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Abstract

Computer vision problems are best addressed by convolutional neural networks

(CNNs). These resource intensive algorithms require the use of specialised ac-

celerators when the application is particularly time critical or when power effi-

ciency plays an important role. Accelerators’ performance gains are reached at

the cost of generality. In this thesis, our target hardware is SKT’s AIX acceler-

ator designed for the execution of darknet CNNs. The presented work enables

the flexible execution of ONNX networks on AIX extending the accelerator’s

support to an additional framework. We will see the steps to take to map a very

different graph structure into that of the accelerator and how we still achieve

partial acceleration of networks containing unsupported operations. Running

ONNX networks on AIX through our project yields very close results to native

execution on ONNXRuntime. Indeed, we reach a 98% top-1 prediction match

on a CIFAR10 sample.
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Chapter 1

Introduction

The recent improvements made around machine learning and the performance

of GPUs lead to a major development of computer vision. With various appli-

cations in sectors of autonomous driving, security and health for example, the

interest of businesses in computer vision is increasing. GPUs became very good

at executing and training deep neural networks (DNNs) but in certain partic-

ularly time critical scenarios or when power efficiency plays a major role, they

are outperformed by accelerators. However, accelerators’ performance gains are

reached at the cost of generality.

The work we will present in this thesis is part of a project with SKT. One of

their teams is developing such an neural network accelerator referred as AIX.

Targeted at computer vision, it mainly aims to accelerate CNNs.

Machine learning’s gain in popularity also lead to the emergence of various

different frameworks, each having their own specificities. This multitude of stan-

dards does not match well with the restrictive architecture of an accelerator.

In addition to its performance, an accelerator should however support popular
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frameworks to be attractive.

After introducing some related concepts, we will explain how we proceed to

extend the accelerator’s support to a new framework by properly mapping the

original graph into required format. We also present how will are still able to

accelerate networks containing unsupported operations with our flexible execu-

tion approach. We will then show how we evaluate our project and what results

it yields.
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Chapter 2

Background

2.1 Convolutional Neural Networks for Computer Vi-

sion

A convolutional neural network (CNN or ConvNet) is a neural network con-

taining at least one convolutional layer. This type of network is well suited to

address computer vision problems as they take advantage of weight reuse to

process the large input. CNNs are usually multistage networks and therefore

also belong to the deep neural network (DNN) category.

The first major application of CNNs in computer vision surely is the recog-

nition of numbers in ZIP Codes by LeCun et al. using a three stage CNN [12]

in 1989. This structure evolved from earlier works like the neocognitron [3] ap-

plied to signal processing and the studies of the visual cortex of animals [7] [8].

CNNs have since improved and became much deeper (more layers). Networks

like ResNet [6] for classification or YOLO [16] for object detection perform

astonishingly well in their respective fields.

3



We will now go over the different operations commonly used in CNNs and

introduce the related vocabulary. The following explanations are based on [13]

and [4]

2.1.1 Feature Maps

In this text, we will refer to feature maps (FM) as the multidimensional data

tensors between the CNN layers. A layer takes an input feature map and pro-

duces an output feature map. In computer vision, the network’s input is the set

of pictures to process. The output is the network’s prediction.

For CNNs, feature maps are generally 4 dimensional. Let us look more

closely at the network’s input for a moment. An image is represented as three

two dimensional arrays containing the respective RGB value for each pixel. We

call each of this two dimensional arrays a channel. CNNs can process batches

of multiple images at a time, adding a 4th dimension to the feature map. Note

that in certain papers, the authors refer to individual channels as feature map.

Feature maps are also referred to as activations.

2.1.2 Convolutions

As the name suggests, convolutional layers are the main component of CNNs.

They represent the computational core of this type of networks, extracting

certain features from their input independently of the position. They are a

more efficient version of the usual fully connected layers thanks to shared the

sharing of parameters (the same weights are used for multiple outputs) and the

sparse connectivity (an output depends only on a portion of the input, not its

entirely).

