

저작자표시-비영리-변경금지 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

Ph.D. DISSERTATION

Parallelism Management for Co-Located

Parallel Applications

동시에 실행되는 병렬 처리 어플리케이션들을 위한

병렬성 관리

BY

Younghyun Cho

August 2020

DEPARTMENT OF ELECTRICAL ENGINEERING &

COMPUTER SCIENCE

COLLEGE OF ENGINEERING

SEOUL NATIONAL UNIVERSITY

Ph.D. DISSERTATION

Parallelism Management for Co-Located

Parallel Applications

동시에 실행되는 병렬 처리 어플리케이션들을 위한

병렬성 관리

BY

Younghyun Cho

August 2020

DEPARTMENT OF ELECTRICAL ENGINEERING &

COMPUTER SCIENCE

COLLEGE OF ENGINEERING

SEOUL NATIONAL UNIVERSITY

Parallelism Management for Co-Located Parallel

Applications

동시에 실행되는 병렬 처리 어플리케이션들을 위한

병렬성 관리

지도교수 Bernhard Egger

이 논문을 공학박사 학위논문으로 제출함

2020 년 4 월

서울대학교 대학원

전기 컴퓨터 공학부

조영현

Younghyun Cho의 공학박사 학위논문을 인준함

2020 년 6 월

위 원 장 이재진

부위원장 Bernhard Egger

위 원 염헌영

위 원 Lawrence Rauchwerger

위 원 David Isaac August

Abstract

Running multiple parallel jobs on the same multicore machine is becoming

more important to improve utilization of the given hardware resources. While

co-location of parallel jobs is common practice, it still remains a challenge for

current parallel runtime systems to efficiently execute multiple parallel appli-

cations simultaneously. Conventional parallelization runtimes such as OpenMP

generate a fixed number of worker threads, typically as many as there are cores

in the system, to utilize all physical core resources. On such runtime systems,

applications may not achieve their peak performance when given full use of all

physical core resources. Moreover, the OS kernel needs to manage all worker

threads generated by all running parallel applications, and it may require huge

management costs with an increasing number of co-located applications.

In this thesis, we focus on improving runtime performance for co-located

parallel applications. To achieve this goal, the first idea of this work is to ensure

spatial scheduling to execute multiple co-located parallel applications simulta-

neously. Spatial scheduling that provides distinct core resources for applications

is considered a promising and scalable approach for executing co-located ap-

plications. Despite the growing importance of spatial scheduling, there are still

two fundamental research issues with this approach. First, spatial scheduling

requires a runtime support for parallel applications to run efficiently in spa-

tial core allocation that can change at runtime. Second, the scheduler needs to

assign the proper number of core resources to applications depending on the

applications’ performance characteristics for better runtime performance.

To this end, in this thesis, we present three novel runtime-level techniques to

i

efficiently execute co-located parallel applications with spatial scheduling. First,

we present a cooperative runtime technique that provides malleable parallel ex-

ecution for OpenMP parallel applications. The malleable execution means that

applications can dynamically adapt their degree of parallelism to the varying

core resource availability. It allows parallel applications to run efficiently at

changing core resource availability compared to conventional runtime systems

that do not adjust the degree of parallelism of the application.

Second, this thesis introduces an analytical performance model that can

estimate resource utilization and the performance of parallel programs in de-

pendence of the provided core resources. We observe that the performance of

parallel loops is typically limited by memory performance, and employ queue-

ing theory to model the memory performance. The queueing system-based ap-

proach allows us to estimate the performance by using closed-form equations

and hardware performance counters.

Third, we present a core allocation framework to manage core resources

between co-located parallel applications. With analytical modeling, we observe

that maximizing both CPU utilization and memory bandwidth usage can gen-

erally lead to better performance compared to conventional core allocation poli-

cies that maximize only CPU usage. The presented core allocation framework

optimizes utilization of multi-dimensional resources of CPU cores and memory

bandwidth on multi-socket multicore systems based on the cooperative parallel

runtime support and the analytical model.

Keywords: Runtime system, performance modeling, resource management

Student Number: 2013-20887

ii

Contents

Abstract i

1 Introduction 1

1.1 Motivation . 1

1.2 Background . 5

1.2.1 The OpenMP Runtime System 5

1.2.2 Target Multi-Socket Multicore Systems 7

1.3 Contributions . 8

1.3.1 Cooperative Runtime Systems 9

1.3.2 Performance Modeling . 9

1.3.3 Parallelism Management 10

1.4 Related Work . 11

1.4.1 Cooperative Runtime Systems 11

1.4.2 Performance Modeling . 12

1.4.3 Parallelism Management 14

1.5 Organization of this Thesis . 15

2 Dynamic Spatial Scheduling with Cooperative Runtime Sys-

tems 17

iii

2.1 Overview . 17

2.2 Malleable Workloads . 19

2.3 Cooperative OpenMP Runtime System 21

2.3.1 Cooperative User-Level Tasking 22

2.3.2 Cooperative Dynamic Loop Scheduling 27

2.4 Experimental Results . 30

2.4.1 Standalone Application Performance 30

2.4.2 Performance in Spatial Core Allocation 33

2.5 Discussion . 35

2.5.1 Contributions . 35

2.5.2 Limitations and Future Work 36

2.5.3 Summary . 37

3 Performance Modeling of Parallel Loops using Queueing Sys-

tems 38

3.1 Overview . 38

3.2 Background . 41

3.2.1 Queueing Models . 41

3.2.2 Insights on Performance Modeling of Parallel Loops . . . 43

3.2.3 Performance Analysis . 46

3.3 Queueing Systems for Multi-Socket Multicores 54

3.3.1 Hierarchical Queueing Systems 54

3.3.2 Computing the Parameter Values 60

3.4 The Speedup Prediction Model 63

3.4.1 The Speedup Model . 63

3.4.2 Implementation . 64

3.5 Evaluation . 65

iv

3.5.1 64-core AMD Opteron Platform 66

3.5.2 72-core Intel Xeon Platform 68

3.6 Discussion . 70

3.6.1 Applicability of the Model 70

3.6.2 Limitations of the Model 72

3.6.3 Summary . 73

4 Maximizing System Utilization via Parallelism Management 74

4.1 Overview . 74

4.2 Background . 76

4.2.1 Modeling Performance Metrics 76

4.2.2 Our Resource Management Policy 79

4.3 NuPoCo: Parallelism Management for Co-Located Parallel Loops 82

4.3.1 Online Performance Model 82

4.3.2 Managing Parallelism . 86

4.4 Evaluation of NuPoCo . 90

4.4.1 Evaluation Scenario 1 . 90

4.4.2 Evaluation Scenario 2 . 98

4.5 MOCA: An Evolutionary Approach to Core Allocation 103

4.5.1 Evolutionary Core Allocation 104

4.5.2 Model-Based Allocation 106

4.6 Evaluation of MOCA . 113

4.7 Discussion . 118

4.7.1 Contributions and Limitations 118

4.7.2 Summary . 119

5 Conclusion and Future Work 120

5.1 Conclusion . 120

v

5.2 Future work . 122

5.2.1 Improving Multi-Objective Core Allocation 122

5.2.2 Co-Scheduling of Parallel Jobs for HPC Systems 123

A Additional Experiments for the Performance Model 124

A.1 Memory Access Distribution and Poisson Distribution 124

A.1.1 Memory Access Distribution 124

A.1.2 Kolmogorov Smirnov Test 127

A.2 Additional Performance Modeling Results 134

A.2.1 Results with Intel Hyperthreading 134

A.2.2 Results with Cooperative User-Level Tasking 134

A.2.3 Results with Other Loop Schedulers 138

A.2.4 Results with Different Number of Memory Nodes 138

B Other Research Contributions of the Author 141

B.1 Compiler and Runtime Support for Integrated CPU-GPU Systems141

B.2 Modeling NUMA Architectures with Stochastic Tool 143

B.3 Runtime Environment for a Manycore Architecture 143

초록 159

Acknowledgements 161

vi

List of Figures

1.1 Job scheduling in modern data centers. 2

1.2 Execution model for parallel for loop 6

1.3 SMP and multi-socket multicore systems 7

1.4 Block diagram of target multi-socket multicore platforms 8

2.1 Spatial scheduling depending on the job flexibility 20

2.2 Execution model for OpenMP parallel sections 23

2.3 Execution model for cooperative user-level tasking 24

2.4 Performance with different number of user-level tasks 27

2.5 Standalone application performance (OMP parallel) 31

2.6 Standalone application performance (parallel for) 32

2.7 Performance under COOP-ULT and COOP-DYN 32

2.8 Space-sharing performance comparison 33

2.9 Performance under varying resource availability 34

3.1 Illustration of the M/M/1 and M/M/1/N/N queueing systems . 42

3.2 PMF of the number of memory requests per time (AMD) 47

3.3 PMF of the number of memory requests per time (Intel) 47

3.4 Number of memory operations of parallel loops (AMD) 48

vii

3.5 Number of memory operations of parallel loops (Intel) 48

3.6 Number of memory operations of synthetic workloads (AMD) . . 49

3.7 Number of memory operations of synthetic workloads (Intel) . . 49

3.8 Memory service rates for synthetic workloads (AMD) 50

3.9 Memory service rates for synthetic workloads (Intel) 50

3.10 Load balancing ratio of parallel loops 53

3.11 A two-socket multicore system and data path 54

3.12 Hierarchical queueing systems . 55

3.13 MAPE of speedup prediction . 68

3.14 Speedup prediction results (AMD) 69

3.15 Speedup prediction results (Intel) 71

4.1 The NuPoCo framework . 75

4.2 Performance metrics . 79

4.3 Turnaround times of co-located workloads 80

4.4 Performance of core allocation policies 81

4.5 Queueing system for individual memory controllers 83

4.6 Queueing system for CPU core utilization prediction 84

4.7 Speedup prediction validation . 86

4.8 Normalized turnaround time for co-located scenarios 94

4.9 Hmean of speedup for co-location scenarios 96

4.10 Trace visualization of a co-location scenario 98

4.11 Normalized turnaround time for co-located scenarios 102

4.12 Overview of MOCA . 103

4.13 Evolutionary core allocation . 105

4.14 CPU time breakdown and available measures 107

4.15 Applying the analytical model . 110

viii

4.16 Queueing system for an individual memory node 111

4.17 An evolutionary process with the analytical model 112

4.18 Mixes of two applications (NPB and Spark) 115

4.19 Mixes of three applications (NPB and Spark) 116

4.20 Resource usage and IPS comparison for the co-location scenarios 117

A.1 PMF of the number of memory requests per time (AMD) 125

A.2 PMF of the number of memory requests per time (Intel) 126

A.3 Histogram of the number of memory requests per time (AMD) . 128

A.4 Histogram of the number of memory requests per time (Intel) . . 129

A.5 PDF of the number of served memory operations for synthetic

workloads (AMD) . 132

A.6 Histogram of the number of served memory operations for syn-

thetic workloads (AMD) . 132

A.7 PDF of the number of served memory operations for synthetic

workloads (Intel) . 132

A.8 Histogram of the number of served memory operations for syn-

thetic workloads (Intel) . 132

A.9 Speedup prediction results on Intel with Hyperthreading 135

A.10 Speedup prediction results (AMD) 136

A.11 Speedup prediction results (Intel) 137

ix

List of Tables

3.1 Selected parallel loops . 45

3.2 Input parameters of the queueing systems 58

3.3 Modeled performance information 58

4.1 Target applications . 91

4.2 Co-location scenarios . 93

4.3 Profiled application information. 109

4.4 Hardware-dependent parameters. 109

4.5 Target applications and their performance characteristics. 114

A.1 Two-sample Kolmogorov-Smirnov test (AMD) 130

A.2 Two-sample Kolmogorov-Smirnov test (Intel) 131

A.3 Two-sample Kolmogorov-Smirnov test for synthetic workloads . . 133

A.4 Scalability prediction accuracy for different work schedulers. . . . 139

A.5 Prediction accuracy for varying memory configurations. 140

x

Chapter 1

Introduction

1.1 Motivation

Modern shared-memory multiprocessor systems are typically multi-socket mul-

ticore systems that consist of dozens of processor cores with an increasing num-

ber of CPU sockets and memory nodes to provide sufficient computation power

and memory bandwidth. Today’s parallel applications, however, are typically

able to achieve only a fraction of the peak performance on such complex com-

puter systems [58, 88]. Memory-intensive applications often cannot achieve the

best performance when given full use of all available core resources because of

the limited memory bandwidth and the non-uniform memory access (NUMA)

property of multi-socket systems, while computation-intensive applications may

under-utilize the memory system.

In modern data centers and high-performance computing (HPC) systems,

running multiple parallel jobs on the same multicore machine is becoming more

important to efficiently utilize the given hardware resources [41, 11, 93, 33].

1

Job 1

Job 3

Job 2

Job 4

Job Queue

Placement
Job 1 Job 3

Job 2 Job 4

Resource

Management

Multicore server 1

Multicore server 2 Cache

DRAM

Job 2 4

Multicore server 2

Figure 1.1 Job scheduling in modern data centers.

For example, as shown in Figure 1.1, data centers typically use a cluster-level

scheduler that decides which parallel jobs will be co-located on the same mul-

ticore node [25, 26, 48, 10, 93]. Co-location of parallel jobs may improve re-

source utilization if the co-located workloads have different resource require-

ments, e.g. CPU-intensive and memory-intensive workloads. Then, the runtime

system manages multicore resources for the co-located workloads to meet the

given optimization goal (e.g. reducing execution time). On the other hand,

many parallel workloads are able to run on a varying number of core resources

using either compiler/runtime support [53, 71, 40] or Linux’s resource isola-

tion API such as sched setaffinity and cgroup (as used in Docker [27]).

In this context, allocating the proper number of core resources for co-located

applications to optimize application performance and/or platform throughput

has been an important topic of research in the compiler and runtime commu-

nity [65, 72, 76, 75, 21, 81, 29, 28, 59, 91, 15]

While co-location of parallel jobs is already common practice, it still re-

mains a challenge for current runtime systems to efficiently execute multiple

parallel applications on modern multicore systems. Conventional paralleliza-

tion runtime systems such as OpenMP [9] and Intel TBB [73] assume that each

parallel application can utilize all existing hardware resources and thus gener-

ate threads, typically as many as there are cores in the given system, to utilize

2

all physical core resources. On such conventional runtimes, however, multiple

parallel applications do not run efficiently. First, applications may not achieve

their peak performance when given full use of all available core resources. More-

over, the execution model is not scalable for an increasingly large number of

core resources because the OS kernel needs to manage all (kernel-level) threads

generated by all running parallel applications. In this context, the runtime and

OS community has pointed out that spatial scheduling is a scalable design for

(future) multicore systems [5, 57, 90]. To overcome the scalability issue, the

spatial scheduling approach provides distinct core resources to the co-located

applications, and then the applications adapt their execution to the allocated

core resources.

The spatial scheduling approach has two fundamental research issues. First,

applications ideally should have malleability which is the ability to dynamically

adjust the degree of parallelism (DoP) to adapt to the changes to the allocated

core resources. Without malleability, applications can suffer from a significant

slowdown when allocated core resources change due to the thread migration

overhead and unbalanced numbers of threads among allocated core resources.

Although the parallel computing research community has presented several run-

time techniques to achieve malleable parallel execution, these existing tech-

niques require special compiler/runtime [71, 72] that limits their applicability

or use a simplistic task/work scheduling which can incur a significant scheduling

overhead for a large number of core resources [40]. Second, the spatial scheduling

approach needs to decide the proper number (and location) of core resources be-

tween co-located applications depending on the given scheduler’s policy. Many

existing core allocation techniques are predominantly CPU- or speedup-centric,

meaning that they assign more core resources to CPU-intensive applications or

highly-scalable applications [76, 75, 21, 81, 91], by leveraging runtime heuris-

3

tics or application speedup information. Although optimizing CPU usage has

long been a common strategy for many resource management problems, the

approach ignores the fact that multiple resources such as CPU and memory

bandwidth are consumed simultaneously. Optimizing only CPU usage can lead

to under-utilized memory systems resulting in an inefficient tail execution once

all the computation-intensive applications have been finished.

In this thesis, we focus on improving the runtime performance (the execu-

tion time) of co-located parallel applications on multi-socket multicore systems

thereby reducing the operating cost of HPC and data centers. To achieve this

goal, the first idea of this work is to ensure spatial scheduling for executing co-

located parallel applications. The first research goal is to provide efficient mal-

leable parallel execution in spatial core allocation for shared-memory parallel

applications with minimal changes to the current runtime system. In particular,

we focus on providing malleable execution for OpenMP workloads which are

widely used in many HPC and data center workloads. Based on the malleable

parallel runtime support, the next research goals focus on performance modeling

of parallel programs and parallelism management for co-located parallel appli-

cations. While performance modeling has long been an important research issue,

existing modeling techniques for core resource management rely on additional

efforts before applications are executed such as offline training [65] or machine

learning [36, 29]. Ideally, the performance modeling and parallelism manage-

ment should be done online and within a reasonable overhead. Therefore, we

focus on an analytical solution that can efficiently estimate the performance of

parallel programs and can also be applied to runtime systems while providing

useful insights for the resource manager to develop an appropriate scheduling

policy. Finally, based on the malleable runtime and the analytical performance

model, we aim to provide a parallelism management framework that determines

4

the core allocation for co-located parallel applications and improve the overall

system throughput.

1.2 Background

To better understand the research issues of this thesis, this section provides

background information about the OpenMP runtime system. We also provide

the information about our target multi-socket multicore systems that are used

for evaluation throughout this thesis.

1.2.1 The OpenMP Runtime System

In this thesis, we mainly consider OpenMP parallel applications. OpenMP is

the de-facto standard for shared-memory parallel processing in HPC and is also

widely used for many data center and big-data workloads.

OpenMP’s parallelism is based on the fork-join execution model [9]. Appli-

cations consist of multiple parallel fork-join sections that may consist of one or

more parallel loops. Parallel loops annotated with the parallel for pragma

are the basic mechanism to initiate parallelism in OpenMP applications, and

different parallel loops exhibit different resource requirements and performance

characteristics. To consider applications’ changing performance characteristics,

in this thesis, we focus on optimizing the execution of co-located parallel appli-

cations in the level of parallel loop.

