

저 시-비 리- 경 지 2.0 한민

는 아래 조건 르는 경 에 한하여 게

l 저 물 복제, 포, 전송, 전시, 공연 송할 수 습니다.

다 과 같 조건 라야 합니다:

l 하는, 저 물 나 포 경 , 저 물에 적 된 허락조건
 명확하게 나타내어야 합니다.

l 저 터 허가를 면 러한 조건들 적 되지 않습니다.

저 에 른 리는 내 에 하여 향 지 않습니다.

것 허락규약(Legal Code) 해하 쉽게 약한 것 니다.

Disclaimer

저 시. 하는 원저 를 시하여야 합니다.

비 리. 하는 저 물 리 목적 할 수 없습니다.

경 지. 하는 저 물 개 , 형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

M.S. THESIS

Automatic Generation of Efficient Execution

Plan for Convolutional Neural Networks

합성곱 신경망의 효율적인 실행을 위한 실행 계획 자동 생성

AUGUST 2020

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

COLLEGE OF ENGINEERING

SEOUL NATIONAL UNIVERSITY

김민수

M.S. THESIS

Automatic Generation of Efficient Execution

Plan for Convolutional Neural Networks

합성곱 신경망의 효율적인 실행을 위한 실행 계획 자동 생성

AUGUST 2020

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

COLLEGE OF ENGINEERING

SEOUL NATIONAL UNIVERSITY

김민수

Automatic Generation of Efficient Execution Plan for

Convolutional Neural Networks

합성곱 신경망의 효율적인 실행을 위한 실행 계획 자동

생성

지도교수 Bernhard Egger

이 논문을 공학석사 학위논문으로 제출함

2020 년 06 월

서울대학교 대학원

컴퓨터 공학부

김 민 수

김민수의 공학석사 학위논문을 인준함

2020 년 06 월

위 원 장 박 근 수 (인)

부위원장 Bernhard Egger (인)

위 원 Srinivasa Rao Satti (인)

Abstract

Over the past years, a large number of architectures and accelerators for Deep

Neural Networks (DNNs) have been proposed. While exhibiting common fea-

tures, the number and arrangement of processing elements, the sizes and types

of on-chip memory, and the possibilities of parallel execution vary significantly

especially in the embedded system domain. The number of off-chip memory ac-

cesses and the performance of a DNN on a given accelerator depends not only

on the supported computational patterns and the available on-chip memory

but also on the sizes and shapes of each layer. Finding a computational pat-

tern that minimizes off-chip memory accesses while maximizing performance

is thus a tedious and error-prone task. This thesis presents e-PlaNNer, a com-

piler framework that generates an optimized execution plan for a given em-

bedded accelerator and Convolutional Neural Network (CNN). For each layer,

e-PlaNNer determines the performance-optimal configuration by considering

the data movement, tiling, and work distribution. The generated execution

plan is transformed to code, allowing for a fast development cycle with dif-

ferent CNNs and hardware accelerators. Evaluated with five neural networks

under varying memory configurations and compared to previous works on the

Nvidia Jetson TX2, e-PlaNNer achieves 6× speedup and 21.14 % reduction

of off-chip memory access volume on average. In addition, e-PlaNNer shows

meaningful performance compared to well-known deep learning frameworks in

terms of end-to-end execution.

Keywords: Convolutional Neural Network, Compiler, Execution Plan

Student Number: 2018-22990

i

Contents

Abstract i

Contents iii

List of Figures v

List of Tables vii

Chapter 1 Introduction 1

Chapter 2 Related Work 5

Chapter 3 Background 8

3.1 Convolutional Neural Networks 8

3.2 DNN Accelerator . 9

3.3 Roofline Model . 11

Chapter 4 Graph Level Processing 13

4.1 Graph Construction . 13

4.2 Schedule Caching . 14

Chapter 5 Convolutional Layer Analysis 15

iii

5.1 Loop Structure . 16

5.2 Loop Tiling . 17

5.3 Dataflow . 18

Chapter 6 Execution Planning 20

6.1 Architecture Configurations . 20

6.2 Modeling Off-Chip Memory Accesses 22

6.3 Modeling Performance . 24

6.4 Search Space Exploration . 25

Chapter 7 Code Generation 32

7.1 Intermediate Representation . 33

7.2 Target Code Generation . 34

Chapter 8 Evaluation 36

8.1 Experimental Setup . 36

8.2 Performance Results . 39

8.3 Comparison of Off-chip Memory Access 40

8.4 Framework Results . 42

Chapter 9 Discussion 46

Chapter 10 Conclusion 47

Bibliography 47

요약 57

iv

List of Figures

Figure 1.1 Overview of e-PlaNNer framework processing. 3

Figure 3.1 A convolutional layer . 9

Figure 3.2 General loop structure of a convolutional layer 9

Figure 3.3 A common architecture of DNN accelerator. 10

Figure 3.4 The roofline model. 11

Figure 4.1 Directed acyclic graph in e-PlaNNer. 14

Figure 5.1 Tiled loop structure for a convolutional layer on a generic

CNN accelerator. 16

Figure 5.2 Roofline analysis of tilings for VGGNet-16’s 9th convolu-

tional layer. 17

Figure 5.3 Data reuse patterns for the off-chip and the on-chip loop

nest. 18

Figure 6.1 Example of Hardware Configuration File 21

Figure 6.2 Abstract representation of a CNN accelerator. 21

Figure 6.3 Correlation between the performance from e-PlaNNer

and Nvidia Jetson TX2 [1]. 26

v

Figure 6.4 Search space pruning through loop transformations. . . . 27

Figure 6.5 Search space after pruning. 31

Figure 7.1 An example of intermediate representation for convolu-

tional layer. 33

Figure 7.2 Example of generated CUDA code 35

Figure 8.1 Speedup of e-Planner generated plans relative to the re-

lated works with fixed execution rules. 39

Figure 8.2 Comparison of off-chip memory access volume. 41

Figure 8.3 Off-chip memory access volume for each layer of VGGNet-

16 with Setup A. 42

Figure 8.4 Reduction of e-PlaNNer scheduling time by caching. (Setup

A) . 43

Figure 8.5 Comparison of end-to-end inference latency to well-known

deep learning frameworks. 44

vi

List of Tables

Table 2.1 Comparison with related works in terms of modeling and

exploration method. 7

Table 4.1 The number of scheduled layers before & after caching. . 14

Table 8.1 Representative CNNs for the experiment. 36

Table 8.2 Evaluated memory configurations. 37

Table 8.3 Related work settings for the experiment. 38

Table 8.4 Average speedup of e-PlaNNer compared to the compar-

ative group. 40

Table 8.5 The size of non-pruned search space and pruning rates for

each memory configuration and CNN. 43

vii

Chapter 1

Introduction

Thanks to excellent performance in image classification and object detection

tasks, convolutional neural networks (CNNs) have received an unprecedented

amount of attention. In the quest for higher accuracy, the initially simple CNNs

comprising only a limited number of sequential layers continue to evolve into

more and more complex and deeper networks [2, 3, 4, 5, 6, 7]. At the same

time, a large number of dedicated CNN accelerators have been proposed and

implemented on ASICs, FPGAs, and CGRAs [8, 9, 10, 11, 12, 13, 14, 15, 16,

17, 18, 19]. Common architecture features such as processing elements (PE)

and on-chip memory are shared by all accelerators, however, the number and

arrangement of the PEs, the size and types of the on-chip memory, and the pos-

sibilities for parallelizing a workload vary significantly. Moreover, if the available

on-chip memory is typically not large enough to hold all the required data at

once (e.g. embedded system or partitioned server system), the calculation of a

layer has to be split into smaller sub-tasks through a task known as tiling. The

type of the network layer, the parallelization strategy, and the size of these tiles

1

determine what computations can be performed and which data chunks need

to be brought off/on-chip at what times. These architectural features combined

with the different options for orchestration of the computation lead to a large

number of possibilities with which a layer of a network can be processed. How-

ever, finding the best configuration and generating code for a given CNN and

specific accelerator in this large optimization space are tedious and error-prone

tasks.

The computations of the layers in CNN (convolutional and fully-connected)

can be represented as nested loops. A common feature of all layers is that the

loops carry no true dependences, allowing for a large number of valid executions

plans in terms of tiling, loop interchange, and loop unrolling. A convolutional

layer in VGGNet-16 [6], for example, allows for around 2× 109 different execu-

tion plans that vary considerably with respect to the computational complexity

and the amount of data transfer between on- and off-chip memory. To achieve

good performance, the utilization of the available computational resource needs

to be maximized while minimizing the amount of off-chip memory accesses that

consume two to three orders of magnitude more energy than on-chip memory

accesses [20].

This thesis presents e-PlaNNer, a framework that facilitates the task of

finding an optimized execution plan for each layer of a given CNN algorithm

and accelerator. e-PlaNNer takes as an input the structure of a CNN and the

description of a hardware accelerator. Building on the idea of the Roofline

model [21], e-PlaNNer enumerates and identifies the execution plan that maxi-

mizes the performance per off-chip memory access volume. Since evaluating all

possible execution plans is infeasible, the vast search space is first pruned using

heuristics. The expected performance of an execution plan is determined by a

model that considers both computation and memory transfers with respect to

2

the dataflow and tiling of the execution plan. The selected execution plan is

then transformed into an intermediate representation (IR) that can easily be

translated into code executable on the target accelerator.

CNN Structure

Analysis Modeling Optimization Code Generation

Target Hardware
Description

Target Hardware

Figure 1.1: Overview of e-PlaNNer framework processing.

The contributions of this thesis are as follows. First, it presents some heuris-

tics to prune the large optimization space down to a manageable size using the

Roofline model and two analytic models that calculate the performance and

amount of transferred memory based on an architecture template. Second, it

presents the design of e-PlaNNer that applies the heuristics to find and gener-

ate code for the best execution plan for each layer of a CNN. Third, it shows

evaluations with five well-known CNNs and different memory limitations on the

Nvidia Jetson TX2 platform. Compared to the best static dataflow and tiling,

e-PlaNNer achieves 6× speedup and 21.14% reduction of of off-chip memory

access volume on average.

The remainder of this thesis is organized as follows. Chapter 2 introduces

related works of this thesis and discusses the difference of this thesis from them.

Chapter 3 briefly discusses the anatomy of convolutional layers and the Roofline

model. Chapter 4 shows a representation of CNN as a graph and optimization

process of e-PlaNNer at the graph level. Chapter 5 analyses the possible tilings

and dataflow patterns of a layer. Chapter 6 introduces the models and the

3

methodology to generate an efficient execution plan. Code generation to inter-

mediate and target representation are discussed in Chapter 7, and Chapter 8

shows evaluation results on e-PlaNNer including performance and memory ac-

cess on the target hardware platforms. Chapters 9-10 discuss and conclude this

thesis.

