro specimen undergoes 

the plastic deformation, there is a local region where the plastic yield 

happens while the other regions are still in the elastic regime. A 
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single MD RUC in the nanoscale never succeed to depict the 

heterogeneous deformation of polymeric materials and this is the 

reason why most attempts to discover the yield criteria of glassy 

polymers using MD simulations have failed to bridge the gap between 

simulations and experiments [15]. Therefore, one must scrutinize 

the inhomogeneous deformation scheme when dealing with the plastic 

deformation of polymeric materials. This thesis scrutinizes the 

inhomogeneous deformation mechanism of glassy polymers as well 

as the time and length scale discrepancy between MD simulations and 

conventional tensile experiments.  
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Figure 1 Meaning of the strain rate discrepancy between MD simulations and 

tensile experiments. (a) MD s-s curves of tensile simulations performed under 

super-fast strain rate. 1% case is the radical-polymerized sample and 20mer/90mer 

cases are the representative molecule models with chain length or 20 mer and 90 

mer, respectively. Reproduced with permission.[16] (b) Typical s-s curves for the 

brittle fracture with the craze yielding (left) and the ductile failure with the shear 

band (right). The curves are from tensile experiments conducted in this thesis. (c) 

Schematic illustration of a macro tensile specimen with an extended view of the 

nanoscale craze region. It is postulated that the MD RUC represents the nanoscale 

craze region in the macro tensile specimen. 
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1.2. Objectives and research significance 

To handle this, our group first studied on realistic modeling of 

thermoplastic polymers. An algorithm was developed that can realize 

the whole process of polymerization; initiation, propagation, and 

termination [16-18]. Through this algorithm, a poly(methyl 

methacrylate) (PMMA) RUC with a molecular weight of ~14,000 

g/mol was grown from a mixture of monomers and initiators. A tensile 

simulation under a super-fast strain rate (2 × 109/s) was performed 

on the MD RUC to obtain the stress-strain curve (s-s curve), which 

is shown in Figure 1 (a) as a black solid line denoted by 1% on the 

legend. The s-s curve shows an initial yield point followed by the 

strain softening and hardening, which is similar to the tensile behavior 

of a ductile glassy polymer. At this point, it is easy to conclude that 

the MD RUC successfully depicts the real-time deformation 

mechanism of the glassy polymer. However, it has a serious fallacy. 

The MD RUC is not ductile in the current simulation; instead, it is 

brittle [19, 20]. To dig deeper into this situation, the deformation 

mechanism of thermoplastic glassy polymers must be elucidated.  

Glassy polymers deform in two different ways; ductile and brittle. 
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It is widely known that the ductile deformation is induced by the shear 

yielding while the brittle deformation is dominated by the craze 

yielding [21, 22]. As can be seen in Figure 1(b), the strain softening 

in the ductile s-s curve is dominated by the shear band mechanism. 

In MD s-s curve, on the other hand, the strain softening on the 1% 

model (Figure 1(a) black solid line) is not a manifestation of the shear 

banding even though the shape of the s-s curve is similar to that of 

the ductile case in Figure 1(b). Instead, the softening in MD s-s 

curve is induced by the craze initiation, which dominates the brittle 

deformation [19, 20, 23]. After the initial yield, in MD RUC, a void is 

nucleated due to the craze initiation under the super-fast strain rate. 

As the void grows, polymer chains near the void gain enough space 

to release stress [16, 19, 20]. Then, how can one explain the 

ductile-like s-s curve (but brittle, in fact) in MD simulation 

conducted under a super-fast strain rate? 

It has been pointed out that the glassy polymer deforms 

heterogeneously in the plastic regime. When the polymer undergoes 

a brittle deformation, nanoscale crazes inside a macro specimen 

stretch extremely fast and elongate a lot (typical values of the 
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extension ratio of a craze ranges from two to seven)[19], although 

the macro specimen is stretched by a quasi-static strain rate as 

depicted in Figure 1 (c). Hence it is obvious that the strain and strain 

rate of the macro specimen and the nanoscale craze region are 

different in nature, and strain rates between the two different scales 

( 𝜖𝐸̇𝑋𝑃  and 𝜖𝑐̇𝑟𝑎𝑧𝑒 ) will have a relationship. At this moment of 

discussion, a postulation is suggested: 

MD tensile simulations performed at super-fast strain rates 

represent the nanoscale craze region in the macro-scale tensile 

specimen  

as depicted in Figure 1(c). In other words, in the inhomogeneous 

plastic deformation scheme, the MD RUC describes not the macro 

specimen, but only the nanoscale craze region. Therefore, the 

relationship between the experimental strain rate 𝜖𝐸̇𝑋𝑃 and the strain 

rate of the craze region 𝜖𝐶̇𝑟𝑎𝑧𝑒 changes to the relationship between 

𝜖𝐸̇𝑋𝑃 and the MD strain rate 𝜖𝑀̇𝐷.   

To uncover the relationship between the 𝜖𝐸̇𝑋𝑃 and the 𝜖𝑀̇𝐷, a 

specific situation in which both the tensile experiment and the MD 

simulation describe simultaneously must be defined; the ductile-
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brittle (DB) transition is employed as this specific situation. If the 

two s-s curves obtained from an MD simulation and an experiment 

are the ones at the DB transition at the same temperature, it can be 

asserted that the two different strain rates correspond to each other. 

In turn, while the macro specimen is stretched with the experimental 

strain rate 𝜖𝐸̇𝑋𝑃, the nanoscale craze region is stretched with the MD 

strain rate 𝜖𝑀̇𝐷.  

To this end, this thesis investigates the DB transition of a glassy 

polymer (PMMA) from both MD simulations and conventional tensile 

experiments. At a fixed temperature, tensile simulations and 

experiments are performed with different strain rates so that the 

strain rate at which the ductile behavior changes to the brittle 

behavior can be defined. By matching the results, the relationship 

between the MD strain rate and the experimental strain rate at the 

DB transition is discovered. Through this approach, it is confirmed 

that the application of MD simulations to the continuum scale should 

be restricted to the nano-scale region. Therefore, to obtain the 

atomistically-informed continuum description of a glassy polymer, a 

multi-scale continuum theory that can integrate and apply MD results 
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to the micro (or nano) scale must be employed.  

In this thesis, the two-scale micromorphic theory is adopted 

where the macro-scale and the micro-scale possess independent 

stress-strain relationships. For the macro-scale, mechanical 

properties obtained from experiments are used while MD results are 

employed for the micro-scale. The two-scale micromorphic 

computation captured qualitatively the macroscopic response of 

glassy polymers when the ductile-brittle transition happens in the 

micro-scale. Furthermore, by adjusting length parameters in the 

formulation, it has been shown that a fully-compatible multi-scale 

simulation (both time-scale and length-scale) can be achieved, 

which implies the micromorphic theory can be employed as a 

physically reasonable multi-scale framework that can bridge 

molecular simulations and continuum computations. 