The following explanation can be visualised in figure 2.1. A convolution is

composed of N filters. Each filter is applied to the entire input feature map and
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Figure 2.1: Visual representation of CNN vocabulary

yields one of the output feature map’s channel. So the ouput feature map will

have N channels. If an input feature map has C channels, each filter will have

C two dimensional kernels of H ×W weights. The height H and the width W

are constant across the whole layer, typically 3× 3. Thus, a convolutional layer

also has C channels composed of the kernels at a given index from each filter.

A layer contains N × C ×H ×W weights and N biases, one for each filter.

Let ibchw, respectively obchw, be the value from the input, respectively out-

put, feature map in the bth batch, the cth channel, in the hth row and the wth

column. Similarly, let wnchw be a given layer’s weight in the nth filter, the cth

channel, in the hth row and the wth column and bn the bias of the nth filter.

The formula used to compute an output pixel is the following:

obkij = bk +
C−1�

c=0

H−1�

h=0

W−1�

w=0

wkchw × ibc(i−H/2)(j−H/2)

Zero padding is applied on the edges of the input channels to preserve the

feature map dimension. The convolutional operation can be seen in figure 2.2. To
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compute an output pixel, the weights of the corresponding filter are multiplied

with the matching input pixels (the input pixels from all channels at the same

position i, j as the computed output pixel, as well as the neighbouring ones to

match the layer’s kernel size). These products are summed together and finally

the filter’s bias is added.

  

output feature mapconvolutional layerinput feature map

* =

Figure 2.2: Visual example of a convolution layer’s computation. The filters’

channels match the input channels. Each filter generates one output channel by

sliding over the entire input. The color code shows three examples of where the

generating filter is applied to the input to compute a given output pixel.

2.1.3 Batch Normalisation

Batch normalisation [9] has been introduced in 2015 and has since received

broad acceptance. The reasons behind are still debated over but the observed

improvements are incontestable. Batch Normalisation consists in normalising

the output of convolutional layers between batches or mini batches during train-

ing. In addition to that, a trainable mean and scale were added to it. This greatly
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speeds up the training. During back propagation (training), the parameters are

updated assuming that the rest of the parameters remain constant. This is not

true however. All parameters are updated simultaneously. By normalising the

outputs of convolutional layers, the influence of the other parameters (called in-

ternal covariate shift) is mitigated. Normalisation also makes the network more

general greatly reducing overfitting. For example, the difference between two

pictures with different lighting is greatly reduced through this operation.

It is now used in most convolutional networks and has opened the door to

even deeper layers since their training time has now become acceptable.

2.1.4 Activation Functions

Activation functions, also referred to as non-linear functions or layers, are ap-

plied to the outputs of convolutions. They are used to simulate the firing rate

of neurons in biological brains. The sigmoid was initially used to serve that

purpose. Architectures shifted to tanh instead and now the rectified linear unit

(ReLU, figure 2.3a) is mostly used. Its great speedup of training by accelerating

convergence and its cheap computational cost made it stick out compared to its

predecessors. Is simply computes f(x) = max(0, x). Alternatives like the leaky

ReLU or PReLU are also commonly used to address some of ReLU’s drawbacks.

2.1.5 Pooling and Subsampling

Pooling layers are used to make the network less sensitive to small translations

of the input. Maxpooling is most commonly used. It moves over the input with

a given window (typically 2 × 2) and keeps only the maximal value of the

neighbourhood. Alternatives are average pooling or L2. It enables to detect the

presence of a certain feature in a certain area rather than an exact spot.

An aspect strongly associated with pooling is subsampling. It consists in
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(a) The most common activation func-

tion, ReLu function: f(x) = max(0, x)
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0.8 0.9

0.7 0.6maxpooling

(b) Demonstration of maxpooling with

a window of 2× 2 and a stride of 2.

Figure 2.3: Activation and pooling examples

sliding the pooling window with a stride bigger than one, reducing data over-

lapping and focusing on the most important values (figure 2.3b). This also

reduces the computational complexity of the following layers as it reduces the

height and width of the feature map.

The notion of subsampling is easier to understand with maxpooling but can

also be applied during convolutions by increasing the stride of the filters over

the input.