4

Chapter 2

Related Work

There are several other approaches to map CNN operations to the specific

devices. Commonly, they follow some steps. First, extract some features of con-

volutional operation and characterize each execution style according to the fea-

tures. Second, construct a model to estimate or evaluate the execution so that

it is a barometer of decision which execution is better. Some works focus on

the accuracy of the model compared to the actual execution on the hardware

[22, 23]. Finally, explore a search space, which comprises the possible executions,

to find the best execution.

Zhang et al. [16] represents a convolutional operation as a nested loop form

and explains a mechanism of mapping the operation to hardware accelerator

using loop optimization techniques; loop unrolling, loop pipelining, and loop

tiling. This work determines the optimal hardware design for target CNN model

by design space exploration based on roofline model. At the same time, this work

determines an optimized execution plan represented by unified tiling factors

through the whole layers. This work has similar approach with this thesis, but

5

its target hardware has limited execution structure, so it is too hard to apply

layer-wise execution planning. So, this work applies cross-layer optimization to

determine the identical tiling factors regardless of layer features.

Ma et al. [13] investigates the optimal design variables for the CNN acceler-

ator design. It also proposed an loop-based analysis for convolutional operation

to determine the optimal execution plan expressed by tiling factors and loop or-

der. This work divides the hardware system by two parts; off-chip and on-chip,

and determines the optimization factors for each part to minimize computing

latency, memory access size, and hardware resource. To find the optimization

factors, this work proposes a few steps of decision flow for each part. However, it

takes too much time to follow the decision flow for every possible execution plan;

almost 5 to 9 hours on two desktops, so this work randomly samples 0.005%

of possible plans to construct the search space. On the other hand, this thesis

proposes some heuristics that guarantees the final execution plan can reach to

the global optimum as well as a light weight decision model to determine the

optimal execution plan.

Chen et al. [24], TVM, presents an end-to-end deep learning framework

that generates optimized execution code for wide range of hardware target.

Since each hardware including not only CPU and GPU but custom accelerator

supports only its own low-level library, TVM just applies an extensible solution

by providing higher level abstraction and lowers it to the supported library.

TVM proposes a machine-learning (ML) based cost model which predicts the

performance of an execution plan from a large search space. However, like many

other ML based solutions, TVM’s ML model may need so many training data

and trials with time consuming until the model shows reasonable accuracy. Even

though TVM collects the training data and improve itself at runtime, it shows

less speedup at the small number of trials.

6

Li et al. [25], Smart-Shuttle, presents an adaptive partitioning and schedul-

ing approach to minimize the size of DRAM access, which has the greatest

impact on power efficiency. In order to determine the DRAM access size, this

work introduces a DRAM access pattern which is determined by the tiling fac-

tors and data reusability. Smart-Shuttle applies an empirical rule in order to

find the optimal solution instead of exploring the solution in a large search

space. The rule divides all layer cases into only two conditions, depending on

the ratio between output feature map and filter size. And it prioritizes each

tiling factor to give larger number under the limited global memory size. Even

if the rule removes the search space exploration, it cannot be applied to diverse

hardware platforms and CNN models, because the execution patterns on the

various hardware and models cannot be determined that simple rule.

Parashar et al. [23], Timeloop, introduces a systematic approach to evalu-

ate deep learning accelerator. This work is based on two keywords; model and

mapper. The model represents methods to evaluate such mapping on such deep

learning accelerator by providing performance, area and energy. The mapper

constructs a search space of various mappings and explores the best mapping in

the search space. It introduces some heuristic algorithms like exhaustive linear

search or random sampling depending on the size of the search space.

Layer-wise
Optimization

Modeling Exploration
Time Method SSE1time SSE method

e-PlaNNer (Ours) Yes Short Loop-based Short Search Space Pruning

Zhang et al. [16] No Short Loop-based Long Full Search

Ma et al. [13] Yes Short Loop-based Long Random Sampling

TVM [24] Yes Long ML-based Short Simulated Annealing

Smart-Shuttle [25] Yes Short Loop-based Short Empirical Rules

Timeloop [23] Yes Short Loop-based Long Random Sampling

Table 2.1: Comparison with related works in terms of modeling and exploration
method.

1Search Space Exploration

7

Chapter 3

Background

3.1 Convolutional Neural Networks

Deep Neural Networks (DNNs) is the most popular algorithm in machine learn-

ing. In particular, CNN is one of the famous DNN algorithms in the vision pro-

cessing. The CNN consists of two parts; feature extraction and classification. A

convolutional layer is the most influential layer in the feature extraction. It is

computed by sliding a 4-dimensional kernel over a 3-dimensional input, yielding

a 3-dimensional output as illustrated in Figure 3.1.

The most common arithmetic operation of the convolutional layer is the

multiply-accumulate (MAC) operation that accumulates the product of an in-

put element with a kernel element into a partial output. Typically, a kernel of

size (OC × IC ×KH ×KW) operates on an input (IC × IH × IW) to obtain

an output of size (OC ×OH ×OW), where I, O, and K stand for input, out-

put, and kernel, and C, H, and W for channel, height, and width, respectively.

Figure 3.2 shows the code for a convolution expressed as a six-fold nested loop.

8

Input[IC][IH][IW] Kernel[OC][IC][KH][KW] Output[OC][OH][OW]

OW

OH

IW

IH

IC

OC

Figure 3.1: A convolutional layer

1 for (oc=0; oc<OC; oc++)

2 for (ic=0; ic<IC; ic++)

3 for (oh=0; oh<OH; oh++)

4 for (ow=0; ow<OW; ow++)

5 for (kh=0; kh<KH; kh++)

6 for (kw=0; kw<KW; kw++)

7 Output[oc][oh][ow] +=

8 Input[ic][oh*stride+kh][ow*stride+kw]

9 * Weight[oc][ic][kh][kw];

Figure 3.2: General loop structure of a convolutional layer

A fully connected layer is the main component of the classification. It is simi-

lar to the convolutional layer except that the input and output are 1-dimensional

data, and kernel is 2-dimensional data without width and height dimensions.

3.2 DNN Accelerator

Thanks to noticeable growth of hardware computing power, the performance

of CNN algorithms are more reasonable than before. Some kinds of hardware

accelerators are used in order to accelerate the execution of CNN algorithms.

9

Especially, a distributed computing architecture is suitable for CNN which con-

sists of multiple repetitive and simple calculations like MAC. Figure 3.3 shows a

common architecture of DNN accelerator. It consists of the array of processing

elements (PEs) and hierarchical memories.

PE Arrays

Input memory

W
ei

gh
t m

em
or

y
Memory Controller

D
 R

 A
 M

O
ut

pu
t m

em
or

y

System
Controller

Figure 3.3: A common architecture of DNN accelerator.

Chen et al. [9], Eyeriss, for instance, has 168 PEs with 12 rows and 14

columns and three-layered memory hierarchy; DRAM, 108 KB of global buffer,

and register files. Chen et al. [8], DianNao, has 496 floating point PEs, including

multipliers and adders, with SIMD architecture and stores input, kernel and

output data separately on the 44 KB of local on-chip memory. Jouppi et al.

[12], Google TPU, has 64K of matrix multiply units with systolic architecture

and 24 MiB of local unified buffer for input and output data.

Most of DNN accelerators focus on high throughput and power efficiency.

High throughput can be achieved with the high utilization of the PEs. And,

since memory access requires relatively higher energy consumption than com-

10

putation, power efficiency can be achieved by reducing memory access size. So,

the execution of the DNN algorithm on the accelerator should consider how to

reduce the memory transfer size while PEs are highly utilized.

3.3 Roofline Model

The roofline model [21] expresses the achievable throughput of a computation

in terms of arithmetic intensity. Based on how many computations are per-

formed per data unit; arithmetic intensity, either the memory bandwidth or

the computational throughput limits the maximum attainable performance as

shown in Figure 3.4.

A
tta

in
ab

le
 P

er
fo

rm
an

ce

 (
F

lo
ps

/s
ec

)

Arithmetic Intensity
 (Flops/Byte)

Compute Bound

Computation Roof

A
lg

or
ith

m
1

A
lg

or
ith

m
2

Memory Bound

Figure 3.4: The roofline model.

Algorithm 1 is in the memory bound with low arithmetic intensity; only a

relatively small number of operations are applied to the transferred data, hence

the memory becomes the bottleneck. Algorithm 2, on the other hand, has a high

arithmetic intensity in the compute bound. The memory bandwidth is sufficient

to keep all available PEs occupied at all time.

11

Performance = min

Computation Roof

Arithmetic Intensity ×Bandwidth

(3.1)

Equation 3.1 depicts the attainable performance of roofline model. When

the arithmetic intensity is in the compute bound, the attainable performance

is same as computation roof. On the other hand, in the memory bound, the

performance is same as the arithmetic intensity times memory bandwidth. A

conclusion of the roofline model is that minimizing the data transfer size (and

thus increasing arithmetic intensity) leads to higher performance as long as the

computation roof has not been reached.

12

Chapter 4

Graph Level Processing

The layers in the convolutional neural network form a directed acyclic graph

(DAG). So, DAG can give a good start for the end-to-end CNN framework to

execute CNN algorithm. This chapter introduces the way how e-PlaNNer con-

structs the CNN graph. In addition, this chapter explains the way to reduce an

exploration overhead; schedule caching by grouping and caching some identical

layers in the graph level.

4.1 Graph Construction

DAG consists of vertices and directed edges. In e-PlaNNer, each vertex rep-

resents a layer in the CNN, and each directed edge represents a tensor, N-

dimensional data, passed between the layers. Figure 4.1 represents a simple

example of DAG in e-PlaNNer. It has three layers CNN; two convolutional lay-

ers and one max pooling layer with passing 4-dimensional tensors. The edge

passes an information of tensor dimensions to the next vertex as an input data.

The layer parameters in the vertex calculate next tensor dimensions and they

are delivered to the next edge.

13

Convolution

(1, 512, 56, 56)

Max Pooling Convolution

(1, 512, 28, 28)

Figure 4.1: Directed acyclic graph in e-PlaNNer.

The vertex includes the layer parameters representing layer processing. For

example, convolutional layer has the information of kernel tensor dimensions,

stride and padding. It also includes a function to calculate output tensor dimen-

sions which are passed to the next vertex as an input. The vertex also includes

scheduling factors which are explained in chapter 5.