 

1.3. Organization of the thesis 

This thesis is organized in the following manner. In the next 

section, a literature review on multi-scale continuum theories is 

given according to two categories: hierarchical(section 2.1) and 



 

 17 

concurrent(section 2.2) multi-scale method. Section 3 discusses the 

strain rate relationship between MD simulations and tensile 

experiments. Both simulation and experimental methods are given in 

section 3.1 and their results are in section 3.2. Through the 

discussion in section 3.3, the validity of using the multi-scale 

continuum models to elucidate the heterogeneous plastic deformation 

of glassy polymers is affirmed. In section 4, a step-wise description 

of the two-scale micromorphic theory is presented from the general 

overview of the micromorphic theory(section 4.1) to the adjusting 

MD results applicable to the finite element discretization(section 4.4). 

Results of micromorphic computations are discussed in Section 5, 

followed by salient conclusions and future works presented in Section 

6. 
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2. Multi-scale continuum theories to incorporate 

nano-scale mechanics 

2.1. Hierarchical coupling multi-scale model 

Numerous attempts have been made to combine MD simulations 

with continuum theories. One of the most widely studied hierarchical 

multi-scale methods, the Cauch-Born rule (CBR) method, couples 

the atomistic and continuum models through a constant deformation 

gradient under the assumption of the affine deformation[24-26]. 

Recently, the coarse-grained Parinello-Rahman (CGPR) method, 

which is an extended form of the CBR method, has been developed 

to incorporate the inelastic deformation in an amorphous solid [27, 

28]. It comprises material points representing respective atomistic 

RUC [27]. In each calculation step, a deformation gradient followed 

by a geometry optimization procedure shall be assigned to each 

material point in the RUC. The first Piola-Kirchhoff stress is 

calculated and applied to the respective material point in the 

continuum level. Then, new deformation gradients are designated and 

re-determined with the modified stresses. The CGPR approach is 

very stringent because there are physical reasons for every single 
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calculation. But since the atomic measurement is based on molecular 

mechanics, it is not possible to encompass the molecular dynamics 

and the deformation process in real-time domain. 

 

2.2. Concurrent multi-scale model 

The concurrent multi-scale model explicitly connects continuum 

and atomic modeling to continuum nodes by communicating nano-

scale deformations. The microcontinuum field theories are 

rigorously-studied concurrent multi-scale approaches developed 

from the classical field theory in order to couple atomistic and 

continuum models. Micomorphic theory is considered to be the most 

successful, multi-scale, top-down model among different theories 

such as the Cosserat theory [29], couple stress theory [30], 

microstructure theory [31], micromorphic theory[32], and 

micropolar theory [33], the micomorphic theory is regarded as the 

most successful top-down multi-scale model [34]. The 

micromorphic theory introduced by Eringen in 1964 postulates that 

the material body is a continuous sequence of deformable particles 

with a finite size and inner structure that contradict the classic 
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hypothesis of the continuum in which material points have an infinite 

size and no internal structure. This was solved by Eringen, who 

substituted the deformable particle for a geometric point with several 

quantities of vectors. This is consistent with traditional continuum 

approaches in which physical properties such as vector and electric 

field are given for material points. Thus the micromorphic theory 

allows for different applications, including strain localization followed 

by Lüders bands in metals [35, 36] and phase transition of metals 

[37, 38]. 

Vernerey et al. expanded based on micromorphic theories [39, 

40] to elucidate various deformation fields of porous and steel-alloys 

that possess two hard particle populations [41, 42]. The constitutive 

equation was then derived through the meso-domain homogenization 

method [43, 44]. A successful description of the micro deformation 

of steel alloy with two different micro-scales with respective 

plasticity was developed in the proposed multi-scale methodology. 

The new feature of the work is that the multi-scale continuum 

framework was created by in-house code and the ABAQUS UEL 

subroutine which consists of different stress-strain relationships at 
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each micro-scale. This thesis utilizes this two-scale micromorphic 

theory, which combines the MD tensile simulation findings and 

classical tensile experiments, to model glassy polymers that 

undergo inhomogeneous plastic deformation. 
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3. Strain rate relationship between nano- and macro-

scale 

3.1. Methods 

3.1.1. Molecular dynamics (MD) modeling 

The poly(methyl methacrylate) (PMMA) representative unit 

cell (RUC) was generated using the radical polymerization algorithm 

[16] where the initiation, propagation, and termination of the radical 

polymerization can be depicted. The model generation procedure is 

described below. 

First, 6000 methacrylate (MMA) monomers and 60 phenyl 

radicals (initiators) described in the united-atom (UA) level are 

packed in an empty unit cell. The polymerization is initiated from 

phenyl radicals. Once initiators are activated, all close-contacts 

between the radicals and reactive sites in monomers are calculated. 

If the distance of a close-contact is shorter than the cutoff radius 

(varies from 7Å to 11Å), a bond is generated between the radical 

and the reactive site in the monomer, followed by a radical shift from 

the initial position to the terminal backbone atom of the chain. The 

RUC then goes through the geometry optimization and a short NVT 
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ensemble for 2000 steps. This process is repeated until the desired 

degree of polymerization is reached. In this thesis, at the end of the 

polymerization, the PMMA RUC reached the number average 

molecular weight of 9,587 (g/mol) and weight average molecular 

weight of 13,961 (g/mol) in a (100Å × 100Å × 100Å) box. The RUC 

consisted of 40260 united atoms and the PBC was introduced to avoid 

the surface effect. 

The UA level molecular dynamics simulations were performed 

on the largescale atomic/molecular massively parallel simulator 

(LAMMPS) [45]. The combined PCFF-TraPPE (UA) force field 

specially designed for the radical polymerization of PMMA was 

employed [16]. In short, for bonded potentials, only valence terms 

(bond, angle, dihedral, and out-of-plane) in the conventional PCFF 

force field were used while the TraPPE(UA) force field was 

employed for the non-bonded potentials where the non-bonded 

parameters are listed in Table 1. The Lorentz-Berthelot mixing rule 

was used for the non-bonded potential between different kinds of 

united atoms. 

An annealing simulation was performed to equilibrate the RUC 
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grown by the polymerization algorithm: NVT (same number of atoms, 

constant volume, and temperature) ensemble simulation for 0.2 ns 

from 600K to 300K followed by NPT (same number of atoms, 

constant pressure and temperature) ensemble simulation for 0.5 ns 

at 300K and 1 atm. The Nose–Hoover thermostat and barostat were 

employed for the whole ensemble simulations [46]. The OVITO 

program was employed for visualization [47].  

Dynamic tensile simulations were conducted following the 

description in our group’s previous paper [5]. The RUC was 

stretched in x-direction with a constant strain rate ( MD ) while the 

other two directions were managed by the Nose-Hoover barostat. 

 

Table 1 Non-bonded parameters of the TraPPE (UA) force field [16]. Corresponding 

force field types in PCFF are listed in the second column.  

