
 

 

저작자표시-비영리-변경금지 2.0 대한민국 

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게 

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.  

다음과 같은 조건을 따라야 합니다: 

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.  

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.  

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다. 

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.  

Disclaimer  

  

  

저작자표시. 귀하는 원저작자를 표시하여야 합니다. 

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다. 

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다. 

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/


M.S. THESIS

Adaptive Network Compression for

DNN-FPGA Accelerator Using

Layer-Sensitivity

심층 신경망 FPGA 가속기를 위한 레이어 감도에 따른

적응형 네트워크 압축 기법

August 2020

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

COLLEGE OF ENGINEERING

SEOUL NATIONAL UNIVERSITY

고지웅





M.S. THESIS

Adaptive Network Compression for

DNN-FPGA Accelerator Using

Layer-Sensitivity

심층 신경망 FPGA 가속기를 위한 레이어 감도에 따른

적응형 네트워크 압축 기법

August 2020

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

COLLEGE OF ENGINEERING

SEOUL NATIONAL UNIVERSITY

고지웅





Adaptive Network Compression for DNN-FPGA

Accelerator Using Layer-Sensitivity

심층 신경망 FPGA 가속기를 위한 레이어 감도에 따른

적응형 네트워크 압축 기법

지도교수 Bernhard Egger

이 논문을 공학석사 학위논문으로 제출함

2020 년 06 월

서울대학교 대학원

컴퓨터 공학부

고지웅

고지웅의 공학석사 학위논문을 인준함

2020 년 06 월

위 원 장 박근수 (인)

부위원장 Bernhard Egger (인)

위 원 Srinivasa Rao Satti (인)





Abstract

Deep neural network (DNN) accelerators based on systolic arrays have been

shown to achieve a high throughput at a low energy consumption. The regular

architecture of the systolic array, however, makes it difficult to effectively ap-

ply network pruning and compression; two important optimization techniques

that can significantly reduce the computational complexity and the storage re-

quirements of a network. This work presents AIX, an FPGA-based high-speed

accelerator for DNN inference, and explores effective methods for pruning sys-

tolic arrays. The techniques consider the execution model of the AIX and prune

the individual convolutional layers of a network in fixed sized blocks that not

only reduce the weights of the network but also translate directly into a re-

duction of the execution time of a convolutional neural network (CNN) on the

AIX. Applied to representative CNNs such as YOLOv1, YOLOv2 and Tiny-

YOLOv2, the presented techniques achieve state-of-the-art compression ratios

and are able to reduce interference latency by a factor of two at a minimal loss

of accuracy.

Keywords: Convolutional Neural Networks, FPGA Accelerator, Systolic Ar-

ray, Network compression, Architecture-Specific Network Pruning

Student Number: 2018-29331

i





Contents

Abstract i

Contents iii

List of Figures v

List of Tables vii

Chapter 1 Introduction and Motivation 1

Chapter 2 Background 4

2.1 Object Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 mean Average Precision (mAP) . . . . . . . . . . . . . . . 4

2.1.2 YOLOv2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 AIX Accelerator . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 Overview of AIX Architecture . . . . . . . . . . . . . . . . 7

2.2.2 Dataflow of AIX Architecture . . . . . . . . . . . . . . . . 9

Chapter 3 Implementation of Pruning on AIX Accelerator 12

3.1 Convolutional Neural Network (CNN) . . . . . . . . . . . . . . . 12

3.2 Granularity of Sparsity for Pruning CNNs . . . . . . . . . . . . . 13

iii



3.3 Network Compression for Channel Pruning . . . . . . . . . . . . 15

3.4 CNN Pruning on AIX Accelerator . . . . . . . . . . . . . . . . . 16

3.4.1 Block-Granularity for Pruning . . . . . . . . . . . . . . . 16

3.4.2 Network Compression for Block Pruning . . . . . . . . . . 18

Chapter 4 Adaptive Layer Sensitivity Pruning 19

4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.2 Layer Sensitivity Graph . . . . . . . . . . . . . . . . . . . . . . . 20

4.3 Concept of Adaptive Layer Sensitivity Pruning Algorithm . . . . 22

4.4 Discussion on Adaptive Layer Sensitivity Pruning Algorithm . . 23

4.5 Compression for YOLOv2 multi-branches . . . . . . . . . . . . . 24

4.6 Fine-tune . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Chapter 5 Experimental Setup 28

Chapter 6 Experimental Results 30

6.1 Overall Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

6.2 Effect of Adaptive Layer Sensitivity Pruning . . . . . . . . . . . . 31

6.3 Comparision Adaptive vs Static Layer Sensitivity Pruning . . . . 33

Chapter 7 Related Work 35

Chapter 8 Conclusion and Future Work 37

8.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

8.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Bibliography 39

요약 46

iv



List of Figures

Figure 2.1 PR-curve examples from one of the class in the PASCAL

VOC 2007 dataset [11]. The blue area represents AP. . . 5

Figure 2.2 The overview of YOLOv2 structure and the process of

inference using VOC PASCAL image. . . . . . . . . . . . 6

Figure 2.3 High-level architecture of the AIX accelerator. blk de-

notes blocks in tensor caches, which divide the tensor

caches by the same number of rows and columns for

each 128× 64 MXC processor. . . . . . . . . . . . . . . . 8

Figure 2.4 The MXC processes workloads in blocks. The input fea-

ture maps are tiled 64 bits size of consecutive channels,

and loaded to LTC blocks. The tiled values in each LTC

blocks are assigned to the corresponding MXC rows. . . 9

Figure 3.1 The process of convolutional neural network in l-th layer

and notation of weights. . . . . . . . . . . . . . . . . . . 12

Figure 3.2 The accuracy drops according to pruning ratio for four

different granularity of sparsity. . . . . . . . . . . . . . . 14

v



Figure 3.3 The process of network compression for pruned-input

channel (red color) in l-th convolutional layer. . . . . . . 15

Figure 3.4 Network compression for block granularity. The figure

describes prune input channel index i, and remove cor-

responding outpuit filters. . . . . . . . . . . . . . . . . . 18

Figure 4.1 The whole process of architecture specific pruning . . . . 20

Figure 4.2 Layer sensitivity graph of YOLOv2 using COCO dataset. 21

Figure 4.3 Algorithm description of adaptive layer sensitive pruning 22

Figure 4.4 Pruned 25% of each convolutional layer individually in

YOLOv2 and evaluate accuracy by PASCAL VOC 2007

test datset. The red bars indicate the layer that the drop

of accuracy less than 0.5%. . . . . . . . . . . . . . . . . 23

Figure 4.5 YOLOv2 compression method for the two route layers.

The blue and red values are affected factors when the

first and second route layers are compressed, respectively. 24

Figure 4.6 Fine-tuned 20 epochs after 10/20/40/80 blocks are pruned

in YOLOv2. We measured the accuracy after learning

one epoch at a time. . . . . . . . . . . . . . . . . . . . . 26

Figure 6.1 The number of blocks removed and the amount of change

in BFLOPs according to the pruning step . . . . . . . . 32

Figure 6.2 Accuracy progression versus computational complexity

to compare SLS and ALS pruning method. . . . . . . . . 33

vi



List of Tables

Table 6.1 The comparison of the results on three object detection

networks. ”Error (ε) range” is to compare the results by

dividing it into three section according to the error range

caused by pruning. ”Acc. ↓” column indicate that the

Acc. of the baseline model minus the pruned model. . . . 30

vii





Chapter 1

Introduction and Motivation

The progress of Deep Neural Networks (DNNs), in particular Convolutional

Neural Networks (CNN), in image classification [29] and object detection [19]

tasks has lead to a large body of published work in academia and industry alike.