2.2 Open Neural Network Exchange

Open Neural Network Exchange or ONNX [2] is an open source machine learn-

ing format. It is probably easiest to keep the description of its creators:

ONNX is an open format built to represent machine learning mod-

els. ONNX defines a common set of operators - the building blocks

of machine learning and deep learning models - and a common file

format to enable AI developers to use models with a variety of frame-

works, tools, runtimes, and compilers.

It enables to easily convert networks between frameworks. It is not intended
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for the training or the designing of networks. ONNX instead focused on infer-

ence and flexibility. As stated, this format relies on simple operators instead of

complex layers. The graph and its parameters are saved in a single file. ONNX’s

structure is defined in Google’s protocol buffer (protobuf) [5]. ONNX graphs

can easily be visualised with tools like Netron [17]. A simple example is shown

in figure 2.4.

Figure 2.4: A simple ONNX example visualised with Netron [17]

2.3 SKT’s Custom Accelerator: AIX

The neural network accelerator AIX [1] is developed by SKT. Its design is tightly

linked to Darknet [15]. A graph structure defined in protobuf serves as high level

interface. This graph is then compiled into a command graph scheduled across

the accelerator’s different units. AIX’s architectere overview is shown in figure

2.5.
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Figure 2.5: High level architecture of the AIX accelerator. The data in the

tensor caches are divided into blocks that match the rows and columns of the

MXC processor.

The matrix multiplication and convolution (MXC) unit is a systolic array

designed to efficiently process 2D convolutions and perceptron layers and plays

a key role in AIX’s acceleration abilities. Under the right conditions, it can

process a convolution, a normalisation, an activation function and a pooling

operation without intermediate accesses to DRAM. The dynamic command

scheduler (DCS) orchestrates the other components by scheduling independant

tasks in parralel as well as tracking components availability and command com-

pletion statuses. The upper data receive (UDR), left data receive (LDR) and left

data transport (LDT) units are direct memory access (DMA) engines reading

(receive) from or writing (transport) to the DRAM. The left tensor cache (LTC)

and upper tensor chache (UTC) serve as buffers to the MXC to avoid stalling.

They are flushed and refilled with data while the MXC unit processes their
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previous content. The UTC holds the network’s parameters, typically weights

or biases, while the LTC contains tiles of the feature maps (intermediate results

between layers).
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Chapter 3

Design

In this section, we will look at the design of the presented work without going

into the technical details (next chapter).

3.1 Overview

SKT’s AIX hardware is tightly linked to darknet and only supports this frame-

work for now. Our objective is to extand AIX to ONNX, ie. enable the execution

of ONNX networks on AIX. However, as we mentioned earlier, ONNX struc-

ture relies on simple operators rather then complex all-in-one layers. This large

variety of basic operators is great for versatility and multi-framework support.

But when the target is a restrictive accelerator, they add a lot of complexity.

In figure 3.1, we can see how nodes in the original darknet and ONNX graphs

need to be merged differently to form the proper AIX corresponding nodes.

Another issue with the multitude of operators is that it possible to get

the same result with different manners. This variety also enables less standard

12



designs which leads us to the next part.

  

AIXLayer#0 type lists
- type = AIX_LAYER_CONVOLUTION
- type = AIX_LAYER_MAXPOOL
 - preds = 
 - succs = 1,

AIXLayer#1 type lists
- type = AIX_LAYER_CONVOLUTION
- type = AIX_LAYER_MAXPOOL
 - preds = 0,
 - succs = 2,

AIXLayer#2 type lists
- type = AIX_LAYER_CONVOLUTION
 - preds = 1,
 - succs =

Figure 3.1: Graph mapping illustration. From Left to write, we can see repre-

sentations of darknet, AIX and ONNX graphs.

3.2 Operator Support and Graph Division

AIX focuses on the acceleration of CNN’s common and heavy computational

parts. It has good support for convolutions, normalisation, activation layers and,

in a certain extend, pooling layers. This parts are very similar across different

networks. However, final layers targeted towards the classification or detection

output are less uniform between networks and frameworks. Even in the com-

pany’s support of darknet, final layers are executed in the native framework

and not on AIX.

When executing ONNX networks on AIX, running certain parts of it in the

13



native framework is therefore inevitable. In addition to special final layers, some

ONNX network overall contain unsupported operators. To address this issue,

we need to take a flexible approach.