TraPPE (UA) PCFF 𝜎 (Å) 𝜖 [𝐾𝑐𝑎𝑙/𝑚𝑜𝑙] Charge (e−) 

C(aro) cp 3.88 0.042 0 

C(sp2) c=1 3.85 0.044 0 

C(sp3) c 3.5 0.066 0 

C(carbonyl) c_1 3.82 0.079 0.4 

CH(sp2) cp 3.71 0.103 0 

CH(sp3) c1 4.68 0.020 0 

CH2(sp2) c= 3.675 0.169 0 

CH2(sp3) c2 3.95 0.091 0 

CH3(sp3) c3 3.75 0.195 0 

CH3(ether) c3 3.75 0.195 0.25 

O(ether) o_2 2.8 0.109 -0.25 
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3.1.2. Tensile experiments for PMMA dog-bone specimens 

PMMA specimens used in this thesis are commercial samples 

purchased from Korea Polymer. The dimension of the specimen is 

the Type 1 sample of the ASTM D638 standard test method as 

illustrated in Figure 2(a). A tensile machine (QUASAR 5, Galdabini, 

Italy) was employed to carry out tensile tests at various strain rates 

ranging from 0.1~200 mm/min while the temperature was controlled 

by a heating/cooling chamber. A picture taken during the tensile test 

is shown in Figure 2(b). Various temperatures (298 K, 308K, 318K, 

328K, 338K) were investigated for the tensile tests.  
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Figure 2 Diagrams of tensile experiments. (a) Type 1 specimen of the ASTM 

D638 standard test method. (b) A picture taken during the tensile test. 
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Figure 3 DB transition of PMMA observed in both MD simulations. MD s-s curves 

at (a) 300K, (b) 333K, (c) 353K, and (d) 373K. (e) Atoms having volumes higher 

than 𝟐𝟎𝟎Å at engineering strain of 1.0 in case of tensile simulations at 300K. 

The counts are expressed in number percentage. (f) DB transition curve in MD 

simulations with a logarithmic fit.  
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3.2. Ductile-brittle transition results 

3.2.1. MD simulation results 

At 300K, large deformational tensile tests were performed on a 

PMMA RUC at various strain rates ranging from R0.1 to R1 (relative 

units, R1 corresponds to 2 × 109/s while R0.1 corresponds to 2 ×

108/s). The corresponding s-s curves are plotted in Figure 3(a). 

Curves in Figure 3(a) show a clear dependence of the yield stress on 

the strain rate. The yield stress increases as the strain rate increases, 

which is commonly observed from experiments and simulations [11, 

22]. After the yield point, the curves show two different behavior; at 

high strain rates (R0.5 and R1), the strain softening occurs after the 

yield point whereas the material hardens without softening at low 

strain rates (R0.1 and R0.2). As mentioned before, the softening, 

occurring at high strain rates, is due to the craze initiation and void 

formation which has also been reported in the literature [19, 20]. In 

Figure 4, a clear void is observed   at R1 (a, b) whereas no 

outstanding void can be detected at R0.1 (c, d). At low strain rate, 

the material hardens after the yield point without showing any strain 

softening. The low strain rate provides enough relaxation time to 
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polymer chains so that they are stretched without creating any void 

or crazing as can be seen in Figure 4 (c,d). At this strain rate, the 

shear banding is the major deformation mechanism of the material 

rather than the crazing. Therefore, from Figure 3(a), one can 

conclude that the DB transition at 300K takes place at strain rate 

from R0.2 to R0.5.  

It can also be specified from the atomic volume analysis, which 

yields the same result. From tensile simulations at 300K, the atomic 

volume was calculated quantitatively through the Voronoi tessellation, 

[5, 48] and atoms having high atomic volumes (higher than 200 Å) 

were counted. Note that the atomic volume was captured at 

engineering strain of 1.0 since it is in the middle of the craze growth. 

The result is plotted in Figure 3(e). At R0.1 and R0.2, there are no 

atoms having atomic volume higher than 200Å. Starting from R0.5, 

however, there exists atoms having an extremely high volume. 

Therefore, the ductile-brittle transition strain rate can be defined as 

R0.2 to R0.5 (
8 94 10 / ~10 /s s ), which is the same as the one 

obtained from MD s-s curves at 300K. 
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Figure 4 Snapshots of tensile simulations at 300K and 1.0 engineering strain. 

Strain rate: (a,b) are R1, (c,d) are R0.1. Polymer chains are colored differently, 

chain by chain. 

 

The same tensile simulation was carried out at 333K, 353K, and 

373K (Figure 3(b-d)). Using the same criteria discussed at 300K, 

the DB transition strain rate was captured at each temperature. The 

final result is illustrated in Figure 3(f) with a logarithmic fit 

expressed as: 

 𝑇𝑀𝐷 = 36.326 𝑙𝑛 𝜖𝑀̇𝐷
𝐷𝐵 − 438.08 (1) 

where 𝑇𝑀𝐷 is the temperature and 𝜖𝑀̇𝐷
𝐷𝐵  is the MD strain rate at the 

DB transition. The transition strain rate increases as the temperature 
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increases because glassy polymers become ductile at high 

temperatures. Thus, the DB transition curve obtained from current 

MD simulations exhibits a general phenomenon of the DB transition. 

 
Figure 5 DB transition of PMMA observed in tensile experiments. S-s curves at 

(a) 298K, (b) 308K, (c) 318K, (d) 328K, and (e) 333K. (f) DB transition curve in 

tensile experiments with a logarithmic fit. 
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3.2.2. Tensile experimental results 

Figure 5(a) is experimental s-s curves at 298K and various 

strain rates. PMMA is ductile at 0.1mm/min while it is brittle at strain 

rates higher than 0.2mm/min. Thus, the DB transition takes place 

between 0.1 and 0.2mm/min. Considering that the distance between 

grips is 115mm, the transition strain rates in per second unit (/s) are 

1.45 × 10−5 /s and 2.90× 10−5 /s, which are plotted in Figure 5(f). 

These two values are both ends of the error bar while the mid-point 

was marked by a circle dot. The same experiment was performed at 

308K, 318K, and 328K as can be seen in Figure 5(b-e), and the 

transition strain rates at each temperature are also plotted in Figure 

5(f). The logarithmic fit in Figure 5(f) is written in Eq.(2): 

 𝑇𝐸𝑋𝑃 = 4.4589 𝑙𝑛 𝜖𝐸̇𝑋𝑃
𝐷𝐵 + 344.04. (2) 

Similar to the Eq.(1), the DB transition strain rate increases as the 

temperature increases. 
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3.3. Discussions for the strain rate relationship 

Following our postulation, at the same temperature, the DB 

transition strain rates in MD simulations and the experiments can be 

matched by making 𝑇𝑀𝐷 and 𝑇𝐸𝑋𝑃 in Eq. (1) and Eq.(2) equal: 

 𝜖𝐸̇𝑋𝑃
𝐷𝐵 = e−175.41 ∙ (𝜖𝑀̇𝐷

𝐷𝐵 )8.1469. (3) 

Eq.(3) connects the MD strain rate 𝜖𝑀̇𝐷
𝐷𝐵  and the experimental strain 

rate 𝜖𝐸̇𝑋𝑃
𝐷𝐵  at the DB transition. For instance, the experimental strain 

rate corresponding to the MD strain rate R1 is 0.39 /s at the DB 

transition. The two DB transition graphs in Figure 3(f) and Figure 

5(f) are then co-plotted in Figure 6 by employing Eq.(3). The two 

fitted lines coincide because both ends of the two x-axes are 

matched according to Eq.(3). The strain rate discrepancy between 

MD and experimental strain rates in Figure 6 and Eq.(3) was induced 

by the inhomogeneous plastic deformation. However, the gap 

between 𝜖𝑀̇𝐷
𝐷𝐵  and 𝜖𝐸̇𝑋𝑃

𝐷𝐵  decreases as the temperature increases from 

room temperature. Thus the point at which the two strain rates 

become the same (𝜖𝑀̇𝐷
𝐷𝐵 = 𝜖𝐸̇𝑋𝑃

𝐷𝐵 ) is calculated. The strain rate and the 

temperature at this point is 4.56 × 1010/s and 180.36℃, respectively, 

where the temperature is slightly above the melting temperature of 
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PMMA, known as 160℃. This result means that if the PMMA melts, 

the MD strain rate becomes equal to the experimental strain rate.  