While GPGPUs are still widely used in the training process, the inference task is

dominated by more performant and energy-efficient accelerators implemented

on ASICs [8] or FPGAs [12]. Many of the proposed accelerators are tailored

towards specific classes of CNNs, however, in a commercial Infrastructure-as-a-

Service (IaaS) environment, the ability to utilize the infrastructure for a wide

range of services is an important goal.

The inference accelerator presented in this paper is based on the previously

developed [7] and has been explicitly designed to support arbitrary forms of

neural networks including CNNs and recurrent neural networks (RNNs) on

both ASICs and FPGAs. The core of presented accelerator is a systolic array

executing matrix and convolution operations. On the lowest level, a workload is

partitioned into blocks of 8-byte depth, simultaneously processing 4 and 8 input

1



channels for 16 and 8 bit data, respectively. Many optimization techniques for

FPGA has been proposed to increase energy efficiency and throughput of DNNs.

These include matrix decomposition [10, 31], network quantization [38, 13] and

weight pruning [33, 21], etc. We focus on weight pruning technique, since the

proposed architecture supports indirect addressing mode for pruned weights

and the main overhead is computational operations not from the memory load.

Different techniques from pruning individual weights (fine grained) to entire

filters (coarse-grained) have been proposed and evaluated [24], leading to the

intuitive conclusion that finer-grained pruning is able to prune more weights for

a given accuracy. However, the execution units of the state-of-the-art hardware

exploit filter or channel-level granularity of the sparsity, so the weights pruned

by the first contribution has limit to accelerate inference time on the FPGAs.

Most recent works has been focus on the second contribution, which can both

fully exploit hardware/software library and improve the performance of spe-

cialized FPGAs for the pruned weights. These works also have limit to reduce

computational cost in our hardware that the granularity of the execution unit

is 4 or 8 input channels.

In this paper, we proposed architecture-specific pruning scratch, which is

tailored pruning method that exploits the block processing structure of the

inference accelerator. Our approach repeatedly prunes blocks which grouped

4 or 8 input channels from the networks, compresses the networks, then fine-

tunes the compressed model. The technique for the selection of the pruned layer

and channels have been explored. This method computes the sensitivity of each

layer by computing the accuracy of each layer pruned by one block comprising

the 4/8 channels with the smallest average weight. Network compression is

applied to reduce weight parameters by pruning all filters at identical input

channel indices. Fine-tune is performed one epoch at a time and up to 20 epochs;

2



the parameters with the best mean Average Precision (mAP) are selected and

pruned in following next pruning steps. We experimented our scratch to object

detection networks such as Tiny-YOLOv2, YOLOv2 and YOLOv1, achieved

3.6x reduction in computing operations and 12.9x parameter compression of

the Tiny-YOLOv2 pre-trained weight despite its coarse-grainedness.

3



Chapter 2

Background

2.1 Object Detection

Object detection is applied to one image but detects and classifies several ob-

jects per image. The task of object detection thus includes displaying the loca-

tion of the objects as rectangular shapes. Image classification and object detec-

tion share a lot of common points as they are similar problems. Traditionally,

image classification is based on convolutional neural networks, and object de-

tection relies on this same type of networks. However, object detection is more

complicated than image classification as it has to detect, classify, and localize

all the different entities in an image. Thus, the processing time to achieve an

acceptable level of accuracy is much higher.

2.1.1 mean Average Precision (mAP)

The AP metric used in object classification benchmarks. There is an AP value

for each class, and the average of this is called mAP. It is composed of two parts:

4



Figure 2.1: PR-curve examples from one of the class in the PASCAL VOC 2007

dataset [11]. The blue area represents AP.

precision and recall. Precision P, also known as the positive predicted value, is

the ratio of true positives (TP) over the total number of predicted positives

(true positives plus false positives (FP)), i.e., The recall R, on the other hand,

also known as the true positive rate of a given class, is defined as the ratio of

true positives over the total of ground truth positives (true positives plus false

negatives(FN)), i.e. Precision and recall can be used to create an RP-graph as

shown in Fig. 2.1, and the AP is the size of this area. In the VOC 2007 dataset,

recall is divided by 11 points, increased by 0.1 from 0.0 to 1.0, and the precision

value corresponding to that point is taken.

Intersection over Union (IoU), measures how much the predicted bound

box overlaps with the one of the ground truth of a certain object. It is used to

determine if a detection is correct or not. The correctness threshold can be set

to different IoU ratios. For the COCO dataset [22], the AP is averaged for IoUs

5



from 0.5 to 0.95. That’s where mAP comes from. On the other hands, VOC

dataset uses IOU over 0.5. If a value is given after mAP (like mAP-50) it states

which IoU was used as correctness threshold.

2.1.2 YOLOv2

Figure 2.2: The overview of YOLOv2 structure and the process of inference

using VOC PASCAL image.

You only look once (YOLO) is a model for the real-time object detec-

tion. The second generation of YOLO was released on December 25, 2016.

YOLOv2 [19] improves YOLOv1 [26] which is suffered from localization error

and low recall rate with a number of tricks and is more capable of detecting

objects faster. YOLOv2 extracts features of input images, then predict coordi-

nates of bounding box and class probabilities at the same time. The YOLOv2

network architecture can be divided into two parts. The first part is composed

of a feature extractor called Darknet-19 [25]. Darknet-19 itself is composed of

19 convolutional layers featuring batch normalization and leaky ReLU activa-

tion. Darknet-19 also contains 5 max pooling layers to down-sample the feature

map. The second part of the network is responsible for detection. This part is

attached to the back, after the convolutional layer of Darknet-19 is removed.

The detection module is composed of several convolutional layers as well as

6



route and reorganisation layers that allow the detection to better benefit from

features extracted earlier in the network.

The input images are down-sampled by 2×2 pooling operation with a stride

of 2, and finally divided into grids of S ×S, and each grid has B bounding box

information. Each bounding box contains confidence scores and four coordinate

x, y, w, h. The confidence score indicates probability of containing object in

prediction box. It is defined as Pr(Obj) × IOU truth
pred , which Pr(obj) denotes

prediction probability, and IOU truth
pred means IoU between prediction box and

the ground truth. Each grid cell also contains C conditional class probabilites,

calculated as following:

Pr(Classi|Objdp) · Pr(Obj) · IOU truth
pred = Pr(Classi) · IOU truth

pred

In summary, each grid cell of S×S contains (B×(1+4)+C) information. VOC

PASCAL dataset uses S = 13, B = 5, and C = 19, so the final output dimension

of YOLOv2 is 13×13×125. As shown in Figure 2.2, YOLOv2 contains routing

layers which forward layers from earlier parts in the network towards the end,

and reorganization layer which transforms the bigger input size into additional

channels. We will discuss the pruning method in detail later on for these two

layers.

2.2 AIX Accelerator

2.2.1 Overview of AIX Architecture

AIX is a dataflow machine for accelerating neural networks. All the neural net-

works are represented by data flow graphs with nodes of layerwise operations

such as convolution and perceptron. Similarly, as shown in Figure 2.3, AIX has

several HW blocks, each of which corresponds to one or more of the operations.

For example, matrix multiplication and convolution (MXC) block processes 2D

7



  

Matrix Multiplication
and Convolution

(MXC)

DMA engine (UDR)

Tensor Cache (UTC)

Tensor
Cache
(LTC)

LDR

LDT

DRAM
control

PCIe
Dynamic

Command
Scheduler

.....