In an OpenMP parallel loop, the outermost loop iterations represent the

smallest parallel unit of work. OpenMP supports three loop scheduling meth-

ods: static, dynamic, and guided. Programmers can select a scheduling disci-

pline by annotating the specific method to the parallel for pragma. Static

scheduling, selected by schedule(static), divides and assigns the loop itera-

5

#pragma omp parallel
{
 int i;

 #pragma omp for
 schedule(dynamic)
 for (i=0; i<N; i++)
 {
 foo(i);
 }

 ...

work_share

start

end

processed next work

void omp_fn(int start,int end)
{
 for (int i=start; i<end; i++)
 foo(i);
}

Compiler

Runtime

worker threads

get start,end
from work_share

omp_fn(start,end)

GOMP_barrier()

No more work

iteration bound = 3

Figure 1.2 Execution model for parallel for loop.

tions of a parallel loop equally to the worker threads. This policy benefits from

a small dispatch overhead but may suffer from load imbalance. With dynamic

scheduling, selected by schedule(dynamic), loop iterations are assigned to the

worker threads at runtime; this process is illustrated by Figure 1.2 for the GNU

OpenMP (GOMP) runtime system [34]. Each thread repeatedly fetches and

executes a fixed number of loop iterations from the global shared work share

data structure until there is no more work. Guided scheduling, annotated by

schedule(guided), operates similar to dynamic scheduling but dynamically

adjusts the number of loop iterations assigned to a thread. Li’s guided schedul-

ing [54], for example, assigns ⌈items/2N⌉ loop iterations where items represents

the number of remaining loop iterations and N stands for the number of worker

threads.

An important observation of the OpenMP loop scheduling is that, in princi-

ple, the work of a parallel loop can be divided into multiple chunks of work which

can be scheduled dynamically. While the default OpenMP loop schedulers use a

fixed number of worker threads and do not support malleable execution, we ex-

ploit the inherent malleability in OpenMP parallel loops and provide malleable

execution through a runtime-level support presented in Chapter 2.

6

 MCT
(memory
controller)

M E M

Chip
multiprocessor

(a) SMP system (b) Multi-socket multicore system

Figure 1.3 SMP and multi-socket multicore systems.

1.2.2 Target Multi-Socket Multicore Systems

The runtime techniques discussed in this thesis assume multi-socket multicore

systems that contain multiple CPU sockets and memory nodes. Such multi-

socket multicore systems are becoming more common in HPC and even data

centers to provide more computational power and memory bandwidth. Fig-

ure 1.3 provides a simplified view of symmetric multiprocessing (SMP) and

multi-socket multicore systems. Unlike an SMP system that comprises multiple

cores and one memory, multi-socket systems contain a number of memory con-

trollers to increase the memory bandwidth in the presence of a large number of

cores. In such systems, one node consists of a CPU node, itself composed of a

group of CPU cores, and its attached memory node. The individual nodes are

connected by an interconnection network such as AMD’s HyperTransport [74]

or Intel’s QPI (Quick Path Interconnect) [68]. These architectures exhibit Non-

Uniform Memory Accesses (NUMA) characteristics because of the varying ac-

7

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

m
em

m
em

m
em

m
em

L
L
C

L
L
C

L
L
C

L
L
C

m
em

m
em

m
em

m
em

L
L
C

L
L
C

L
L
C

L
L
C

(a) 64-core AMD platform

CPU CPU

m
em

L
L

C

CPU CPU

m
em

L
L

C

Memory controller

Interconnection link

m
em

m
em

L
L

C
L

L
C

(b) 72-core Intel platform

Figure 1.4 Block diagram of the target multi-socket multicore platforms.

cess latencies of the cores to the different memory controllers.

Our work has been evaluated on two commodity multi-socket platforms, a

64-core AMD Opteron and a 72-core Intel Xeon system. The AMD platform,

shown in Figure 1.4 (a), comprises a total of eight CPU nodes in four physical

processor packages (AMD Opteron 6380 [1]) and 128 GB of memory. The AMD

Opteron processors run at 2.5GHz. Each CPU node contains eight computing

cores that share a last-level cache (LLC) of 12 MB. The processor nodes are con-

nected by AMD’s Hyper Transport [74] with a maximum hop distance of two.

The Intel system, shown in Figure 1.4 (b), has four Intel Xeon E7-8870 v3 [42]

processors (2.1GHz) each consisting of 18 cores sharing a 45 MB LLC. The

system is equipped with 512 GB of memory (some experiments used 756 GB of

memory (e.g. Section 4.4) before we changed the DRAM chips). Each processor

represents a CPU node, the four nodes are connected with Intel’s QPI [68].

1.3 Contributions

In this thesis, we propose novel runtime-level techniques for the aforementioned

goals for executing co-located parallel applications.

8

1.3.1 Cooperative Runtime Systems

The first research contribution of this thesis is a runtime-level technique that

provides malleable parallel execution for OpenMP applications under dynamic

spatial scheduling. We call a runtime system using this technique a cooperative

runtime system. The cooperative runtime techniuqe has been implemented into

the GNU OpenMP runtime [34] and allows OpenMP programs to dynamically

adjust the DoP with a low overhead. OpenMP applications typically have mul-

tiple parallel code sections (e.g. parallel for loops) that may exhibit different

performance characteristics. Therefore, applications should be able to adjust the

DoP for each parallel loop to fully exploit the benefits of spatial core allocation.

The cooperative runtime system provides this ability without any modifications

to the application code or the compiler. To dynamically change the DoP of a

parallel loop, i.e. number of active threads, the technique splits the workload

into multiple chunks of work and dynamically schedules the chunks on the pro-

vided core resources. In Chapter 2, we show the benefits of malleable execution

using the cooperative runtime system when executing OpenMP applications in

dynamic spatial core allocation compared to the traditional OpenMP runtime

that does not adjust the DoP at runtime. Some parts of this runtime technique

have been discussed in our previous paper at The International Conference on

Parallel Architectures and Compilation Techniques (PACT) 2018 [15] and also

presented at The Workshop of Programmability and Architectures for Hetero-

geneous Multicores (Multiprog) 2017 [18].

1.3.2 Performance Modeling

The second contribution of this thesis is an analytical performance model for

estimating resource utilization and the performance of parallel loops on shared-

9

memory multi-socket multi-core systems in dependence of the provided core

resources. The approach employs queueing theory to model memory accesses

in multicore systems; the queueing model allows us to compute useful perfor-

mance information such as memory response time and bandwidth utilization

by using closed-form equations. Based on the key insight that scalability of

OpenMP parallel loops is typically limited by memory performance, a hierar-

chically constructed M/M/1/N/N queue system is used to analytically compute

the response time at the different congestion points in the memory system of

modern NUMA architectures. After automatically tuning the model to a specific

architecture by executing a number of micro-benchmarks, the required parame-

ter values are obtained at runtime from hardware performance counters present

in modern commodity AMD and Intel processors. In Chapter 3, evaluated with

24 OpenMP parallel loops, we validate the accuracy of the presented queueing

system by comparing the measured and modeled speedup curves. This work has

led to several publications in parallel computing venues such as PACT 2016 [17]

and TPDS 2020 [19]. In PACT 2016 [17], we presented an earlier version of the

analytical model. A more sophisticated version has been presented in TPDS

2020 [19].

1.3.3 Parallelism Management

Employing the cooperative runtime system and the analytical model, we fi-

nally present a parallelism management and core allocation framework called

NuPoCo (NUMA performance optimizations for co-located parallel applica-

tions). From the cooperative runtime support, for an OpenMP application, the

framework keeps track of changing parallel loops and manages parallelism for

each of the co-located parallel loops.

NuPoCo maximizes the overall system utilization by considering the uti-

10

lization of both CPU cores and memory bandwidth to determine the proper

number of cores for each of the co-located parallel loops. NuPoCo leverages the

analytical model to compute CPU and memory bandwidth utilization and then

determines the degree of parallelism based on a greedy allocation algorithm

to maximize the sum of CPU utilization and memory bandwidth utilization.

Our evaluation shows that NuPoCo improves the average system throughput

(i.e. reduction of execution time) on commodity AMD and Intel multi-socket

systems in the order of 10 to 20% over conventional execution models using

standard Linux time-sharing. This parallelism management framework has been

presented in PACT18 [15].

1.4 Related Work

1.4.1 Cooperative Runtime Systems

To enable spatial scheduling on a Linux-based system, the most simple approach

is using system calls such as sched setaffinity or Linux’s cgroup for CPU

affinity masking. For example, in SBMP [76] and C3PO [75], an application’s

worker threads are pinned to the assigned cores without changing the degree

of parallelism of the application. Hence, applications still use a fixed number

of kernel-level threads and the approach cannot avoid thread interference on

the same cores and suffers from a load imbalance due to thread migration and

unbalanced numbers of threads among cores.

To dynamically adjust the DoP (i.e. the number of kernel-level threads)

of parallel programs, runtime systems often use supports from the application

runtime. The OpenMP runtime system [34] already provide a similar feature.

For example, OpenMP’s OMP parallel code regions can run with any number

of threads (if not defined by the application programmer) that can be selected

11

when entering the parallel region. Several runtime systems [21, 36, 28] assign

a varying number of threads for such parallel regions. Once created, however,

the number of worker threads within a parallel section remains constant and

the benefit is limited compared to fully malleable execution.

To provide malleability, several compilers [53, 71, 72] generate flexible code.

The basic idea is to divide the total work into composable chunks of work and

schedule them onto provided core resources. Varuna’s [81] virtual tasks (VTask)

decouple software from hardware threads and require no compiler support. The

VTask technique splits the parallel work by intercepting creation of Pthreads

and manages them using a work pool. However, these approaches require special

compiler and runtime system which limits the applicability and makes it difficult

to exploit advanced runtime optimizations provided by the existing runtime

system such as OpenMP.

Callisto [40] uses a scheduler activation technique in the OpenMP runtime to

provide malleable execution for OpenMP parallel programs. Callisto is similar

to our work as our approach also achieves workload malleability by leverag-

ing dynamic loop scheduling logic in the OpenMP runtime system. However,

our approach has merits that we perform dynamic granularity control and can

preserve data locality optimizations on NUMA multi-core systems through hi-

erarchical scheduling. Chapter 2 discusses the merit of our work scheduling.

1.4.2 Performance Modeling

Several performance modeling techniques have been presented for multi-socket

systems. Pandia [35] predicts the performance of parallel applications for differ-

ent thread counts and placements. The performance prediction is based on six

different profiling runs to obtain the performance features. NuCore [88] is an an-

alytical model to predict the optimal core allocation for multi-threaded applica-

12

tions. NuCore finds the core allocation that maximizes the memory bandwidth

usage at minimum core count. Integer programming is used to solve the model.

A detailed DRAM performance model, DraMon [89], is employed to predict

the memory performance in NuCore. DraMon requires a number of parameters

that need to be obtained from expert knowledge or architecture data sheets.

On the other hand, the presented method in this thesis requires a small number

of input parameters that can be obtained from hardware performance counters

at runtime. In addition, the queueing systems analytically compute the per-

formance of each memory controller and interconnection link separately using

closed-form expressions; such information can be used for various optimizations.

Applying queueing models to model multiprocessor architectures has been

discussed in the literature. Jonkers [47, 46] has presented conceptual queue-

ing models for multiprocessor architectures consisting of multiple memory con-

trollers and an interconnection network. However, these works do not provide an

evaluation on real hardware platforms. Tudor et al. [85, 84] applied an M/M/1

queueing system to evaluate memory contention in an SMP system with Uni-

form Memory Access (UMA) times. In contrast to our work, they do not apply

a queueing system for the interconnection links in NUMA machines; instead,

they used regression to evaluate the performance on a different number of CPU

nodes. Moreover, the M/M/1 model assumes an infinite number of queueing

customers, however, multiprocessor systems contain a finite number of cores.

In our preliminary work [17], we have presented a speedup prediction model

using M/M/1/N/N queueing systems. In current model, we extended the pre-

vious work in a number of ways. First, the model now provides an experimental

study showing that parallel loops act like queueing customers. Second, the pre-

vious work uses simpler queueing systems assuming a fully-connected intercon-

nection network and does not take into account memory performance variations

13

with hardware optimizations. The presented technique in this thesis provides

more accurate prediction results than the maximum bound of accuracy when

using fixed memory service rates, as shown by our evaluation in Chapter 3.

1.4.3 Parallelism Management

To determine the proper thread or core count between co-located parallel ap-

plications, SBMP [76], SCAF [21], and Varuna [81] execute a parallel program

in several configurations at runtime and perform a regression analysis to es-

timate the performance scalability. Then, they determine the thread count

according to a policy. For example, SCAF [21] selects the thread count that

maximizes the speedup of all running applications. Parcae [72], C3PO [75], and

Aurora [60] perform hill-climbing to reach an optimal thread count. For exam-

ple, Parcae [72] initially reserves an equal number of cores to all running parallel

applications. ACTOR [22] adjusts thread count for power and performance op-

timizations based on a prediction model that requires hardware performance

counters. Emani et al. [29, 28] and ADAPT [52] apply machine learning models

to compute the number of threads assigned to applications. These approaches,

however, do not provide information about the memory performance on mod-

ern multi-socket systems. We focus on maximizing overall system utilization of

all CPU cores and memory bandwidth with an analytical solution.

Thread placement is known to strongly affect performance on multi-socket

systems [92, 24]. While previous parallelism managers do not consider thread

placement or uses simplistic linear partitioning [76, 75], we consider the archi-

tecture’s NUMA properties to determine a good placement of threads to cores.

A number of thread and data placement techniques have been presented for

multi-threaded applications on multi-socket systems [92, 62, 24, 82]. LIRA [20]

performs heuristics to determine thread placement of co-located applications

14

on NUMA CPU nodes. Threads are placed in order to minimize resource con-

tention while preserving an efficient data placement. Unlike these approaches,

we focus on assigning the proper number of threads between co-located parallel

applications at runtime.

Recently, the co-scheduling approach, i.e. co-locating multiple parallel jobs

on the same multicore node, is gaining importance in the HPC domain. Breit-

bart et al. [12, 10] perform co-scheduling of multiple applications on multi-core

nodes. To maximize system throughput their scheduler detects an application’s

main memory bandwidth utilization at runtime and co-locate applications that

may benefit from co-scheduling on the same nodes using migrations. However,

they do not adjust the number of threads for parallel applications; parallelism

management has a large potential to improve single node performance as shown

by our previous researches [15].

In data centers, workloads usually use a workload abstraction such as Hadoop

and Spark and are managed by several tools such as virtualization and Linux’s

control groups. Similar to HPC schedulers, data center schedulers also require

applications’ resource requirements and user runtime estimates. Mesos [41] is

a data center operating system that considers workload’s varying resource re-

quirements. There are several scheduling techniques to consider heterogeneous

clusters [86] and to reduce the burden of user runtime estimates [70].

1.5 Organization of this Thesis

The remainder of this thesis is organized as follows. Chapter 2 introduces the

cooperative runtime system that achieves efficient dynamic spatial scheduling

for simultaneously running parallel programs. Chapter 3 presents the analyti-

cal performance model for estimating resource utilization and the scalability of

15

parallel programs. Then, our parallelism and core management techniques that

leverages the runtime support from Chapter 2 and Chapter 3 are presented.

Chapter 4 presents NuPoCo, the parallelism management framework to man-

age parallelism of parallel loops for co-located parallel applications. We finally

conclude this thesis in Chapter 5.

16

Chapter 2

Dynamic Spatial Scheduling with
Cooperative Runtime Systems

2.1 Overview

As more and more core resources are integrated into a single shared-memory

multicore system, spatial scheduling that provides distinct core resources to

running parallel applications (i.e. space-sharing) is regarded as a promising ap-

proach for efficiently executing multiple co-located parallel applications [87, 76,

29, 21, 28]. A key challenge of spatial scheduling is providing an efficient run-

time environment for parallel applications to execute efficiently in spatial core

allocation that can dynamically vary at runtime (i.e. dynamic spatial schedul-

ing). For example, spatial schedulers may assign a new core allocation once a

new parallel job begins or ends. Moreover, applications have multiple phases

(e.g. different parallel loops) that may have different performance character-

istics. Spatial schedulers thus need to determine a new allocation to consider

applications’ different phases. In this context, parallel programs ideally should

17

have malleability meaning that programs need to be able to dynamically adjust

the degree of parallelism (DoP) in accordance with the provided core resources.

Conventional parallelization runtimes such as OpenMP [9], Intel TBB [73],

Cilk [8], and OpenCL [49], however, do not support such a malleable execu-

tion. These runtime systems generate a fixed number of worker threads using

kernel-level threading such as Pthreads, typically as many cores as there are in

the given multicore system, to utilize all physical core resources. Consequently,

parallel applications may suffer from a significant slowdown when allocated

core resources dynamically change due to the thread migration overhead and

unbalanced numbers of worker threads among allocated core resources. In this

context, the parallel computing research community has presented several run-

time techniques to achieve malleable parallel execution. The basic idea is to

divide the total work into a certain number of chunks of work and dynamically

schedule them onto the available core resources at runtime. Existing runtime

techniques, however, require their special compiler/runtime framework [71, 72]

that limits their applicability or remain rooms for performance improvement

in terms of their simplistic task/work scheduling [40] which can suffer from a

scheduling overhead for a large number of cores.

In this chapter, we present a cooperative runtime technique to provide mal-

leable parallel execution for OpenMP applications. We implemented this run-

time support in the GNU OpenMP runtime system (provided by gcc-9) [34].

With the cooperative OpenMP runtime system, OpenMP parallel programs

can dynamically adjust the DoP, i.e., the number of active worker threads, for

varying core allocation. The cooperative OpenMP runtime system consists of

two key runtime techniques called cooperative user-level tasking and coopera-

tive dynamic loop scheduling that provide malleability at the level of parallel

loop. To be able to dynamically adjust the DoP of a parallel loop, the coopera-

18

tive runtime system splits the parallel loop’s iteration space into multiple tasks

(with user-level tasks) and dynamically schedule them onto the available core

resources. To reduce the overhead from dynamic scheduling, the work sched-

uler uses hierarchical scheduling where the tasks are partitioned into multiple

regions and scheduled by distributed schedulers. We have evaluated the coopera-

tive runtime system for eight NPB applications [4] on a 64-core AMD Opteron

and a 72-core Intel Xeon system. The evaluation shows that the cooperative

OpenMP runtime system can execute OpenMP applications more efficiently in

spatial core allocation, with 20–30% shorter execution time on average, com-

pared to the conventional spatial scheduling that does not adjust the DoP of

the application.

As a summary, the following research contributions are discussed in this

chapter.

• A runtime-level support, called a cooperative runtime system, to enable

malleable parallel execution for OpenMP applications without any mod-

ifications to the application code or the compiler.

• An efficient user-level tasking and dynamic scheduling technique to achieve

both malleability and high performance for OpenMP parallel loops.

• An evaluation of the cooperative runtime system that shows the benefits

of malleable parallel execution in spatial scheduling.