 
Figure 6 The final DB transition curve in which the MD result and the 

experimental result are co-plotted. The error bar denotes the range of the DB 

transition strain rate and the median value is selected as a representative value. 

 

As mentioned before, the reason why strain rates of the 

macroscale and the nanoscale are different is due to this 

inhomogeneous deformation scheme. However, as the polymer melts, 



 

 35 

it no longer deforms heterogeneously because it flows. Therefore, at 

this temperature, it can be considered as a homogeneous deformation 

so that the 𝜖𝑀̇𝐷
𝐷𝐵  and the 𝜖𝐸̇𝑋𝑃

𝐷𝐵  becomes the same. This result tells that 

the assumption of homogeneous deformation under the PBC condition 

only holds at high temperature where the polymer is in the liquid 

state. When the polymer is in the solid state, on the other hand, the 

inhomogeneous deformation scheme must be considered. To discuss 

these results profoundly, it is necessary to start the discussion from 

the original works of MD simulations for polymers. 

MD simulations for polymers were initiated with an investigation 

on the dynamics of polymer melts, particularly, for the non-

entangled polymer melt ( 𝑁 < 𝑁𝑒 , entanglement length) whose 

dynamic behavior coincides with the theoretic prediction of Rouse 

model [49, 50]. Then, entangled polymer networks (𝑁 > 𝑁𝑒) utilizing 

the coarse-grained method were studied [51, 52]. These entangled 

polymer melts were employed to unveil the crossover from Rouse to 

reptation mode where they successfully predicted the transition of 

the self-diffusion coefficient and the zero-shear rate viscosity as 

the chain length increases [53].  
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By virtue of progress in computational power and atomistic 

expression of the virial stress, MD simulations for polymer melts 

were followed by mechanical tensile/compression simulations for 

glassy polymers containing long chains, and investigations on their 

stress-strain relationships [45]. However, the dynamic tensile 

simulations have an intrinsic limitation that they are conducted at 

super-fast strain rates [54-56]. Nevertheless, numerous 

researches that calculate mechanical properties or characterize yield 

criteria of bulk polymers using MD simulations have been reported 

[11, 15].  

The result in the current thesis offers conclusive evidence on 

the reason why MD simulations for polymer melts have successfully 

predicted the theoretic models (Rouse and reptation model) whereas 

those for glassy polymers have not fully overcome the limitation of 

super-fast strain rates. Since the homogeneous deformation 

assumption is available for polymer melts, reasonable atomic models 

can be achieved even in relatively small length scales when it is 

combined with the PBC. On the other hand, glassy polymers deform 

heterogeneously while MD simulations with super-fast strain rates 
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are able to describe only limited nanoscale regions. Therefore, a 

single MD RUC for glassy polymers never succeed to depict bulk 

deformation phenomena. Hence, future MD tensile simulations on 

glassy polymers should focus on the inhomogeneous plastic 

deformation scheme and break down with various length scales 

dealing with different deformation mechanisms. Toward this, it is 

expected that the relationship between MD and experimental strain 

rates in Eq.(3) can be extensively utilized since it serves as a 

yardstick when estimating strain rates of local deformation regions.  

In short, the following postulation has been suggested: 

MD tensile simulations performed at super-fast strain rates 

represent the nanoscale craze region in the macro-scale tensile 

specimen. 

The correspondence of the MD strain rate 𝜖𝑀̇𝐷
𝐷𝐵  and the 

experimental strain rate 𝜖𝐸̇𝑋𝑃
𝐷𝐵  at the DB transition successfully 

predicted the melting point of PMMA at which the homogeneous and 

the inhomogeneous deformation scheme diverge. Therefore, it is 

concluded that the suggested postulation is reasonable. The 

implication of this result is as follows. First, numerous MD tensile 
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simulations for glassy polymers conducted under the homogeneous 

deformation scheme should be re-examined, especially those that 

consider the plastic regime. It is inaccurate to assume that the MD 

RUC represents the whole macro specimen when it is in the plastic 

regime. Second, to understand the constitutive relation of a glassy 

polymer by using the MD simulation, a multi-scale continuum 

approach must be employed which can incorporate MD results as the 

physics of the micro (or nano) scale. The micromorphic theory was 

adopted as a powerful multi-scale approach for this purpose [41, 42, 

57] in which constitutive relations in various microscales can be 

incorporated. 
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4. Multi-scale micromorphic theory 

4.1. General overview of the micromorphic theory 

 

Compared to traditional continuum mechanics, the main 

difference in micromorphic theory is that any material point in the 

macro scale is the origin of micro-scale, where independent stress-

strain relations are applied. Microscale existence allows multiscale 

physics to be included in the theory of continuum. Figure 7 is a 

general diagram of the two-scale micromorphic theory. The macro-

scale Ω has 𝑥1  and 𝑥2  coordinate system while the micro-scale 

Ω
𝑚

 originated from point 𝐱 is expressed by 𝑥1
𝑚 and 𝑥2

𝑚 coordinate 

system with the characteristic length 𝑙𝑚. Note that the superscript 

‘m’ reveals the micro-scale in this thesis. The micro-velocity 𝐯𝑚 is 

given as:  

 𝐯𝑚 = 𝐯𝑚(𝐱 + 𝐱𝑚). (4) 

By Taylor series expansion with the first term truncation, it is 

expressed with the micro-velocity gradient 𝐋𝑚(𝐱): 

 𝐯𝑚 = 𝐯𝑚(𝐱) + 𝐋𝑚(𝐱) ∙ 𝐱𝑚. (5) 

Therefore, the velocity gradient of the micro-scale is described as a 
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function of the macro-scale coordinate 𝐱 as: 

 𝐋𝑚(𝐱) =
𝜕𝐯𝑚

𝜕𝐱𝒎
 (6) 

where 𝐯𝑚(𝐱) = 0 by definition. The micro-scale velocity gradient 

represents the micro-scale kinematics since it is an independent 

variable. Same as the macroscopic velocity 𝐯 , the microscopic 

velocity gradient 𝐋𝑚  is the kinematics variable assigned to the 

material points. 

 

 

Figure 7. General diagram of the two-scale micromorphic theory. 
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Figure 8. Schematic illustration of the one-dimensional example of the 

micromorphic theory. 