…
..

64 columns

128 row
s

blk127

blk126

blk1

blk0

bl
k0

bl
k6

3

Figure 2.3: High-level architecture of the AIX accelerator. blk denotes blocks

in tensor caches, which divide the tensor caches by the same number of rows

and columns for each 128× 64 MXC processor.

convolution or perceptron layer in a neural network. Also, feature map con-

catenation run on direct memory access (DMA) engines such as LDR. Running

a neural network on AIX, therefore, means finding a good matching between

layer-wise operations in a neural network and HW blocks on AIX, and then

scheduling the operations with the minimum latency as possible.

In order to facilitate those executions of commands without stall, AIX has a

memory hierarchy consisting of two different scratch pad memories and DRAM.

The scratch pad memories are called tensor cache (TC). Basically DMA engines

fills TCs with data newly fetched from DRAM while the previously fetched

data is consumed by the HW blocks in AIX. There are two different types of

tensor caches: left tensor cache (LTC) and upper tensor cache (UTC). UTC is

a read only scratch pad memory in the stand of computing HW blocks as UTC

8



Figure 2.4: The MXC processes workloads in blocks. The input feature maps

are tiled 64 bits size of consecutive channels, and loaded to LTC blocks. The

tiled values in each LTC blocks are assigned to the corresponding MXC rows.

mainly stores weights and biases. This reflects that the weights and biases in

a neural network has read-only property for inference as they are frozen after

thorough training. On the other hand, LTC mainly provides input data and

receives the computation results from other HW blocks in AIX. There are three

DMA engines: LDR, LDT, and UDR. As explained, UDR fills the read-only

UTC. When LDR fills LTC, LDT simultaneously writes the output feature

maps from LTC to DRAM.

2.2.2 Dataflow of AIX Architecture

We will now look a bit closer at how the MXC unit computes convolution as it

explains the pruning approach we adopted. The LTC has 8192 entries of 8192

bits which gives us a size of 8MB. Every entry is divided into 128 64-bit blocks.

Each MXC row is mapped directly to one block in the LTC and connected

9



by individual lanes. In a similar fashion, the UTC has 6144 (=6k) entries of

4096 bits divided into 64 64-bit blocks, thus a total size of 3MB. The MXC

unit is a two dimensional systolic array composed of 128 rows and 64 columns

where each node operates on an input block (fed from the LTC) and a weight

block (fed from the UTC). In other words, blocks are the atomic elements MXC

performs operations on. To compute an output pixel of a convolution, we need

to multiply the input pixels with those coordinates (and their neighbours for

filter sizes above 1×1) from all the input channels with all the weights of a filter

(channel by channel), then add up the individual products. The dimension we

navigate along the most is the one of channels. Therefore, we load the input

values in NHWC format instead of the usual NCHW (N: batch, H: heigth,

W: width, C: channels). Channels being loaded consecutively in memory and

blocks being 64 bits long, a block contains 8 (resp. 4) channels when the data

size of a value is 8 (resp. 16) bits. In Fig.2.4, we can see in what order blocks

are loaded into to the LTC and UTC (and therefore fed into the MXC). In the

UTC, each column contains the weights of an individual filter, channels being

consecutive here too. When executing the systolic array, the PEs on the top

receive the data from the UTC and the PEs on the left from the LTC. The

weights are then propagated from top to bottom and the input values from

left to right. Each PE contains the partial sum computed so far. Once all the

data of a filter and the corresponding input is processed, the PE’s partial sum

will contain the value of a specific output pixel. This value is saved in the PE’s

output register and propagated left in order to be saved back into the LTC

and later into memory. The weights are fed in a circular manner so when one

output pixel has been computed, we set the partial sum of the PE to 0 and

we can immediately process the next pixel receiving the filter’s weights from

the beginning again and the next required input data. Once all data from the

10



caches processed, a part of the LTC dedicated to the output will contain the

values of the computed output feature map, ready to be saved in memory.

11



Chapter 3

Implementation of Pruning on
AIX Accelerator

3.1 Convolutional Neural Network (CNN)

Figure 3.1: The process of convolutional neural network in l-th layer and nota-

tion of weights.

A convolutional neural network (CNN) is a deep neural network used to

12



classify or detect visual images. The network extracts features of images by

convolving input data with weights, and then passing activation function such

as ReLU or Sigmoid. The outputs of activation function feed forward to next

convolutional layer. Weights consist of 4-dimensional tensor in l-th layer, w ∈

RCl×Kl×K1×F1 , where Fl, Cl denotes total number of filters and input channels,

and Kl is the spatial size of the 2-D kernel in the l convolutional layer. After

convolving operation, it produces output feature-map Hl+1×Wl+1×Fl which is

input feature map of l+1 convolutional layer. The output feature map becomes

the input feature map of the next layer. The notations and process of CNN in

l-th layer are shown in Figure 3.1 .

3.2 Granularity of Sparsity for Pruning CNNs

Pruning is a technique that consists in removing certain weights of a CNN to

speed up its processing time while maintaining some degree of accuracy. We

follow the basic idea presented in [6]. The paper offers an overview of this

approach and introduces a total of four ways to prune convolutional layers.

Scalar (0-D) pruning, delete individual weights is the most fine-grained

and also the most irregular sparsity. Vector-level (1-D), kernel-level (2-D), and

filter-level (3-D) sparsity represents more regular and coarse-grained pruning

methods. Fine-grained pruning, each weights are deleted based on their ab-

solute value. This leads to highly irregular pruning patterns with zero values

distributed throughout all filters. While a number of accelerators support zero-

value skipping to reduce the energy consumption and/or the computation time,

the weight matrices cannot be easily compressed and keeping all processing ele-

ments busy in the presence of zero values is still a challenge. The coarser-grained

pruning methods remove adjacent weight, leading to a more regular pattern of

13



sparsity. To decide which values are pruned in each granularity, we adopt the L1

norm is adopted as proposed in [7]. The L1 norm serves as a simple magnitude-

based pruning criterion and is computed by

Si =
∑

W∈Gi

|w|

Gi and Si denotes the group of grain i that comprise of multiple weights,

and sum of absolute values in the corresponding grain respectively. Pruning

is performed by first sorting in ascending order based on Si, then the lowest x

percent are removed. To experiment the effect of accuracy drop on grain size, we

implemented four different granularity of sparsity in YOLOv3 [27]. We extract

all the weights (gathered together in the desired regularity), sort them, and set

the smallest values to 0 according to the given sparsity. We prune 10% of Si

Figure 3.2: The accuracy drops according to pruning ratio for four different

granularity of sparsity.

14



and record accuracy iteratively until all the weights are removed.

In Figure 3.2, we can see that the coarser the introduced sparsity, the

stronger the impact on the networks detection performance. This is an expected

result as coarse-grained pruning removes larger chunks of information and also

does not necessarily only prune the smallest values but rather structures with

the lowest average values. While vector-level pruning noticeably starts dropping

at around 35% of sparsity and then maintains an almost constant relationship

of accuracy compared to scalar pruning, the accuracy of kernel-level pruning

starts dropping at 20% and is significantly lower than pruning at vector or scalar

level. Filter-level sparsity has a catastrophic impact very quickly. Despite the

significant drop, recent research adopt filter-level sparsity to exploit MKL sparse

BLAS or cuSPARSE library, and fine-tune helps recover this damage.

3.3 Network Compression for Channel Pruning

Figure 3.3: The process of network compression for pruned-input channel (red

color) in l-th convolutional layer.