2.2 Malleable Workloads

In this section, we show the benefit of achieving malleability in spatial schedul-

ing. Conventional spatial schedulers in the HPC domain have assumed rigid

jobs that run only with a specific number of processors and inform the sched-

uler that how much time the job will run (called user runtime estimates) [32].

19

Time

P
ro

ce
ss

or
s

Job arrivals

(a) FCFS

Time

P
ro

ce
ss

or
s

Job arrivals

Backfilling

(b) FCFS with backfilling

Time

Pr
oc

es
so

rs

Job arrivals
Resource
saving

(c) Malleable jobs

Figure 2.1 Spatial scheduling depending on the job flexibility.

However, such an approach suffers from resource fragmentation. For example, in

First-Come First-Served (FCFS) scheduling shown in Figure 2.1 (a), processors

that cannot meet the requirements of the next job need to remain idle until ad-

ditional processors have become available. Backfilling is a technique that allows

jobs to execute earlier as long as the jobs do not delay the start of other jobs,

as shown in Figure 2.1 (b). Backfilling schedulers can reduce resource fragmen-

tation of FCFS scheduling and have been adopted in real HPC centers in the

past two decades [56, 66]. In practice, however, backfilling scheduling still suf-

fers from resource fragmentation depending on the job resource requirements.

In addition, user runtime estimates are typically much longer than the actual

job runtime and result in resource underutilization. In this context, scheduling

malleable jobs is gaining importance [40, 6] to achieve maximal performance.

Malleable jobs are able to execute with any number of threads and can change

during the job runtime. Thanks to the flexibility, as shown in Figure 2.1 (c),

malleable jobs can theoretically provide higher resource utilization and shorter

job response times [6].

As we discussed in Section 1.2.1, the default OpenMP runtime system does

not support malleable execution because the runtime system generates a fixed

number of worker threads. To execute such parallel applications in spatial core

allocation that changes dynamically, on Linux-based systems, the most simple

20

approach [76, 75, 91] is using system calls such as sched setaffinity or Linux’s

cgroup to allow the application’s threads to execute on the provided core re-

sources. On such runtime systems, applications can suffer from a significant

slowdown when allocated core resources change due to the thread migration

overhead and unbalanced numbers of threads among allocated core resources.

To execute parallel applications efficiently in spatial scheduling, therefore, ap-

plications ideally should have malleability to dynamically adjust the DoP to

adapt to the changes to the allocated core resources. Such malleable execution

then allows only one active thread to execute on each core resource.

2.3 Cooperative OpenMP Runtime System

As discussed in Section 1.2.1, an OpenMP application consist of one or more

parallel each exhibiting different performance characteristics. The presented

cooperative runtime technique provides the ability for each parallel loop to

adjust the DoP at runtime. The technique exploits inherent malleability in the

OpenMP programming model, and allows for a malleable execution without

requiring any modifications to the application code.

The cooperative OpenMP runtime system enables malleable parallel ex-

ecution for OpenMP parallel loops based on two key scheduling techniques

called cooperative user-level tasking (COOP-ULT) and cooperative dynamic

loop scheduling (COOP-DYN). In OpenMP, parallel loops annotated with the

parallel for pragma are the basic mechanism to initiate parallelism in OpenMP

applications. For an OpenMP parallel loop, the outermost loop iterations rep-

resent the smallest parallel unit of work which are scheduled by the OpenMP

runtime system. COOP-ULT and COOP-DYN are orthogonal techniques which

provide malleability for different types of OpenMP parallel loops. While COOP-

21

ULT enables malleable execution for OpenMP parallel regions (OMP parallel)

that may incorporate multiple parallel loops with static scheduling, COOP-

DYN enables malleable execution for parallel loops annotated with dynamic

loop scheduling (e.g. schedule(dynamic)). These two techniques consider com-

mon parallel programming patterns in OpenMP and can provide malleability for

existing OpenMP applications in well-known benchmarks such as NPB3.4 [4],

Parsec [7], and Rodinia [14]. We present the details of these techniques in the

following sections.

2.3.1 Cooperative User-Level Tasking

To understand the COOP-ULT technique, we first discuss the type of OpenMP

parallel code that can be executed under the COOP-ULT technique. Figure 2.2

shows an example OpenMP fork-join parallel code that can be executed with

COOP-ULT and illustrates how the default (GNU) OpenMP runtime system

executes the code. In the figure, the loops annotated with “# pragma omp

for” are executed in parallel, and there is an implicit barrier between the two

parallel loops executing functions A and B. Then, the compiler generates code

fn on the right side. The code contains two functions omp fn1 and omp fn2

that execute parallel for loops for A and B. The code also contains a barrier

function, shown by GOMP Barrier, between these two functions omp fn1 and

omp fn2. For a barrier, all worker threads need to stop until all other threads

reach the barrier point.

The OpenMP runtime system then executes the code fn using multiple

threads. For example, in the figure, four threads are executed in parallel. The

amount of work (i.e. the number of loop iterations) between the worker threads

is equally partitioned given the static partitioning method.

The OpenMP programming model provides several ways to select the num-

22

#pragma omp parallel
{
 int i;

 #pragma omp for
 schedule(static)
 for (i=0; i<N; i++)
 A(i);

 #pragma omp for
 schedule(static)
 for (i=0; i<N; i++)
 B(i);
}

void fn(int ID)
{
 omp_fn1(ID) // A
 GOMP_Barrier();
 omp_fn2(ID) // B
}

omp_fn1(1)

omp_fn1(2)

omp_fn1(3)

omp_fn1(4)

num_threads = 4

omp_fn2(1)

omp_fn2(2)

omp_fn2(3)

omp_fn2(4)

Compiler

Runtime
GOMP_
Barrier()

void omp_fn1(int ID)
{
 int start = N/ID * ID;
 int end = N/ID * (ID+1);
 for (int i=start; i<end; i++)
 A(i);
}

Figure 2.2 Execution model for OpenMP parallel sections.

ber of worker threads. First, the programmer can annotate the number of worker

threads using the num threads clause. If not defined by the num threads clause,

thread count can basically be any number. The OpenMP runtime [34], by de-

fault, generates threads as many as system’s core resources to utilize all physical

cores. Users can also use environment variable OMP NUM THREADS to use a specific

number of worker threads.

Achieving Malleability

An important observation of the OpenMP runtime model is that the thread

count can be any number if not specified by the programmer. Therefore, if we

create more worker threads, each thread will execute a smaller amount of work.

We use this property to achieve malleable execution.

Figure 2.3 illustrates the basic idea of the cooperative runtime technique.

To be able to change the number of threads dynamically, the key idea of co-

operative user-level tasking is to (1) generate many number (larger than the

number of physical cores) of threads (2) then dynamically execute them on

the allocated core resources. Thanks to this dynamic scheduling, cooperative

user-level tasking can allow only one worker thread to execute on a active core

23

#pragma omp parallel
{
 #pragma omp for
 for (i=0; i<N; i++)
 A(i);

 #pragma omp for
 for (i=0; i<N; i++)
 B(i);
}

Fn(id)
{
 omp_fn1(id); // A
 Barrier();
 omp_fn2(id); // B
}

ULTs (before barrier)
Schedule
ULTs onto
available
cores

ULTs (after barrier)

After reaching
barrier

Barrier()
A user-level task executes
Fn() with task IDOpenMP compiler

generated code

Available
cores

Compile time Runtime

Insert setjmp and longjmp

Figure 2.3 Execution model for cooperative user-level tasking.

resource and thus can reduce interference caused by unbalanced numbers of

threads on allocated cores. However, by default, the OpenMP runtime system

uses kernel-level threads (Pthreads) for each thread object. Managing a large

number of kernel-level threads requires a huge management cost and incurs

a high runtime overhead due to frequent sleep and wakeup operations. Also,

the default OpenMP runtime system prevents from creating a large number of

kernel-level threads (e.g. more than a thousand) due to its high management

cost.

To reduce this runtime overhead, we use user-level tasks (ULTs) instead

of kernel-level threading. Cooperative user-level tasking first creates a many

number of user-level tasks that execute the parallel code. (We currently create

#cores× 20 ULTs; we will discuss why in the following section.) Each physical

core executes only one kernel-level thread that dynamically fetches ULTs at

runtime. Since switching ULTs does not require an access to the Linux kernel,

this approach can minimize the threading overhead while achieving malleability.

There are a number of OpenMP runtime systems such as Callisto [40] and

24

Bolt/Argobots [79, 45] that exploit user-level threading. Compared to other

user-level theading techniques used in these previous works that typically use a

timer interrupt to get into the scheduler routine, we use simpler ULT scheduling

(called zero-interrupt ULT scheduling) as we do not need to switch tasks before

completing a task or reaching a barrier. We implemented this by inserting setjmp

and longjmp API that saves and restores the minimal execution status of the

executing code. Our technique requires small modifications to the OpenMP

runtime system. In addition, in contrast Callisto and Bolt/Argobots, our ULT

scheduling considers the NUMA property in multi-socket systems and also aims

to reduce the dynamic scheduling overhead. In the below, we present a NUMA-

aware and efficient ULT scheduling method called hierarchical scheduling.

Hierarchical Scheduling

Furthermore, to preserve data locality optimizations of applications in NUMA

systems and to minimize ULT scheduling overhead, we apply hierarchical schedul-

ing (HS) where we partition the ULTs into multiple regions and performs dis-

tributed scheduling. The dynamic scheduling overhead becomes more and more

critical with an increasing number of core resources. To reduce the overhead

from scheduling contention, the hierarchical scheduling partitions the ULTs

into multiple regions based on the CPU nodes. Each CPU node has its ULT re-

gion and schedules ULTs from the local region. Load balancing is also achieved

through work stealing from the local queues of other CPU nodes. Then, a lo-

cal work queue distributes ULTs to the threads in that node. The regions are

equally partitioned according to OpenMP’s static scheduling policy. Such a

partitioning can be effective when neighboring work items exhibit high locality

and preserve manual optimizations for static scheduling with a technique such

as [63].

25

Balancing Malleability and Performance

The COOP-ULT technique executes parallel loops with a given number of ULTs.

If we create more ULTs, the workload has more flexibility to adapt to the

changing core allocation (because each ULT executes a smaller amount of work)

but may suffer from a runtime overhead to schedule a large number of tasks.

It is therefore important to create a proper number of ULTs to achieve both

malleability and high performance.

Figure 2.4 shows the runtime performance (execution time) of NPB3.4

OpenMP Fortran applications [4] that are executed under the COOP-ULT tech-

nique with different numbers of ULTs. For the experiments, we used two multi-

socket multicore platforms, the 64-core AMD (Opteron 6380 [1]) and the 72-core

Intel (Xeon E7 8870 v3 [42]) system described in Section 1.2.2. In the figure,

the first option creates as many ULTs as there are physical cores in the system;

this leads to no malleability, but no scheduling overhead. The other options

show the performance when increasing the number of ULTs. The results show

that several applications such as CG and MG in AMD and LU in Intel suffer from

a low performance when we create many ULTs due to the scheduling overhead.

The overhead from scheduling ULTs becomes more prominent if the execution

time of a ULT is small compared to the scheduling overhead. For example, in

the case of LU in Intel, parallel loops execute significantly faster in Intel com-

pared to our AMD platform, and the scheduling overhead became prominent.

On the other hand, applications typically have significantly less performance

degradation if we have a larger problem size (class D) because the scheduling

overhead is less prominent compared to the execution time of each ULT.

Based on this experiment, to balance the malleability and performnace,

the COOP-ULT technique currently creates #cores × 20 ULTs. Although it

26

0

0.5

1

1.5

2

BT CG EP FT LU MG SP UA

Gmean BT CG EP FT LU MG SP UA

Gmean

N
or

m
al

ize
d

Ex
ec

ut
io

n
Ti

m
e Standalone performance with different number of ULTs (AMD64)

64X1 64X2 64X3 64X4 64X5 64X10 64X15 64X20 64X25
Small problem size (NPB class C) Large problem size (NPB class D)

0

0.5

1

1.5

2

BT CG EP FT LU MG SP UA

Gmean BT CG EP FT LU MG SP UA

Gmean

N
or

m
al

ize
d

Ex
ec

ut
io

n
Ti

m
e Standalone performance with different number of ULTs (Intel72)

72X1 72X2 72X3 72X4 72X5 72X10 72X15 72X20 72X25
Small problem size (NPB class C) Large problem size (NPB class D)

Figure 2.4 Application performance with different number of user-level tasks.

may still suffer from scheduling overhead for applications with a small prob-

lem size, applications are able to change their DoP with enough flexibility, and

the scheduling overhead is generally negligible for applications with a sufficient

problem size. Selecting the optimal number of ULTs (depending on the appli-

cation) can improve the performance and flexibility, and is left as future work.

2.3.2 Cooperative Dynamic Loop Scheduling

As discussed in Section 1.2.1, OpenMP supports three loop scheduling methods:

static, dynamic, and guided. These scheduling policies, by default, are not able

to change the degree of parallelism at runtime. Static and guided scheduling

are not malleable at all because they assign a comparatively large amount of

work in the first assignment. Parallel loops with dynamic scheduling, on the

other hand, may be adequate to achieve malleable execution by modifying the

27

Algorithm 1 Cooperative worker threads

1: while there is more work do

2: if own core is not available then

3: go to sleep

4: for each thread ∈ worker threads do

5: if thread’s core is available then

6: wake up thread

7: work chunk ← get work chunk(chunk size)

8: if work chunk received then

9: work chunk → execute()

10: if id == 0 and elapsed time < epoch then

11: chunk size← (chunk size× 2)

loop scheduler. For example, the loop scheduler can dynamically assign the

chunk of work onto the provided core resources. However, the dynamic scheduler

can suffer from a significant dispatch overhead depending on the allocation

granularity. In this section, we present the COOP-DYN technique that achieves

malleable execution for OpenMP parallel loops with dynamic scheduling while

optimizing the scheduling performance.

Achieving Malleability

We have implemented dynamic spatial scheduling into the GNU OpenMP run-

time [34] by modifying the dynamic loop scheduling method in the OpenMP

loop scheduler. To provide malleability while minimizing overhead and maxi-

mizing load balance, we use an adaptive dynamic scheduling technique as ex-

plained in Algorithm 1. A parallelism manager can keep track of the execution

of OpenMP applications by intercepting calls that initiate or terminate par-

28

allel loops. The results of the core allocation are then communicated to the

OpenMP parallel runtimes through shared memory. The runtimes dynamically

change the DoP of cooperative parallel loops by adjusting the number of worker

threads and pinning them to the assigned cores.

In the cooperative loop scheduling, before requesting new work, each thread

checks the availability of its core. If the core is no longer available, the thread

goes to sleep (lines 2–3). Active worker threads review the current core alloca-

tion and wake up threads whose core has become available (lines 5–6). Each

thread acquires a chunk of work by calling the get work chunk function on line

7. To decrease the dispatch overhead, the master thread (id 0) dynamically ad-

justs the work chunk size based on the elapsed execution time of a work chunk

(lines 12–13). The details of the work chunk size control are explained in the

following section “Balancing Malleability and Performance”.

Hierarchical Scheduling

Similar to the cooperative user-level tasking, here cooperative loop scheduling

also support hierarchical scheduling for NUMA systems. The idea is basically

the same with the cooperative user-level tasking. Instead of scheduling ULTs,

here we partition the loop items into multiple regions for each CPU node and a

local scheduler schedules items for cores in the same CPU node. Load balancing

is also achieved through work stealing among CPU nodes.

Balancing Malleability and Performance

To provide malleability while minimizing overhead and maximizing load bal-

ance, we use an adaptive dynamic scheduler as illustrated in Algorithm 1. If the

processing time of a work chunk is smaller than the global scheduling period of

the space-sharing scheduler, we increase the chunk size. To provide sufficient op-

29

portunities for load balancing, the maximum chunk size is set to ⌈W/2N⌉ where

W represents the remaining iterations, N the number of available cores in the

system. This is similar to the guided loop scheduling algorithm for multi-core

systems [54].

The OpenMP runtime implements a work sharing approach in which each

worker thread shares the data structure containing information about the pro-

cessed and still unprocessed loop iterations. We designate one worker thread as

the delegate thread that is allowed to change the work chunk size.

2.4 Experimental Results

In this section, we evaluate the cooperative runtime system on the 64-core AMD

Opteron and the 72-core Intel Xeon system (Section 1.2.2).

2.4.1 Standalone Application Performance

The cooperative runtime system provides malleability by leveraging dynamic

loop scheduling and user-level tasking. A concern is whether, despite its flex-

ibility, the performance of the cooperative runtime system is on par with the

existing schedulers. Here, we show that the cooperative runtime system can

provide comparable performance to the default execution mode for standalone

application execution while providing the ability to dynamically change the

number of threads.

Figure 2.5 shows the turnaround times of standalone applications in NPB3.4 [4]

OpenMP fortran applications executed with COOP-ULT compared to the default

mode (SMP Scheduling and Affinity Binding). All these applications in this

scenario use an input data size of class D [4]. In SMP Scheduling and Affinity

Binding, applications generate worker threads with the number of system cores.

30

0

0.5

1

1.5

2

BT CG EP FT LU MG SP UA

GmeanNo
rm

al
ize

d
ex

ec
ut

io
n

tim
e

OMP_parallel (AMD64)
SMP Scheduling
Affinity
COOP-ULT (no HS)
COOP-ULT

0

0.5

1

1.5

2

BT CG EP FT LU MG SP UA

GmeanNo
rm

al
ize

d
ex

ec
ut

io
n

tim
e

OMP_parallel (Intel72)
SMP Scheduling
Affinity Binding
COOP-ULT (no HS)
COOP-ULT

Figure 2.5 Standalone applications performance (OMP parallel).

In SMP Scheduling, the generated threads are managed by Linux’s default

SMP scheduling (threads can execute on any core resource). In the Affinity

Binding mode, on the other hand, each thread is bound to each core by man-

aging their CPU affinity (only one thread can execute on each core). For these

applications, cooperative user-level tasking performance is comparable to the

default mode. Comparing COOP-ULT and COOP-ULT (no HS), we observe that

single global ULT scheduling without hierarchical scheduling (COOP-ULT (no

HS)) incurs high scheduling overhead. The presented cooperative user-level task-

ing combines the best of both worlds by respecting data locality, yet being able

to react to workload imbalance while also supporting malleable parallelism.