4.2 Schedule Caching

The tensor parameters like dimensions are main factors for layer scheduling in

e-PlaNNer. If some layers have identical tensor parameters, they are scheduled

as same scheduling factors. Since finding the best scheduling factors in the

large search space is time consuming, the exploration time can be reduced by

grouping identical layers as a same group and caching the best schedule of

them. Especially, most of CNNs have repeated layers which have identical layer

parameters. Table 4.1 shows the reduced number of scheduled layers before and

after applying the schedule caching. On average, 37.14 % of layers are repeated,

so that they can be grouped as a same scheduling during graph level processing.

VGGNet-16 [6] ResNet50 [2] SqueezeNet [4] YOLOv2 [26]

Uncached Cached Uncached Cached Uncached Cached Uncached Cached

16 12 50 21 26 18 23 15

Table 4.1: The number of scheduled layers before & after caching.

14

Chapter 5

Convolutional Layer Analysis

In all except the simplest cases, the entire data required by a convolution is not

fit in the on-chip memory of an embedded device. While loop tiling [27] reduces

the memory requirements to a supported level, the repeated reloading of data

leads to an increased energy consumption and can cause the convolution to

become memory-bound. Finding a tiling that meets the hardware requirements

while minimizing data reloading and maximizing arithmetic intensity is thus an

important optimization goal. The general loop structure of a convolution (Fig-

ure 3.2) carries no true loop dependence. The loops are thus interchangeable,

leading to several degrees of freedom in the order of processing a convolution.

This order impacts the loop tiling and presents opportunities to improve data

reusability, if exploited properly, can greatly reduce the amount of reloaded

data. The remainder of this section discusses opportunities for optimizations of

convolutional layers.

15

5.1 Loop Structure

1 // off-chip loop nest

2 for (oc=0; oc<OC; oc+=OCt)

3 for (ic=0; ic<IC; ic+=ICt) {

4 ... // skipped remaining dimensions for brevity

5

6 /** move data from off-chip to on-chip memory **/

7

8 // on-chip loop nest

9 for (toc=oc; toc<min(oc+OCt, OC); toc+=OCp)

10 for (tic=ic; tic<min(ic+ICt, IC); tic+=ICp) {

11 ...

12

13 /** move data from on-chip memory to register files **/

14

15 // parallelization loop nest

16 for (poc=toc; poc<min(toc+OCp, min(oc+OCt, OC)); poc++)

17 for (pic=tic; pic<min(tic+ICp, min(ic+ICt, IC)); pic++) {

18 ...

19

20 Output[poc][poh][pow] +=

Input[pic][poh*stride+pkh][pow*stride+pkw] *

Kernel[poc][pic][pkh][pkw];

21 }

22 }

23 }

Figure 5.1: Tiled loop structure for a convolutional layer on a generic CNN
accelerator.

Anticipating loop tiling and based on the general architecture of acceler-

ators, a convolution is represented as three nested loop groups; off-chip, on-

chip, and parallelization (Figure 5.1) each containing the basic loop form in

Figure 3.2. This loop structure reflects the execution order for the data move-

ments between off-chip (DRAM) and on-chip memory (off-chip loops), the on-

chip memory management (on-chip loops), and the computation (parallelization

loops).

16

5.2 Loop Tiling

The off-chip loop nest from Figure 5.1 allows a large number of valid tilings

that exhibit different performance characteristics. Figure 5.2 plots the perfor-

mance of the possible tilings of the 9th convolutional layer (input: 512x28x28,

tensor: 512x512x3x3, output: 512x28x28) from VGGNet-16 [6] for a fixed on-

chip memory size and the maximum attainable performance under the roofline

model.

Arithmetic Intensity

Pe
rfo

rm
an

ce

Figure 5.2: Roofline analysis of tilings for VGGNet-16’s 9th convolutional layer.

The larger the tiles the lower the total number of iterations in a loop nest.

Increasing the tile size in the off-chip loop nest, for example, leads to fewer

data transfers between off- and on-chip memory. Under consideration of the

architectural constraints, it may be possible to completely eliminate a loop

dimension by setting its tiling size equal to its loop bounds.

17

5.3 Dataflow

The dataflow, i.e., the order of the computation, is a key optimization to improve

performance and data reusability. While the dataflow of the parallelization loop

nest is restricted by the capabilities of the accelerator, it can be freely chosen

for the outermost off-chip loop nest. An optimization in one direction, however,

can negatively affect the other dimensions because the data access patterns are

intertwined.

The chosen dataflow dictates the order with which data tiles are brought

on/off-chip. We use the terms introduced in [28] to refer to the three basic

dataflow patterns input stationary, weight stationary, and output stationary.

Figure 5.3 illustrates the effect of the dataflow patterns on the order of compu-

tation and data reuse.

(b) Input stationary (d) Output stationary

INPUT WEIGHT

(a) Initial tiling (c) Weight stationary

Figure 5.3: Data reuse patterns for the off-chip and the on-chip loop nest.

Input stationary exploits the reusability of the input by keeping an input

tile on on-chip until all computations requiring that tile have completed. while

weight and output stationary dataflow exploit data reusability of weight and

output data in a similar fashion. Figure 5.3 shows two kinds of dataflow patterns

18

for each stationary. Input stationary is achieved by moving the OC (above) or

KW, KH (below) loops to the innermost position. The data load pattern is

weight stationary with the OW (above) or OH (below) loop at the innermost

position. For output stationary, the IC (above) or KW, KH (below) loops are

moved to the innermost position.

The dataflow pattern is also affected by the loop tiling. If a tile holds all

data along the KW, KH, and OC dimensions, for example, the dataflow pattern

becomes input stationary. In this case, there is no chance to move those loop

dimensions to innermost because they are removed as their iteration count

becomes one. e-PlaNNer maximizes data reuse combining loop tiling and loop

interchange under consideration of the architectural constraints in terms of the

supported execution patterns in the parallelization loop nest and the available

on-chip memory.

19

Chapter 6

Execution Planning

This chapter discusses methodologies to find an efficient execution plan for CNN

accelerators based on the convolutional layer analysis in chapter 5. There are

two main issues to focus on. The one is exploring the search space. As shown in

chapter 5, there are many combinations of loop tiling and interchange, and they

form a huge search space. This chapter discusses more efficient way to explore

that huge search space. The other is modeling to compare each combination in

order to decide which combination is better. This thesis focuses on performance

and power efficiency to evaluate an execution plan, but the definition of a better

execution plan can vary. This chapter proposes some modeling methodologies

using a roofline model to estimate memory and computation performance.

6.1 Architecture Configurations

The target architecture properties required by the compiler to generate an exe-

cution plan are provided in abstracted form and include information about the

computational array (# and organization of PEs, supported dataflows), the

on-chip memories, and the memory bandwidth. Figure 6.1 shows an example.

20

1 {

2 "bandwidth": 1.6, // off-chip bandwidth (GB/s)

3 "frequency": 1.2, // PE clock frequency (GHz)

4 "mem_size": [368,288,144], // on-chip memories (KB)

5 // (input, weight, output)

6 "pe_len": [32, 32], // PE array (width, height)

7 "pe_mapping":

8 [["IC"], // PE column mapping

9 ["OC"]] // PE row mapping

10 }

Figure 6.1: Example of Hardware Configuration File

pe len describes the organization of PEs abstracted as a two-dimensional

array as shown in Figure 6.2. pe mapping contains information about supported

computational patterns. bandwidth and frequency are used to compute the

memory bandwidth and the computational performance; mem size describes

the sizes of the different on-chip memories. Many CNN accelerators, including

GPUs, can be abstracted by this form [9, 8, 28, 29, 30].

input on-chip memory

w
ei

gh
t o

n
-c

h
ip

 m
em

or
y PEPEPEPEPEPEPEPE

PEPEPEPEPEPEPEPE

PEPEPEPEPEPEPEPE

PEPEPEPEPEPEPEPE

ICp

O
C

p

Figure 6.2: Abstract representation of a CNN accelerator.

21

6.2 Modeling Off-Chip Memory Accesses

Off-chip memory access volume significantly affects performance and energy

consumption [20]. Dynamic off-chip memory accesses typically constitute one

of the largest shares of the total energy consumption [9], and the arithmetic

intensity of a convolution is improved by reducing off-chip memory access vol-

ume. An energy-efficient and high-performance execution plan must thus aim

at minimizing off-chip memory access volume.

The total size of data loaded and stored to off-chip memory is the summation

of the data size multiplied by the reload factors for input, weight, and output

data:

memory access volume =
∑

d={input,weight,output}

volumed × reloadd (6.1)

The reload factor reloadd depends on the dataflow and the tiling of a convo-

lution. For input stationary dataflow, the input reload factor is one1. Otherwise,

the reload factor depends on the iteration count of loops not related to the input

dimensions, i.e., the kernel width/height, and the number of output channels.

The input data reload factor is given by Equation 6.2 for non-input-stationary

dataflow:

reloadinput =

⌈
KW

KWt

⌉
×
⌈
KH

KHt

⌉
×
⌈
OC

OCt

⌉
(6.2)

1 Ignoring the overlap necessary to compute a convolution.

22

Similarly, for weight stationary dataflow, the weight data reload factor is

one. Otherwise, the reload factor is determined by the iteration count of the

output height and width loops as follows:

reloadweight =

⌈
OW

OWt

⌉
×
⌈
OH

OHt

⌉
(6.3)

Output data is incrementally computed by accumulating the product of

input and weight elements. Unlike (the read-only) input and weight data, par-

tially computed output data (psum) needs to be written back to off-chip memory

before being replaced on-chip. For non-output-stationary dataflows, the psum

reload factor is given by Equation 6.4:

reloadpsum = 2× (

⌈
KW

KWt

⌉
×
⌈
KH

KHt

⌉
×
⌈
IC

ICt

⌉
− 1) (6.4)

The term −1 at the end of Equation 6.4 considers that initially each psum is

zero and does not need to be loaded from off-chip memory. Since the psum data

is transferred twice between off-/on-chip memory for both psum load and write-

back, the psum reload factor includes a factor 2 at the front of Equation 6.4.

Finally, the output reload factor is determined by the psum reload as follows:

reloadoutput = reloadpsum + 1 (6.5)

Since the final output data does not need to reload from off-chip to on-chip

memory, the term +1 at the end of Equation 6.5 stands for the last write-back

of final output data to off-chip memory. If the dataflow is output stationary,

i.e., (KW = KWt)∧ (KH = KHt)∧ (IC = ICt), the output data reload factor

evaluates to 1 regardless of Equation 6.5.

23

6.3 Modeling Performance

Performance is one of the important metrics when comparing different combina-

tions of loop tiling and dataflow. e-PlaNNer estimates the performance for each

possible combination at compile time using a roofline model-based performance

estimation model.