The input channels being pruned, we could eliminate connection with other

weight parameters by setting the pruned values to zero. To preserve the net-

works consistency and to save further computation, we also eliminated the filters

that generate these pruned channels from the previous layer. Fig. 3.3 shows the

15



fourth input channel of l-th layer is pruned. The fourth input feature map of

l-th layer is no longer requires convolution operation, since the input channel is

removed. Accordingly, we eliminated together with the filter in Fl−1, that gen-

erated fourth input feature map in the previous layer. In addition to removing

the weights and other parameters corresponding to the compressed channels

and filters in the network’s weight file, we also updated its configuration file

were the number of filters per layer are saved.

In summary, the procedure of compression is the following:

• Identify and memorize the pruned input channel(s)

• Mark and memorize the corresponding filters to be compressed

• Eliminate input channel(s) and filter(s) from the weight file

• Update the configuration file to represent the compressed network

3.4 CNN Pruning on AIX Accelerator

The execution mode of the accelerator dictates that only removing an entire

block leads to an reduced execution time in the current layer. In this sense, we

proposed accelerator-specific block-granularity pruning which grouped four or

eight input channels pruned at once instead of single input channel or filter.

3.4.1 Block-Granularity for Pruning

A block is an 8-bytes buffer with the (height, width, input channels) dimen-

sions 1 × 1 × 8 or 1 × 1 × 4 depending on the element’s data size (8/16 bits).

We gather channels from each layer into groups of 4 or 8 depending on the

data size. We want to prune blocks having the less influence on the output so

we gather channels according to the average magnitude of their weights and

16



not according to spatial consecutiveness. The reason channels in a same block

don’t need to be consecutive is that they will be completely removed during

compression which we will discuss in more details later. The exact procedure

to form blocks in each convolutional layer l is as follows:

1. For each channel in layer l, compute the l1-norm of their weights to

evaluate their importance. The following equation is used:

scl =

∑Fl
i=1

∑Kl
j=1

∑Kl
k=1 |wicjk|

Fl ×K2
l

, {1 ≤ c ≤ Cl}

2. Sort the channels in ascending order according to their computed scl .

3. Gather the four or eight channels with the smallest scl from the sorted

list into a block based on the element’s data width (8/16bits). The next block

will be composed of the next smallest channels, and so on until all channels of

the layer are gathered into blocks.

4. Calculate Bk
l , {1 ≤ k ≤ ∗Cl

4 or 1 ≤ k ≤ ∗Cl
8 }, the l1-norm of the blocks’

weights (computed from the scl of the channels they are composed of).

We create the blocks from all convolutional layers in the network, and store

the obtained blocks’ information in a structure array I. The block information

includes: layer id, index of the channels composing the block and Bk
l . In recent

object detection networks [19, 28], the number of channels in each convolutional

layer are usually divisible by four or eight. However, if it is not divisible or the

number of input channel size is smaller than the size of a block, the remaining

channels channels form a block.

17



(2) Find filter indexes of 
pruned feature maps

C

K

K

Input of layer i 

Output of layer i - 1

H

W

F

(1) Prune the block

(3) Deleted corresponding 
filters

C

layer i - 1

layer i 

Figure 3.4: Network compression for block granularity. The figure describes

prune input channel index i, and remove corresponding outpuit filters.

3.4.2 Network Compression for Block Pruning

AIX accelerator does not support zero-skipping, so we have to implement com-

pression step for block granularity. Four or eight input channels that consist

single block should not be contiguous. Network compression helps to compact

pruned input channels which have the effect of removing the entire block. The

Fig.3.4 shows that the corresponding filters are deleted in the i− 1 layer when

a block consisting of 4 input channels in the i layer is pruned (16-bit width). If

compression is performed after deleting the red part in layer i, four input chan-

nels equal to the size of the block are removed. The gray input channels then

become neighbors. We can carefully prune input channels individually through

compression, which is more fine-grain way compared to contiguous configura-

tion.

18



Chapter 4

Adaptive Layer Sensitivity
Pruning

4.1 Overview

The whole process of the scratch describes in Fig.4.1. pruning i step(s) is the

procedure from pruning the blocks to save best epoch after fine-tune. At first,

We group block-level sparsity when the pre-trained weights comes in. Then,

prune blocks based on layer-sensitvity pruning algorithms which would be dis-

cussed later. The pruned input channels filled with zeros are removed through

network compression and the neural network structure is changed. We fine-tune

the N number of epochs to improve the accuracy of the modified neural net-

work, then select and update the weights with the highest accuracy recovery

among the N . We called this method fine-tune method ’keep the best epoch’,

and we’ll talk it later. The stop condition of this scratch is when the accuracy

recovery does not occur even after learning further.

19



Figure 4.1: The whole process of architecture specific pruning

4.2 Layer Sensitivity Graph

Existing coarse-grained pruning methods process pruning sequentially layer by

layer [6, 16, 18], which only consider local information. However, this approach

could drop the accuracy significantly, since some layers play important roles

in the network [21]. Some researchers [15, 37] show pruned object detection

network by transferring pruned pre-trained weight of classification network to

the feature extraction part which cannot reduce input channels of detection

parts.

Inspired by [39], each step, we evaluated the sensitivity of each convolutional

layer regarding accuracy. For the experiment, we removed one block from each

convolutional layer of YOLOv2 and measured the accuracy using a COCO

dataset. The stop condition is when all blocks are removed in the layer or the

20



Figure 4.2: Layer sensitivity graph of YOLOv2 using COCO dataset.

accuracy is zero. We make the graph in Fig 4.2, and called layer sensitivity

graph. The 0-th and 2-nd layers of YOLOv2 are also convolutional layers, but

the size of the input channel is small (3 and 32 respectively). It is not possible

to make enough blocks, so they are not added to the graph. As shown in Fig 4.2,

the 20-th (orange line) and 21-st (green line) layers show the smoothest drop.

Both layers are one of the five convolutional added to Darknet-19 classification

network, and has 1024 input channels per filter. This is the second largest

number in YOLOv2, and there are no changes in dimension or addition of

input feature maps. As a result of that, two convolutional layers has redundant

input feature maps. On the other hands, layers 29 (red line) and 30 (olive line)

show a steep drop. The 29-th layer receives merged feature maps of two layers

with different resolutions. one of them is reorganizataion layer we will talk it

later. 30-th layer is the last convolutional layer which has output tensor of the

21



final outputs ((B × (1 + 4) +C)) in YOLOv2. Pruning this layer means loss of

information in the final output, so it directly affects the accuracy.

4.3 Concept of Adaptive Layer Sensitivity Pruning

Algorithm

Figure 4.3: Algorithm description of adaptive layer sensitive pruning

We proposed the pruning algorithm based on the layer sensitivity graph de-

scribed in section 4.2 and called it adaptive layer sensitivity (ALS) pruning. The

reason for we added ’adaptive’ was that the pruning algorithm automatically

decide how many blocks were going to removed depending on the size and char-

acteristics of the pre-trained weight. Our pruning algorithm implemented four

stage process, as shown in Fig. 4.3. It starts from feeding pre-trained weights

which completed learning process by conventional network training. Making

layer sensitivity graph by pre-trained weight is the next step. The third step

is to select the one with the smallest drop among the convolutional layers and

then remove the block to update the weight. Removing one block at a time can

prevent a significant drop, but we added a function so that the user can deter-

mine the number of blocks that can be removed at one time, since it can take

a long time depending on the capacity of the accelerator. The final step is to

evaluate this pruned weights, if the accuracy drop is higher than the threshold

we set, move to the next process; fine-tune. Otherwise, network pruning is done

iteratively by updating new layer sensitivity graph.