 

 

4.2. Two-scale micromorphic theory 

In this thesis, only the one-dimensional example shown at 

Figure 8 is going to be dealt with where the two ends of the bar 

specimen are lengthened with a constant speed(𝑣) and the macro 

yield stress of the center of the bar are reduced by 10%. This 

describes a one-dimensional tensile specimen, the midpoint of which 

is weak. The weak element of the midpoint is the nanoscale defect 

when it has a low density of molecular entanglement or micro-

inclusions locally. Many MD studies have shown that the crazing and 

local plastic zone begins in this region [19, 20, 58]. The post-yield 

behavior, therefore, starts in these mid-point elements first. With 

this one-dimensional model, the micromorphic theory is used to 

combine MD simulation results and experimental results.  
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 Eq. (7) shows the principle of virtual power for the two-scale 

micromorphic theory. Both 𝛿𝑃𝑘𝑖𝑛  and 𝛿𝑃𝑒𝑥𝑡  are neglected as the 

one-dimensional example does not have both kinetic and external 

virtual power. From the internal virtual power ( 𝛿𝑃𝑖𝑛𝑡 ) in the 

micromorphic model developed by Vernerey et al. [41], the one-

dimensional governing equation is written as Eq. (8)  

 

 𝛿𝑃𝑖𝑛𝑡 = ∫ [𝝈:δ𝐋 +  𝝈̅𝑚: (δ𝐋𝑚 −δ𝐋) + 𝝈̿𝑚 ⋮ ∇(δ𝐋𝑚)]
Ω

 dΩ (8) 

 

where 𝝈, 𝝈̅𝑚,and 𝝈̿𝑚 are the macro-stress, the micro-stress, and 

the micro-stress couple, respectively. The conventional spatial 

average of macroscopic force per unit area, the macro-stress 𝝈, is 

given with the macro-scale virtual velocity gradient δ𝐋 as work 

conjugate. The micro-stresses 𝝈̅𝑚 , 𝝈̿𝑚  are the spatial average of 

microscopic forces due to the inhomogeneous deformation of 

microstructures [41]. The stress redistribution occurs on the length 

of the micro-domain according to these micro stresses. The couple 

stress 𝝈̿𝑚  means the spatial average of the microscopic moment. 

 𝛿𝑃𝑖𝑛𝑡 + 𝛿𝑃𝑘𝑖𝑛 − 𝛿𝑃𝑒𝑥𝑡 = 0 (7) 
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The micro-stress and the couple stress are linked to δ𝐋𝑚 −δ𝐋 and 

∇(δ𝐋𝑚) as work conjugates, where 𝐋𝑚 is the velocity gradient of the 

micro-scale and ∇𝐋𝑚 is the gradient of 𝐋m [41]. 

The strong form of the governing equation is derived by 

integrating Eq. (8) by part and applying the divergence theorem: 

 

𝛿𝑃𝑖𝑛𝑡 = −∫ [{∇ ∙ (𝝈 − 𝝈̅𝑚)} ∙ 𝛿𝒗 + {∇ ∙ 𝝈̿𝑚 − 𝝈̅𝑚}:δ𝐋𝑚]
Ω

 dΩ 

+∫ [{(𝝈 − 𝝈̅𝑚) ∙ 𝒏} ∙ 𝛿𝒗 + {𝝈̿𝑚 ∙ 𝒏}:δ𝐋𝑚]
Γ

 dΓ. 

(9) 

The virtual internal power consists of integrals over the macro-

domain Ω and the boundary Γ. Therefore, the governing equation 

is written in the strong form as: 

 ∇ ∙ (𝝈 − 𝝈̅𝑚) = 0 𝑎𝑛𝑑  ∇ ∙ 𝝈̿𝑚 − 𝝈̅𝑚 = 0 𝑖𝑛 Ω (10) 

with boundary conditions: 

 (𝝈 − 𝝈̅𝑚) ∙ 𝒏 = 0 𝑎𝑛𝑑  𝝈̿𝑚 ∙ 𝒏 = 0 𝑎𝑡 Γ. (11) 

The first equation in Eq. (10) is the macroscopic static equilibrium 

equation in which the Cauchy stress is adjusted with additional 

micro-stress contribution. The second equation of Eq. (10) is the 

balance equation of the micro-scale momentum. Without question, 

with the homogeneous assumption of deformation where 
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microstresses are ignored, Eq. (10) returns the standard static 

equation known as ∇ ∙  𝝈 = 0. 

 

4.3. Constitutive relationship 

The Cauchy stress and the velocity gradient should be replaced 

with generalized forms to obtain the constitutive relationship. The 

generalized stress vector 𝚺 and the generalized rate of deformation 

𝚫 is given as: 

 𝚺 = [
𝝈

𝝈̅𝑚

𝝈̿𝑚
], 𝚫 = [

𝐋
𝐋𝑚 − 𝐋
∇𝐋m

]. (12) 

To encompass large deformation, objective rates need to be 

employed. In this thesis, the Jaumann stress rate expressed as eq 

(13) is adopted 

 𝚺∇ = [

𝜎𝑖𝑗
∇

𝜎̅𝑖𝑗
𝑚∇

𝜎̿𝑖𝑗𝑘
m∇

] (13) 

where each component of the Jaumann rate is divided into two parts: 

material time derivative and rotational part, 
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𝜎𝑖𝑗
∇ = 𝜎̇𝑖𝑗 − (𝜎𝑘𝑗𝑊𝑖𝑘 + 𝜎𝑖𝑘𝑊𝑗𝑘) 

𝜎̅𝑖𝑗
𝑚∇ = 𝜎̇̅𝑖𝑗

𝑚 − (𝜎̅𝑘𝑗
𝑚𝑊𝑖𝑘 + 𝜎̅𝑖𝑘

𝑚𝑊𝑗𝑘) 

𝜎̿𝑖𝑗𝑘
𝑚∇ = 𝜎̇̿𝑖𝑗𝑘

𝑚 − (𝜎̿𝑙𝑗𝑘
𝑚 𝑊𝑖𝑙 + 𝜎̿𝑖𝑙𝑘

𝑚 𝑊𝑗𝑙 + 𝜎̿𝑖𝑗𝑙
𝑚𝑊𝑘𝑙). 

(14) 

The rotation tensor 𝐖  equals to zero in this thesis since the 

irrotational deformation is assumed in the one-dimensional example. 

The generalized rate of deformation is divided into two parts: 

elastic and plastic part. 

 𝚫 = 𝚫e + 𝚫p. (15) 

Finally, the constitutive relationship in the elastic regime is given as: 

 [
𝝈

𝝈̅𝑚

𝝈̿𝑚
]

∇

= [
𝐂̅ 0 0
0 𝐂̅𝑚 𝐁̅𝑚

0 𝐁̅𝑚 𝐂̿𝑚

] ∙ [
𝐋

𝐋𝑚 − 𝐋
∇𝐋𝑚

]

𝑒

. (16) 

The first term on the right side of Eq.(16) is denoted as the tangent 

stiffness matrix 𝐂: 

 𝐂 = [
𝐂̅ 0 0
0 𝐂̅𝑚 𝐁̅𝑚

0 𝐁̅𝑚 𝐂̿𝑚

] (17) 

where 𝐂̅ is the macroscopic elastic matrix and it is equal to the Young’

s modulus of the macro-scale in case of the one-dimensional 

example. 𝐂̅𝑚 , 𝐁̅𝑚 , and 𝐂̿𝑚  are elastic matrices relating the micro 
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velocity gradients (𝐋𝑚 − 𝐋 and ∇𝐋𝑚) to the micro stress rates (𝝈̅𝑚∇ 

and 𝝈̿𝑚∇), which occurs from the heterogeneous deformation scheme.  