In Figure 2.6, we modify the NPB applications to use dynamic loop schedul-

ing (by annotating “schedule(dynamic)” pragma) for all parallel loops in the

application. The cooperative dynamic loop scheduling can also provide mal-

leable execution for dynamic loops. In this scenario, we also observe that coop-

erative loop scheduling can even improve the single application performance a

lot. For example, COOP-DYN (no HS) improves performance by managing the

work chunk size dynamically. Since the original dynamic loop scheduler assigins

31

0
0.2
0.4
0.6
0.8

1
1.2

BT CG EP FT LU MG SP

Gmean

No
rm

al
ize

d
ex

ec
ut

io
n

tim
e

OMP_SCHED=dynamic (AMD64)
Original COOP-DYN (no HS) COOP-DYN

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

BT CG EP FT LU MG SP

Gmean

No
rm

al
ize

d
ex

ec
ut

io
n

tim
e

OMP_SCHED=dynamic (Intel72)
Original
COOP-DYN (no HS)
COOP-DYN

Figure 2.6 Standalone application performance (parallel for).

0
0.2
0.4
0.6
0.8

1
1.2

BT CG EP FT LU MG SP

GmeanN
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

Static/dynamic perf. (AMD64)
DYN-ORIGINAL DYN-COOP
STATIC-ORIGINAL STATIC-COOP

0
0.2
0.4
0.6
0.8

1
1.2

BT CG EP FT LU MG SP

GmeanN
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

Static/dynamic perf. (Intel72)
DYN-ORIGINAL DYN-COOP
STATIC-ORIGINAL STATIC-COOP

Figure 2.7 Performance under COOP-ULT and COOP-DYN.

works with a basic granularity of 1, it often incurs a high scheduling overhead

for a large number of cores. In addition, the hierarchical scheduling and work

stealing in COOP-DYN can further improve the performance.

Here, we compare the overall performance of static (cooperative user-level

tasking) and dynamic versions (cooperative loop scheduling). Cooperative user-

level tasking is beneficial than cooperative dynamic loop scheduling. The per-

formance under loop scheduling generally depends on the application. While in

our experiments we observe that static implementation provides overall higher

32

0
0.2
0.4
0.6
0.8

1
1.2
1.4

BT
+C

G
BT

+E
P

BT
+F

T
BT

+L
U

BT
+M

G
BT

+S
P

BT
+U

A
CG

+E
P

CG
+F

T
CG

+L
U

CG
+M

G
CG

+S
P

CG
+U

A
EP

+F
T

EP
+L

U
EP

+M
G

EP
+S

P
EP

+U
A

FT
+L

U
FT

+M
G

FT
+S

P
FT

+U
A

LU
+M

G
LU

+S
P

LU
+U

A
M

G+
SP

M
G+

UA
SP

+U
A

Ge
om

ea
nTo

ta
l e

xe
cu

tio
n

tim
e

no
rm

al
iz

ed
 to

 Li
nu

x
tim

e-
sh

ar
in

g
Space-sharing performance comparison (AMD64)

COOP-ULT Docker Affinity Setting

0
0.2
0.4
0.6
0.8

1
1.2
1.4

BT
+C

G
BT

+E
P

BT
+F

T
BT

+L
U

BT
+M

G
BT

+S
P

BT
+U

A
CG

+E
P

CG
+F

T
CG

+L
U

CG
+M

G
CG

+S
P

CG
+U

A
EP

+F
T

EP
+L

U
EP

+M
G

EP
+S

P
EP

+U
A

FT
+L

U
FT

+M
G

FT
+S

P
FT

+U
A

LU
+M

G
LU

+S
P

LU
+U

A
M

G+
SP

M
G+

UA
SP

+U
A

Ge
om

ea
nTo

ta
l e

xe
cu

tio
n

tim
e

no
rm

al
iz

ed
 to

 Li
nu

x
tim

e-
sh

ar
in

g

Space-sharing performance comparison (Intel72)
COOP-ULT Docker Affinity Setting

Figure 2.8 Space-sharing performance comparison with different tools.

performance compared to when using dynamic loop scheduling. Some appli-

cations such as EP and FT has benefit of dynamic loop scheduling. Because

we mainly consider high-performance kernels and the workloads exhibit rather

regular patterns. However, with cooperative runtimes we can also improve the

performance of dynamic loops while providing flexibly to change the number of

threads.

2.4.2 Performance in Spatial Core Allocation

We claim that, in spatial core allocation, COOP-ULT provides better performance

than existing performance isolation tools that are not able to manage the num-

ber of threads dynamically. In Figure 2.8, we evaluate the performance (the

total execution time) of two co-located parallel applications with spatial core

33

0

0.5

1

1.5

2

BT CG EP FT LU MG SP UA

GmeanN
or

m
al

ize
d

ex
ec

ut
io

n
tim

e

Performance on varying resource availability
(Linear allocation) (AMD64)

COOP-ULT Docker Affinity Setting

2.2

0

0.5

1

1.5

2

BT CG EP FT LU MG SP UA

Gmean

N
or

m
al

ize
d

ex
ec

ut
io

n
tim

e

Performance on varying resource availability
(Linear allocation) (Intel72)

COOP-ULT Docker Affinity Setting

5.8 7.2

0

0.5

1

1.5

2

BT CG EP FT LU MG SP UA

GmeanN
or

m
al

ize
d

ex
ec

ut
io

n
tim

e Performance on varying resource availability
(Interleaved allocation) (AMD64)

COOP-ULT Docker Affinity Setting

0

0.5

1

1.5

2

BT CG EP FT LU MG SP UA

Gmean
N

or
m

al
ize

d
ex

ec
ut

io
n

tim
e Performance on varying resource availability

(Interleaved allocation) (Intel72)

COOP-ULT Docker Affinity Setting

3.4 3.5

Figure 2.9 Performance under varying resource availability.

allocation using different resource isolation techniques. We evaluate the run-

time performance under different resource isolation options, COOP-ULT, Docker

and Affinity Setting. COOP-ULT represents our cooperative user-level task-

ing technique, and Docker uses its resource isolation based on Linux cgroup. To

minimize other performance effect from using specific resource manager Docker,

we have also implemented our specific tool based on a kernel module to manage

CPU affinity for application’s threads (Affinity Setting). For an application,

the kernel module assigns CPU affinity for the application’s spawned threads.

All the worker threads of the application can be assigned to any core resource

among the allocated core resources. The Linux SMP scheduler manages the

threads on the given allocated core resources. We first evaluate the two appli-

cation mixes performance with spatial core allocation (each application uses

the same number of core resources; cores are allocated in an interleaved way).

To show the potential benefit of malleable execution, we now consider ex-

treme scenarios where core allocation changes frequently. Figure 2.9 shows the

34

performance (the total execution time) of applications when the core alloca-

tion frequently changes (switch full cores and half cores for every second us-

ing linear/interleaved allocation). The results show that MOCA’s cooperative

scheduling can improve performance (about 30–50% on average) compared to

the Docker resource isolation tool because the resource isolation tool using

Linux’s cgroup is not able to change the number of threads. Moreover, without

cooperative scheduling, resource isolation requires runtime overhead for thread

migration.

2.5 Discussion

2.5.1 Contributions

The presented cooperative runtime system enables malleable parallel execu-

tion for OpenMP applications with high performance through efficient user-

level tasking and dynamic scheduling. Compared to other runtime techniques

to provide malleability [53, 71, 72, 81, 40], our runtime system makes several

contributions to the parallel computing community.

First, our runtime technique is highly applicable; our technique enables mal-

leable execution for modern OpenMP applications with a small patch to the

OpenMP runtime system. A number of previous auto-tuning/auto-parallelization

researches such as DoPE [71] and Parcae [72] have shown how the compiler/runtime

can achieve malleable execution. However, ther works are based on their specific

compiler and runtime framework, which limits their applicability for generic

parallel applications. Our research provides a novel solution to achieve mal-

leable execution in the OpenMP runtime through user-level tasking and dy-

namic scheduling.

Second, we present an efficient task/loop scheduling technique that achieves

35

both malleability and high performance. Varuna [81] and Callisto [40] are con-

ceptually similar to our cooperative runtime system and provide malleable

execution for generic applications such as TBB and OpenMP. Varuna splits

the parallel work by intercepting creation of Pthreads and manages/schedules

them using a work pool. Similar to our work, Callisto uses user-level tasking to

abstract the OpenMP workloads and achieves malleable execution through dy-

namic scheduling. However, Varuna and Callisto use a simplistic task scheduling

method; their scheduler allocates a task to an idle core resource using a single

global work pool. As we have seen in our evaluation (Section 2.4.1), this global

scheduling approach suffers from a significant scheduling overhead on a large

number of cores. Our hierarchical scheduling and the granularity control policy

are key to provide higher performance compared to the simplistic scheduling.

2.5.2 Limitations and Future Work

The current cooperative runtime system implementation has several limitations,

and we left these as future work.

First, as we discussed in Section 2.3.1, the COOP-ULT technique has a per-

formance issue depending on the number of ULTs. Our current simple policy

achieves an acceptable performance for OpenMP applications while providing

malleability. One future work is selecting the optimal number of ULTs (depend-

ing on the application) can improve the performance and flexibility.

Second, the cooperative runtime system provides malleable execution at

the level of parallel loop annotated with static/dynamic loop scheduling. This

can support most of existing OpenMP benchmark applications, however, recent

OpenMP runtimes provide task parallelism and nested parallelism. Our runtime

technique does not support such a new parallelism type. Another interesting

future work is to extend the idea of cooperative runtime and enable malleable

36

execution for these parallelism.

2.5.3 Summary

In this section, we have shown how the OpenMP runtime can achieve efficient

dynamic spatial scheduling for simultaneously running multiple parallel appli-

cations. The proposed techniques require small modifications to the existing

OpenMP parallel runtime system.

Based on the cooperative runtime system, researchers can design and im-

plement their resource allocation techniques for single and co-located parallel

applications. This technique provides the basic execution environment for our

extensive study in the following chapters.

37

Chapter 3

Performance Modeling of Parallel
Loops using Queueing Systems

3.1 Overview

In this chapter, we introduce an analytical performance model for parallel loops.

Parallel loops such as OpenMP’s parallel for [23] are the basic parallel pro-

gramming construct on shared-memory platforms and an important target for

optimizations because these parallel loops dominate the execution time of many

scientific applications. Moreover, as discussed in Chapter 2, such parallel loops

are now able to run with a configurable number of worker threads based on

malleable parallel runtime systems such as COOP-ULT and COOP-DYN pre-

sented in Chapter 2. Modeling performance of parallel loops in dependence of

the number of allocated cores/threads therefore has been an important research

issue to maximize the performance or to meet a certain optimization goal.

Our approach to modeling performance of parallel programs employs queue-

ing models. Queueing models are powerful analytical tools based on stochastic

38

processes to evaluate the performance of queueing systems such as the mean

waiting time, the queue length, and the server utilization [83]. Several existing

performance models [85, 84, 17] predict the performance scalability of parallel

programs by computing the mean response time of memory requests for a vary-

ing number of threads using a queueing system. These approaches regard the

threads of parallel programs as queueing customers accessing memory system

resources, and the memory system as the queueing server. Queueing models are

not only computationally efficient thanks to their closed-form expressions, but

also allow predicting the speedup of parallel programs and provide insights into

the response time and utilization of the memory system.

Applying queueing models to modern multicore systems in practice, how-

ever, remains a challenge. Large shared memory systems, called multi-socket

multicore systems, comprise multiple processor sockets and memory controllers

connected by an interconnection network. Memory operations from cores thus

contend for both the memory controllers and the interconnection links. Such ar-

chitectures require a proper queueing network to model the different contention

points. Moreover, memory systems act differently on read and write memory

operations and perform hardware-level optimizations such as data sharing and

prefetching. The effectiveness of such optimizations depends on the parallel

program and the number of worker threads. Consequently, memory systems

provide different service rates that depend on the workload. Previous tech-

niques [85, 84, 17] based on simple queueing systems do not properly consider

the different contention points in the memory system and ignore the effects of

hardware optimizations. These simplifications render existing techniques inef-

fective on modern hardware architectures.

In this chapter, we present a practical approach to model performance

of parallel for loops on multi-socket multicore systems using queueing sys-

39

tems. First, runs of OpenMP parallel loops on real systems confirm that the

M/M/1/N/N queueing model [83] is adequate to model parallel loops on multi-

cores systems. The architecture of multi-socket systems is reflected by a hierar-

chically constructed M/M/1/N/N queueing system that is able to compute the

mean response time of memory requests at each memory controller and each in-

terconnection link. To deal with the varying memory system performance in the

presence of hardware optimizations, the service rates of memory controllers and

interconnection links are computed based on the ratio between memory read,

write, and prefetch operations of a given workload. The presented approach

can be easily applied to different platforms because all information required to

compute the parameter values of the queueing systems is obtained from existing

hardware performance counters on AMD and Intel systems.

The queueing system is used to construct a speedup model that is able to

predict the performance scalability of parallel loops on multi-socket systems. An

evaluation with 24 OpenMP parallel loops shows that, on average, the model

achieves a mean absolute percentage error of 8.3% on a 64-core AMD and 6.7%

on a 72-core Intel platform. The results demonstrate that the presented queue-

ing system is able to provide accurate information about the performance of

memory controllers and interconnection links in multi-socket multicore systems.

To summarize, we make the following contributions.

• A summary of the key assumptions to apply queueing systems to model

parallel loops on multi-socket systems, and an experimental study that

shows how the targeted parallel loops can be modeled using M/M/1/N/N

queueing systems.

• A methodology to model memory system performance on multi-socket

multicore platforms using a hierarchical queueing system.

40

• A speedup model that is able to predict the speedup of OpenMP parallel

loops based on the queueing system.

• An evaluation of the presented speedup model for 24 OpenMP parallel

loops on an AMD and an Intel multi-socket multicore platform.

3.2 Background

3.2.1 Queueing Models

Queueing models that compute the waiting time of queueing systems using

stochastic processes have often been used for operations research in computer

science such as designing system architectures or developing scheduling poli-

cies [6]. They are also well-suited to analytically model the performance of

shared resources such as memory controllers [47, 85, 17] and network switches [13].

The focus of this work is on modeling the performance of the shared memory

system. In the following, we briefly discuss two well-known queueing models,

the M/M/1 and the M/M/1/N/N model. For details about queueing models

the interested reader is referred to [83, 39].

The M/M/1 Model

The M/M/1 model is the simplest and most popular queueing model. An

M/M/1 queueing system, illustrated in Figure 3.1 (a), considers requests from

an infinite number of customers and one single server. The arrivals of the re-

quests follow a Poisson distribution, and the server has an exponential service

time. The requests are served in First-In-First-Out (FIFO) order. For an arrival

rate λ and a service rate µ, µ > λ, the mean waiting time r is given by Little’s

Law.

r =
1

µ− λ
(3.1)

41

λ
Server

Infinite
 customers

µ

Infinite
waiting line

(a) The M/M/1 queue

µ

λ
Customers (N)

λ
1 Server...

Waiting line (N)

N

(b) The M/M/1/N/N queue

Figure 3.1 Illustration of the M/M/1 and M/M/1/N/N queueing systems. In

the M/M/1 system (a), λ represents the server request rate from infinite queue-

ing customers, and in the M/M/1/N/N system, λ represents the mean server

request rate per customer. In both systems, µ represents the server’s mean

service rate.

Previous research [85, 84] often employed the M/M/1 queueing model to

model memory performance on multicores where cores are considered to be

queueing customers. In multicore systems with a finite number of cores, how-

ever, the presence of more or fewer cores can have a strong effect on the distri-

bution of memory requests which calls for a queueing model for a finite number

of customers.

The M/M/1/N/N Model

For a finite number of customers, the M/M/1/N/N model, also known as the

“machine repair problem”, can be applied. It consists of N customers, a wait-

ing line having N entries with FIFO discipline, and one server, as shown in

Figure 3.1 (b). The requests of the customers follow a Poisson distribution, and

the server has an exponential service time. In the M/M/1/N/N model, once

a request has been issued from a customer, the customer does not send a new

request until the previous request has been served. Given an arrival rate λ per

42

customer and a service rate µ, the mean waiting time r is given by Equation 3.2.

r =
1

µ
(
N

Us
− µ

λ
) (3.2)

Us, representing the server’s utilization, is computed by

Us = 1−

(
N∑
k=0

N !

(N − k)!
(
λ

µ
)k

)−1

(3.3)

In this work, the M/M/1/N/N model is applied to model the mean memory

response time on multi-socket systems.

3.2.2 Insights on Performance Modeling of Parallel Loops

This section discusses our key insights under which M/M/1/N/N queueing

models can be applied to performance modeling of multi-socket architectures.

Queueing Models and Multi-Socket Systems

Queueing models require an even, Poisson-distributed request distribution from

all customers. In addition, customers wait for their requests to complete before

issuing a new request. Even though these requirements are not satisfied in gen-

eral by multi-socket multicore systems (Section 1.2.2), the following key obser-

vations allow us to apply M/M/1/N/N queueing systems to such architectures.

• The presented approach models performance of scientific parallel loops

where memory wait time is the major limiting factor of scalability. The

memory access pattern of common workloads satisfies the requirement

of even and Poisson-distributed request distributions as demonstrated in

Section 3.2.3.

• Processor cores execute instructions out-of-order and can issue several

memory requests. In addition, requests can be reordered by caches and

43

memory controllers [51, 67]. These properties do not satisfy the require-

ments of the queueing models, however, the presented approach models

the average mean memory request time for a large number of requests in

the steady state. In this case, reordering or parallel individual requests do

not invalidate the model.

• Each memory operation is served by an interconnection link and a mem-

ory controller. A memory controller can receives requests from all CPU

nodes; the number of inputs of an interconnection link depends on the

architecture.

• Multiple queueing systems are used to model the performance on the mul-

tiple contention points. First, we use separate queueing systems to model

memory response time at each interconnection link and each memory con-

troller. Additionally, another queueing system is used to model the thread

stall time on each CPU core. Section 3.3 details this approach.

Parallel Loops

As discussed in Chapter 1, we mainly target OpenMP parallel loops. Table 3.1

shows the parallel loops used for performance modeling and evaluation through-

out this chapter. The loops were obtained from the NAS parallel benchmark

suite (NPB) [4, 80] containing HPC workloads and two OpenMP applications

from the Parsec benchmark suite [7], Blackscholes (BS) and Freqmine (FM).

We did not evaluate loops that perform data initialization because such loops

are usually executed only once to activate the placement of the data under a

given NUMA allocation policy. All benchmarks in this chapter are run with

the interleaved NUMA memory allocation policy. In total, 24 different parallel

loops are selected from the seven parallel applications.