When translating an ONNX network, we first analyse the graph and split it

into groups of consecutive nodes that run on the same backend. We then create

subgraphs out of those groups to meet their respective backend requirements.

Subgraphs share a common interface independently of their execution platform.

We will cover the details in chapter 4. An example of graph division according

to operators’ support can be seen in figure 3.2.

  

Supported operator

Unsupported operator

AIX Subgraph

ONNX Subgraph

Figure 3.2: Example of graph division according to the operators’ AIX support.

Once the graphs created, they can be executed independently. We handle the

order of execution and manage the overall dataflow by forwarding the outputs

of subgraphs as the inputs of the subgraphs that need them. Once all subgraphs

are executed, we get the final output as if the network ran in one go.
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Chapter 4

Implementation

4.1 Project Architecture

Figure 4.1 gives as an overview of the project’s architecture. onnx2mxconv.py is

the main file. It contains the implementations of the AIXRunner class which is

responsible for the initial graph analysis and splitting, the SubGraph classes and

the IntermediateNode class. onnx utils contains a number of helper functions

that help interact with and navigate ONNX graphs. aix graph.cc contains the

AIX class that creates and runs the AIX graph given parameters from ONNX.

You notice here that the AIX API and the code that interacts with it is

in written in C/C++. The rest of the project is however in Python because

ONNX’s main API is in Python as well as MLPerf [14] that is a target ap-

plication of the project once completed. MLPerf is an emerging benchmark to

compare the performance of different machine learning hardware.

To bridge the code between languages, we made a custom Python mod-

ule from the AIX C/C++ code. To achieve that, we used pybind11 [10] and

15
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onnx2mxconv.py

aix_graph.cc
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onnx_utils.py

Figure 4.1: Overview of the project’s architecture.

setuptools. These tools make the link between C and Python objects and to

compile the C code into a shred library. The shared library can then be import

in Python like any other module. Since the AIX API and the related simulator

code is a big project, creating the module was tricky. All necessary files needed

to be included properly while keeping it to the minimum. All the relative paths

needed to be reflected during compilation. There were also several library com-

patibility issues with protobuf and ONNX. But once all these points addressed

after quite a bit of trial and error, our custom module was ready for use and

the C/Python interaction worked seamlessly.

On a side note, there was one interaction between C and Python that re-

sulted in incorrect results and took a long time to identify and fix. In the code

invoking the AIXRunner we do some preprocessing on the input image using

NumPy. On of those steps was to transpose the input array’s dimension to

match the network’s requirements/ However, when transposing dimensions in

NumPy, the data in memory doesn’t change. NumPy simply changes the dimen-

sions’ stride and therefore accesses the expected data. We then give a pointer to

this data to read in C. There, the data is in its original disposition and data is

16



not accessed in the desired manner. Considering that there were a lot of other

places the incorrect output could have come from, getting behind this took a

considerable amount of time.

4.2 Graph Division: Ready Queue Exploration

As seen in the previous chapter, we need to split the original ONNX graph into

subgraphs since certain operators can not be executed on AIX. Now would be

a good time to talk a little about the way an ONNX graph is organised. An

ONNX network is composed of metadate (like the version of the network, the

used ONNX operator version etc.) and more importantly its graph. The graph

itself is composed of:

• A list of nodes: each node is an operator. It is defined by its type, its

name, its attributes (stride, padding, etc.). A node also contains a list of

the names (strings) of its inputs and one for its output.

• A list of inputs: the classification of what is called an input is a little

strange in ONNX. This list contains the graph’s input (typically the input

image) as well the parameter inputs for each node (weights, biases and so

on) but not the intermediate activations. An input is defined by its data

type and its shape.

• A list of initializers: Initializers contain the data of the networks param-

eters that do not depend on the input such as weights and biases. In

addition to the data type and the shape, initializers contain the actual

data.

• A list of outputs: As mentioned, the graph does not contain the inter-

mediate activations’ structure so this list only contains the graph’s final

17



outputs.