The performance of a tiling is estimated by multiplying the number of active

PEs with their clock frequency:

perfcompute = frequency × active PEs (6.6)

The PE utilization is estimated by analyzing the on-chip and parallelization

loop from Figure 5.1.

active PEs = # of PEs× PE utilization

PE utilization =
of MAC operations

of iterations×# of PEs

(6.7)

The number of MAC operations per tile is the product of all tiling factors in

on-chip loop nest, and the total number of iteration is equal to the number of

parallelization tiles created by a tiling.

of MAC operations =
∏

factort (6.8)

of iterations =
∏⌈

factort
factorp

⌉
(6.9)

Because of the rounding up function in Equation 6.9, the remainder of the di-

vision can affect the number of iterations, even though it is quite small. The

large number of iterations reduces PE utilization in Equation 6.7. So, to max-

imize PE utilization, the tiling factors should be a multiple of the hardware

parallelization given by pe len.

24

The performance of a memory-bound tiling is the product of arithmetic

intensity by the off-chip memory bandwidth

perfmemory = bandwidth× arith. intensity (6.10)

where the arithmetic intensity is estimated as

arith. intensity =
of total operations

off -chip memory access size
(6.11)

The estimated performance of a tiling is the smaller of the two performance

estimates

performance = min(perfcompute, perfmemory) (6.12)

Since the model is only used to select the best tiling, the correlation be-

tween a performance estimation from the modeling and an actual measured

performance on the hardware is important rather than the absolute accuracy.

Figure 6.3 shows a positive correlation between the two around the regression

line (the red linear line) with 0.64 of PCC (Pearson Correlation Coefficient) [31],

which statistically measures the correlation between paired data. It means that

it appears strong positive correlation according to the guide from Evans [32].

6.4 Search Space Exploration

Enumerating and evaluating all possible dataflows and tilings for a given net-

work is not a feasible strategy as there are too many combinations to consider.

For example, a single convolutional layer of VGGNet-16 has about 2×109 com-

binations. This section discusses the three heuristics used to prune the large

search space to a manageable number of combinations that are evaluated using

the models discussed in the section 6.2 and 6.3. e-PlaNNer prunes the search

space by setting a lower bound of tiling and dataflow in a following few steps:

25

Performance
(e-PlaNNer Estimation)

Pe
rfo

rm
an

ce
(Je

ts
on

 T
X2

)

Figure 6.3: Correlation between the performance from e-PlaNNer and Nvidia
Jetson TX2 [1].

1. Tiling factor initialization. This heuristic prunes the search space

by applying some preconditions to the possible tiling factors. First, e-PlaNNer

excepts the cases to tile a weight tensor in the KH and KW dimension because

doing so generates small tiles with a high reload count. Second, e-PlaNNer also

maximizes the tiling along the innermost dimension of the input, output, and

weights (typically the W dimensions) to exploit the contiguous data load in

the row-major data layout. Finally, too small tilings can lead to severe PEs

underutilization. The tiling factors associated with the loops mapped directly

onto the PE array are initialized with the length of the PE array in order to

maximize PE utilization. The result of tiling factor initialization is illustrated

in Figure 6.4 from (a) to (b).

Pseudo-code for this step is shown in Algorithm 1. Initially, all the tiling

factors along all dimensions are initialized to 1. Next, the weights are fully tiled

in KH and KW dimension. Line 3 initializes the tiling factor along the OW

26

for (oc=0; oc<OC; oc+=1)
 for (ic=0; ic<IC; ic+=1)
 for (oh=0; oh<OH; oh+=1)

…
// loop body

(a) Before Pruning

for (oc=0; oc<512; oc+=32)
 for (ic=0; ic<256; ic+=32)
 for (oh=0; oh<56; oh+=1)

…
// loop body

(b) Tiling Factor Initializing

for (oc=0; oc<512; oc+=32)
 for (ic=0; ic<256; ic+=32)
 for (oh=0; oh<56; oh+=56)

…
// loop body

(c) Loop Elimination

for (ic=0; ic<256; ic+=32)
 for (oc=0; oc<512; oc+=32)

…
// loop body

(d) Loop Interchange

Figure 6.4: Search space pruning through loop transformations.

dimension to exploit contiguously stored data. Lines 4–8 initialize the tiling

factors in accordance with the execution model of the accelerator (refer to

Figure 6.1).

Algorithm 1: Tiling Factor Initializing

Result: Initialized Tiling Lower Bound
Input: Layer paramters param,

Hardware configuration config

1: T [kw, kh, ow, oh, ic, oc]←− [1, 1, 1, 1, 1, 1]

2: T [kw, kh]←− param[kw, kh]

3: T [ow]←− param[ow]

4: col mapping dim←− config.pe mapping[col]

5: row mapping dim←− config.pe mapping[row]

6: for map ∈ [col mapping dim, row mapping dim] do

7: T [map]←− config.pe len[map]

8: end for

9: return T

27

2. Loop elimination. The intention of this second step is to fully tile iter-

ations and thereby eliminate reloads from off-chip memory. Figure 6.4 (b) to (c)

shows the effect of loop elimination optimization. There are four possible loops

that can potentially be eliminated (the KW, KH, and W loops have been fully

tiled in step 1). A possible ways to choose the loop dimension to be eliminated

Algorithm 2: Loop Elimination

Result: Tiling Lower Bound
Input: Layer parameters param,

Hardware configuration config,
Initialized tiling factors initT

1: bestT ←− initT

2: minReload←−MAX INT

3: for set ⊂ [OC, IC,OH] do

4: T ←− bestT

5: for f ∈ set do

6: T [f]←− param[f]

7: end for

8: if T.size < config.memSize then

9: if minReload > ReloadCount(T) then

10: minReload←− ReloadCount(T)

11: bestT ←− T

12: end if

13: end if

14: end for

15: return bestT

is to select the loop with the highest iteration count. This, however, does not

always lead to the best outcome because eliminating two smaller dimensions

can be better than eliminating one large dimension. For example, when a large

OC is eliminated by fully tiling it, only input reloading can be minimized. On

the other hand, if IC and OH are eliminated, both weight and partial sum

reloads can be minimized. There are eight possible set combinations along the

28

loop dimensions (IC, OC, OH). e-PlaNNer tries to apply loop elimination for all

eight combinations and selects the one that minimizes the amount of reloaded

data. Since loop elimination is restricted by the size of the on-chip memory, a

required memory size should be checked for every combinations.

Pseudo-code for this step is shown in Algorithm 2. After the initialization,

the loop iterates through all eight set combinations and completely unrolls the

dimensions in the set (lines 5–7). If the results fits into the on-chip memory (line

8) and the combination has a lower reload count that that so-far best case, it

is remembered as the new best combination (lines 9–12).

3. Loop interchange. In this step, the loop with the highest iteration

count is moved to the innermost position. The loop at the innermost position

does not cause repeated data reloads, hence moving it to the innermost position

helps to reduce the amount of reloaded data. Pseudo-code for this step is shown

in Algorithm 3. The initial loop sequence is initialized randomly in line 1; the

front is the inner loop. And the loop sequence is sorted in descending order by

the number of iterations for each loop dimension.

Algorithm 3: Loop Interchange

Result: Most Efficient Loop Sequence
Input: Layer parameters param,

Tiling Lower Bound T
1: loopSeq ←− [kw, kh, ow, oh, ic, oc]

2: loopSeq.SortBy(dparam[dim]
T [dim] e, dim ∈ [kw, kh, ow, oh, ic, oc])

3: return loopSeq

29

4. Explore Search Space. All remaining tiling candidates above the lower

bound are compared with the metric:

optimization metric =
estimated performance

off -chip memory access size
(6.13)

where estimated performance is obtained from the performance estimation model

(Equation 6.12) and off-chip memory access size is the amount of accessed off-

chip memory (Equation 6.1). Figure 6.4 (c) to (d) and Algorithm 4 illustrate

Algorithm 4: Search Algorithm

Result: Tiling of best execution plan
Input: Layer parameters param,

Hardware configuration config

1: tilingList←− tilingsInPrunedSearchSpace

2: bestT iling ←− tilingList[0]

3: largestMetric←− 0

4: for tiling ∈ tilingList do

5: ai←− GetArithmeticIntensity(param, tiling)

6: cr ←− GetComputationRoof(config)

7: perf ←− min(cr, ai× config.bandwidth)

8: metric←− perf
OffChipAccess(tiling)

9: if metric > largestMetric then

10: bestT iling ←− tiling

11: largestMetric←− metric

12: end if

13: end for

14: return bestT iling

function OffChipAccess(tiling)
15: size←− 0

16: size←− size + GetInputAccessSize(tiling)

17: size←− size + GetWeightAccessSize(tiling)

18: size←− size + GetOutputAccessSize(tiling)

19: return size

30

this step. Conceptually, all feasible tilings are enumerated (line 1) and the best

tiling and metric are remembered (lines 2–3). Each feasible tiling (line 4) is

evaluated according to the performance model from Section 6.3 (lines 5–7) and

compared against the optimization metric (line 8). If the new best tiling has

been found, it is stored in the bestTiling variable (lines 9–12) which is returned

at the end of the search algorithm (line 14).

Figure 6.5 shows the pruned space after each step. As the pruning heuristics

proceed, the considered tilings converge to the left top to a point with few off-

chip accesses and high performance.

DRAM Access Size

Pe
rf

or
m

an
ce

No Prune
Tiling Factor Initializing
Loop Elimination
Loop Interchange
Best Case

Figure 6.5: Search space after pruning.

31

Chapter 7

Code Generation

Most of accelerators in embedded system are typically part of a System-on-

Chip with a general purpose processor acting as a system controller, a memory

interface to off-chip memory, and the accelerator itself for the purpose of a

neural network acceleration (Figure 3.3). The accelerator is programmed by the

system controller through an custom runtime library supported by accelerator

to trigger computations and data movement operations. An execution plan is a

sequence of operations from the library to orchestrate the evaluation of a neural

network for a given input.

e-PlaNNer includes a template-based code generator that automatically

generates target code from an execution plan. In a first step, e-PlaNNer out-

puts the sequence of operations in a programming-language independent inter-

mediate representation (IR) that defines the exact sequence of operations and

specifies the tiles to be loaded/stored. In a second step, the generated IR is

transformed into target code that can be compiled by a compiler for the target

platform.