 
Figure 9. Schematic diagram of the averaging operation for the calculation of 

elastic matrices. 𝛀, 𝛀𝒎, and 𝛀̅𝒎 with the corresponding length scale 𝒍, 𝒍𝒎, and 

𝒍̅𝒎 refers to the macro-scale, micro-scale, and meso-scale, respectively. 

 

Elastic matrices can be calculated from the averaging operation 

introduced by Vernerey et al. [41, 42]. At first, a meso-scale (Ω
̅̅ ̅m

) 

is introduced which is associated with the micro-scale and centered 

at point 𝐱 as shown in Figure 9. The size of the meso-scale (𝑙𝑚̅) is 

defined as the region wherein the micro-velocity gradient 𝐋𝑚 varies 

linearly. In this thesis, it is set as 𝑙𝑚̅ = 2𝑙𝑚 for simplicity [41]. The 

inhomogeneous strain field inside the meso-scale 𝛔𝑚 and its power 

conjugate 𝐋m − 𝐋  is then defined. Next, by definition, the virtual 
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internal power density at point 𝐱 is given as an average of the virtual 

power over the meso-volume Ω
̅̅ ̅𝑚

 as follows: 

 𝛿𝑝(𝐱) = 𝝈:δ𝐋 +
1

Ω
̅̅ ̅𝑚 ∫ 𝝈𝑚: (δ𝐋𝑚 −δ𝐋)

Ω
̅̅ ̅𝑚

dΩ
̅̅ ̅𝑚

. (18) 

In the meso-scale, the Taylor series expansion on the velocity 

gradient 𝐋𝑚 returns: 

 𝐋𝑚(𝐱 + 𝐱̅𝑚) = 𝐋m(𝐱) + ∇𝐋𝑚 ∙ 𝐱̅𝑚 (19) 

where the meso-scale is expressed with 𝐱̅𝑚 coordinate system. By 

substituting Eq.(19) to Eq.(18) and comparing with the internal 

virtual power in Eq.(8), the homogenized micro stress 𝝈̅𝑚 and the 

micro stress couple 𝝈̿𝑚 is written with 𝛔𝑚 as: 

 

𝝈̅𝑚 =
1

Ω
̅̅ ̅𝑚 ∫ 𝝈𝑚(𝐱 + 𝐱̅𝑚)

Ω
̅̅ ̅𝑚

dΩ
̅̅ ̅𝑚

 

𝝈̿𝑚 =
1

𝛺̅𝑚
∫ 𝝈𝑚(𝐱 + 𝐱̅𝑚) ⊗ 𝐱̅𝑚

Ω
̅̅ ̅𝑚

dΩ
̅̅ ̅𝑚

. 

(20) 

Now, it is assumed that the stress rate 𝛔𝑚∇ and the relative 

micro-velocity gradient 𝐋𝑚 − 𝐋  have a linear relationship with a 

constant of the micro-scale elastic matrix 𝐂𝑚 as follows: 

 𝛔𝑚∇(𝐱 + 𝐱̅𝑚) = 𝐂𝑚: [𝐋𝑚(𝐱 + 𝐱̅𝑚) − 𝐋(𝐱)]. (21) 

Substituting Eq.(21) into Eq.(20) yields the following equations: 
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𝝈̅𝑚 =
1

Ω
̅̅ ̅𝑚 ∫ 𝐂m: [𝐋𝑚(𝐱 + 𝐱̅𝑚) − 𝐋(𝐱)]

Ω
̅̅ ̅𝑚

dΩ
̅̅ ̅𝑚

 

𝝈̿𝑚 =
1

Ω
̅̅ ̅𝑚 ∫ 𝐂𝒎: [𝐋𝑚(𝐱 + 𝐱̅𝑚) − 𝐋(𝐱)] ⊗ 𝐱̅𝑚

Ω
̅̅ ̅𝑚

dΩ
̅̅ ̅𝑚

. 

(22) 

Finally, by comparing Eq.(22) with the constitutive relationship in 

Eq.(16), the homogenized elastic matrices 𝐂̅𝑚 , 𝐁̅𝑚 , and 𝐂̿𝑚  are 

determined as follows: 

 

𝐂̅𝑚 =
1

Ω
̅̅ ̅𝑚 ∫ 𝐂𝑚 dΩ

̅̅ ̅𝑚

Ω
̅̅ ̅𝑚

 

𝐁̅𝑚 =
1

Ω
̅̅ ̅𝑚 ∫ 𝐂𝑚 ⊗ 𝐱̅𝑚 dΩ

̅̅ ̅𝑚

Ω
̅̅ ̅𝑚

 

𝐂̿𝑚 =
1

Ω
̅̅ ̅𝑚 ∫ 𝐂𝑚 ⊗ 𝐱̅𝑚 ⊗ 𝐱̅𝑚 dΩ

̅̅ ̅𝑚

Ω
̅̅ ̅𝑚

. 

(23) 

In case of one-dimensional example, the averaged quantities are 

given as: 
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𝐂̅𝑚 =
1

𝑙𝑚̅
∫ 𝐂𝑚 d𝑥̅𝑚 = 𝐂𝑚

𝑙𝑚̅/2

−𝑙𝑚̅/2

 

𝐁̅𝑚 =
1

𝑙𝑚̅
∫ 𝐂𝑚𝑥̅𝑚 d𝑥̅𝑚 = 0

𝑙𝑚̅/2

−𝑙𝑚̅/2

 

𝐂̿𝑚 =
1

𝑙𝑚̅
∫ 𝐂𝑚(𝑥̅m)2 d𝑥̅𝑚 = 𝐂𝑚

𝑙𝑚̅/2

−𝑙𝑚̅/2

(𝑙𝑚̅)
2

12
. 

(24) 

In the plastic regime, the macro-scale is assigned with the 

perfect plasticity to let the micro-scale predominant when the macro 

yield occurs [42]. Thus the yield criterion of the macro-scale is 

expressed as: 

 𝛷(𝜎) = |𝜎| − 𝜎𝑦 (25) 

where |𝜎| and 𝜎𝑦  are effective stress and the macro-scale yield 

stress, respectively. In case of the one-dimensional example, the 

effective stress is equal to the macro-scale Cauchy stress. 

The micro-scale can take both perfect plasticity and 

isotropic hardening plasticity. From linear s-s curves of MD 

tensile simulations, the plasticity of the micro-scale is selected. 

Since the plasticity varies with various s-s curves of different 

strain rates in MD simulations, a yield criterion based on the 
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critical yield strain is convenient. Therefore, for the micro-

scale, the critical yield strain is employed for the yielding 

criteria. 