44

Loop App Input size Loop App Input size

x solve BT class D rhs5 SP class D

y solve BT class D x solve SP class D

z solve BT class D y solve SP class D

add BT class D z solve SP class D

conj grad2 CG class D txinvr SP class D

cffts1 FT class C tzetar SP class D

cffts2 FT class C rprj3 MG class D

cffts3 FT class C psinv MG class D

rhs1 SP class D interp1 MG class D

rhs2 SP class D resid MG class D

rhs3 SP class D main BS native

rhs4 SP class D tiling1 FM native

Table 3.1 Selected parallel loops.

The assumptions of the presented model and the justifications for the se-

lected parallel loops are as follows:

• Memory requests of parallel loops follow a Poisson distribution, and mem-

ory service times are exponential. These assumptions are a requirement

of the M/M/1/N/N model and verified based on experiments in Sec-

tions 3.2.3 and 3.2.3.

• Synchronization overhead is not considered. In other words, loops have

no loop carried dependencies and do not suffer from load imbalance. Most

loops of NPB applications (Table 3.1) do not have dependencies. Exper-

iments in Section 3.2.3 show that most of the targeted loops exhibit a

good load balance.

• Similarly, atomic operations or critical sections are not considered. Mod-

eling the performance of atomic operations and critical sections is difficult

45

in practice. For example, the number of issued atomic operations to ob-

tain a lock is not deterministic. Moreover, such operations are rarely used

in data intensive loops.

• Parallel loops are dynamically scheduled (refer to Chapter 2) because

this policy allows runtime systems to dynamically adjust the number of

threads.

3.2.3 Performance Analysis

This section justifies the application of theM/M/1/N/N queueing model to pre-

dict the performance of scientific parallel loops on modern out-of-order NUMA

systems through experiments on our target multi-socket systems: the 64-core

AMD system and the 72-core Intel system (Section 1.2.2).

Memory Access Distribution

The assumption of the M/M/1/N/N model that memory accesses from worker

threads follow a Poisson distribution is verified by measuring the number of

memory requests over a fixed interval on the AMD and the Intel platform. The

collected numbers of memory requests at each memory node for the entire run

of the parallel loop are plotted in Figure 3.2 and Figure 3.3 using a probabil-

ity mass function (PMF). The figures show that the vast majority of memory

requests per time is distributed around the expected value, and the variance

increases with a higher expected value. In addition, all memory nodes exhibit

the Poisson property. For the sake of simplicity, the figures present the results

for only the x solve loops of BT and SP. Appendix A contains the PMF of

all targeted parallel loops on both architectures as well as the results of the

two-sample Kolmogorov-Smirnov (KS) test [77] confirming that the majority

of the loops follows a Poisson distribution.

46

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

200k400k600k800k 1M

P
ro

b
ab

il
it

y

Memory requests per 1ms

mem8
mem7
mem6
mem5

mem4
mem3
mem2
mem1

(a) x solve (BT)

0.0

0.1

0.2

200k 400k 600k 800k 1M
Memory requests per 1ms

(b) x solve (SP)

Figure 3.2 PMF of the number of memory requests per time for each memory

node on the 64-core AMD platform.

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

200k400k600k800k 1M

P
ro

b
ab

il
it

y

Memory requests per 1ms

mem4
mem3
mem2
mem1

(a) x solve (BT)

0.0

0.1

200k 400k 600k 800k 1M
Memory requests per 1ms

(b) x solve (SP)

Figure 3.3 PMF of the number of memory requests per time for each memory

node on the 72-core Intel platform.

Memory Access Pattern

Modern memory systems perform optimizations such as memory prefetch op-

erations that can cause a variation in the memory access pattern. Figure 3.4

and Figure 3.5 show the number of memory operations collected from hardware

performance counters for the three parallel loops cffts1–3 of FT with a varying

number of worker threads on the AMD and the Intel system.

The memory access pattern varies for different workloads and the number of

worker threads. For example, in Figure 3.4 (c), the total number of memory re-

quests in cffts3 decreases with an increasing number of threads because the loop

can benefit from data sharing. For cffts1 in Figure 3.4 (a), on the other hand,

the number of memory operations increases for a larger number of threads.

47

 0
 1e+07
 2e+07
 3e+07
 4e+07
 5e+07
 6e+07
 7e+07
 8e+07
 9e+07

8 16 24 32 40 48 56 64

#
 o

p
er

at
io

n
s

CPU cores

(a) cffts1 (FT)

 0
 1e+07
 2e+07
 3e+07
 4e+07
 5e+07
 6e+07
 7e+07
 8e+07
 9e+07
 1e+08

8 16243240485664

CPU cores

(b) cffts2 (FT)

 0

 5e+07

 1e+08

 1.5e+08

 2e+08

 2.5e+08

8 16 24 32 40 48 56 64

#
 o

p
er

at
io

n
s

CPU cores

Prefetches
Reads
Writes
LLC misses

(c) cffts3 (FT)

Figure 3.4 Number of memory operations of parallel loops for a varying number

of worker threads on the AMD platform.

 0

 5e+07

 1e+08

 1.5e+08

 2e+08

 2.5e+08

18 36 54 72

#
 o

p
er

at
io

n
s

CPU cores

(a) cffts1 (FT)

 0

 5e+07

 1e+08

 1.5e+08

 2e+08

 2.5e+08

1 2 3 4

CPU cores

(b) cffts2 (FT)

 0

 1e+08

 2e+08

 3e+08

 4e+08

 5e+08

 6e+08

1 2 3 4

#
 o

p
er

at
io

n
s

CPU cores

Prefetches
Reads
Writes
LLC misses

(c) cffts3 (FT)

Figure 3.5 Number of memory operations of parallel loops for a varying number

of worker threads on the Intel platform. Our Intel platform does not support

measuring the number of prefetches (# Reads includes # Prefetches).

Therefore, an M/M/1/N/N queueing system needs to use a changing memory

request rate when modeling the memory response time for a varying number of

threads. In addition, different programs have different ratios between the read,

write, and prefetch operations. The following section analyzes this effect on the

service rate of the memory system.

Memory Service Rate

On multi-socket systems, the requested data is transmitted through an inter-

connection link and a memory controller. We measure the service rate µj of an

arbitrary memory controller j and the data transfer rate δij of the interconnec-

tion link that connects CPU node i with memory controller j for the four syn-

48

 0
 1e+08
 2e+08
 3e+08
 4e+08
 5e+08
 6e+08
 7e+08
 8e+08
 9e+08
 1e+09

8

1
6

3
2

6
4

1
2
8 8

1
6

3
2

6
4

1
2
8 8

1
6

3
2

6
4

1
2
8 8

1
6

3
2

6
4

1
2
8

#
 o

p
er

at
io

n
s

Stride value

StreamWrite

StreamLoad

StreamCopy

StreamAdd# Writes
Reads
Prefetches
LLC Misses

Figure 3.6 Number of memory operations of synthetic workloads (using one

CPU thread) with different stride values on the AMD platform.

 0
 2e+08
 4e+08
 6e+08
 8e+08
 1e+09

 1.2e+09
 1.4e+09
 1.6e+09
 1.8e+09

8

1
6

3
2

6
4

1
2

8 8

1
6

3
2

6
4

1
2

8 8

1
6

3
2

6
4

1
2

8 8

1
6

3
2

6
4

1
2

8

Stride value

StreamWrite

StreamLoad

StreamCopy

StreamAdd
Writes
Reads
Prefetches
LLC Misses

Figure 3.7 Number of memory operations of synthetic workloads (using one

CPU thread) with different stride values on the Intel platform. In our Intel

platform, # Reads includes # Prefetches.

thetic workloads StreamWrite, StreamLoad, StreamCopy, and StreamAdd from

the Stream benchmark suite [64]. The following code shows the StreamWrite

workload that writes a scalar value to the elements of an array.

1: for (int i=0; i<stride; i++)

2: for (int j=i; j<arr size; j+=stride)

3: A[j] = scalar;

The other workloads execute different types of operations in line 3. Stream-

Load executes sum+=A[j] and thus generates only memory read operations.

StreamCopy executes A[j]=B[j], generating one memory write for A[j] and

two memory reads for A[j] and B[j]. Last, StreamAdd ’s code A[j]=B[j]+C[j]

consists of three memory read and one memory write operations.

Figures 3.6 and 3.7 show the number of memory operations of the synthetic

workloads for varying stride values, on the AMD and the Intel system, re-

49

 0

 200

 400

 600

 800

 1000

 1200

 1400

µ1 δ12 δ13 δ14 δ15 δ16 δ17 δ18

#
 r

eq
u

es
ts

 /
 u

s stride 8
stride 16
stride 32
stride 64
stride 128

(a) StreamWrite

 0

 200

 400

 600

 800

 1000

 1200

 1400

µ
1

δ
12

δ
13

δ
14

δ
15

δ
16

δ
17

δ
18

(b) StreamLoad

 0

 100

 200

 300

 400

 500

 600

 700

µ1 δ12 δ13 δ14 δ15 δ16 δ17 δ18

#
 r

eq
u

es
ts

 /
 u

s

(c) StreamCopy

 0

 100

 200

 300

 400

 500

 600

 700

µ
1

δ
12

δ
13

δ
14

δ
15

δ
16

δ
17

δ
18

(d) StreamAdd

Figure 3.8 Measured service rates for the synthetic workloads on the AMD

platform for varying stride values. µ1 represents the service rate of memory

controller 1, and δ1 2−8 represents the service rate of the interconnection links

connecting CPU node 1 and memory controllers 2–8.

 0

 200

 400

 600

 800

 1000

 1200

µ1 δ12 δ13 δ14

#
 r

eq
u

es
ts

 /
 u

s stride 8

stride 16

stride 32

stride 64

stride 128

(a) StreamWrite

 0

 100

 200

 300

 400

 500

 600

 700

 800

µ
1

δ
12

δ
13

δ
14

(b) StreamLoad

 0

 100

 200

 300

 400

 500

 600

µ1 δ12 δ13 δ14

#
 r

eq
u

es
ts

 /
 u

s

(c) StreamCopy

 0

 100

 200

 300

 400

 500

 600

µ
1

δ
12

δ
13

δ
14

(d) StreamAdd

Figure 3.9 Measured service rates for the synthetic workloads on the Intel plat-

form for varying stride values.

50

spectively. The values are set such that the workload is completely memory

bound. Similar to the observation from Figure 3.4 and Figure 3.5, different

synthetic workloads in Figure 3.6 have different ratios between memory read,

write, and prefetch operations. To compute µj , the data of the arrays A, B,

and C is allocated to memory node j. The workload is executed on one core

in CPU node j using one thread, and the total runtime of the workload, de-

noted total execution timejj , is measured. Since all memory accesses are served

by the local memory node without passing through other interconnection links,

the mean service rate of memory controller j can be computed by

µj =
total memory operations

total execution timejj
(3.4)

To compute the service rate of an interconnection link δij , the total execution timeij

is measured by executing the workload on a core in CPU node i and the data

located in memory node j. The execution time of such an allocation includes the

data transfer time through the interconnection link and the memory controller.

The data transfer rate of the interconnection link is computed as follows.

δij =
total memory operations

(total execution timeij − total execution timejj)
(3.5)

Figure 3.8 shows the measured service rates of memory controller 1 and

the interconnection links between CPU node 1 and memory nodes 2–8 on the

AMD system for the four synthetic workloads from Figure 3.6. Figure 3.9 shows

the measured service rate and the interconnection links between CPU node 1

and four memory nodes on the Intel system. We observe that the memory

service rate depends on the workload. For example, comparing StreamWrite

(Figure 3.8 (a)) and StreamLoad (Figure 3.8 (b)) reveals that StreamWrite

tends to have higher memory service rates than StreamLoad, suggesting that a

higher ratio of memory write operations causes a higher service rate. In addition,

51

in StreamCopy (Figure 3.8 (c)) and StreamAdd (Figure 3.8 (d)), the service

rates tend to be higher with a stride value of 32 because there are a larger

number of memory prefetch operations as visible in Figure 3.6. The experiments

demonstrate that it is necessary to consider the memory access pattern of the

given workload to compute the memory service rate.

The M/M/1/N/N model assumes that the server exhibits exponential ser-

vice times. Similar to the analysis of memory accesses in Section 3.2.3, this

assumption is justified using the KS test for the synthetic workloads. The de-

tails are provided in Appendix A.1.2.

Synchronization Overhead

Parallel loops have implicit barriers at the end of the loops that can affect the

performance of the parallel loops if the load is unbalanced. Here, we investigate

the effect of this implicit barrier by measuring the load balance ratio. The load

balance ratio is computed by comparing the turnaround time of the two worker

threads that take the longest (tlongest) and the shortest (tshortest) to complete

their execution (Load balance ratio = tshortest/tlongest).

Figure 3.10 shows the measured load balance ratio for the 24 parallel loops

on the AMD and the Intel platform. As shown in the figure, many loops have

a high load balance ratio (larger than 0.9). This implies that, for many parallel

loops the overhead from load imbalance is limited to only a fraction of the

overall performance. Based on this observation, such overhead is not modeled

in this work. Several loops (rprj3, psinv, and interp1) of the MG application,

however, exhibit a low load balance ratio. The MG application is based on an

unstructured grid where the inner loops have different loop iteration bounds.

The tiling1 loop contains an inner loop with varying iteration counts and also

conditional branches that cause this load imbalance.

52

 0

 0.2

 0.4

 0.6

 0.8

 1

x_
so

lv
e
(B

T)

y_
so

lv
e
(B

T)

z_
so

lv
e
(B

T)

ad
d

(B
T)

co
nj

_g
ra

d2
 (C

G
)

cf
fts

1
(F

T)

cf
fts

2
(F

T)

cf
fts

3
(F

T)

rh
s1

 (S
P)

rh
s2

 (S
P)

rh
s3

 (S
P)

rh
s4

 (S
P)

rh
s5

 (S
P)

x_
so

lv
e
(S

P)

y_
so

lv
e
(S

P)

z_
so

lv
e
(S

P)

tx
in

vr
 (S

P)

tz
et

ar
 (S

P)

rp
rj3

 (M
G

)

ps
in

v
(M

G
)

in
te

rp
1

(M
G

)

re
si
d

(M
G

)

m
ai

n
(B

S)

til
in

g1
 (F

M
)

G
eo

m
ea

n

L
o
ad

 b
al

an
ce

 r
at

io

(a) 64-core AMD platform.

 0

 0.2

 0.4

 0.6

 0.8

 1

x_
so

lv
e
(B

T)

y_
so

lv
e
(B

T)

z_
so

lv
e
(B

T)

ad
d

(B
T)

co
nj

_g
ra

d2
 (C

G
)

cf
fts

1
(F

T)

cf
fts

2
(F

T)

cf
fts

3
(F

T)

rh
s1

 (S
P)

rh
s2

 (S
P)

rh
s3

 (S
P)

rh
s4

 (S
P)

rh
s5

 (S
P)

x_
so

lv
e
(S

P)

y_
so

lv
e
(S

P)

z_
so

lv
e
(S

P)

tx
in

vr
 (S

P)

tz
et

ar
 (S

P)

rp
rj3

 (M
G

)

ps
in

v
(M

G
)

in
te

rp
1

(M
G

)

re
si
d

(M
G

)

m
ai

n
(B

S)

til
in

g1
 (F

M
)

G
eo

m
ea

n

L
o
ad

 b
al

an
ce

 r
at

io

(b) 72-core Intel platform.

Figure 3.10 Measured load balancing ratio of the parallel loops.

Summary

The performance analysis shows that the M/M/1/N/N queueing model is ad-

equate to model memory requests of parallel loops. For the majority of loops,

the distribution of the memory accesses exhibits a Poisson distribution, and the

limited amount of synchronizations during the execution of parallel work units

allows us to focus on memory system performance as the limiting factor of pro-

gram scalability. The analysis, however, also shows that there are challenges to

use a queueing model when computing the mean memory request rate and the

memory service rate for a varying number of worker threads. These parameter

values need to be carefully computed for accurate performance modeling.

53

(a) Queueing system for
 a memory controller

memory node 2

(c) Queueing system
for an LLC miss

memory node 1

CPU node 2

LLC

DRAM chip

core core core core

CPU node 1

core core

LLC

core core

DRAM chip

memory
controller

(b) Queueing system for
an interconnection link

Interconnection
link

memory
controller

Figure 3.11 A two-socket multicore system and the data path for an LLC miss

of CPU node 1 to be served by memory node 2.

3.3 Queueing Systems for Multi-Socket Multicores

This section shows how to employ the M/M/1/N/N queueing model to model

memory performance on multi-socket multicore architectures.

3.3.1 Hierarchical Queueing Systems

The presented approach employs different queueing systems to model the mem-

ory response time of a NUMA multi-socket system. The response time of a

memory read request observed by an individual CPU core is composed of the

service time of the LLC, the interconnection link, and the memory controller.

The architectural contention points are modeled by individual queueing models

for each memory controller, each interconnection link, and each last-level cache.

A multi-socket system with two CPU nodes and two memory nodes as shown

in Figurere 3.11 is used for the explanations. Each CPU node has four cores

and an LLC. The shaded boxes in the figure depict the contention points ob-

54

CPU
node 1 δ12

DRAM chip

1/(MRTL12
+MRTM2

)

L12

Interconnection
link

L12

Interconnection
link

MRR12

MRR21

(c) Modeling LRT12 the mean response time of LLC misses from
 CPU node 1 that are served by memory node 2

CPU
node 2

CPU
node 1 µ2

MRR12

MRR22

MRTM2

CPU
node 2 DRAM chip

memory controller 2

LLC112

LLC412

CPU node 1

2
1

4
3

(b) Modeling MRTL12
 the mean response time of the interconnection

 link connecting CPU node 1 and memory node 2 (L12)

(a) Modeling MRTM2
 the mean response time of memory controller 2

LRT12

LLC212

LLC312LLC

hit miss

MRTL12

M2

M2

Figure 3.12 The hierarchical queueing systems for the data path.

55

served by a core in CPU node 1 issuing a memory read request to memory

node 2. Each contention point is modeled by an M/M/1/N/N queueing sys-

tem. Memory wait time manifests in the form of stalled threads waiting for

LLC read misses to complete. This stall time is modeled by the queueing sys-

tem illustrated in Figure 3.11 (c). The contention at the memory controller

and the interconnection network is considered by the queueing systems shown

in Figure 3.11 (a) and (b). In these queueing systems, memory requests are

served for each CPU node via an interconnection network, and the queueing

systems model the response time for a varying number of CPU nodes. Unlike

the model for the LLC wait time that only considers memory read operations,

the contention models at the interconnection links and the memory controllers

also consider the effect of memory write and prefetch operations.

Figure 3.12 depicts these queueing systems. The input parameters of the

queueing systems and the modeled performance are described in Table 3.2 and

Table 3.3, respectively. Details of each model are presented in the following

sections.