32

7.1 Intermediate Representation

An execution plan in IR form consists of the three sections info, var, and text;

an example is shown in Figure 7.1. The info section contains information

1 [info]
2 // (batch, channel, height, width)
3 INPUT(1,128,56,56)
4 WEIGHT(256,128,3,3)
5 OUTPUT(1,256,56,56)
6

7 [var]
8 // Memory variables with size
9 IN_MEM_0(131072) // Input memory

10 WT_MEM_0(65536) // Weight memory
11 OT_MEM_0(131072) // Output memory
12 // Tiles (address, batch, channel, height, width)
13 INPUT_0[0](1,65,17,56)
14 INPUT_1[840](1,65,18,56)
15 INPUT_2[1736](1,65,18,56)
16 INPUT_3[2632](1,65,9,56)
17 INPUT_4[203840](63,17,56)
18 INPUT_5[204680](63,18,56)
19 ...
20 WEIGHT_0[0](56,65,3,3)
21 WEIGHT_1[585](56,63,3,3)
22 ...
23 OUTPUT_0[0](1,56,16,56)
24 OUTPUT_1[896](1,56,16,56)
25 ...
26

27 [text]
28 LOAD WT_MEM_0 WEIGHT_0
29 LOAD IN_MEM_0 INPUT_0
30 CONV OUTPUT_0 INPUT_0 WEIGHT_0 1 (1,1,1,0)
31 STORE OUTPUT_0 OT_MEM_0
32 ...

Figure 7.1: An example of intermediate representation for convolutional layer.

about the layer parameters such as the number of batches and channels, and

the height and width of the data. The section var defines the data tiles and

assigns a name for each tile. The var section defines the on-chip memories

33

and the data tiles in off-chip memory. For each hardware on-chip memory, a

corresponding variable is defined as configured in the hardware configuration

file (Figure 6.1). This information allows the low-level code generator to verify

that the size of all data allocated to the on-chip memory actually fits. The tile

variables define the offset relative to the start of the data array, the number of

batches, channels, and its height and width for each tile. At the moment, the

offset is computed assuming a row-major data layout with the dimensions input,

output and weight tensors laid out as given in Section 3.1. The text section,

finally, contains a sequence of commands implementing the data movement and

computation operations. The first argument to a LOAD and STORE command

refers to a destination of the data transfer and the second argument defines the

source of the transfer. A convolution operation, CONV, expects five arguments:

output, input, and weight tiles and two parameters expressing the stride and

the padding.

7.2 Target Code Generation

e-PlaNNer contains a template-based backend code generator that transforms

an execution plan in IR format to target code. As a proof of concept, we have

implemented a Nvidia CUDA backend. Figure 7.2 shows part of the CUDA

code generated from the IR shown in Figure 7.1. The function conv (line 4) is a

template function invoking a CUDA convolution. The variables defined in the

var section of the IR are transformed into CUDA/C code at the beginning of

the main function. The LOAD operations and the STORE operation are mapped

to cudaMemcpy functions in lines 16, 17, and 19.

34

1 #include <cuda.h>
2 #include <cuda_runtime.h>
3

4 __global__ void conv(float* in, float* wt, float* ot,
5 int stride, int* paddings, ...)
6 {
7 // CUDA kernel code for convolutional operation.
8 }
9

10 int main(void)
11 {
12 init_variables();
13 // GPU memory allocations.
14 float *in_mem_0, *wt_mem_0, *ot_mem_0;
15 cudaMalloc((void**)&in_mem_0, sizeof(float)*131072);
16 ...
17 cudaMemcpy(wt_mem_0,
18 weight_0 + 0,
19 sizeof(float)*56*65*3*3,
20 cudaMemcpyHostToDevice); // LOAD WT_MEM_0 WEIGHT
21 cudaMemcpy(in_mem_0,
22 input_0 + 0,
23 sizeof(float)*1*65*17*56,
24 cudaMemcpyHostToDevice); // LOAD IN_MEM_0 INPUT
25 conv<<<numBlocks, numThreads>>>(in_mem_0, wt_mem_0, ot_mem_0,
26 1, {1, 1, 1, 0}, ...);
27 // CONV OUTPUT_0 INPUT_0 WEIGHT_0 1 (1,1,1,0)
28 cudaMemcpy(output_0 + 0,
29 ot_mem_0,
30 sizeof(float)*1*56*16*56,
31 cudaMemcpyDeviceToHost); // STORE OUTPUT_0 OT_MEM_0
32 ...
33 }

Figure 7.2: Example of generated CUDA code

A runtime library with CUDA helps to execute the generated CUDA code on

GPU. The runtime library includes basic operations of CNNs like Convolutional,

Max Pooling, and Fully Connected. The runtime library can be replaced with

well-known library like LAPACK (Linear Algebra PACKage) [33]. In addition,

it can be also replaced with a custom library of an accelerator as well as a

CPU/GPU library.

35

Chapter 8

Evaluation

8.1 Experimental Setup

To demonstrate the effect of the optimized execution plan, e-PlaNNer is evalu-

ated with five representative CNNs and four memory configurations. The eval-

uated CNNs are VGGNet-16 [6], ResNet50 [2], AlexNet [5], SqueezeNet [4],

and YOLOv2 [26] executed with 32-bit single-precision floating point values.

VGGNet-16, ResNet50, and AlexNet show the combination of the convolutional

layer and the fully connected layer while SqueezeNet and YOLOv2 include only

convolutional layers. Table 8.1 describes the CNNs for the experiment.

Model Size (MB) # ops (Gflops) # layers Model description

VGGNet-16 527.741 14.408 16 13 conv + 3 fc layers

ResNet50 86.723 4.536 50 49 conv + 1 fc layers

AlexNet 237.914 1.057 8 5 conv + 3 fc layers

SqueezeNet 4.698 1.029 26 26 conv

YOLOv2 194.265 27.898 23 23 conv

Table 8.1: Representative CNNs for the experiment.

36

The memory sizes are quite limited less than the size of input, weight, and

output tensors so that it can show the impact of tiling and dataflow effectively.

Table 8.2 represents experimental setups of the on-chip memory configurations

for target embedded systems.

Memory Size
Input Weight Output

Setup A 256 KB 128 KB 256 KB

Setup B 512 KB 256 KB 512 KB

Setup C 256 KB 256 KB 256 KB

Setup D 256 KB 512 KB 256 KB

Table 8.2: Evaluated memory configurations.

The code generation capabilities of e-PlaNNer are demonstrated by execut-

ing the generated CUDA code and measure its end-to-end execution time on

the Nvidia Jetson TX2 platform [1]. The Jetson TX2 contains 256 CUDA cores

running at 1.02 GHz and achieves a memory bandwidth of 60 GB/s for data

movement operations.

e-PlaNNer is compared with some related works [16, 13, 25] which have

their own planning strategy to find the best execution plan in terms of tiling

and dataflow. Zhang et al. [16] and Ma et al. [13] try to minimize the psum

reload because the partial sum should be transferred twice between the off- and

on-chip memory. Zhang et al. [16] places IC loop at the innermost of the off-

chip loop nest, so that the psum data reload goes 0 by setting the dataflow as

output stationary. Ma et al. [13] fully tiles KW, KH and IC loop dimensions in

priority in order to eliminate those dimensions. It makes the psum data reload

0 according to Equation 6.4. Li et al. [25], Smart-Shuttle, applies empirical

rules to minimize off-chip memory access volume. First, It compares the layer

parameters OW × OH and IC × KW × KH . If OW × OH is larger than

37

IC×KW×KH , the dataflow is set as output stationary. Otherwise, the dataflow

is set as weight stationary. Second, this work gives every tiling factor a priority

to be allocated maximum under the constraint of on-chip memory size. For

example, in output stationary case, the priority sequence of the tiling factors

is OCt > OHt > ICt . This means that ICt and OHt are maximized after

maximizing OCt which has the highest priority. On the other hand, in weight

stationary case, the priority sequence shows OCt , ICt > OHt .

To compare them fairly on my runtime backend, they are given some ben-

eficial conditions. All of them are given fully tiled W dimension to exploit the

contiguous data load in the row-major data layout. Zhang et al. [16] and Ma

et al. [13] are given the best tiling factors and dataflow for remaining fac-

tors generated from e-PlaNNer. Originally, without the additional conditions,

Zhang et al. [16] should find a sub-optimal fixed tiling factors regardless of layer

parameters using Cross-layer Optimization which is explained ambiguously in

[16]. Ma et al. [13] randomly samples the possible execution group from a large

search space to find the remaining factors from the group. Table 8.3 shows the

planning strategies and given additional conditions for the comparison with the

related works.

Planning Strategy Additional Conditions

Zhang et al. [16] Output Stationary Fully tiled W, Best factors for remainders

Ma et al. [13] Minimize output reload Fully tiled W, Best factors for remainders

Smart Shuttle [25] Empirical rules Fully tiled W

Table 8.3: Related work settings for the experiment.

38

8.2 Performance Results

Performance is evaluated as the speedup by comparing end-to-end execution

time of generated code from e-PlaNNer with the related works which have

fixed execution rules summarized in Table 8.3. Figure 8.1 shows results of the

performance comparison. On average, e-PlaNNer achieves a 6.12× of speedup

compared to the related works. e-PlaNNer shows more improvement of speedup

in smaller memory configuration. In setup A (640 KB on-chip memory), e-

PlaNNer achieves 8.30× of speedup in comparison to the 3.23× speedup in

setup B (1,280 KB on-chip memory).

0

0.2

0.4

0.6

0.8

1

1.2

S
p

ee
d

u
p

Setup A

e-PlaNNer Ma et al. Zhang et al. Smart-Shuttle

S
p

ee
d

u
p

Setup A Setup B

0

0.2

0.4

0.6

0.8

1

1.2

VGGNet
-1

6

Res
Net

50

Ale
xN

et

Squee
ze

Net

YOLOv2

S
p

ee
d

u
p

Setup A Setup B

Setup C

VGGNet
-1

6

Res
Net

50

Ale
xN

et

Squee
ze

Net

YOLOv2

S
p

ee
d

u
p

Setup A Setup B

Setup C Setup D

Figure 8.1: Speedup of e-Planner generated plans relative to the related works
with fixed execution rules.

39

e-PlaNNer also achieves more speedup in the CNN with the large amount

of data. In YOLOv2, which has the largest amount of input and output tensors,

e-PlaNNer achieves a 15.66× of speedup. On the other hand, AlexNet, which

has the small number of convolutional layers, is given less benefit of e-PlaNNer

strategy, so that e-PlaNNer achieves only 1.33× of speedup in it. Furthermore,

AlexNet has three of fully connected layers which require a large number of data

transfers between off-/on-chip memory. In fact, in case of AlexNet, fully con-

nected layers have 12 times more data size than convolutional layers. Moreover,

Fully connected layer has less optimization points than convolutional layer be-

cause fully connected layer has only single width and height for input, weight,

and output. Table 8.4 shows the average speedup results compared to compar-

ative group for each memory configurations and CNNs.