Figure 4.2 shows a visualisation of this structure. Since nodes store the names

of their inputs and parameters rather then their index or the actual object, ac-

cessing the graph’s different elements isn’t very straightforward. The functions

in onnx utils.py help address that issue. For example, they return the index of

an object of a given name.

  

network

metadata graph

node input initializer output

op_type

inputs

attributes

outputs

dtype

shape

dtype

shape

data

dtype

shape

Figure 4.2: Visualisation of ONNX’s network structure.

Now that we understand the ONNX structure a bit better, let us see how

split divide it. We use a form of ready queue keeping track of the backend we

are currently grouping for. First of all, we add all nodes that have the graph’s

input as an input to a list we will call frontier. To that frontier, we append

all nodes that do not have a predecessor so that they are not forgotten during

exploration. This can happen in ONNX networks when constants are fed into

certain operators.

From there on, we take the first node in the frontier, and check its AIX
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support. We define a static list of operator types that are always support. If

the node doesn’t correspond to on of those, we check we check if it matches the

conditions in which certain operators can run on AIX. Otherwise, the node will

run on ONNX.

If the subgraph type is not set, we set it to the backend of the current node.

If the node doesn’t match the current subgraph type, we move on to the next

node in the frontier. For nodes that match the subgraph type, we check if all its

predecessors have been explored. If so, we had the current node to the explored

node list and its successors to the front of frontier. Otherwise, we move to the

next node in the frontier. We push them to the front to encourage consecutive

execution. We do so until we reach the end of the frontier. If we reached the

end and there are still unexplored nodes, we change the subgraph type to the

other backend. Otherwise, we are done.

We explore the graph this way, packing as many nodes together and swap-

ping backends when necessary. Once no more nodes can be added to a given

group, we create the corresponding subgraph and move on to the next. Now

that the graph is divided into subgraphs, we will see how they are created.

4.3 Object Oriented Approach for Common Subgraph

Interface

In order to offer a common interface for subgraphs of different types, we take an

object oriented approach. We first define an abstract base class that defines a

set of function that need to be overwritten by its subclasses (simply create() and

run()). The base class also takes care of some common initial processing such

as determining the input and output nodes from the original graph and given

node group to from the subgraph. We then create two specialised subclasses,
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one for each backend.

The subclass responsable for ONNX subgraphs is relatively easy. It creates

a new ONNX model from the original one that contains only the given group

of nodes. We run though the node list, copying the nodes and their inputs and

parameters. We also copy the outputs from the original graph if the subgraph

contains any. Once the copy of the existing elements done, we need to add the

subgraph’s new inputs and outputs. As we saw, ONNX graphs do not contain

structures for intermediate activations. For the new inputs, we use the name

and dimensions of the outputs of preceding subgraphs. For new outputs, we use

the shape inference tool of ONNX to determine the outputs’ dimensions. For

the execution, we simply run the newly created ONNX model on the native

ONNXRuntime.

Creating AIX subgraphs is obviously more complicated. In order to map the

simple operators of ONNX into complex AIX layers, we pass through an inter-

mediate graph. A single AIX layer can perform a convolution, normalisation,

activation and pooling. Nodes of the intermediate have a field for each of these

categories plus a misc field to store more particular operation such as residual

layers that cannot be merged. We run through the list of ONNX operators that

are to form the subgraph and try to add them to a buffer intermediate node.

For each operator, we determine to which category they belong and check if

they can be merged with the buffer node. If so, we add it to the appropriate

field of the buffer node and update its list of predecessors and successors. If

the operator cannot be merged (start of a new layer, non consecutive operator,

etc.), we add the buffer node to the intermediate graph and create a new node

to fill. Due to the way we explored the graph in the earlier stages, operators

that can be merged will already be consecutive in the node list so we can simply

move through the list in order. While adding the operators to the intermedi-
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ate nodes, we keep track of the predecessors and successors with their ONNX

indexes. Once we added all the operators to the intermediate graph, we run

through the nodes to set the predecessor and successor lists to AIX indexes. At

this stage, we have an intermediate graph formed of AIX-like nodes ready.