Queueing System for Memory Controllers

Figure 3.12 (a) shows the queueing system for memory controller 2 (M2) of the

two-node system from Figure 3.11. There are two queueing customers, CPU

node 1 and 2 with a memory request rate (MRR) to memory node 2 of MRR12

and MRR22, respectively (refer to Table 3.2). λM2 in Equation 3.2 is given by

λM2 = (MRR12 +MRR22)/2

where MRR12 and MRR22 represent the memory request rate from CPU node 1

and 2, respectively. With the request rate λM2 and the memory service rate µ2

of memory controller 2, Equation 3.2 yields MRTM2 , the mean response time

56

of memory controller 2.

This approach can be generalized for an arbitrary multi-socket system. For

a system with N nodes, a memory controller j is considered a queueing server

that serves the resources of DRAM chips with a mean service rate of µj , and

CPU node i is considered a queueing customer that accesses the server with a

mean request rate of MRRij . Using the average mean request rates of all CPU

nodes to memory node j

λMj =

∑N
i=1MRRij

N
(3.6)

and the service rate µj , Equation 3.2 computes the mean response time of

memory controller j, MRTMj .

Queueing System for Interconnection Links

Contention at interconnection links is modeled by a separate queueing system.

In a fully-connected network such as Intel’s QPI, contention cannot occur at

the interconnection links and no modeling is required. Architectures such as

AMD’s HT share interconnection links whose response time can be modeled

as follows. The interconnection link, as shown in Figure 3.11, serves requests

from CPU node 1 to memory node 2 and from CPU node 2 to memory node 1.

The queueing system, shown in Figure 3.12 (b), treats CPU nodes 1 and 2

as customers to obtain the link’s request rate λL12 = (MRR12 + MRR21)/2.

Equation 3.2 is applied to compute the the mean response time MRTL12 of

interconnection link L12 with the mean transfer rate δ12.

In general, for an interconnection link Lij connecting CPU node i with

memory node j at a service rate δij , all memory request rates from all CPU

nodes that are served by interconnection link Lij need to be considered. The

57

MRRij

mean memory request rate from CPU node i to memory node j;

it considers all read, write, and prefetch memory operations

LLCkij

mean LLC miss rate from CPU core k in CPU node i to memory

node j; it considers only read LLC misses

µj mean service rate of memory controller j

δij
mean data transfer rate of an interconnection link connecting CPU

node i with memory controller j

Table 3.2 Input parameters of the queueing systems.

MRTMj mean response time of memory requests at memory controller j

MRTLij

mean response time of memory requests at interconnection link

connecting CPU node i with memory node j

TRTij

total mean response time for memory requests from CPU node i

to be served by memory node j

LRTij

mean response time for LLC misses from CPU node i to be served

by memory node j

Table 3.3 Modeled performance information from the queueing systems.

average of the memory request rates λLij is computed as follows.

λLij =

∑N
l=1

∑
k∈LSetlij

MRRlk

N
(3.7)

where LSetlij is the set of memory controllers accessed from CPU node l passing

through link Lij . These sets are constructed according to the interconnection

topology of the target architecture. Using Equation 3.2, we can compute the

mean response time of the interconnection link MRTLij .

58

Queueing System for LLC Misses

The queueing systems from the preceding two sections compute the mean re-

sponse time of each memory controller (MRTMj) and each interconnection link

(MRTLij). For a memory request from CPU node i to be served by memory

node j, the total mean response time TRTij is given by

TRTij = MRTMj +MRTLij (3.8)

This response time, however, is not sufficient to model the performance of

parallel threads. The insight is that cores (i.e., threads) are stalled only for

memory read requests occurring from LLC misses. In other words, the threads

keep executing while memory write operations or prefetch operations are being

served. It is therefore necessary to compute the response time of LLC misses

that stall a thread’s execution. Figure 3.12 (c) shows the queueing system to

model the response time for an LLC miss from CPU node 1 handled by memory

node 2. All cores within the same CPU node constitute the queueing customers.

Assuming a crossbar switch, a CPU node’s LLC misses that access the same

memory node are served in FIFO order while accesses to different memory nodes

can be processed simultaneously. For the input request rate, the LLC miss rate

per core is considered, where LLCk12 represents the LLC miss rate for memory

node 2 from core k in CPU node 1. The service rate of this queueing system

is computed as 1/TRT12, that means an LLC miss requires services from both

the memory controller and the interconnection link. Then, the queueing model

computes the mean response time LRT12 (Table 3.3). The mean value of the

response times obtained from this queueing system represents the mean thread

stall time for LLC misses.

The LLC miss response time LRTij can be computed for an arbitrary CPU

and memory node i and j by replacing 1 and 2 with i and j, respectively.

59

This LLC miss response time is used to compute the performance scalability of

parallel loops in Section 3.4.

3.3.2 Computing the Parameter Values

Performance Counters

To compute the parameter values of the queueing systems, the number of

memory operations at each memory controller and the number of LLC misses

at each CPU node are collected. AMD’s NorthBridge [2] and Intel’s uncore

events [44] provide the necessary performance counters. Linux’s perf interface

is used to query the performance counters. The Memory Controller Requests

(NBPMCx1F0) counter measures the number of memory operations at each mem-

ory controller, and L3 Cache Misses (NBPMCx4E1) counts the number of LLC

misses. Similarly, on the Intel platform, we use UNC H IMC WRITES/READS to

measure the number of memory operations and OFFCORE RESPONSE:L3 MISS to

count the number of LLC misses for each node.

As outlined in Table 3.2, the presented queueing systems require the pa-

rameters MRRij , LLCkij , µj , and δij . The following section discusses the com-

putation of the parameter values from the performance counters obtained from

a profiling run for a given number of worker threads.

Memory Request Rate and LLC Miss Rate

The value of MRRij , referring to the number of memory requests per time in

the steady state, is computed as follows.

MRRij =
Requestsij
CPU Time

(3.9)

where # Requestsij is the number of memory requests issued from CPU node

i to memory node j. Since # Requestsij is collected in the steady state of

60

a workload, it already includes the effects of different cache write miss poli-

cies. CPU Time denotes the execution time of threads excluding the stall times

caused by the LLC misses. Threads are assumed to have the same execution

time with perfect load balance.

Similarly, the LLC miss rate is computed as the number of LLC misses per

time as follows.

LLCkij =
LLC Misskij
CPU Time

(3.10)

where # LLC Misskij is the number of LLC misses issued from core k in CPU

node i and served by memory node j.

Measuring CPU Time is not trivial because existing processors can measure

only the total runtime, Total Time, that includes the memory response times.

Total Time is defined as CPU Time plus the response times for LLC misses as

follows.

Total Time = CPU Time+
N∑
j=1

(
C∑

k=1

LLC Misskij · LRTij) (3.11)

where C represents the number of cores in a CPU node, and LRTij is com-

puted from the queueing system given in Section 3.3.1. Solving Equation 3.11

for CPU Time is not trivial because the queueing system for LRTij requires

CPU Time to compute the input parameters of MRRij and LLCkij . To com-

pute CPU Time with a reasonable overhead, we use an iterative method using

Equation 3.12.

CPU Timek+1 = Total Time−
N∑
j=1

(
C∑

k=1

LLC Misskij · LRTk
ij) (3.12)

LRTk
ij and CPU Timek+1 are iteratively computed based on CPU Timek. Since

Total Time ≥ CPU Time, the initial input of CPU Time0 is set to Total Time.

Five iterations were empirically determined to be sufficient on both architec-

tures.

61

The method presented in this section computes the parameter values from

the measured performance counter values. However, as explained in Section 3.2.3,

the memory request rate changes for a varying number of threads. A practical

profiling method that considers varying memory request rates in dependence of

thread counts is discussed in Section 3.4.2.

Memory Service Rate

The mean service rate, MSR, µj for memory controller j and δij for intercon-

nection link Lij , is computed from the mean service time MST, MSR = 1/MST.

As discussed in Section 3.2.2, the service rate of the memory resources varies

depending on the ratio between memory operations.

A linear equation is used to compute the mean service time for each memory

controller and interconnection link. For example, Equation 3.13 computes the

mean service time for memory controller j.

MSTµj = αµj ·
Prefetches

Requests
+ βµj ·

Reads

Requests
+ γµj ·

Writes

Requests
(3.13)

To compute the coefficient values of αµj , βµj , and γµj , the four synthetic

workloads from Section 3.2.3 are executed with varying stride values (8, 16,

32, 64, 128) and the MSTµj is measured for each configuration. The coefficient

values are obtained by applying linear regression to the measured MSTµj val-

ues. This procedure is performed for each interconnection link Lij to calculate

MSTLij . Some architecture may not support collecting the number of prefetches

of the L3 caches and the counts for read operations include prefetches; this is

the case for our Intel platform. Once the coefficient values are obtained from

the synthetic workloads, the memory service time for varying parallel programs

is computed by using the collected number of memory read, write, and prefetch

operations during the profiling. Computing individual coefficients for each work-

62

loads can increase the accuracy of the model but is left for future work.

3.4 The Speedup Prediction Model

This section presents the speedup prediction model using the presented queue-

ing systems in Section 3.3 for parallel loops.

3.4.1 The Speedup Model

For an N -node system, the speedup of parallel loops for M number of CPU

nodes each consisting of C cores is computed as follows. Let CPU TimeS denote

the CPU time required to complete the workload when using a single thread.

CPU TimeS does not include thread stall times. If there is no contention in the

memory system and assuming perfect load balancing, we can expect a linear

speedup and thus divide CPU TimeS by M ·C. Let Stall Time(M) be the total

stall times of a thread for all LLC misses from the thread when there are M ·C

threads. The speedup for M CPU nodes, S(M), is given by

S(M) =
CPU TimeS/C + Stall Time(1)

CPU TimeS/(M · C) + Stall Time(M)
(3.14)

To compute Stall Time(M), the number of LLC misses for each mem-

ory node is computed by multiplying the CPU time per thread for M nodes

(CPU TimeS/(M ·C)) by the LLC miss rate to each memory node j, LLCj (note

that ∀k and ∀i LLCj = LLCkij , because all threads have the same memory ac-

cess ratio to each memory node). Then, for each memory node, the number of

LLC misses to memory node j is multiplied by the average of the mean response

times from M CPU nodes to memory node j,
∑M

i=1 LRTij/M . Hence, the total

stall time of a thread is computed by

Stall Time(M) =
N∑
j=1

(CPU TimeS
M · C

· LLCj ·
∑M

i=1 LRTij

M

)
(3.15)

63

where the value of LRTij is computed by applying the M/M/1/N/N queueing

systems from Section 3.3. The product in the parentheses computes the total

stall time of LLC misses served by memory node j. The stall time is the sum

over all N memory nodes.

3.4.2 Implementation

The speedup prediction model has been implemented as a library called Loop-

Perf. The GOMP runtime system (version 5.4) has been modified to allow

control the number of worker threads of a parallel loop. LoopPerf creates as

many worker threads as there are cores in the system. Each thread is pinned to

an individual core, parallelism is controlled by putting threads on non-allocated

cores to sleep. The dynamic loop scheduler in our GOMP runtime system de-

termines the amount of work to assign to a core based on the execution time of

previous work. When fetching new work, the GOMP runtime system increases

the amount of work assigned until it reaches an execution time of 30ms. This

threshold has empirically been found to yield good results, but can be tuned

for different architectures. LoopPerf provides three different versions of perfor-

mance prediction, LoopPerf-S, LoopPerf-T, and Best-F.

LoopPerf-S (Single)

LoopPerf-S predicts the performance of a parallel loop based on a single profil-

ing run using one CPU node. For a parallel loop, it collects the memory request

rates and LLC miss rates accessing to individual memory nodes. This assumes

that the memory request rates and the LLC miss rates are constant for a varying

number of threads.

64

LoopPerf-T (Twice)

As discussed in Section 3.2.3, the memory request rate can vary depending on

the number of threads. LoopPerf-T considers such variations by allowing two

profiling runs. The first profiling uses one CPU node and collects the mean

memory request rate and LLC miss rate for each memory node. The second

profiling uses all CPU nodes and applies linear regression to compute the pa-

rameter values for a varying number of CPU nodes. To benefit from the speedup

information given by this option, therefore, a parallel loop needs to be executed

more than two times. This is not a big concern because numerical applications

usually execute the same parallel loops dozens or hundreds times.

Best-F (Best Fixed parameter values)

Best-F from our previous work [17] employs simpler M/M/1/N/N queueing

systems to model the speedup of parallel workloads and does consider variations

in the workload’s memory service rate. Instead a fixed memory service rate is

used for all benchmarks. The service rate of Best-F is found using an exhaustive

search of the service rates of memory controllers and interconnection links and

chooses the values that yield the minimum prediction errors for the 24 parallel

loops of Table 3.1. LoopPerf-S and LoopPerf-T are compared to Best-F to show

the benefits of the more accurate queueing models and the variable memory

service rates.

3.5 Evaluation

This section evaluates the presented speedup prediction model with the 24

parallel loops from Table 3.1 on two NUMA architectures, an AMD 64-core and

and Intel 72-core platform. Details of the platforms are given in Section 1.2.2.

65

The accuracy of the prediction model is validated using the mean absolute

percentage error (MAPE). MAPE is computed by taking the arithmetic mean

of the percentage errors based on the difference between the measured and the

predicted value. It is given by

MAPE =
100%

n

n∑
k=1

∣∣∣∣ak − pk
ak

∣∣∣∣ (3.16)

where ak represents the actual and pk the predicted value. In addition to MAPE,

the speedup prediction curves for both platforms are presented in Figure 3.14

(AMD) and Figure 3.15 (Intel).

3.5.1 64-core AMD Opteron Platform

The results in Figure 3.14 show that, in general, the presented speedup model,

LoopPerf-T accurately predicts the speedup of the parallel loops with a geo-

metric mean error of 8.3% confirming that the speedup model can be practically

used for OpenMP applications. LoopPerf-S has a higher error with a geometric

mean of 13.9%, and the Best-F configuration also shows a higher geometric

mean error of 10.8%.

For Figure 3.14 (1)–(3) x/y/z solve (BT), (6)–(7) cffts1-2, and the (23)

main loop, LoopPerf-S, LoopPerf-T, and Best-F predict almost a linear speedup.

These workloads have low memory access rates as shown in Figure 3.2 (a), (c),

and (d), and the speedup models consider these workloads to be CPU-intensive.

However, the predictions have small errors on a large number of threads because

of the loop scheduling overhead. Comparing LoopPerf-T with LoopPerf-S and

Best-F, the advantages of LoopPerf-T become apparent for memory-intensive

loops such as (4) add, (5) conj grad2, (8) cffts3, (9)–(13) rhs1-5, (14)–(16)

x/y/z solve (SP), (17) txinvr, and (18) tzetar. The results imply that LoopPerf-

T can successfully compute the parameter values of the queueing systems com-

66

pared to LoopPerf-S and Best-F. For example, looking at (5) conj grad2, (8)

cffts3, (9)–(13) rhs1-5, LoopPerf-S failed to accurately predict the speedup for

loops with a larger number of CPU nodes. LoopPerf-S often over-estimates the

speedup compared to the measurements. Workloads tend to have a higher ratio

of memory prefetch operations (a higher memory service rate) on a small num-

ber of CPU nodes. LoopPerf-S, however, computes the memory service rates

based only on a single profiling using one CPU node. Therefore, LoopPerf-S

may over-estimate the memory service rates for a larger number of CPU nodes

and yield a lower memory response time than the actual one. For speedup

curves such as (9)–(13) rhs1-5 and (14)–(16) x/y/z solve (SP), on the other

hand, Best-F often over-estimates the speedup for a small number of CPU nodes

and under-estimates for a larger number of CPU nodes. The trend shows that

using one constant mean memory service rate does not capture the variance of

the memory service rate well. LoopPerf-T provides good prediction accuracy

and similar speedup curves with measurements for most parallel loops.

Analytical modeling through queueing models admittedly has limitations

for irregular workloads regarding their memory access distribution and load

imbalance. The LoopPerf-T technique does not accurately predict the speedup

of irregular loops such as (21) interp1 and (22) resid of the MG application. In

Section 3.2.2, we have shown experimentally that the memory accesses of these

workloads do not follow a Poisson distribution (Figure 3.2 (c)) and that these

workloads also suffer from a load imbalance in Figure 3.10 (a).

Overall, the results show that LoopPerf-T is able to accurately predict the

performance scalability of regular parallel loops. The experiments validate that

the presented methodology can practically model memory performance of par-

allel loops in modern multi-socket multicore platforms. Despite the higher error

rates for pathological curves from irregular workloads, the high accuracy of the

67

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

(1) x
_solve (B

T)

(2) y
_solve (B

T)

(3) z
_solve (B

T)

(4) a
dd (B

T)

(5) c
onj_grad2 (C

G)

(6) c
fft

s1 (F
T)

(7) c
fft

s2 (F
T)

(8) c
fft

s3 (F
T)

(9) r
hs1 (S

P)

(10) r
hs2 (S

P)

(11) r
hs3 (S

P)

(12) r
hs4 (S

P)

(13) r
hs5 (S

P)

(14) x
_solve (S

P)

(15) y
_solve (S

P)

(16) z
_solve (S

P)

(17) tx
invr (

SP)

(18) tz
etar (

SP)

(19) r
prj3

 (M
G)

(20) p
sin

v (M
G)

(21) in
terp1 (M

G)

(22) r
esid

 (M
G)

(23) m
ain (B

S)

(24) ti
lin

g1 (F
M)

Geomean

M
A

P
E

 (
%

)

64-core AMD Opteron platformBest-F

LoopPerf-S

LoopPerf-T

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

(1) x
_solve (B

T)

(2) y
_solve (B

T)

(3) z
_solve (B

T)

(4) a
dd (B

T)

(5) c
onj_grad2 (C

G)

(6) c
fft

s1 (F
T)

(7) c
fft

s2 (F
T)

(8) c
fft

s3 (F
T)

(9) r
hs1 (S

P)

(10) r
hs2 (S

P)

(11) r
hs3 (S

P)

(12) r
hs4 (S

P)

(13) r
hs5 (S

P)

(14) x
_solve (S

P)

(15) y
_solve (S

P)

(16) z
_solve (S

P)

(17) tx
invr (

SP)

(18) tz
etar (

SP)

(19) r
prj3

 (M
G)

(20) p
sin

v (M
G)

(21) in
terp1 (M

G)

(22) r
esid

 (M
G)

(23) m
ain (B

S)

(24) ti
lin

g1 (F
M)

Geomean

M
A

P
E

 (
%

)

72-core Intel Xeon platformBest-F

LoopPerf-S

LoopPerf-T

Figure 3.13 MAPE of the predicted speedup compared to the measured speedup

of the parallel loops on the 64-core AMD and the 72-core Intel platform.

prediction technique for regular workloads makes the presented queueing system

a good candidate for performance modeling and optimization in multi-socket

multicore systems.