22



4.4 Discussion on Adaptive Layer Sensitivity Pruning

Algorithm

Figure 4.4: Pruned 25% of each convolutional layer individually in YOLOv2 and

evaluate accuracy by PASCAL VOC 2007 test datset. The red bars indicate the

layer that the drop of accuracy less than 0.5%.

ALS pruning removes one convolutional layer’s block(s) per iteration, but

we can also devise a method to select multiple convolutional layers with less

drop in the layer sensitivity graph. However, we found through experiments that

this method could lead to a significant reduction in accuracy. For the experi-

ments, we pruned 25% of blocks for each convolutional layers independently in

YOLOv2 and evaluate the accuracy by VOC PASCAL test dataset, and results

are shown in Fig. 4.4. The original accuracy of YOLOv2 on PASCAL 2007 test

dataset is 75.87%. Among the convolutional layers, Among the convolutional

23



layers, four layers with accuracy drop of less than 0.5% was selected and dis-

played in red on the graph. We removed these layers at the same time, and then

measured the accuracy. As a result, it showed a drop of 15.23% accuracy, and

found that when pruning, all the layers are influenced by each other. Therefore,

when using a layer sensitive graph, it is more effective to select one layer and

prune the block in it.

4.5 Compression for YOLOv2 multi-branches

26x26x512

Conv_1  
3x3x32 / 1

Conv_16  
3x3x512 / 1

Route_25  

Conv_26  
1x1x64 / 1

Reorg_27  
Route_28  

Conv_29  
3x3x1024 / 1

Conv_24  
3x3x1024 / 1

13x13x1024
26x26x512

13x13x1024
26x26x64

13x13x256
13x13x1280

416x416x3

26x26x256

Disable pruning

Figure 4.5: YOLOv2 compression method for the two route layers. The blue

and red values are affected factors when the first and second route layers are

compressed, respectively.

The compression technique directly applicable to single branch object de-

tection networks such as Tiny-YOLOv2, YOLOv1. However, the networks with

multi-branches such as YOLOv2 needs to be handle, since the index of the

pruned one input channel does not correspond to only one output channel. In

24



this paper, we will focus on handle route layers in YOLOv2.

YOLOv2 contains routing layers which concatenate the feature maps of the

layers from earlier parts in the network towards the end. When we mark the

filters that generate channels to be pruned, there are usually located one layer

(or two when there are maxpool layers) above the current convolutional layer.

Route layers create links with layers further away, so we should consider the

connection among the layers when pruning blocks. Fig.4.5 shows there are two

route layers in the YOLOv2, with respective indexes of 25 (Route 25) and 28

(Route 28), since we indexed all layers of YOLOv2 in order based on the main

branch. We differentiate these two cases to handle the pruning of route layers

in the YOLOv2.

• Route 25: This route layer forwards the output of Conv 16 to the input

feature maps (26 × 26 × 512) of Conv 26. Filters in convolutional layer

16 are affected by pruned channels in both convolutional layer 18 and 26.

Indeed, we mark and compress filters that generate pruned channels in

either layer 18 or 26. So the same channels will be pruned in both layer

18 and 26. In other words, pruned channels in layer 18 will also be pruned

in layer 26 and vice versa.

• Route 28: this route layer merges the output of the network’s main branch

and the forwarded branch. However, we only apply the compression to the

part that hasn’t been routed (main branch). This is the case because the

routed branch has the bigger feature map size from layer 16 (26 × 26

instead of 19 × 19 in the main branch) so the output of layer 26 goes

through a reorganization layer (layer id: 27). This layer transforms the

bigger input size into additional channels. So a channel in the front part

25



of layer 29 (see figure below) does not have an one-on-one correspondence

with filters from the previous layer anymore. A filter from the previous

convolution generated 4 of layer 29 channels.

4.6 Fine-tune

Figure 4.6: Fine-tuned 20 epochs after 10/20/40/80 blocks are pruned in

YOLOv2. We measured the accuracy after learning one epoch at a time.

The accuracy drop drastically due to changes the connection between the

weight parameters. Fine-tune is essential process to recover the accuracy and re-

evaluate the weight connection, after network compression. [15, 21] fine-tuned

a certain percentage in the original training epoch, and then updated the final

result. However, this method has two problems. First over-fitting may occur,

when accuracy drop is negligible after pruning. Second, the final result may

26



not be the best recovery accuracy, since early recovery induced saturation of

accuracy. Fig. 4.6 shows the accuracy results for each epoch, when fine-tune

20 epochs after pruning 10, 20, 40, and 80 block-words of YOLOv2. There are

no accuracy drops for pruning 10 and 20 blocks simultaneously. Rather, both

experiments increased the accuracy of 0.42% and 0.30%, respectively. We sup-

posed this is due to reducing redundant information. As soon as the fine-tune

started, 0.35% and 1.24% drop occurred. This is because the over-fitting oc-

curred by training without changing the neural network much. On the other

hands, pruning 40 and 80 blocks suffered 0.64% and 7.6% accuracy drop re-

spectively. However, the best accuracy points were 18 and 14 epoch rather than

the final results (N=20).

27



Chapter 5

Experimental Setup

The GPU model used for training and evaluation was RTX 2080 Ti [4], and

the CPU model was Intel(R) Xeon(R) E5-2620 [5] for inference. The AIX had

been implemented on a Xilinx VU13P [3] FPGA. The MXC ran at 775 MHz,

the maximum frequency of the DSPs, the other parts of the accelerator run at

half that frequency. The hardware utilization was limited by the DSP core at

84%.

We evaluated object detection networks YOLOv1, YOLOv2 and Tiny-YOLOv2

on PASCAL VOC 2007 test-dataset. We used Darknet framework [25] which

provided pre-trained weights of the object detection networks for our experi-

ments. We experimented with 8 input channels in one block, since the default

quantization mode of AIX is 8-bits. We pruned a block after creating layer sen-

sitivity graph, and stopped the algorithm if the accuracy drop occurred more

than 1%. Fine-tune was performed one epoch at a time and up to N epochs.

During the fine-tune stage, we set the number of N to 20 in this experiment, but

this number could be changed by the user, taking into account the side effect

28



between fine-tune time and accuracy. We retrained object detection networks on

PASCAL VOC 2007+2012 train and validation set. We used same optimization

setting and batch size, except the learning rate which applied 1/10 of training

from scratch. The stop condition of our technique was if all the convolutional

layers in the networks left one block number of input channel, or the adaptive

layer sensitive pruning algorithm stops without removing a block more than 10

times.

29



Chapter 6

Experimental Results

6.1 Overall Results

Network Error (ε) range Method Acc. (%) Acc. ↓ (%) FLOPs FLOPs ↓ (%) Param. Param. ↓ (%)

Tiny-YOLOv2 ε ≤ 0
Baseline 54.06 - 6.97× 109 - 1.58× 107 -

ALS 54.37 -0.31 1.94× 109 73.07 1.22× 106 92.34

YOLOv2

ε ≤ 0 Baseline 75.83 - 2.93× 1010 - 5.63× 107 -

0 < ε ≤ 0.5 ALS 75.38 0.45 2.19× 1010 20.52 4.06× 107 27.94

0.5 < ε ≤ 1 ALS 74.83 1.00 1.83× 1010 37.26 3.52× 107 53.47

YOLOv1

ε ≤ 0 Baseline 67.01 - 4.01× 1010 - 6.01× 107 -

0 < ε ≤ 0.5 ALS 66.69 0.32 2.80× 1010 30.02 5.40× 107 10.10

0.5 < ε ≤ 1 ALS 66.01 1.00 2.31× 1010 42.32 5.16× 107 13.13

Table 6.1: The comparison of the results on three object detection networks.