We can now convert each intermediate node into a AIX layer. We run

through the intermediate graph one more time. For each node, we extract the

parameters from the ONNX operators they are formed from. We then use the

functions defined in our custom module to create AIX layers and define their be-

haviour by transferring the needed parameters. In some cases, parameters need

to be adjusted to match AIX’s requirements (prioritized dimensions for padding

for example). For each layer, we compute the output dimensions from the in-

put knowing the behaviour of different operations. We also define the subgraph

input and output layers and fix addresses in memory where they should read

from and write to. AIX quantizes weights and activations to further speedup

execution. Float32 values are quantized to int8. Obviously, this reduces the pre-

cision of the computation as it limits the number of values we can represent

for a given range. To reduce the precision loss, we calibrate the AIX graph.

We create so called calibration tables by running a sample of input images and

saving the min and max values of each activations. With this information know

in advance, we need to represent a smaller range and can thus decrease the gap

between quanti. If we can represent 255 values, it is easy to understand that

we can represent values between 0 and 5 more precisely than between 0 and

100 for example. The AIX graph is now ready to be compiled into a command

graph for the hardware.
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4.4 Handling the Data Flow

All subgraphs are now created and ready to be executed independently. We use

Python’s dictionary structure to properly forward the data between subgraphs.

Each subgraph keeps a list of its input names and output names. So if we use

these names as keys to the items of the dictonary, we can easily keep track of

what is saved where. We store the data as NumPy multidimensional arrays. We

give each subgraph a dictionary containing its needed inputs and the subgraph

returns its outputs in the same way. The way we explored the graph initially

and created the graphs make the inputs will always be ready in time if we

execute the subgraphs in order.

4.5 Working with a Custom Tool under Development

AIX is still under development. It is an in house product designed by SKT.

Documentation and clear explanations were therefore very difficult to come by.

To understand how to create AIX graph, I first went through the translation

from darknet to AIX. Since these two graph structures were very similar, it only

gave me partial guidance on how to proceed in the case of ONNX. As stated

before, AIX is fairly restrictive. However, these requirements are not properly

defined. Creating this translator required a lot of trial and error. The only way

to find out I was not meeting a condition was at runtime, when the compilation

of the AIX graph to the command graph aborted due to an error. I then had to

look into the simulator’s source code to find out what the requirement was. In

addition to this lack of transparency, the API changed drastically a few times

during the project requiring to basically start all over. It is safe to say that the

development of this ONNX translator was done in less than optimal conditions.
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Chapter 5

Test Setup

5.1 CIFAR10

CIFAR-10 [11] is a relatively simple classification dataset. It is composed of

60000 32×32 images. The images a labelled with one of the 10 exclusive classes.

The classes and a image sample can be seen in figure 5.1.

We chose this dataset for its simplicity and the ability to quickly design and

train a network that solves it fairly well. The prediction part is necessary to

evaluate our work as we simply try to reproduce the same results as an ONNX

run. But while comparing the geometric distance between the output tensors

might be a more accurate criteria, it does not really speak to us. So we decided

to show the comparison of the top-1 predictions of the same network run on

AIX and ONNX over a sample.
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Figure 5.1: CIFAR-10 sample.

5.2 Prototyping and Converting Test Networks

As stated, ONNX is not a prototyping framework. It focuses on conversion

and execution. We used Pytorch to design and create our networks. Once the

network ready, the conversion to ONNX is easy since there are built-in Pytorch

functions for that. We designed a set of test networks of increasing complexity

but for the reason stated above, we will here talk about the one we designed

for CIFAR-10.

While prototyping this network, we made the structure so that we could

make an equivalent network in Darknet for debugging purposes. The network is

composed of 4 standard stages of convolution, normalisation, ReLU and max-
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pooling. The last standalone convolution replaces a fully-combined layer when

combined with the average pooling operator. The activation is reshape into a

2D array [B, 10] where B is the number of batches. We know have a value for

each class. The softmax function normalizes the activation so that the sum is

one. The output results can then be interpreted as the predicted likelyhood how

the picture to belong to a certain class. After training, we reach a 70% top-1

accuracy. Eventhough the ONNX prediction does not need to be right for us to

evaluate the AIX output, it does make things more interesting.