VGGNet-16 ResNet50 AlexNet SqueezeNet YOLOv2 Avg.

Setup A 3.435 x 4.023 x 1.536 x 9.450 x 23.068 x 8.302 x

Setup B 1.767 x 2.608 x 1.213 x 2.630 x 7.929 x 3.229 x

Setup C 2.569 x 3.770 x 1.304 x 9.106 x 17.083 x 6.767 x

Setup D 2.458 x 3.632 x 1.257 x 8.982 x 14.573 x 6.180 x

Avg. 2.557 x 3.508 x 1.328 x 7.542 x 15.663 x 6.120 x

Table 8.4: Average speedup of e-PlaNNer compared to the comparative group.

8.3 Comparison of Off-chip Memory Access

Off-chip memory access volume is measured by adding up data transfer sizes for

each memory access event in the generated code. Figure 8.2 compares the off-

chip memory access volume of e-PlaNNer with the related works. The optimal

case assumes that there is no data reload, which means the total tensor size for

each CNN. e-PlaNNer shows 21.14 % reduction of memory access volume on

average. Especially, e-PlaNNer shows outstanding results on the environment

with the small memory size and CNN with deep network and large number of

operations. In setup A, e-PlaNNer shows 26.36 % reduction of memory access

40

volume in setup A while it shows only 16.57 % of reduction in setup B. And, in

YOLOv2, it shows 52.07 % of reduction while it shows only 2.67 % in AlexNet

which is the shallowest.

1

10

100

1000

10000

O
ff

-c
h

ip
 M

em
o

ry
 A

cc
es

s
V

o
lu

m
e

(M
B

)

Setup A

Optimal e-PlaNNer Ma et al. Zhang et al. Smart-Shuttle

O
ff

-c
h

ip
 M

em
o

ry
 A

cc
es

s
V

o
lu

m
e

(M
B

)

Setup A Setup B

1

10

100

1000

10000

VGGNet
-1

6

Res
Net

50

Ale
xN

et

Squee
ze

Net

YOLOv2

O
ff

-c
h

ip
 M

em
o

ry
 A

cc
es

s
V

o
lu

m
e

(M
B

)

Setup A Setup B

Setup C

VGGNet
-1

6

Res
Net

50

Ale
xN

et

Squee
ze

Net

YOLOv2

O
ff

-c
h

ip
 M

em
o

ry
 A

cc
es

s
V

o
lu

m
e

(M
B

)

Setup A Setup B

Setup C Setup D

Figure 8.2: Comparison of off-chip memory access volume.

By analyzing the off-chip memory access volume, I can find the characteris-

tics for each related work. Figure 8.3 stacks the memory access volumes of input,

weight, and output data in VGGNet-16 with setup A. The x-axis for each chart

represents each layer in VGGNet-16. Because Ma et al. and Zhang et al. focus on

minimizing reloading the output data, they care less about reloading the input

data. Smart-Shuttle, which applies empirical rules, shows much larger output

data reload at the back side of layers. That’s because Smart-Shuttle chooses

weight stationary at the back side of VGGNet-16 layers while it chooses output

stationary at the front side.

41

0.0E+00

5.0E+01

1.0E+02

1.5E+02

2.0E+02

2.5E+02

co
nv
3-
64

co
nv
3-
64

co
nv
3-
12
8

co
nv
3-
12
8

co
nv
3-
25
6

co
nv
3-
25
6

co
nv
3-
25
6

co
nv
3-
51
2

co
nv
3-
51
2

co
nv
3-
51
2

co
nv
3-
51
2

co
nv
3-
51
2

co
nv
3-
51
2

O
ff

-c
h

ip
 M

em
o

ry
 A

cc
es

s
V

o
lu

m
e

(M
B

)

e-PlaNNer Ma et al. Zhang et al. Smart-Shuttle

Input Data Weight Data Output Data

co
nv
3-
64

co
nv
3-
64

co
nv
3-
12
8

co
nv
3-
12
8

co
nv
3-
25
6

co
nv
3-
25
6

co
nv
3-
25
6

co
nv
3-
51
2

co
nv
3-
51
2

co
nv
3-
51
2

co
nv
3-
51
2

co
nv
3-
51
2

co
nv
3-
51
2

O
ff

-c
h

ip
 M

em
o

ry
 A

cc
es

s
V

o
lu

m
e

(M
B

)

e-PlaNNer Ma et al. Zhang et al. Smart-Shuttle

Input Data Weight Data Output Data

co
nv
3-
64

co
nv
3-
64

co
nv
3-
12
8

co
nv
3-
12
8

co
nv
3-
25
6

co
nv
3-
25
6

co
nv
3-
25
6

co
nv
3-
51
2

co
nv
3-
51
2

co
nv
3-
51
2

co
nv
3-
51
2

co
nv
3-
51
2

co
nv
3-
51
2

O
ff

-c
h

ip
 M

em
o

ry
 A

cc
es

s
V

o
lu

m
e

(M
B

)

e-PlaNNer Ma et al. Zhang et al. Smart-Shuttle

Input Data Weight Data Output Data

co
nv
3-
64

co
nv
3-
64

co
nv
3-
12
8

co
nv
3-
12
8

co
nv
3-
25
6

co
nv
3-
25
6

co
nv
3-
25
6

co
nv
3-
51
2

co
nv
3-
51
2

co
nv
3-
51
2

co
nv
3-
51
2

co
nv
3-
51
2

co
nv
3-
51
2

O
ff

-c
h

ip
 M

em
o

ry
 A

cc
es

s
V

o
lu

m
e

(M
B

)

e-PlaNNer Ma et al. Zhang et al. Smart-Shuttle

Input Data Weight Data Output Data

Figure 8.3: Off-chip memory access volume for each layer of VGGNet-16 with
Setup A.

8.4 Framework Results

This section shows how e-PlaNNer’s techniques introduced in this thesis affect

runtime performance. In addition, this section also shows performance of e-

PlaNNer on the sufficient hardware resources compared to performance from

well-known deep learning frameworks.

Table 8.5 shows the pruning rates for each case of memory configuration

and CNN. As described in Section 6.4, by pruning the search space, e-PlaNNer

effectively reduces the scheduling time to a reasonable level. In Table 8.5, the

percentage numbers in parentheses describe the ratio of search space size be-

tween pruned and non-pruned. The numbers above the percentage numbers

42

represent the number of execution plan combinations before or after pruning.

As shown in Table 8.5, all the cases prune the search space more than 99 %.

VGGNet-16 ResNet50 AlexNet SqueezeNet YOLOv2

Non-pruned 3541.530 M 298.074 M 645.980 M 49.388 M 4104.669 M

Pruned

Setup A
27,552

(0.00078 %)
41,040

(0.01377 %)
5,310

(0.00082 %)
4,596

(0.00931 %)
89,937

(0.00219 %)

Setup B
25,536

(0.00072 %)
21,984

(0.00738 %)
405

(0.00006 %)
1,530

(0.00310 %)
83,409

(0.00203 %)

Setup C
25,536

(0.00072 %)
23,232

(0.00779 %)
645

(0.00010 %)
4,596

(0.00931 %)
89,937

(0.00219 %)

Setup D
23,184

(0.00065 %)
12,864

(0.00432 %)
645

(0.00010 %)
4,530

(0.00917 %)
80,133

(0.00195 %)

Avg. 0.00072 % 0.00831 % 0.00027 % 0.00772 % 0.00209 %

Table 8.5: The size of non-pruned search space and pruning rates for each
memory configuration and CNN.

Schedule caching, which is explained in Section 4.2, also affects e-PlaNNer’s

scheduling time as well as pruning. Figure 8.4 shows the reduction of e-PlaNNer

scheduling time by caching the repeated layers in CNN graph. Schedule caching

reduces the scheduling time by 36.37 % compared to uncached scheduling time.

Since AlexNet has no repeated layer, there is no difference of the scheduling time

 0

 200

 400

 600

 800

 1000

 1200

 1400

VGGNet
-1

6

Res
Net

50

Squee
ze

Net

YOLOv2

7.35 6.26e-
P

la
N

N
er

 s
ch

ed
u

lin
g

 t
im

e
(m

s) Uncached Cached

Figure 8.4: Reduction of e-PlaNNer scheduling time by caching. (Setup A)

43

between before and after caching in AlexNet; the scheduling time of AlexNet

on setup A is 36.579 milliseconds. All scheduling times of CNNs are less than

1.4 seconds, so it can provide reasonable execution time to generate the best

execution plan.

e-PlaNNer, as a deep learning framework, provides end-to-end execution of

CNN on the various hardware settings not only on the limited resource but also

on the sufficient resource. The sufficient resource means that the hardware has

enough resource (i.e. on-chip memory) to run target CNN application without

the tiling and scheduling explained in this thesis.

 1

 10

 100

 1000

 10000
C

P
U

 /
In

te
l e-PlaNNer

DarkNet+LIB
DarkNet
PyTorch

TVM
TensorFlow+Keras

 1

 10

 100

 1000

 10000

C
P

U
 /

In
te

l
C

P
U

 /
A

R
M

L
at

en
cy

 (
m

s)

e-PlaNNer
DarkNet+LIB

DarkNet
PyTorch

TVM
TensorFlow+Keras

 1

 10

 100

 1000

 10000

VGG16

Res
Net

50

Ale
xN

et

Squee
ze

Net

YOLOv2

C
P

U
 /

In
te

l
C

P
U

 /
A

R
M

G
P

U
 /

Je
ts

on
e-PlaNNer

DarkNet+LIB
DarkNet
PyTorch

TVM
TensorFlow+Keras

Figure 8.5: Comparison of end-to-end inference latency to well-known deep
learning frameworks.

For this experiment, the runtime library of e-PlaNNer needs to be expanded

to support three of hardware platforms; Intel CPU, ARM CPU, and Nvidia

Jetson GPU. Intel CPU is Intel(R) Core(TM) i5-7500 64-bit quad-core CPU

with 3.40 GHz frequency. ARM CPU has a big-little structure with dual-core

44

Nvidia Denver 2 64-bit CPU and quad-core ARM(R) Cortex-A57 MPCore.

Nvidia Jetson GPU is Jetson TX2 introduced in Section 8.1. e-PlaNNer is

compared with four of well-known deep learning frameworks; DarkNet [34],

PyTorch [35], TVM [24], and TensorFlow [36] with Keras [37]. DarkNet+LIB

combines DarkNet with an external library to enhance the performance of linear

algebra and deep learning operations; MKL (Math Kernel Library) [38] for Intel

CPU, OpenBLAS [39] for ARM CPU, and cuDNN [40] for Nvidia Jetson GPU.