”Error (ε) range” is to compare the results by dividing it into three section

according to the error range caused by pruning. ”Acc. ↓” column indicate that

the Acc. of the baseline model minus the pruned model.

As shown in Table 6.1, we compared the results of the baseline and ALS

pruning from the scratch within 1% error of the Acc. for three object detection

30



networks. We divided the error (ε) range into three parts: ε ≤ 0, 0 < ε ≤ 0.5 and

0.5 < ε ≤ 1, and analyzed how computational complexity and parameters were

pruned. The metric of accuracy was used mAP. YOLOv2 and YOLOv1 accel-

erate computational operations 1.6× and 1.7×, respectively in the 0.5 < ε ≤ 1.

YOLOv1 pruned parameters only 13.13% of the original weights. This is be-

cause, we do not consider to prune fully-connected network for this experiment,

since most of the overhead in the AIX comes from convolutional layers. The

light version of YOLOv2, Tiny-YOLOv2 achieved 3.6× faster and saved 12.9×

parameters compared to baseline pre-trained weights without loss accuracy (

ε ≤ 0). We could not record the rest of the range, since the accuracy drops

occurred more than 1.2% after further pruning.

6.2 Effect of Adaptive Layer Sensitivity Pruning

ALS automatically determines how many blocks are removed per pruning step

according to the network condition. We observed how many blocks are removed

according to the pruning step, in order to verify that the number of blocks actu-

ally prune was well determined. To the experiments, we pruned Tiny-YOLOv2

pre-trained weights, and evaluated PASCAL VOC 2007 test-dataset. Despite

the 5 pruning steps, if there were no blocks to be pruned, We finished the

experiment.

Fig. 6.2 shows that how many blocks are removed per pruning step and

the reduction of BFLOPs. ALS aggressively removes more than 10 blocks un-

til the initial 12 steps, however do not remove more than 2 blocks after the

23 steps. After 47 steps, more than 1% accuracy drop occurs when pruning

the block. Through this experiment, ALS correctly detects the redundancy of

initial pruning steps, and aggressively remove the blocks. The network inher-

31



Figure 6.1: The number of blocks removed and the amount of change in BFLOPs

according to the pruning step

ited by previous weight that is not enough pruned occurs two problems when

fine-tuning. First, the weight might be stuck in local minimum [23], and sec-

ond, performance may be degraded due to over-fitting. ALS prevents those two

problems, as it processes until redundant blocks are all eliminated. In addition,

We found that ALS automatically reduced the number of blocks to be pruned

and fine-tune frequently if the remaining blocks have a great impact on the

accuracy.

32



Figure 6.2: Accuracy progression versus computational complexity to compare

SLS and ALS pruning method.

6.3 Comparision Adaptive vs Static Layer Sensitivity

Pruning

We compared the results of method that statically removed n-blocks and fine-

tune at a time, which called static layer sensitivity pruning (SLS). The number

of blocks n were set to 4 and 8, and marked as SLS-4 and SLS-8 blocks, re-

spectively. The stop condition of SLS was if all the convolutional layers in the

networks left one block number of input channel. We tested using the same

dataset and pre-trained weight as Section 6.3.

As shown in Fig. 6.2, SLS-4 sustains the 1% of accuracy drop until BFLOPs

of ≤ 1.95. The sustain point of SLS-8 is BFLOPs of ≤ 2.64, which is faster than

that of SLS-4. ALS finishes the algorithm without causing an accuracy drop

33



to the point where the BFLOPs ≤ 1.87. After the accuracy-sustain points, the

significant drop occurs as the pruning step progress for the two SLS pruning.

This is because, there are only important blocks remained to be pruned. This

experiment illustrates two benefits of ALS pruning. First, it can be found auto-

matically just before the sustain point. This means that ALS is able to detect

almost all unimportant blocks in the network. The second benefit is to avoid

unnecessary fine-tune. In Section 6.2, ALS aggressively removed blocks up to

12 pruning steps, and The computation of complexity is 2.55 BFLOPs. To re-

duce this amount of computation, SLS-4 should process more than 49 pruning

steps. Furthermore, At this point, At this point, the difference in accuracy from

ALS is only 0.01%, so the SLS-4 performs fine-tune beyond the need of 30× 20

epochs.

34



Chapter 7

Related Work

Recent software related works on high-performance inference accelerators for

CNN can be divided into three categories; matrix decomposition, network quan-

tization and weight pruning. Matrix decomposition [10, 17, 31] reduces param-

eter dimensions by low-rank approximation using Singular Vector Decompo-

sition (SVD). Network quantization [38, 9, 13] reduces the precision of the

weights from single-precision to low-bit such as 8 bits or 1 bit. Weight pruning

[36, 33, 32, 34, 21, 6, 16, 35] removes redundant weights connections without

critically affecting the accuracy of the original model. In this paper, we focus

on weight pruning and plan to integrate other categories in the future.

Recently, researchers have proposed and evaluated [?] different granularity

of pruning from fine grained sparsity to coarse-grained sparsity. Fine-grained

pruning technique [36, 33, 32, 34] prunes individual weights. [32] proposes it-

erative technique to prune small weights below the threshold after training the

model, and further improved compression of the model in [33] adding weights

quantization and Huffman coding. [36] extends iterative pruning technique by

35



restoring previously pruned neurons during fine-tuning. [34] proposes an energy-

aware pruning algorithm based on energy consumption cost metric. However,

fine-grained pruning does not speedup sparse-matrix libraries such as cuBLAS

[1] /cuSPARSE [2] nor enables network compression based on filter deletion.

On the other hand, coarse-grained pruning technique prunes entire input

and/or output filters which enables both aspects mentioned above at the cost

of a higher impact on the networks accuracy. The key idea of coarse-grained

pruning is to evaluate and choose unimportant input/output filters that have

little effect on accuracy. There are heuristic techniques to measure the impor-

tance of the filters based on weight values [21, 6, 16, 35]. [21] proposes to prune

the filters according to the impact of their weights (evaluated with different

norms) and to tailor the pruning rate of the each layers based on its infor-

mation. [6] greedily evaluates the importance of the filters by estimating the

network’s accuracy after pruning each of them individually in specific layers.

[16] measures the value of filter’s average percentage of zero (APoZ), then prune

the filters with higher values of APoZ. [35] prunes the filters with l2-norm cri-

teria by putting zeros in the filters every epoch during training phase. Pruned

filters have the chance to be updated, since the zero values are updated during

back-propagation. There are other techniques to estimate the impact of filters

on the model based on training set results [39, 18, 15]. [39] exploits scaling

factors in the batch-norm layers [30] that induces channel sparsity. In this ex-

periment, channels having scaling factors under a certain threshold are pruned.

[18]’s pruning is based on finding weak channels of a layer and prune them

along with the corresponding filters from the previous layer. Weak channels are

defined as channels that yield small activation values when processing a set of

images. [15] selects the channels to prune based on LASSO regression and uses

least square to minimize reconstruction errors.