3.5.2 72-core Intel Xeon Platform

Figure 3.15 presents the speedup prediction results for the 72-core Intel Xeon

platform. LoopPerf-T accurately predicts the speedup with a geometric mean

error of 6.7%. LoopPerf-S and Best-F also achieve good accuracy with an error

of 6.5% and 6.7%, respectively. The difference among the three methods is not

prominent because the speedup is predicted for only four different allocations

(1-4 CPU nodes). Note that hyperthreading has been disabled to not incur

interference in a physical core in accordance with the simplifications stated in

Section 3.2.2.

In Figure 3.15, the speedup curves of CPU-intensive loops such as (1)–(3)

x/y/z solve (BT) and (6)–(7) cffts1-2, show a similar pattern to the AMD

platform from Figure 3.14. LoopPerf-T provides good predictions for memory-

68

 0
 1
 2
 3
 4
 5
 6
 7
 8

8 16 24 32 40 48 56 64

S
p

ee
d

u
p

CPU cores

Best-F
LoopPerf-S
LoopPerf-T
measurement

(1) x solve (BT)

8 16 24 32 40 48 56 64

CPU cores

(2) y solve (BT)

8 16 24 32 40 48 56 64

CPU cores

(3) z solve (BT)

8 16 24 32 40 48 56 64

CPU cores

(4) add (BT)

 0
 1
 2
 3
 4
 5
 6
 7
 8

8 16 24 32 40 48 56 64

S
p

ee
d

u
p

CPU cores

(5) conj grad2 (CG)

8 16 24 32 40 48 56 64

CPU cores

(6) cffts1 (FT)

8 16 24 32 40 48 56 64

CPU cores

(7) cffts2 (FT)

8 16 24 32 40 48 56 64

CPU cores

(8) cffts3 (FT)

 0
 1
 2
 3
 4
 5
 6
 7
 8

8 16 24 32 40 48 56 64

S
p

ee
d

u
p

CPU cores

(9) rhs1 (SP)

8 16 24 32 40 48 56 64

CPU cores

(10) rhs2 (SP)

8 16 24 32 40 48 56 64

CPU cores

(11) rhs3 (SP)

8 16 24 32 40 48 56 64

CPU cores

(12) rhs4 (SP)

 0
 1
 2
 3
 4
 5
 6
 7
 8

8 16 24 32 40 48 56 64

S
p

ee
d

u
p

CPU cores

(13) rhs5 (SP)

8 16 24 32 40 48 56 64

CPU cores

(14) x solve (SP)

8 16 24 32 40 48 56 64

CPU cores

(15) y solve (SP)

8 16 24 32 40 48 56 64

CPU cores

(16) z solve (SP)

 0
 1
 2
 3
 4
 5
 6
 7
 8

8 16 24 32 40 48 56 64

S
p

ee
d

u
p

CPU cores

(17) txinvr (SP)

8 16 24 32 40 48 56 64

CPU cores

(18) tzetar (SP)

8 16 24 32 40 48 56 64

CPU cores

(19) rprj3 (MG)

8 16 24 32 40 48 56 64

CPU cores

(20) psinv (MG)

 0
 1
 2
 3
 4
 5
 6
 7
 8

8 16 24 32 40 48 56 64

S
p

ee
d

u
p

CPU cores

(21) interp1 (MG)

8 16 24 32 40 48 56 64

CPU cores

(22) resid (MG)

8 16 24 32 40 48 56 64

CPU cores

(23) main (BS)

8 16 24 32 40 48 56 64

CPU cores

(24) tiling1 (FM)

Figure 3.14 The predicted speedup and the measured speedup of the parallel

loops on the 64-core AMD platform.

69

intensive parallel loops. For irregular loops such as (21) interp1 and (22) resid

of the MG application, LoopPerf-T provides better prediction results compared

to the AMD platform. The effects of these irregular loops were smaller in the

Intel system compared to the AMD system. All the three speedup models,

however, do not predict the speedup of (5) conj grad2 and (24) tiling1 well. In

these cases, the performance is limited by other factors such as loop scheduling

and cache coherence overhead between multiple sockets rather than the memory

system.

3.6 Discussion

3.6.1 Applicability of the Model

The evaluation of the presented performance model in this chapter mostly as-

sumed (1) dynamic loop scheduling and (2) that the data is spread across all

memory nodes as is standard practice for runtime systems that control the par-

allelism of workloads [72, 15]. We argue that the model is also applicable for

other types of loop scheduling and data distribution policies, and we provide

some additional experimental results in Appendix A.

First, the model can support other types of loop scheduling. The dynamic

loop scheduling scheme considered in this chapter is mostly close to the execu-

tion under COOP-DYN (that uses also dynamic loop scheduling) in Chapter 2.

The COOP-ULT technique presented in Chapter 2 also enables malleable exe-

cution for parallel loops with the static loop scheduling mode by dynamically

scheduling the work abstracted with user-level tasks. In principle, since the

execution under both COOP-DYN and COOP-ULT is also based on dynamic

scheduling, our model can work for both COOP-DYN and COOP-ULT. Ap-

pendix A.2.2 validate this claim by providing some additional experiments that

70

1

2

3

4

18 36 54 72

S
p

ee
d

u
p

CPU cores

Best-F
LoopPerf-S
LoopPerf-T
measurement

(1) x solve (BT)

18 36 54 72

CPU cores

(2) y solve (BT)

18 36 54 72

CPU cores

(3) z solve (BT)

18 36 54 72

CPU cores

(4) add (BT)

1

2

3

4

18 36 54 72

S
p

ee
d

u
p

CPU cores

(5) conj grad2 (CG)

18 36 54 72

CPU cores

(6) cffts1 (FT)

18 36 54 72

CPU cores

(7) cffts2 (FT)

18 36 54 72

CPU cores

(8) cffts3 (FT)

1

2

3

4

18 36 54 72

S
p

ee
d

u
p

CPU cores

(9) rhs1 (SP)

18 36 54 72

CPU cores

(10) rhs2 (SP)

18 36 54 72

CPU cores

(11) rhs3 (SP)

18 36 54 72

CPU cores

(12) rhs4 (SP)

1

2

3

4

18 36 54 72

S
p

ee
d

u
p

CPU cores

(13) rhs5 (SP)

18 36 54 72

CPU cores

(14) x solve (SP)

18 36 54 72

CPU cores

(15) y solve (SP)

18 36 54 72

CPU cores

(16) z solve (SP)

1

2

3

4

18 36 54 72

S
p

ee
d

u
p

CPU cores

(17) txinvr (SP)

18 36 54 72

CPU cores

(18) tzetar (SP)

18 36 54 72

CPU cores

(19) rprj3 (MG)

18 36 54 72

CPU cores

(20) psinv (MG)

1

2

3

4

18 36 54 72

S
p

ee
d

u
p

CPU cores

(21) interp1 (MG)

18 36 54 72

CPU cores

(22) resid (MG)

18 36 54 72

CPU cores

(23) main (BS)

18 36 54 72

CPU cores

(24) tiling1 (FM)

Figure 3.15 The predicted speedup and the measured speedup of the parallel

loops on the 72-core Intel platform.

71

evaluate the accuracy of the performance model for static parallel loops exe-

cuted with COOP-ULT. The results show that our model can also predict the

performance of parallel loops with COOP-ULT.

In addition, in our previous PACT 2016 paper [17], the model based on the

Best-F method has also been evaluated for other scheduling methods including

static, guided and dynamic scheduling as well as for different memory allocation

schemes. The results have shown that the presented queueing system-based

approach works well for the different execution scenarios except for a number

of pathological cases where the parallel loops suffer from a large load imbalance

with static scheduling. For these results, please see Appendix A.2.3 and A.2.4.

3.6.2 Limitations of the Model

The presented analytical approach makes several assumptions. Although the

assumptions are justified for parallel loops of scientific applications in NPB, it

remains a challenge to apply the presented approach to other types of parallel

loops that do not satisfy these assumptions. Here, we briefly discuss potential

solutions to address these challenges.

A first important assumption is that the loops have no loop-carried de-

pendencies. In the presence of loop-carried dependencies (e.g., pipelined par-

allelism), the major limiting factors for performance are synchronization and

scheduling overhead in addition to the memory performance. The presented

performance model is able to offer an insight into the memory performance. To

model the synchronization time for N threads Sync Time (N), existing analyt-

ical approaches [69] can be employed.

Second, the presented model assumes a Poisson distribution for memory

requests and exponential memory service times. For the targeted parallel loops,

this assumption is verified in Section 3.2.2, however, other loops may exhibit

72

different distributions. In that case, the queueing models need to be solved with

discrete event simulation.

Third, contention at intra-node shared resources such as shared caches and

floating point units can be modeled in a more sophisticated way. For example,

although LLC contention is already implicitly considered in this work because

the memory request rates are measured after LLC contention happens, using

other intra-node resource interference models [78] can be useful if the perfor-

mance needs to be estimated on a finer level. Note, however, since the presented

model is evaluated using hardware performance counters, the effects of such re-

source contention are implicitly considered to a certain degree.

3.6.3 Summary

In this chapter, we presented a methodology to model the memory system per-

formance of multi-socket multicore systems using queueing systems. For multi-

socket systems, we presented hierarchical M/M/1/N/N queueing systems that

are able to evaluate the performance of each interconnection link and each

memory controller. The parameter values are computed in the presence of vari-

ations from hardware optimizations while solely relying on hardware perfor-

mance counters of AMD and Intel processors. Based on the queueing systems,

the performance of OpenMP parallel loops is predicted with average percentage

errors of 8% for AMD and 7% for Intel multi-socket systems. The information

obtained from the model can be used not only for performance modeling of par-

allel loops but also to improve overall CPU and memory system utilization. The

following chapter introduces a runtime-level parallelism management technique

for co-located parallel applications by leveraging the analytical model presented

in this chapter.

73

Chapter 4

Maximizing System Utilization via
Parallelism Management

4.1 Overview

In this chapter, we focus on managing parallelism of co-located parallel work-

loads by leveraging the cooperative parallel runtime support (Chapter 2) and

the analytical model for performance estimation (Chapter 3). The parallelism

management aims to fully utilize system resources and therefore to achieve an

increased co-location performance (i.e. reduction of the total execution time)

for shared-memory multiprocessor systems consisting of multiple CPU sockets

and memory controllers with NUMA latencies.

Existing work typically assigns more worker threads to computation-intensive

applications [65, 76, 75, 21]. This can lead to under-utilized memory systems re-

sulting in inefficient tail execution once the computation-intensive applications

have finished. In contrast, the method proposed in this chapter aims at maxi-

mizing the overall utilization of both the CPU cores and the memory system.

74

Operating system

Parallel runtime

Application

Parallelism manager

Cooperative
work scheduler

Allocated cores

Parallel runtime

Application

Cooperative
work scheduler

Allocated cores

Selecting
thread counts

Thread placement

Performance model

Figure 4.1 The NuPoCo framework.

To this end, this chapter presents NuPoCo, a framework for NUMA multi-

core Performance Optimization of CO-located parallel applications. NuPoCo

maximizes the overall system utilization by considering the utilization of multi-

dimensional resources such as CPU cores and memory bandwidth on memory

controllers to determine the proper number of threads for each co-located paral-

lel loops. Figure 4.1 depicts the structure of the NuPoCo framework. The three

core components are (1) a performance model, (2) a parallelism manager, and

(3) cooperative loop schedulers of parallel runtime systems. The performance

model is based on the model presented in Chapter 3 and predicts the utiliza-

tion of CPU cores and memory controllers for co-located parallel applications.

Predicting utilization is based on a queueing system that models memory ac-

cesses on multi-socket multicore systems. The parallelism manager periodically

performs core allocation (i.e., deciding on the number of threads per applica-

tion and their location) by leveraging the performance model and monitoring

hardware performance counters. The cooperative loop schedulers (Chapter 2),

finally, dynamically adapt their execution to the core allocation dictated by the

75

parallelism manager.

We evaluate NuPoCo on two multi-socket multicore platforms, the 64-core

AMD Opteron and the 72-core Intel Xeon platform (Section 1.2.2). Experimen-

tal results for various workload mixes obtained from NPB [4], Parsec [7], and

Rodinia [14] show that NuPoCo is able to execute multiple OpenMP applica-

tions in significantly less total execution time compared to the default Linux

scheduler and a parallelism management scheme maximizing CPU utilization.

The NuPoCo framework and the results are presented in PACT 2018 [15].

NuPoCo currently uses a simple greedy algorithm for parallelism manage-

ment. In other words, for each core resource (or an allocation unit) we assign

the core resource to an application that maximizes the summation of CPU

utilization and memory bandwidth. In Section 4.5, we also present MOCA

(Multi-Objective Core Allocation), an ongoing research on the core alloca-

tion problem. MOCA employs evolutionary meta-heuristics inspired by genetic

algorithms (GAs) [50, 31] for core allocation to find a better allocation than

the greedy algorithm. We provide some experimental results of MOCA in Sec-

tion 4.6.

4.2 Background

This section provides background information about the performance property

of parallel loops. Then, we compare the performance of core allocation policies

through queueing theory.

4.2.1 Modeling Performance Metrics

Queueing models are able to compute important performance-related metrics

such as the CPU utilization or the memory controller utilization. Let us first

76

consider a simple SMP system with one memory controller (MCT) and 16

cores (Figure 1.3 (a) in Section 1.2.2 shows the architecture diagram). Such

a system can be modeled using an M/M/1/N/N queueing system [83] with a

finite number of N customers and 1 server. We presented the details about the

background information of the M/M/1/N/N queueing model in Section 3.2.1.

Please refer to Section 3.2.1 for the details. Employing the queueing model, the

CPU cores are regarded as the queueing customers, and the memory system

is considered the queueing server. The N queueing customers (the cores) each

generate requests with a mean arrival rate λ following a Poisson distribution

that are served by one queueing server (the memory controller) with a mean

service rate µ with exponential service times.

Based on this queueing model, the speedup, the per-core utilization, and the

MCT utilization in dependence of the number of allocated cores can be derived

as follows. The Speedup of a program is defined by dividing the execution time

on one core, Total Time(1), by the execution time on N cores, Total Time(N)

Speedup (N) = Total Time (1)/Total Time (N) (4.1)

Under the assumption that cores block on outstanding memory requests, To-

tal Time(N) is composed of the execution time on N cores, CPU Time(N), and

the total memory response time, MCT Time(N)

Total Time (N) = CPU Time (N) +MCT Time (N)

For data-parallel workloads where the total amount of work is constant and

balanced, the execution time on N cores is given by

CPU Time (N) = CPU Time (1)/N

The estimated number of generated memory requests for N cores is the product

of the CPU time and the per-core memory request rate, MRR. MCT Time(N)

77

is obtained by multiplying MRR with the mean memory response time for N

cores, MRT(N).

MCT Time (N) = CPU Time (N)×MRR×MRT (N) (4.2)

Each application has its own MRR value, and the MRT for a varying number

of cores is regarded as the scaling factor of the parallel application.

For a memory controller with a service rate µ, the mean memory response

time is given by (refer to the closed-form equation of the M/M/1/N/N model

(Equation 3.2 in Section 3.2.1)).

MRT (N) =
1

µ

(
N

MCT Util (N)
− µ

MRR

)
(4.3)

where MCT Util(N) denotes the memory controller utilization corresponding

to the server utilization Us from the closed-form equation (Equation 3.3 in

Section 3.2.1)

MCT Util(N) = 1−

(
N∑
k=0

N !

(N − k)!
(
MRR

µ
)k

)−1

(4.4)

Finally, the per-core utilization, CPU Util(N), is defined by the ratio of CPU

time over the total time

CPU Util (N) =
CPU Time (N)

Total Time (N)
(4.5)

To consider overall utilization of both the CPU and the memory controller, we

suggest a new metric, the system utilization, defined as the sum of CPU and

MCT utilization. For an application using N of the total M system cores, the

system utilization, System Util(N), is defined as

System Util (N) = CPU Util (N)× N

M
+MCT Util (N) (4.6)

To solve this model for co-located applications, the weighted average of the

workloads’ MRR of all assigned cores is used to compute the mean memory

78

 0

 0.5

 1

 1.5

 2

2 4 6 8 10 12 14 16

 4

 8

 12

 16
U

ti
li

za
ti

o
n S

p
eed

u
p

allocated cores

per-core util.
MCT util.

system util.
speedup

(a) Workload A (MRR = 0.0)

 0

 0.5

 1

 1.5

 2

2 4 6 8 10 12 14 16

 4

 8

 12

 16

U
ti

li
za

ti
o
n S

p
eed

u
p

allocated cores

per-core util.
MCT util.

system util.
speedup

(b) Workload B (MRR = 0.01)

Figure 4.2 Performance metrics for two workloads with different MRRs

at amean service rate µ of 50.

response time and the memory controller utilization (Equations 4.3 and 4.4).

Based on the computed MRT value, we compute the per-application Speedup

and CPU Util using the application-specific MRR value.

4.2.2 Our Resource Management Policy

Figure 4.2 plots the analytical results of the presented model for the four metrics

Speedup, MCT Util, CPU Util, and System Util for two workloads and a varying

number of cores. The results show that the completely CPU-bound workload

A is able to fully utilize the given CPU resources, but its MCT Util is 0. For

workload B with a memory request rate MRR = 0.01, CPU Util decreases with

an increasing number of cores whileMCT Util increases. Looking at System Util,

the system utilization of workload B is always higher than that of workload A.

However, System Util of workload B is saturated at a relatively small number

of cores while the System Util of workload A increases linearly. The insight of

this analytical result is that co-locating workload A with workload B has the

potential to achieve a higher system utilization.

79

 0
 5

 10
 15
 20
 25
 30
 35
 40

B
at

ch

[1
-1

5
]

[2
-1

4
]

[3
-1

3
]

[4
-1

2
]

[5
-1

1
]

[6
-1

0
]

[7
-9

]

[8
-8

]

[9
-7

]

[1
0
-6

]

[1
1
-5

]

[1
2
-4

]

[1
3
-3

]

[1
4
-2

]

[1
5
-1

]T
u

rn
ar

o
u

n
d

 t
im

e

[a-b]: core count ‘a’ for Workload A and ‘b’ for B

Workload A Workload B

E
q
u
al

p
ar

ti
ti

o
n

M
ax

 s
y
s.

u
ti

li
za

ti
o
n

M
ax

 C
P

U
u
ti

li
za

ti
o
n

(a) A = 100, B = 100.