Figure 8.5 shows the comparison of latency between e-PlaNNer and other

frameworks. This experiment only measures the end-to-end inference latency

for CNN models where the framework provides a pre-trained model. e-PlaNNer

performs better than DarkNet with or without the external library on CPU;

492.63% better than DarkNet and 30.04% better than DarkNet with exter-

nal library. On the other hand, DarkNet with cuDNN library performs better

than e-PlaNNer on GPU. In case of CPU, e-PlaNNer runtime library also in-

cludes MKL and OpenBLAS, but it doesn’t include cuDNN on GPU runtime

library. Since cuDNN library is much more optimized for convolutional opera-

tion than e-PlaNNer by using Winograd algorithm [41], DarkNet with cuDNN

shows better performance the e-PlaNNer on GPU except AlexNet which has

less convolutional layers than the others.

PyTorch shows lower performance than e-PlaNNer on embedded system

(ARM and Jetson) in contrast to the desktop (Intel). TensorFlow with Keras

shows much slower inference latency than e-PlaNNer almost 7× on average.

TVM shows similar performance to e-PlaNNer; e-PlaNNer is 3.35% faster than

TVM on ARM, but TVM is 9.02% faster on Intel. Especially, TVM shows much

better performance on Jetson than e-PlaNNer; almost 2× faster 1.

1The performance of TVM on Nvidia Jetson TX2 comes from incubator-TVM benchmark
results. (https://github.com/apache/incubator-tvm/wiki/Benchmark)

45

Chapter 9

Discussion

This thesis lays a cornerstone of the hardware-software hierarchical integration

for deep learning ecosystem. As deep learning algorithm becomes more diverse,

the infrastructure of deep learning has to support a flexible execution platform.

Unfortunately, the traditional hardware design process is too slow to follow

the growth of deep learning algorithm. So, the recent deep learning hardware

design approaches try to apply more flexible and reconfigurable way to design

hardware. DNN Weaver [42], from high-level deep network models to FPGA

acceleration, provides a template-based hardware design automation for vari-

ous deep learning algorithms by parameterizing the features of them. SiLago

framework [43] enhances the abstraction level of hardware design from RTL to

micro-architecture, so that it simplifies the hardware design and reduces the

design time. The deep learning compiler, this thesis presents, is the backbone

of the integrated system between the algorithm and hardware stacks. If the

deep learning compiler can be integrated with those hardware design automa-

tion tools, it can provide a hierarchical integration from compiler to hardware

design automation for target deep learning algorithm.

46

Chapter 10

Conclusion

This thesis presents e-PlaNNer, a framework to generate efficient execution

plans for a given convolutional network and CNN accelerator. e-PlaNNer pre-

dicts the performance of different dataflows and tilings using two estimation

models to compute the off-chip memory access volume and the performance of

execution plan and, by this so, e-PlaNNer selects the best execution plan for

each convolutional layer. e-PlaNNer also provides a fast exploration of the best

execution plan by pruning the large search space. e-PlaNNer outputs the best

execution plan as target code which can be compiled on the target platform;

in its current form, a CUDA backend has been implemented and tested. The

evaluation with five common networks under various restricted memory setups

on the Nvidia Jetson TX2 platform shows that e-PlaNNer outperforms the ex-

ecutions from previous works by a large margin both in terms of execution time

and accessed off-chip data volume. In addition, e-PlaNNer never lags behind

well-known deep learning frameworks in terms of end-to-end execution.

47

Bibliography

[1] NVIDIA. (2017) Nvidia jetson tx2. [Online]. Available: https://www.

nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-tx2/

[2] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for

image recognition,” CoRR, vol. abs/1512.03385, 2015. [Online]. Available:

http://arxiv.org/abs/1512.03385

[3] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,

M. Andreetto, and H. Adam, “Mobilenets: Efficient convolutional neural

networks for mobile vision applications,” CoRR, vol. abs/1704.04861,

2017. [Online]. Available: http://arxiv.org/abs/1704.04861

[4] F. N. Iandola, M. W. Moskewicz, K. Ashraf, S. Han, W. J. Dally,

and K. Keutzer, “Squeezenet: Alexnet-level accuracy with 50x fewer

parameters and <1mb model size,” CoRR, vol. abs/1602.07360, 2016.

[Online]. Available: http://arxiv.org/abs/1602.07360

[5] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification

with deep convolutional neural networks,” in Proceedings of the 25th

International Conference on Neural Information Processing Systems

- Volume 1, ser. NIPS’12. USA: Curran Associates Inc., 2012,

48

pp. 1097–1105. [Online]. Available: http://dl.acm.org/citation.cfm?id=

2999134.2999257

[6] K. Simonyan and A. Zisserman, “Very deep convolutional networks for

large-scale image recognition,” 2014.

[7] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking

the inception architecture for computer vision,” in 2016 IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), June 2016, pp.

2818–2826.

[8] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and O. Temam,

“Diannao: A small-footprint high-throughput accelerator for ubiquitous

machine-learning,” in Proceedings of the 19th International Conference on

Architectural Support for Programming Languages and Operating Systems,

ser. ASPLOS ’14. New York, NY, USA: ACM, 2014, pp. 269–284.

[Online]. Available: http://doi.acm.org/10.1145/2541940.2541967

[9] Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An energy-

efficient reconfigurable accelerator for deep convolutional neural networks,”

IEEE Journal of Solid-State Circuits, vol. 52, no. 1, pp. 127–138, Jan 2017.

[10] C. Farabet, B. Martini, B. Corda, P. Akselrod, E. Culurciello, and Y. Le-

Cun, “Neuflow: A runtime reconfigurable dataflow processor for vision,”

in CVPR 2011 WORKSHOPS, June 2011, pp. 109–116.

[11] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and

W. J. Dally, “Eie: Efficient inference engine on compressed deep neural

network,” in Proceedings of the 43rd International Symposium on Computer

Architecture, ser. ISCA ’16. Piscataway, NJ, USA: IEEE Press, 2016, pp.

243–254. [Online]. Available: https://doi.org/10.1109/ISCA.2016.30

49

[12] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa,

S. Bates, S. Bhatia, N. Boden, A. Borchers, R. Boyle, P.-l. Cantin,

C. Chao, C. Clark, J. Coriell, M. Daley, M. Dau, J. Dean, B. Gelb,

T. V. Ghaemmaghami, R. Gottipati, W. Gulland, R. Hagmann, C. R.

Ho, D. Hogberg, J. Hu, R. Hundt, D. Hurt, J. Ibarz, A. Jaffey,

A. Jaworski, A. Kaplan, H. Khaitan, D. Killebrew, A. Koch, N. Kumar,

S. Lacy, J. Laudon, J. Law, D. Le, C. Leary, Z. Liu, K. Lucke,

A. Lundin, G. MacKean, A. Maggiore, M. Mahony, K. Miller,

R. Nagarajan, R. Narayanaswami, R. Ni, K. Nix, T. Norrie, M. Omernick,

N. Penukonda, A. Phelps, J. Ross, M. Ross, A. Salek, E. Samadiani,

C. Severn, G. Sizikov, M. Snelham, J. Souter, D. Steinberg, A. Swing,

M. Tan, G. Thorson, B. Tian, H. Toma, E. Tuttle, V. Vasudevan,

R. Walter, W. Wang, E. Wilcox, and D. H. Yoon, “In-datacenter

performance analysis of a tensor processing unit,” in Proceedings of

the 44th Annual International Symposium on Computer Architecture,

ser. ISCA ’17. New York, NY, USA: ACM, 2017, pp. 1–12. [Online].

Available: http://doi.acm.org/10.1145/3079856.3080246

[13] Y. Ma, Y. Cao, S. Vrudhula, and J.-s. Seo, “Optimizing loop

operation and dataflow in fpga acceleration of deep convolutional

neural networks,” in Proceedings of the 2017 ACM/SIGDA International

Symposium on Field-Programmable Gate Arrays, ser. FPGA ’17.

New York, NY, USA: ACM, 2017, pp. 45–54. [Online]. Available:

http://doi.acm.org/10.1145/3020078.3021736

[14] H. Sharma, J. Park, D. Mahajan, E. Amaro, J. K. Kim, C. Shao,

A. Mishra, and H. Esmaeilzadeh, “From high-level deep neural

models to fpgas,” in The 49th Annual IEEE/ACM International

50

Symposium on Microarchitecture, ser. MICRO-49. Piscataway, NJ,

USA: IEEE Press, 2016, pp. 17:1–17:12. [Online]. Available: http:

//dl.acm.org/citation.cfm?id=3195638.3195659

[15] X. Wei, C. H. Yu, P. Zhang, Y. Chen, Y. Wang, H. Hu, Y. Liang,

and J. Cong, “Automated systolic array architecture synthesis for

high throughput cnn inference on fpgas,” in Proceedings of the 54th

Annual Design Automation Conference 2017, ser. DAC ’17. New

York, NY, USA: ACM, 2017, pp. 29:1–29:6. [Online]. Available:

http://doi.acm.org/10.1145/3061639.3062207

[16] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong,

“Optimizing fpga-based accelerator design for deep convolutional neural

networks,” in Proceedings of the 2015 ACM/SIGDA International

Symposium on Field-Programmable Gate Arrays, ser. FPGA ’15.

New York, NY, USA: ACM, 2015, pp. 161–170. [Online]. Available:

http://doi.acm.org/10.1145/2684746.2689060

[17] M. Tanomoto, S. Takamaeda-Yamazaki, J. Yao, and Y. Nakashima, “A

cgra-based approach for accelerating convolutional neural networks,” in

2015 IEEE 9th International Symposium on Embedded Multicore/Many-

core Systems-on-Chip, Sep 2015, pp. 73–80.

[18] I. Bae, B. Harris, H. Min, and B. Egger, “Auto-tuning cnns for coarse-

grained reconfigurable array-based accelerators,” IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, vol. 37, no. 10,

pp. 1–1, Oct 2018.

[19] B. Harris, I. Bae, and B. Egger, “Architectures and algorithms for on-

51

device user customization of cnns,” Integration, 2018. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S0167926018302700

[20] M. Fagan, J. Schlachter, K. Yoshii, S. Leyffer, K. Palem, M. Snir, S. M.

Wild, and C. Enz, “Overcoming the power wall by exploiting inexactness

and emerging cots architectural features: Trading precision for improv-

ing application quality,” in 2016 29th IEEE International System-on-Chip

Conference (SOCC), 2016, pp. 241–246.

[21] S. Williams, A. Waterman, and D. Patterson, “Roofline: An insightful

visual performance model for multicore architectures,” Commun.