36



Chapter 8

Conclusion and Future Work

8.1 Conclusion

This paper presented adaptive layer sensitive pruning, an effective pruning tech-

nique for the AIX architecture. The AIX is systolic array accelerator for DNN

inference, capable of processing different kinds and sizes of neural networks. We

pruned block granularity of sparsity, execution unit of AIX, to reduce inference

time directly. Adaptive layer sensitive pruning iteratively selects a block in con-

volutional layer which shows the least impact on the drop of accuracy. Fine-tune

is performed one epoch at a time and up to 20 epochs; the parameters with the

best accuracy recovery is selected and pruned in following next pruning step.

The presented technique prunes to three object detection networks, YOLOv1,

YOLOv2, and Tiny-YOLOv2, and achieve state-of-the-art compression ratio

within 1% loss of accuracy.

37



8.2 Future Work

AIX supports 4/8/16 bit quantization mode for each convolutional layer. By

exploiting this functionality, the model can be further compressed while main-

taining accuracy after pruning. Similar to measuring the layer sensitivity when

performing pruning, each layer can be evaluated after quantized independently.

On the basis of 8-bit, one that do not affect the accuracy among the layers can

be set to 4-bit and vice versa. Instead, if the neural network has n-convolutional

layers, there are 3n combinations cases, so research is needed to reduce the de-

sign space search.

There are some limitations in this research. First, block granularity of spar-

sity is suffered from its coarse-grainedness for neural networks with a small

number of input channels in the convolutional layer. For example, the classifi-

cation neural network, ResNet-20 [14] on CIFAR-10[20] dataset, the convolu-

tional layers with the most input channels only have 64. When AIX quantizes

to 8-bits, up to 4 blocks can be grouped to one layer, and if we prune a single

block, 25% of the layer information is lost. Second, We statically fix the number

of fine-tune epoch. We found that when the fine-tnue reaches a certain level,

the accuracy is no longer restored and saturated. That is, saturation may occur

before reaching the fixed epoch value, which induce time-inefficient and waste

of power. One option to resolve the problem is to make the simple stopping

algorithm that detect saturation. In order to propose the algorithm, it takes

numerous time to experiment not only object detection but various type of

neural networks. However, this will bring not only convenience to users, but

also performance improvement.

Deep neural network (DNN) accelerators based on systolic arrays have been

shown to achieve a high throughput at a low energy consumption. The regular

38



architecture of the systolic array, however, makes it difficult to effectively ap-

ply network pruning and compression; two important optimization techniques

that can significantly reduce the computational complexity and the storage re-

quirements of a network. This work presents AIX, an FPGA-based high-speed

accelerator for DNN inference, and explores effective methods for pruning sys-

tolic arrays. The techniques consider the execution model of the AIX and prune

the individual convolutional layers of a network in fixed sized blocks that not

only reduce the weights of the network but also translate directly into a re-

duction of the execution time of a convolutional neural network (CNN) on the

AIX. Applied to representative CNNs such as YOLOv1, YOLOv2 and Tiny-

YOLOv2, the presented techniques achieve state-of-the-art compression ratios

and are able to reduce interference latency by a factor of two at a minimal loss

of accuracy.

39



Bibliography

[1] cublas cuda toolkit v10.1.243. https://docs.nvidia.com/cuda/cublas/

index.html#introduction.

[2] cusparse cuda toolkit v10.1.243. https://docs.nvidia.com/cuda/

cusparse/index.html.

[3] Description of xilinx vu13p fpga. https://www.xilinx.com/products/

boards-and-kits/1-1177ccc.html.

[4] Geforce rtx 2080 ti. https://www.nvidia.com/en-us/geforce/

graphics-cards/rtx-2080-ti/.

[5] Intet(r) xeon(r) e5-2620 specification. https://ark.

intel.com/content/www/us/en/ark/products/64594/

intel-xeon-processor-e5-2620-15m-cache-2-00-ghz-7-20-gt-s-intel-qpi.

html.

[6] R. Abbasi-Asl and B. Yu. Structural compression of convolutional neural

networks based on greedy filter pruning. CoRR, abs/1705.07356, 2017.

[7] M. Ahn, S. J. Hwang, W. Kim, S. Jung, Y. Lee, M. Chung, W. Lim, and

Y. Kim. Aix: A high performance and energy efficient inference accelerator

40



on fpga for a dnn-based commercial speech recognition. In 2019 Design,

Automation Test in Europe Conference Exhibition (DATE), pages 1495–

1500, 2019.

[8] Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze. Eyeriss: An energy-

efficient reconfigurable accelerator for deep convolutional neural networks.

IEEE Journal of Solid-State Circuits, 52(1):127–138, Jan 2017.

[9] M. Courbariaux, J.-P. David, and Y. Bengio. Training deep neural net-

works with low precision multiplications. arXiv e-prints, Dec. 2014.

[10] E. Denton, W. Zaremba, J. Bruna, Y. LeCun, and R. Fergus. Exploiting

linear structure within convolutional networks for efficient evaluation. In

Proceedings of the 27th International Conference on Neural Information

Processing Systems - Volume 1, NIPS’14, pages 1269–1277, Cambridge,

MA, USA, 2014. MIT Press.

[11] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman.

The pascal visual object classes (voc) challenge. International Journal of

Computer Vision, 88(2):303–338, Jun 2010.

[12] K. Guo, S. Zeng, J. Yu, Y. Wang, and H. Yang. A survey of FPGA based

neural network accelerator. CoRR, abs/1712.08934, 2017.

[13] P. Gysel. Ristretto: Hardware-oriented approximation of convolutional

neural networks. CoRR, abs/1605.06402, 2016.

[14] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image

recognition. CoRR, abs/1512.03385, 2015.

41



[15] Y. He, X. Zhang, and J. Sun. Channel pruning for accelerating very deep

neural networks. In The IEEE International Conference on Computer

Vision (ICCV), Oct 2017.

[16] H. Hu, R. Peng, Y. W. Tai, and C. K. Tang. Network trimming: A

data-driven neuron pruning approach towards efficient deep architectures.

CoRR, abs/1607.03250, 2016.

[17] M. Jaderberg, A. Vedaldi, and A. Zisserman. Speeding up convolutional

neural networks with low rank expansions. CoRR, abs/1405.3866, 2014.

[18] L. Jian-Hao, W. Jianxin, and L. Weiyao. Thinet: A filter level pruning

method for deep neural network compression. In The IEEE International

Conference on Computer Vision (ICCV), Oct 2017.

[19] R. Joseph and F. Ali. Yolo9000: Better, faster, stronger. In The IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), July

2017.

[20] A. Krizhevsky, V. Nair, and G. Hinton. Cifar-10 (canadian institute for

advanced research).

[21] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf. Pruning filters

for efficient convnets. CoRR, abs/1608.08710, 2016.

[22] T. Lin, M. Maire, S. J. Belongie, L. D. Bourdev, R. B. Girshick, J. Hays,

P. Perona, D. Ramanan, P. Dollár, and C. L. Zitnick. Microsoft COCO:

common objects in context. CoRR, abs/1405.0312, 2014.

[23] Z. Liu, M. Sun, T. Zhou, G. Huang, and T. Darrell. Rethinking the value

of network pruning. CoRR, abs/1810.05270, 2018.

42



[24] H. Mao, S. Han, J. Pool, W. Li, X. Liu, Y. Wang, and W. J. Dally. Ex-

ploring the regularity of sparse structure in convolutional neural networks.

CoRR, abs/1705.08922, 2017.

[25] J. Redmon. Darknet: Open Source Neural Networks in C, 2013-2020.

[26] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You only look once:

Unified, real-time object detection. In The IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), June 2016.

[27] J. Redmon and A. Farhadi. Yolov3: An incremental improvement. CoRR,

abs/1804.02767, 2018.