 

4.4. Finite element discretization 

The next step is the finite element discretization. A one-

dimensional two-node element with an elemental variable 𝐝e is used 

 𝐝e = [

𝑣1

𝐿1
𝑚

𝑣2

𝐿2
𝑚

] (26) 

where the subscript (1, 2) refers to the elemental node number. The 

generalized strain rate (𝚫) can be written with the matrix Q (similar 

to the shape function derivative): 

 𝚫 = 𝐐𝐝e =

[
 
 
 
 
 

𝜕𝑁1

𝑑𝑥
0

−
𝜕𝑁1

𝑑𝑥
𝑁1

0
𝜕𝑁1

𝑑𝑥

  −

𝜕𝑁2

𝑑𝑥
0

𝜕𝑁2

𝑑𝑥
𝑁2

0
𝜕𝑁2

𝑑𝑥

 

]
 
 
 
 
 

∙ [

𝑣1

𝐿1
𝑚

𝑣2

𝐿2
𝑚

] (27) 

where 𝑁1 and 𝑁2 are the shape functions. Now, with a time step, ∆𝑡, 

the virtual internal power is expressed as follows: 
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𝛿𝑃𝑖𝑛𝑡 = ∫ 𝜎δL +  𝜎̅𝑚(δL𝑚 −δL) + 𝜎̿𝑚∇(δL𝑚)
Ω

 dΩ 

  = ∫ [δL δ(L𝑚 − L) ∇(δL𝑚)] ∙ [

𝜎

 𝜎̅𝑚

𝜎̿𝑚
]

Ω
dΩ   

   = ∫ (𝜹𝒅𝒆)𝑇𝐐T𝚺
Ω

dΩ   

   = ∫ (𝜹𝒅𝒆)𝑇𝐐T𝐂𝐐𝐝𝐞 ∙ ∆𝑡
Ω

dΩ . 

(28) 

Finally, the conventional finite element method is used to solve the 

Eq.(28), step by step. 
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Figure 10. (a) S-s curves at 300K, 1 atm, and various strain rates. (b) is the raw 

R0.5 curve and a bilinear fit and (c) is the raw R0.2 curve and an elasto-plastic 

bilinear fit. 
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5. Results and discussions 

5.1. Modification of MD results for the micromorphic theory 

 

Figure 10(a) is the same s-s curve like Figure 3(a) except for 

an additional curve at a strain rate of R5. As discussed before, R0.5, 

R1, and R5 soften once they yield while R0.2 and R0.1 harden without 

showing any softening. Therefore, the ductile-brittle transition at 

300K was determined between the two strain rates; R0.2 and R0.5. 

Now, their respective curves are going to be applied to the micro-

scale of micromorphic theory model. The R0.5 curve represents the 

brittle s-s curve while the R0.2 curve represents the ductile s-s 

curve. The raw s-s curves are then substituted with a representative 

curve to make them applicable to the continuum formulation.  

In Figure 10(b), the raw s-s curve of R0.5 is shown with a fitted 

line for use at the micromorphic theory. The fitted line starts with a 

linear elastic regime followed by the perfect plasticity. According to 

the literature, when crazing happens in a glassy polymer, the yielding 

is followed by a constant-stress drawing regime where the inborn 

crazes grow into a pillar-type structure [16, 19, 58, 59]. For this 
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reason, the post-yield behavior was fitted with a perfect plastic 

model. It is important to note that the hardening regime in the raw 

MD curve was neglected in the fitting because the current MD 

simulations disregard the bond scission. It has been confirmed that 

the end of the drawing regime corresponds to the onset of the bond 

scission [57]. Therefore, the strain hardening regime can be 

considered as the breaking regime, that is, the whole hardening 

regime can be considered as the perfect plasticity. The Young’s 

modulus and the critical yield strain of the fit are 1.65GPa and 0.1, 

respectively. 

Figure 10(c) shows the R0.2 curve with an elasto-plastic 

bilinear fit. As the s-s curve hardens right after the yield, a 

conventional bilinear fit is perfect to represent the raw MD curve 

[11]. The elasto-plastic model is defined by solving the optimization 

problem: 

 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 |𝑟|, 𝑟(𝜎𝑌, 𝜖𝑌, ℎ) = 𝜎𝑅0.1 − 𝑓𝐸−𝑃(𝜎𝑌, 𝜖𝑌, ℎ) (29) 

where 𝜎𝑌 , ϵY , and ℎ are yield stress, yield strain, and hardening 

parameter, respectively. 𝜎𝑅0.1 and 𝑓𝐸−𝑃 are the raw MD curve and 

the bilinear fit, respectively. The fitted parameters are: 𝜎𝑌=85.2 MPa, 
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ϵY = 0.09, and ℎ = 32 MPa. It is worth noting that when a ductile 

deformation takes place, the bond scission was not observed in the 

current strain range [57, 60]. Thus no truncation was introduced in 

the ductile curve; the elasto-plastic bilinear fit is directly applied to 

the micromorphic model. 

 

 

5.2. Macroscopic response of the ductile-brittle transition 

The MD s-s curves are then applied to the micro-scale of the 

micromorphic model. Their input parameters are shown in Table 2 as 

micro-scale Young’s modulus(𝐸𝑚), hardening parameter(𝐸𝑡𝑎𝑛), and 

critical yield strain(𝜖𝑐
𝑚). Length parameter of the micro-scale (𝑙𝑚) 

is set as 10−5mm to make the size of the micro-scale element 

comparable with that of MD RUC. Macro-scale Young’s modulus(𝐸) 

and yield stress(𝜎𝑌) are taken from the experimental results in the 

literature [57]. The end-node velocity(𝑣) and time-step(𝑑𝑡) are 

artificially chosen. 
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Table 2 Material parameters for the two-scale micromorphic theory. Macro-scale 

properties are from experimental results in the literature [57] while micro-scale 

properties are from MD simulations with fitted mechanical properties.  

 
𝐸 

(MPa) 

σ
𝑌
 

(MPa) 

𝑙 
(mm) 

𝐸𝑚 
(MPa) 

𝐸𝑡𝑎𝑛 
(MPa) 

𝜖𝑐
𝑚 

𝑙𝑚 
(mm) 

𝑣 
(mm/s) 

𝑑𝑡 
(ms) 

Brittle 

(R0.5) 
1080 46 0.002 1650 0.001 0.1 10−5 0.1 0.004 

Ductile 

(R0.2) 
1080 46 0.002 934 32 0.09 10−5 0.1 0.004 

.  

 

 

Figure 11. Strain and strain rate of brittle(a,b) and ductile(c,d) cases. 

 

Figure 11 shows the results of the one-dimensional example of 

the two-scale micromorphic theory. Figure 11(a, b) are the brittle 
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case and Figure 11(c, d) are the ductile case. Figure 11(a,c) 

illustrates the elemental strain while Figure 11(b,d) shows the 

elemental strain rate which is calculated by dividing the strain 

increment by the time-step (𝑑𝑡). The results are taken at several 

time-steps which best demonstrate the macro-micro yielding 

transition of the elements 

In early time steps, all elements are in the macro elastic regime 

and both the elemental strain and the strain rate are even for the 

entire position of elements. As can be seen in Figure 11(a,b), all 

elements are in the macro elastic regime until the 96th step. At 97th 

time-step, the first macro yield happens at the mid-point elements 

since they are given with 10% less macro-scale yield stress. 