ACM, vol. 52, no. 4, pp. 65–76, Apr. 2009. [Online]. Available:

http://doi.acm.org/10.1145/1498765.1498785

[22] H. Kwon, M. Pellauer, and T. Krishna, “MAESTRO: an open-

source infrastructure for modeling dataflows within deep learning

accelerators,” CoRR, vol. abs/1805.02566, 2018. [Online]. Available:

http://arxiv.org/abs/1805.02566

[23] A. Parashar, P. Raina, Y. S. Shao, Y. Chen, V. A. Ying, A. Mukkara,

R. Venkatesan, B. Khailany, S. W. Keckler, and J. Emer, “Timeloop: A

systematic approach to dnn accelerator evaluation,” in 2019 IEEE Inter-

national Symposium on Performance Analysis of Systems and Software

(ISPASS), March 2019, pp. 304–315.

[24] T. Chen, T. Moreau, Z. Jiang, L. Zheng, E. Yan, M. Cowan, H. Shen,

L. Wang, Y. Hu, L. Ceze, C. Guestrin, and A. Krishnamurthy, “Tvm:

An automated end-to-end optimizing compiler for deep learning,” in

Proceedings of the 12th USENIX Conference on Operating Systems

Design and Implementation, ser. OSDI’18. Berkeley, CA, USA:

52

USENIX Association, 2018, pp. 579–594. [Online]. Available: http:

//dl.acm.org/citation.cfm?id=3291168.3291211

[25] J. Li, G. Yan, W. Lu, S. Jiang, S. Gong, J. Wu, and X. Li, “Smartshuttle:

Optimizing off-chip memory accesses for deep learning accelerators,” in

2018 Design, Automation Test in Europe Conference Exhibition (DATE),

March 2018, pp. 343–348.

[26] J. Redmon and A. Farhadi, “YOLO9000: better, faster, stronger,” CoRR,

vol. abs/1612.08242, 2016. [Online]. Available: http://arxiv.org/abs/1612.

08242

[27] M. J. Wolfe, “Iteration space tiling for memory hierarchies,” Parallel Pro-

cessing for Scientific Computing, vol. 357, p. 361, 1987.

[28] Y.-H. Chen, J. Emer, and V. Sze, “Eyeriss: A spatial architecture for

energy-efficient dataflow for convolutional neural networks,” in Proceedings

of the 43rd International Symposium on Computer Architecture, ser. ISCA

’16. Piscataway, NJ, USA: IEEE Press, 2016, pp. 367–379. [Online].

Available: https://doi.org/10.1109/ISCA.2016.40

[29] Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li, T. Chen, Z. Xu,

N. Sun, and O. Temam, “Dadiannao: A machine-learning supercomputer,”

in Proceedings of the 47th Annual IEEE/ACM International Symposium

on Microarchitecture, ser. MICRO-47. Washington, DC, USA: IEEE

Computer Society, 2014, pp. 609–622. [Online]. Available: http:

//dx.doi.org/10.1109/MICRO.2014.58

[30] Z. Du, R. Fasthuber, T. Chen, P. Ienne, L. Li, T. Luo, X. Feng, Y. Chen,

and O. Temam, “Shidiannao: Shifting vision processing closer to the

53

sensor,” in Proceedings of the 42Nd Annual International Symposium

on Computer Architecture, ser. ISCA ’15. New York, NY, USA:

ACM, 2015, pp. 92–104. [Online]. Available: http://doi.acm.org/10.1145/

2749469.2750389

[31] J. a. Benesty, Pearson Correlation Coefficient, 1st ed., ser. Noise Reduction

in Speech Processing. Berlin, Heidelberg :: Springer Berlin Heidelberg :,

2009, vol. 2.

[32] J. Evans, Straightforward Statistics for the Behavioral Science, ser.

Psychology Series. Brooks/Cole, 1995. [Online]. Available: https:

//books.google.co.kr/books?id=eokUtxKe8j4C

[33] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. D. J. Dongarra, J. D. Croz,

A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen, LAPACK

Users’ Guide, 3rd ed. Philadelphia, Pennsylvania, USA: SIAM, 1999.

[34] J. Redmon, “Darknet: Open source neural networks in c,” http://pjreddie.

com/darknet/, 2013–2016.

[35] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,

T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf,

E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,

L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative style, high-

performance deep learning library,” in Advances in Neural Information

Processing Systems 32, H. Wallach, H. Larochelle, A. Beygelzimer,

F. d'Alché-Buc, E. Fox, and R. Garnett, Eds. Curran Associates, Inc.,

2019, pp. 8024–8035. [Online]. Available: http://papers.neurips.cc/paper/

9015-pytorch-an-imperative-style-high-performance-deep-learning-library.

pdf

54

[36] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.

Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow,

A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,

M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray,

C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar,

P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden,

M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-scale

machine learning on heterogeneous systems,” 2015, software available

from tensorflow.org. [Online]. Available: https://www.tensorflow.org/

[37] F. Chollet et al., “Keras,” https://keras.io, 2015.

[38] Intel Math Kernel Library. Reference Manual. Intel Corporation, 2009,

santa Clara, USA. ISBN 630813-054US.

[39] Z. Xianyi, W. Qian, and Z. Yunquan, “Model-driven level 3 blas perfor-

mance optimization on loongson 3a processor,” in 2012 IEEE 18th Interna-

tional Conference on Parallel and Distributed Systems, 2012, pp. 684–691.

[40] S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran, B. Catanzaro,

and E. Shelhamer, “cudnn: Efficient primitives for deep learning,” 2014.

[41] A. Lavin, “Fast algorithms for convolutional neural networks,” CoRR,

vol. abs/1509.09308, 2015. [Online]. Available: http://arxiv.org/abs/1509.

09308

[42] H. Sharma, J. Park, D. Mahajan, E. Amaro, J. K. Kim, C. Shao, A. Mishra,

and H. Esmaeilzadeh, “From high-level deep neural models to fpgas,” in

2016 49th Annual IEEE/ACM International Symposium on Microarchi-

tecture (MICRO), 2016, pp. 1–12.

55

[43] A. Hemani, N. Farahini, S. M. A. H. Jafri, H. Sohofi, S. Li, and

K. Paul, The SiLago Solution: Architecture and Design Methods for a

Heterogeneous Dark Silicon Aware Coarse Grain Reconfigurable Fabric.

Cham: Springer International Publishing, 2017, pp. 47–94. [Online].

Available: https://doi.org/10.1007/978-3-319-31596-6 3

56

요약

지난 몇 년간 심층신경망을 위한 수많은 아키텍처와 가속기가 제안되었다. 이를

통해,일반적인심층신경망수행방식들이함께제안되었으나,구체적인연산배치

방식과 온칩 메모리의 크기 및 종류, 그리고 병렬 실행 방식은 특히 내장형 시스템

에서다양하게나타날수있다.뿐만아니라,오프칩메모리접근크기및신경망의

성능은 연산 형태 및 온칩 메모리의 크기 뿐 아니라 신경망 각 계층의 크기 및

형태에 따라서 달라질 수 있다. 따라서, 최대 성능을 내면서 오프칩 메모리 접근을

최소화하는 연산 형태를 일일이 찾는 것은 상당히 번거로운 작업이며, 많은 오류

를 발생 시킬 수 있다. 본 논문에서 소개할 e-PlaNNer는 주어진 내장형 하드웨어

가속기와 합성곱 신경망에 대하여 최적화된 실행 계획을 생성해주는 컴파일러 프

레임워크이다. e-PlaNNer는 심층신경망의 각 신경망 계층에 대하여 데이터 이동,

타일링, 그리고 작업 배분을 고려한 성능 최적화된 실행 계획을 결정한다. 또한,

생성된 실행 계획을 실제 컴파일 가능한 코드로 변환함으로써, 서로 다른 다양한

합성곱 신경망과 하드웨어 가속기에 대하여 빠른 개발 주기를 제공한다. 다양한

메모리 구성으로 다섯 가지 합성곱 신경망 응용을 Nvidia의 Jetson TX2 에서 검

증하여 기존의 연구와 비교한 결과, e-PlaNNer는 평균적으로 6배의 성능 향상과

21.14% 의 오프칩 메모리 데이터 접근량 감소를 보였다. 뿐만 아니라, e-PlaNNer

는 전체 심층신경망의 실행 관점에서 기존에 잘 알려진 딥러닝 프레임워크와의

비교에서도 의미있는 결과를 보였다.

주요어: 합성곱 신경망, 컴파일러, 실행 계획

학번: 2018-22990

57

	Chapter 1 Introduction
	Chapter 2 Related Work
	Chapter 3 Background
	3.1 Convolutional Neural Networks
	3.2 DNN Accelerator
	3.3 Roofline Model

	Chapter 4 Graph Level Processing
	4.1 Graph Construction
	4.2 Schedule Caching

	Chapter 5 Convolutional Layer Analysis
	5.1 Loop Structure
	5.2 Loop Tiling
	5.3 Dataflow

	Chapter 6 Execution Planning
	6.1 Architecture Con�figurations
	6.2 Modeling Off-Chip Memory Accesses
	6.3 Modeling Performance
	6.4 Search Space Exploration

	Chapter 7 Code Generation
	7.1 Intermediate Representation
	7.2 Target Code Generation

	Chapter 8 Evaluation
	8.1 Experimental Setup
	8.2 Performance Results
	8.3 Comparison of Off-chip Memory Access
	8.4 Framework Results

	Chapter 9 Discussion
	Chapter 10 Conclusion
	Bibliography
	요약

<startpage>16
Chapter 1 Introduction 1
Chapter 2 Related Work 5
Chapter 3 Background 8
 3.1 Convolutional Neural Networks 8
 3.2 DNN Accelerator 9
 3.3 Roofline Model 11
Chapter 4 Graph Level Processing 13
 4.1 Graph Construction 13
 4.2 Schedule Caching 14
Chapter 5 Convolutional Layer Analysis 15
 5.1 Loop Structure 16
 5.2 Loop Tiling 17
 5.3 Dataflow 18
Chapter 6 Execution Planning 20
 6.1 Architecture Con�figurations 20
 6.2 Modeling Off-Chip Memory Accesses 22
 6.3 Modeling Performance 24
 6.4 Search Space Exploration 25
Chapter 7 Code Generation 32
 7.1 Intermediate Representation 33
 7.2 Target Code Generation 34
Chapter 8 Evaluation 36
 8.1 Experimental Setup 36
 8.2 Performance Results 39
 8.3 Comparison of Off-chip Memory Access 40
 8.4 Framework Results 42
Chapter 9 Discussion 46
Chapter 10 Conclusion 47
Bibliography 48
요약 57
</body>