[28] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards real-time

object detection with region proposal networks. IEEE Trans. Pattern Anal.

Mach. Intell., 39(6):1137–1149, June 2017.

[29] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,

A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei. Ima-

geNet Large Scale Visual Recognition Challenge. International Journal of

Computer Vision (IJCV), 115(3):211–252, 2015.

[30] I. Sergey and S. Christian. Batch normalization: Accelerating deep net-

work training by reducing internal covariate shift. In Proceedings of the

32Nd International Conference on International Conference on Machine

Learning - Volume 37, ICML’15, pages 448–456. JMLR.org, 2015.

[31] V. Sindhwani, T. N. Sainath, and S. Kumar. Structured transforms for

small-footprint deep learning. In Proceedings of the 28th International Con-

ference on Neural Information Processing Systems - Volume 2, NIPS’15,

pages 3088–3096, Cambridge, MA, USA, 2015. MIT Press.

43



[32] H. Song, P. Jeff, T. John, and W. J. Dally. Learning both weights and

connections for efficient neural networks. In Proceedings of the 28th Inter-

national Conference on Neural Information Processing Systems - Volume

1, NIPS’15, pages 1135–1143, Cambridge, MA, USA, 2015. MIT Press.

[33] H. Song, H. Mao, and W. J. Dally. Deep Compression: Compressing Deep

Neural Networks with Pruning, Trained Quantization and Huffman Cod-

ing. arXiv e-prints, oct 2015.

[34] T.-J. Yan, C. Yu-Hsin, and S. Vivienne. Designing energy-efficient convo-

lutional neural networks using energy-aware pruning. In The IEEE Con-

ference on Computer Vision and Pattern Recognition (CVPR), July 2017.

[35] H. Yang, K. Guoliang, D. Xuanyi, F. Yanwei, and Y. Yi. Soft filter pruning

for accelerating deep convolutional neural networks. In Proceedings of the

27th International Joint Conference on Artificial Intelligence, IJCAI’18,

pages 2234–2240. AAAI Press, 2018.

[36] G. Yiwen, Y. Anbang, and C. Yurong. Dynamic network surgery for effi-

cient dnns. In Proceedings of the 30th International Conference on Neural

Information Processing Systems, NIPS’16, pages 1387–1395, USA, 2016.

Curran Associates Inc.

[37] X. Zhang, J. Zou, K. He, and J. Sun. Accelerating very deep convolutional

networks for classification and detection. IEEE Trans. Pattern Anal. Mach.

Intell., 38(10):1943–1955, Oct. 2016.

[38] S. Zhou, Z. Ni, X. Zhou, H. Wen, Y. Wu, and Y. Zou. Dorefa-net: Training

low bitwidth convolutional neural networks with low bitwidth gradients.

CoRR, abs/1606.06160, 2016.

44



[39] L. Zhuang, L. Jianguo, S. Zhiqiang, H. Gao, Y. Shoumeng, and Z. Chang-

shui. Learning efficient convolutional networks through network slimming.

In The IEEE International Conference on Computer Vision (ICCV), Oct

2017.

45



요약

Systolic 배열에 기반한 심층 신경망 가속기는 적은 에너지 소비와 높은 처리를

가능하게 해준다. 그러나, 일반적인 systolic 배열의 구조는 신경망의 효율적인 압

축과 pruning을 어렵게 만든다. 두 최적화 방법들은 신경망의 시간복잡도와 저장

공간을 크게 감소시킨다. 본 논문에는, 심층 신경망 추론을 위한 FPGA 기반 고속

가속기인 AIX를 소개하고, systolic 배열을 위한 효율적인 pruning 방법에 대해서

탐구한다. 이 방법은 AIX의 실행 모델을 고려하며, 신경망의 크기를 줄여 나간다.

또한, 독립적으로 합성곱 신경망 층 내 고정된 크기의 블록을 제거함으로써, AIX

가속기의 합성곱 신경망의 실행시간을 직접적으로 단축시킬 수 있다. YOLOv1,

YOLOv2 및 Tiny-YOLOv2와 같은 대표적인 합성곱 신경망에 적용하였고, 제시

된 기술은 최신 압축률을 달성하였다. 그 결과, YOLOv2를 최소한의 정확도 손실

로 추론 시간을 1.6 배로 줄일 수 있습니다.

주요어: 합성곱 신경망, FPGA 가속기, Systolic 배열, 모델경량화, 아키텍처별 신

경망 Pruning

학번: 2018-29331

46


	Chapter 1  Introduction and Motivation
	Chapter 2  Background
	1 Object Detection
	1.1 mean Average Precision (mAP)
	1.2 YOLOv2

	2 AIX Accelerator
	2.1 Overview of AIX Architecture
	2.2 Dataflow of AIX Architecture


	Chapter 3  Implementation of Pruning on AIX Accelerator
	3.1 Convolutional Neural Network (CNN)
	3.2 Granularity of Sparsity for Pruning CNNs
	3.3 Network Compression for Channel Pruning
	3.4 CNN Pruning on AIX Accelerator
	3.4.1 Block-Granularity for Pruning
	3.4.2 Network Compression for Block Pruning


	Chapter 4  Adaptive Layer Sensitivity Pruning
	4.1 Overview
	4.2 Layer Sensitivity Graph
	4.3 Concept of Adaptive Layer Sensitivity Pruning Algorithm
	4.4 Discussion on Adaptive Layer Sensitivity Pruning Algorithm
	4.5 Compression for YOLOv2 multi-branches
	4.6 Fine-tune

	Chapter 5  Experimental Setup
	Chapter 6  Experimental Results
	6.1 Overall Results
	6.2 Effect of Adaptive Layer Sensitivity Pruning
	6.3 Comparision Adaptive vs Static Layer Sensitivity Pruning

	Chapter 7  Related Work
	Chapter 8  Conclusion and Future Work
	8.1 Conclusion
	8.2 Future Work

	Bibliography


<startpage>16
Chapter 1  Introduction and Motivation 1
Chapter 2  Background 4
 1 Object Detection 4
  1.1 mean Average Precision (mAP) 4
  1.2 YOLOv2 6
 2 AIX Accelerator 7
  2.1 Overview of AIX Architecture 7
  2.2 Dataflow of AIX Architecture 9
Chapter 3  Implementation of Pruning on AIX Accelerator 12
  3.1 Convolutional Neural Network (CNN) 12
  3.2 Granularity of Sparsity for Pruning CNNs 13
  3.3 Network Compression for Channel Pruning 15
  3.4 CNN Pruning on AIX Accelerator 16
   3.4.1 Block-Granularity for Pruning 16
   3.4.2 Network Compression for Block Pruning 18
Chapter 4  Adaptive Layer Sensitivity Pruning 19
  4.1 Overview 19
  4.2 Layer Sensitivity Graph 20
  4.3 Concept of Adaptive Layer Sensitivity Pruning Algorithm 22
  4.4 Discussion on Adaptive Layer Sensitivity Pruning Algorithm 23
  4.5 Compression for YOLOv2 multi-branches 24
  4.6 Fine-tune 26
Chapter 5  Experimental Setup 28
Chapter 6  Experimental Results 30
  6.1 Overall Results 30
  6.2 Effect of Adaptive Layer Sensitivity Pruning 31
  6.3 Comparision Adaptive vs Static Layer Sensitivity Pruning 33
Chapter 7  Related Work 35
Chapter 8  Conclusion and Future Work 37
  8.1 Conclusion 37
  8.2 Future Work 38
Bibliography 40
</body>