Starting from this time-step, the strain and strain rate distribution 

diverge from the even distribution along with the position. For 

instance, the mid-point elements start to endure more tensile strain 

and stretch faster than the other elements that are still in the macro-

elastic regime. The macro yield then propagates to the nearby 

elements until the mid-point elements reach the micro-scale yield 

at 114th step. Once they enter into the micro plastic regime with 
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near-zero tangent stiffness, they start to elongate a lot (take most 

of the elongation given) and fast. This is illustrated in Figure 11(b) 

that at this time-step, the strain rates of the mid-point elements and 

terminal elements that are still in the macro elastic regime are about 

104  /s and 0.00751 /s, respectively. This tendency continues 

because once the mid-point elements enter into the micro plastic 

regime, the yielding pauses and the given stretch directly elongates 

the mid-point elements. Therefore, both 114th step and 250th step 

have the same strain rate.  

Figure 11(c,d) shows the ductile case. The initial behavior is the 

same as the brittle case because the macro-scale properties are the 

same. However, once the mid-point elements encounter the macro-

scale yield and enter into the micro-scale elastic regime, the strain 

and strain rate start to change. Especially when they reach the micro 

plastic regime, the tangent stiffness(𝐸𝑡𝑎𝑛) becomes 32 MPa while the 

brittle case was given with 0.001 MPa. Since the 𝐸𝑡𝑎𝑛 is higher than 

zero and lower than the micro-scale Young’s modulus, all elements 

can stretch evenly. It is obvious that the elemental strain is the 

highest when an element is in the micro plastic regime and the lowest 
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when an element is in the macro elastic regime. Thus, the macro-

scale yield spreads toward terminal elements as can be seen from 

120th to 250th step in Figure 11(c,d). Finally, at 500th step, 

approximately half the elements have passed the macro-scale yield. 

The same tendency is revealed in the strain rate. The strain rate gap 

between the elements in the macro elastic regime and the micro 

plastic regime is significantly small compared with the brittle case. 

Moreover, the mid-point elements’ strain rate (3.66 × 102  /s) is 

approximately two orders of magnitude lower than the brittle case 

( 104  /s). The relatively even stretch along the specimen 

demonstrates that the shear yielding is taking place in the ductile 

specimen while only a few elements endure the large and fast 

elongation in the brittle specimen.   

In summary, the craze-type yielding occurs in the brittle case 

while shear yielding takes place in the ductile case. It is worth noting 

that the inputs from MD simulations are the stress-strain 

relationships, not the strain rates. Nonetheless, the micromorphic 

model returns quantitative data of elemental strain rates and the 

macro-scale behavior such as the shear yielding and the craze 
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yielding. This implies that with a careful calibration, a fully compatible 

combination of MD results and continuum models is available.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 61 

6. Conclusions and future works 

6.1. Conclusions 

The two-scale micromorphic theory that encompasses the 

experimental results and the MD simulations in a comparable length 

scale has been investigated. Since this thesis is a successive study 

of the former articles of our group [9, 57, 60], it is needed to start 

the conclusion from the origin of the discussion. 

As mentioned in section 3.1, a realistic MD model that is grown 

from a mixture of monomers and initiators has been developed [16]. 

With this realistic model, the postulation that the MD RUC represents 

the nano-scale craze region has been demonstrated by matching the 

ductile-brittle transition of MD RUC and tensile specimens. The 

results yielded the strain rate of MD and the experiment becomes the 

same at the melting point, which indicates that the use of the MD 

approach needs to be restricted to the nano-scale region that 

endures the inhomogeneous plastic deformation. Thus a multi-scale 

model that can integrate both the macro-scale and the micro(or 

nano)-scale constitutive relationship should be used to utilize the MD 

tensile results properly; the micromorphic theory has been adopted. 
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The two-scale micromorphic theory that contains the tensile 

experimental results as the macro-scale constitutive relationship 

and the MD simulation results as the micro-scale constitutive 

relationship has been investigated. With a choice of the characteristic 

length parameter of the micro-scale, the continuum model became 

compatible in the length scale. Then the multi-scale model exhibited 

the distinctive ductile and brittle plastic deformation when given with 

ductile and brittle MD s-s curves respectively. Since it also yields 

the dynamic response from the s-s curves, the time-scale and the 

strain rate of the MD simulations and the continuum model can be 

comparable with a careful choice of model parameters. 

 

6.2. Future works 

In the future, the current one-dimensional model will be 

expanded to the three-dimensional case to investigate more realistic 

cases where the nano-scale defects (the mid-point elements in the 

one-dimensional example) are randomly distributed. Moreover, 

polymeric nanocomposites will be investigated by employing the 

multi-scale micromorphic model of which various nanoparticles are 
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assigned to each scale. At the same time, the coarse-graining MD 

simulations that can describe the large-scale nanocomposites are 

going to be studied. 
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국문초록 

분자동역학과 마이크로몰픽 이론을 

이용한 유리상 고분자의 멀티스케일 

모델링 방법 
 

 

박 찬 욱 

항공우주공학과 항공우주공학전공 

서울대학교 대학원 

 

본 학위논문은 유리상 고분자에 대한 인장 실험과 분자동역학(MD) 

시뮬레이션의 변형률 차이에 대한 분석으로 시작한다. 이를 위해 높은 

변형률에서 수행 된 MD 인장 시뮬레이션이 실험 인장시편에서의 나노 

스케일 크레이징(crazing) 영역을 나타낸다고 가정한다. 저자는 실험과 

시뮬레이션에서 유리상 고분자의 연성-취성 전이를 비교함으로써, MD 

시뮬레이션을 사용하여 유리상 고분자의 구성방정식을 도출하기 위해서

는 마이크로(또는 나노) 스케일의 MD 결과를 통합 할 수 있는 멀티 스

케일 접근법을 사용해야한다는 결론을 도출한다. 이를 위해 인장 실험과 

MD 시뮬레이션을 통합 한 이중 스케일 마이크로몰픽 이론이 도입된다. 

이중 스케일 마이크로몰픽 모델에서, 실험 결과는 매크로-스케일에 적
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용되고 MD 결과는 마이크로-스케일에 적용된다. 이 멀티스케일 해석 

방법에서는 특성 길이 상수를 조정하여 연속체 모델의 길이 스케일과

MD 시뮬레이션의 길이 스케일을 호환시킬 수 있다. 마지막으로, 이 모

델은 연성 및 취성의 성질을 나타내는 MD 결과가 각각 마이크로몰픽 

모델의 마이크로 스케일에 할당 될 때 연성 및 취성 변형의 거시적 거동

을 성공적으로 예측한다. 제안된 멀티스케일 해석방법은 응력-인장률 

커브로부터 동적인 반응을 반환하기 때문에 실험과 시뮬레이션의 시간 

스케일 역시 모델 변수를 적당히 조절하여 호환 가능한 수준으로 만들 

수 있다. 저자는 이러한 접근법이 MD 시뮬레이션과 연속체역학을 연결

하기위한 새롭고 필수적인 접근법이 될 것으로 기대한다. 

 

Keywords : 멀티스케일 시뮬레이션, 분자동역학, 유리상 고분자, 연성-

취성 전이, 마이크로몰픽 이론 
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