  

x4

Figure 5.2: Test network.
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Chapter 6

Results

The results of the execution of the CIFAR-10 sample on AIX and ONNX are

shown in fogure 6.2. The presented sample contains 100 images, 10 for each

class. The class of the images is indicated above each list of indices ranging

from 1 ot 10. We then have the prediction of then network run on AIX and

ONNX. We show the top-1 predicted class and the confidence of the prediction.

A green colored index cell means that the ONNX and AIX execution pre-

dicted the image to be in the same class. Red indicates a mismatch. Blue cells

indicate that the top-1 prediction is correct. Yellow means an incorrect pre-

diction. These two latter criteria are not prevalent however. Our prototyped

network does not aim to be very accurate. The goal of the project is simply to

reproduce ONNX results as best as possible when run on AIX. In that regard,

we can see that we perform well. 98% of the images are classified identically. In

addition to that, the confidence rates are also very close.

You might ask why results are different in the first place. It is due to the fact

that AIX quantizes the networks parameters and the activations. As we men-
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tioned earlier, the error due to quantization can be greatly mitigated through

calibration. Indeed, without calibration, we only reach a 29% match rate be-

tween ONNX and AIX executions. The match rate comparison with and without

calibration can be seen in figure 6.1

(a) ONNX/AIX match rate on sample with calibration.

(b) ONNX/AIX match rate on sample without calibration.

Figure 6.1: Effects of calibration on the translation’s match rate. Green means

AIX and ONNX classified an image identically. Red indicates a mismatch.
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Top-1 class Confidence Top-1 class Confidence Top-1 class Confidence Top-1 class Confidence

airplane AIX ONNX automobile AIX ONNX

1 airplane 100 airplane 100 1 automobile 99.93 automobile 99.93

2 airplane 99.96 airplane 99.94 2 automobile 98.91 automobile 98.68

3 airplane 99.99 airplane 99.99 3 horse 47.61 horse 43.3

4 airplane 100 airplane 100 4 automobile 94.67 automobile 91.34

5 airplane 99.95 airplane 99.92 5 automobile 100 automobile 99.99

6 airplane 97 airplane 97.38 6 truck 98.33 truck 98.97

7 airplane 99.98 airplane 99.98 7 automobile 99.94 automobile 99.95

8 horse 61.16 horse 55.32 8 automobile 99.89 automobile 99.86

9 airplane 57.09 ship 69.42 9 automobile 84 automobile 80.81

10 airplane 100 airplane 100 10 automobile 99.97 automobile 99.97

bird AIX ONNX cat ONNX ONNX

1 bird 72.44 bird 80.45 1 deer 99.43 deer 99.46

2 airplane 64.14 airplane 68.1 2 dog 65.45 dog 67.23

3 frog 64.74 frog 57.51 3 deer 74.31 deer 68.34

4 bird 99.99 bird 99.99 4 ship 73.98 ship 67.56

5 frog 77.13 frog 76.71 5 deer 99.06 deer 99.13

6 bird 100 bird 100 6 deer 99.44 deer 99.35

7 bird 97.98 bird 98.44 7 frog 66.1 frog 69.76

8 horse 66.06 horse 61.43 8 bird 78.53 bird 73.85

9 bird 100 bird 100 9 frog 100 frog 100

10 bird 99.98 bird 99.99 10 bird 48.6 bird 50.94

deer AIX ONNX dog AIX ONNX

1 deer 98.33 deer 99.02 1 dog 100 dog 100

2 deer 99.99 deer 99.99 2 bird 99.22 bird 99.22

3 deer 100 deer 100 3 dog 70.56 dog 79.85

4 horse 75.89 horse 75.19 4 dog 100 dog 100

5 deer 99.02 deer 98.95 5 dog 99.72 dog 99.79

6 deer 99.98 deer 99.98 6 frog 50 dog 55.93

7 horse 87.47 horse 78.92 7 dog 99.53 dog 99.61

8 deer 99.92 deer 99.93 8 dog 100 dog 100

9 deer 100 deer 100 9 dog 99.64 dog 99.77

10 frog 90.95 frog 85.54 10 horse 99.97 horse 99.95

frog AIX ONNX horse AIX ONNX

1 frog 99.28 frog 98.49 1 horse 99.99 horse 99.98

2 frog 99.92 frog 99.83 2 horse 99.99 horse 99.98

3 frog 99.97 frog 99.99 3 horse 100 horse 100

4 frog 100 frog 100 4 horse 98.79 horse 98.78

5 frog 99.99 frog 99.98 5 horse 99.65 horse 99.51

6 frog 100 frog 100 6 horse 100 horse 100

7 frog 100 frog 100 7 horse 96.96 horse 95.37

8 frog 99.98 frog 99.98 8 horse 82.09 horse 74.65

9 frog 99.92 frog 99.87 9 frog 46.6 frog 58.38

10 frog 99.16 frog 98.71 10 deer 74.15 deer 74.69

ship AIX ONNX truck AIX ONNX

1 ship 100 ship 100 1 truck 91.27 truck 94.88

2 ship 89.02 ship 93.59 2 truck 99.88 truck 99.82

3 ship 99.98 ship 99.98 3 truck 94.29 truck 91.98

4 ship 99.08 ship 99.03 4 truck 99.79 truck 99.69

5 ship 59.91 ship 60.88 5 truck 68.57 truck 72.95

6 ship 96.14 ship 98.26 6 ship 99.99 ship 99.98

7 ship 100 ship 100 7 truck 94.47 truck 89.46

8 airplane 99.28 airplane 99 8 truck 99.82 truck 99.7

9 ship 91.17 ship 95.23 9 truck 99.03 truck 98.93

10 ship 100 ship 100 10 truck 99.52 truck 99.72

Figure 6.2: Detailed results
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Chapter 7

Conclusion

In the presented work, we explained how we proceeded to extend AIX’s support

to ONNX networks. Since the accelerator was initially designed for a very dif-

ferent network structure, transforming ONNX graphs into AIX graphs was not

straightforward. We saw how we merged simple ONNX operators into complex

AIX-like layers. From there, we interacted with AIX’s API to actually create

the appropriate objects, adapting some parameters to meet the accelerators

requirements if necessary.

In order to be able to accelerate parts of networks that contain unsupported

operators, we adopted a flexible approach. Unsupported operators are executed

in the native ONNXRuntime framework on the CPU or GPU why computa-

tionally heavy operations can still be accelerated on ONNX. To achieve this, we

divide the graph into backend specific subgraphs sharing a common interface

for smooth interaction.

We designed a test network trained to solve CIFAR-10’s classification prob-

lem. We showed that after calibrating the network to mitigate AIX’s quan-
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tization precision loss, we achieve very comparable results when running the

network on AIX and ONNXRuntime. Indeed, we reach a 98% top-1 prediction

match rate on a random sample.
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요약

컴퓨터 비전 문제는 합성곱 신경망을 통해 가장 잘 해결된다. 이러한 리소스 집약

적 알고리즘은 특히 애플리케이션이 수행 시간과 전력 효율을 중요시할 때, 특수

가속기를사용하여수행되어야한다.이와같은가속기들은성능향상을위해일반

성을저하시켜야하는한계를가진다.이논문에서우리의대상하드웨어는다크넷

합성곱 신경망의 실행을 위해 설계된 SKT의 AIX 가속기이다. 이 논문을 통해 제

안하는방법을통해 AIX에서 ONNX네트워크를유연하게실행할수있으며,이는

가속기의 지원을 다양한 프레임워크로 확장한다. 우리는 신경망의 그래프 구조를

가속기가 가지는 다른 형태의 구조로 매핑하기 위해 취해야 할 단계와 지원되지

않는 작업을 포함하는 신경망의 부분 가속을 어떻게 달성하는지 살펴볼 것이다.

본 프로젝트에서 제안하는 방법을 통해 AIX에서 ONNX 네트워크를 실행하면

ONNXRuntime에서 수행되는 기본 실행과 매우 가까운 결과를 얻을 수 있다. 실

제로, 우리의 결과는 CIFAR10 샘플에서 98%의 top-1 일치율을 보인다.

주요어: 컴퓨터 비전, 심층 신경망 가속, 심층 신경망 번역

학번: 2018-25262
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