 0
 10
 20
 30
 40
 50
 60

B
at

ch

[1
-1

5
]

[2
-1

4
]

[3
-1

3
]

[4
-1

2
]

[5
-1

1
]

[6
-1

0
]

[7
-9

]

[8
-8

]

[9
-7

]

[1
0
-6

]

[1
1
-5

]

[1
2
-4

]

[1
3
-3

]

[1
4
-2

]

[1
5
-1

]T
u

rn
ar

o
u

n
d

 t
im

e

[a-b]: core count ‘a’ for Workload A and ‘b’ for B

Workload A Workload B

E
q
u
al

p
ar

ti
ti

o
n

M
ax

 s
y
s.

u
ti

li
za

ti
o
n

M
ax

C
P

U
u
ti

l.

(b) A = 400, B = 100.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

B
at

ch

[1
-1

5
]

[2
-1

4
]

[3
-1

3
]

[4
-1

2
]

[5
-1

1
]

[6
-1

0
]

[7
-9

]

[8
-8

]

[9
-7

]

[1
0
-6

]

[1
1
-5

]

[1
2
-4

]

[1
3
-3

]

[1
4
-2

]

[1
5
-1

]T
u

rn
ar

o
u

n
d

 t
im

e

[a-b]: core count ‘a’ for Workload A and ‘b’ for B

Workload A Workload B

E
q
u
al

p
ar

ti
-t

io
n

M
ax

sy
s.

u
ti

l.

M
ax

 C
P

U
u
ti

li
za

ti
o
n

(c) A = 800, B = 100.

Figure 4.3 Turnaround times of co-located workloads A and B. Both workloads

are started at the same time and executed with the core allocation given in the

X-axis. The vertical bars indicate the core distribution yielding the best perfor-

mance for the equal partitioning, max system utilization, and max CPU utiliza-

tion policies, respectively. The line points on the Y-axis indicate the turnaround

time of each workload. Subfigures (a)-(c) differ in the amount of work per work-

load (metric: turnaround time when executed in isolation on a single core).

Using the queueing model, we can simulate co-location performance based

on the speedup value of each workload. Figure 4.3 shows the computed total

turnaround time of the co-located workloads for different core allocations and a

varying amount of work on a 16-core SMP system with one memory controller.

Figure 4.4 visualizes the core allocation over time for three common and the

presented allocation policies using the workload distribution from Figure 4.3

(b).

The first policy, Batch, executes the workloads sequentially. Equal parti-

tioning executes the two workloads in parallel, assigning the same number of

cores to both. The policy Max CPU utilization finds the core allocation that

maximizes the total CPU utilization. We observe that Max CPU utilization

allocates 15 cores to the perfectly scalable workload A and only the minimum

of one core to workload B. The proposed Max system utilization policy, finally,

maximizes the System Util as defined by Equation 4.6. Max system utilization

achieves the shortest total turnaround time of the four policies, demonstrating

80

time time
35.851.1

16

11

1

16
15

1

Program A (MRR 0.00) Program B (MRR 0.01)

Max CPU utilization Max system utilization

Batch

time

Equal partitioning

time
41.758.3

16

8

11

16

26.7

33.4

34.6

25.0

co

re
s

co

re
s

co

re
s

co

re
s

Figure 4.4 Illustration of the performance for the core allocation policies in

Figure 4.3 (b).

that focusing only on CPU utilization may not lead to optimal results.

In Figure 4.4, the Max system utilization policy yields the best turnaround

time among all possible core allocations with a 40% of reduction compared

to the Batch configuration. For Max CPU utilization, after workload A has

ended, the execution of workload B policy experiences an inefficient tail execu-

tion caused by congestion in the memory system. It is also important to note

that the optimal partitioning minimizing the total turnaround time depends on

the amount of work of the co-located applications. While both workloads end

around the same time with Max system utilization in Figure 4.3 (b), yielding

the best possible turnaround with a core allocation of 11:5 cores assigned to

workload A and B, respectively, this is not the case for Figures 4.3 (a) and (c).

For (a), the best distribution is 6:10 cores, and for (c) it is 14:2. The total

turnaround time of the Max system utilization policy, however, achieves com-

parable performance to the best distribution and in all situations performs

better than Max CPU utilization.

81

The analysis in this section suggests that for co-located parallel applica-

tions, maximizing the transient overall system utilization is beneficial if the

workloads’ size is unknown. Without special provisions, the total execution

time of a parallel section is typically not known in advance.

In the NuPoCo framework, we aim to maximize the overall system utiliza-

tion NuUtil of a multi-socket system. Such a NUMA system is a group of SMP

systems, as shown in Figure 1.3 (b). NuUtil is therefore defined as the sum of

all individual nodes’ system utilization:

NuUtil =
num nodes∑

i=0

System Utili (4.7)

4.3 NuPoCo: ParallelismManagement for Co-Located

Parallel Loops

4.3.1 Online Performance Model

Multi-socket systems comprise multiple CPU nodes and memory controllers

(Figure 1.3 (b)). Based on a queueing system network for multi-socket mul-

ticore systems in Chapter 3, NuPoCo considers the memory controllers and

the interconnection links as separate queueing servers and predicts the mean

memory response time.

Memory Controller Utilization

To predict the utilization of individual memory controllers, we model each con-

troller with a queueing system as shown in Figure 4.5. A memory controller

serves the memory requests issued by the last-level caches (LLC) of the individ-

ual CPU nodes. For the queueing system of memory controller m, let Ncpu node

be the number of CPU nodes and MRR cpu node
i,m represent the memory request

82

Shared resource

Queueing server
CPU
node

Memory
controller

DRAM chip

...

Queueing customers

Waiting line

µ = Memory
controller service rate

λ = Per CPU node
memory request rate

L
L
C

CPU
node

L
L
C

CPU
node

L
L
C

Figure 4.5 Queueing system for an individual memory controller.

rate from CPU node i to memory node m. The mean request arrival rate at

memory controller m, MRR cpu node
avg,m , is the average of the individual CPU nodes’

request rates

MRR cpu node
avg,m =

∑Ncpu node

i=0 MRR cpu node
i,m

Ncpu node

With the average memory request rate MRR cpu node
avg,m and the memory service

rate µm for a memory controller m, we can compute the memory controller

utilization MCT Utilm and the mean response time MRTm using Equations 4.4

and 4.3 from Section 4.2.1, respectively. The value of MRTm is used to compute

the CPU core utilization in the section below.

CPU Core Utilization

To compute the CPU core utilization of a CPU node, we first need to calculate

the memory request time to each memory controller. To do so, the queueing

system depicted in Figure 4.6 is employed. This queue models the serialization

of outgoing memory requests from the node’s LLC to one memory controller.

83

Shared resource

Queueing customers

Waiting line

Memory
controller

DRAM chip

Queueing
server

Interconnect

µ = Service rate of
interconnection link and

memory controller

λ = Per CPU core
memory request rate

CPU node

CPU
core

...

CPU
core

CPU
core

LLC

hit miss

Figure 4.6 Queueing system for CPU core utilization prediction.

Outgoing memory requests include missed read and write operations and hard-

ware prefetch requests.

WithNcores in node representing the number of cores in CPU node i accessing

memory node m, the average memory request rate MRRcpu core
avg,m is estimated as

follows

MRR cpu core
avg,m =

∑Ncores in node
j=0 MRR cpu core

j,m

Ncores in node

The service rate includes the service rate of the interconnection link, linki,m,

from CPU node i to memory node m, and the mean response time of the

memory node (MRTm) as obtained in Section 4.3.1. The service rate µi,m is

given by

µi,m =
1

1/linki,m +MRTm

With MRR cpu core
avg,m and µi,m, the total mean memory response time from CPU

node i to memory node m, MRT i,m, is computed from Equation 4.3.

The total memory response time for a core is obtained according to Equa-

tion 4.2. While all outgoing memory requests of an LLC affect the mean memory

response time, only requests caused by read misses stall a core and thus affect

the CPU core utilization. We estimate the rate of outgoing read requests from

84

every core to each memory node using the per-core number of LLC read re-

quests per time1. For the cores in CPU node i with an LLC read request rate

to memory node m, LLC read
i,m , the total memory response time is computed by

MCT Time =
∑
m∈M

CPU Time× LLC read
i,m ×MRTi,m

Based on the ratio between CPU Time and MCT Time, we can compute the

CPU utilization using Equation 4.5.

Implementation and Validation

The required inputs for the performance model are obtained from the hardware

performance monitoring unit. We measure LLC accesses, LLC misses, all mem-

ory requests that affect memory utilization (read, write, prefetch) to all memory

controllers, and the total number of CPU cycles. AMD [2, 3] and Intel [43, 44]

systems support all required counters.

The application-specific parameters MRR cpu core
i,m ,

MRR cpu node
i,m , and LLC read

i,m are computed at runtime without depending on

offline information. A direct measurement of the the per-core LLC accesses

and misses is not supported by the hardware. NuPoCo gets around this lim-

itation by initially allocating only threads of one application to the cores in

one CPU node, then divide the node’s LLC accesses and misses by the number

of cores. This happens once for each parallel section during a one-time brief

online profiling phase (see Section 4.3.2). The machine-dependent parameters

µmct and linki,m are determined by executing a synthetic workload from the

Stream benchmark [64] that generates memory accesses from one core to spe-

cific memory nodes and measures the mean memory service time. This process

1To compute the LLC read request rate per core, we initially allocate only threads of the
same application to the cores in a node, then divide the node’s LLC read request rate by the
number of allocated cores, see Section 4.3.2.

85

 0

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 3 4 5 6 7 8

S
p

ee
d

u
p

allocated CPU nodes

FT.cffts1(M)
FT.cffts1(P)

FT.cffts2(M)
FT.cffts2(P)

FT.cffts3(M)
FT.cffts3(P)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 3 4 5 6 7 8

S
p

ee
d

u
p

allocated CPU nodes

BT.x_solve(M)
BT.x_solve(P)
SP.x_solve(M)
SP.x_solve(P)

SP.rhs1(M)
SP.rhs1(P)

Figure 4.7 Speedup predictions (P) and measurements (M) of several parallel
loops from FT and SP (NPB) [4] on a 64-core AMD Opteron system.

is required only once for a given hardware platform.

Figure 4.7 compares the predicted with the actual speedup for several par-

allel loops from an NPB implementation [80]. The results show that the per-

formance model can capture the trend of the speedup. Since the speedup is

computed from the predicted CPU core utilization (Equation 4.1), this result

confirms that predictions of resource utilization are also possible with the pre-

sented model. An extensive analysis for other (co-located) NPB parallel loops

on a 64-core AMD and a 72-core Intel system shows that the performance model

predicts the speedup with moderate absolute percentage errors of 10-15%, sim-

ilar to the results in the prior work [17].

4.3.2 Managing Parallelism

The degree of parallelism and the core assignment of co-located applications is

managed at runtime by NuPoCo.

NuPoCo’s parallelism manager is activated whenever a parallel loop begins

or ends. It performs the following three steps: online profiling, DoP computation,

and thread placement. When a parallel loop is executed for the first time, the

86

First time
Online profiling

DoP computation

Thread placement

A parallel
loop begins

A parallel
loop ends

Otherwise

online profiling phase is initiated that profiles the new parallel loop for a short

period of time; profiling is skipped for the second and later invocations of the

same loop. The DoP computation step uses the queueing systems presented in

Section 4.3.1 to compute a thread allocation that maximizes the overall system

utilization. Once the thread count for each co-located application has been

determined, the thread placement phase begins during which individual threads

of an application are relocated if opportunities exist to improve performance.

Online Profiling

During online profiling, all cores of the system are assigned to the new parallel

section for a short period of time. This serves two purposes. First, it ensures

that the data of an application is distributed in a similar manner as in a stan-

dalone execution under a NUMA first-touch allocation policy. Second, it allows

NuPoCo to infer the LLC miss rate per core by measuring the node’s LLC rate

and divide it by the number of cores in the node. This initial profiling period is

set to 150ms; long enough to ignore cache warming effects and sufficently short

not to affect other running applications much.

DoP Computation

The goal of this step is to maximize system utilization by allocating the proper

thread counts for running parallel applications. Algorithm 2 shows how the

87

Algorithm 2 DoP computation

1: for each cpu node ∈ system do
2: util list = []
3: for each wl ∈ running workloads do
4: cpu node.allocate(wl)
5: NuUtil← performanceModeling()
6: util list.append(NuUtil)
7: cpu node.deallocate(wl)

8: best wl← bestExpectedNuUtil(util list)
9: for each cpu core ∈ cpu node do

10: cpu core.allocate(best wl)

11: Communicate core allocation to parallel runtimes

parallelism manager determines the degree of parallelism for each application.

The number of cores per workload is determined in a greedy manner. The basic

allocation unit in this stage is a CPU node. Starting with an empty allocation,

each CPU node in the system (line 1) is assigned in turn to the application

(lines 9–11) that is expected to yield the best overall system utilization NuUtil

(Section 4.2.2) (lines 5–8). The prediction of the system utilization NuUtil (line

6) is based on the performance prediction model from Section 4.3.1.

The number of CPU nodes is assumed to be larger than the number of co-

located applications. At least one CPU node is allocated to each application

executing a parallel section. Applications in serial sections are assigned a single

core.

Thread Placement

The DoP computation assigns all core resources of a CPU node, i.e., cores

sharing the same LLC (Section 1.2.2), to one application. This leaves room for

additional performance improvements. Individual threads of memory-intensive

applications may require substantial LLC resources. If allocated to the same

CPU node, thus sharing the same LLC, this may lead to contention or, even

88

Algorithm 3 Thread placement

1: Initialize cpu node list in descending order of LLC accesses since the last
invocation

2: repeat
3: busy nd← cpu node list.pop front()
4: idle nd← cpu node list.pop back()

5: if busy nd.llc accesses()
idle nd.llc accesses() > threshold then

6: busy wl ← busy nd.max llc miss rate()
7: idle wl ← idle nd.min llc accesses()
8: SwapCores(busy wl, idle wl)

9: until cpu node list is empty
10: Communicate core allocation to parallel runtimes

worse, thrashing in the LLC. CPU-bound applications, on the other hand, typ-

ically contend less for LLC resources. Co-locating memory-intensive with CPU-

bound workloads in the same CPU node thus has the potential to yield an

improved overall system utilization.

Algorithm 3 outlines the implementation of this idea. The algorithm is in-

voked periodically every 50ms after Algorithm 2 has ended. It repeatedly re-

trieves the CPU nodes that exhibit the highest (busy nd) and lowest (idle nd)

number of LLC accesses since the last iteration (lines 3–4). If the ratio of LLC

accesses exceeds a given threshold (currently set to 2; line 5), we select the work-

load that observed the highest LLC miss rate from busy nd (line 6) and the one

with the lowest number of LLC accesses from idle node (line 7), based on the

information inferred during online profiling (Section 4.3.2). The algorithm then

swaps the location of a number of cores (NuPoCo exchanges two cores by de-

fault) of the two applications (line 8). This process is repeated until the list

is empty (line 9). Although this thread placement technique is a hill-climbing

method, it quickly reaches a steady state as later demonstrated in Section 4.4

and Figure 4.10.

89

4.4 Evaluation of NuPoCo

4.4.1 Evaluation Scenario 1

Here, we provide an evaluation of NuPoCo based on the results presented in

our PACT 2018 paper [15]. The experimental results are obtained from NuPoCo

for OpenMP C-version workloads which are executed under COOP-DYN (Sec-

tion 2.3.2). We provide some additional experimental results based on COOP-

ULT (Section 2.3.1) in Section 4.4.2.

We evaluated NuPoCo on the 64-core (8-node) AMD Opteron platform and

the 72-core (4-node) Intel Xeon platform described in Section 1.2.2. The Intel

platforms are equipped 756GB of DRAM memory in this scenario. The Linux

kernel versions are 4.4.35 for AMD and 4.4.0 for the Intel platform. We use a

modified version of OpenMP v5.4.0 [34] with the COOP-DYN loop scheduler

(Chapter 2).

Target Applications

For the co-location scenarios, we utilize target applications from NPB [4], Par-

sec [7], and Rodinia [14] (Table 4.1). NPB applications represent HPC workloads

that require large amounts of memory and/or lots of computational resources.

We selected BT, FT, SP, and EP from an OpenMP NPB implementation [80].

BT, FT, and SP are both CPU- and memory-intensive workloads. The data set

of FT and SP is very large. We categorize these three applications as Type-A

to represent applications that require a significant amount of system resources.

On the other hand, EP is an almost perfectly scalable kernel that rarely ac-

cesses memory. We classify EP as Type-B, a class that extremely under-utilizes

the memory system. The four NPB applications use input class D with a large

problem size. The number of iteration steps is adjusted to obtain standalone

turnaround times that are similar to those of the other applications.

90

App
Resource requirement

CPU Memory Data size Type

BT High Medium Medium A

FT High High Huge A

SP High High Huge A

EP High Almost none Almost none B

KM Low Medium Small C

BS Low Low Small C

SC Low Medium Small C

Table 4.1 Target applications.

Parsec’s blackscholes (BS) consists of long serial sections and one paral-

lel loop that does not require a lot of system resources compared to Type-A

applications. BS is executed with the native input data set. kmeans (KM)

from the Rodinia benchmark is executed with 3,000,000 objects and repre-

sents a non-scalable application with frequent synchronization between cores

and a long serial section at the beginning of its execution. KM under-utilizes

CPU resources. In addition, we also evaluate KM (K-means clustering) and SC

(StreamCluster) from the Rodinia OpenMP implementations. These applica-

tions are classified as Type-C, representing applications that under-utilize CPU

resources.

Co-location Scenarios

The presented approach is compared with the following execution modes:

• Batch. Applications are executed serially. The number of threads is equal

to the number of system cores, each thread is pinned to a core 2.

• Native. Applications generate as many threads as there are cores in the

2On our platforms, thread binding performs better in standalone execution, but worse in
co-located executions.

91

system and are co-located by the Linux scheduler. Thread binding is dis-

abled to allow the Linux scheduler to perform thread and data placement.

• Equal. This policy assigns the same number of cores to all running par-

allel sections and a single core to a serial process. The cores are allocated

linearly.

• Scalability. This core allocator is based on a hill-climbing approach. We

have implemented a hill-climbing algorithm inspired by the algorithm

proposed in C3PO [75]. The implemented algorithm in this configuration

observes CPU utilization and increases core count of CPU intensive jobs.

The algorithm changes the number of assigned cores to the applications

based on the measured CPU utilization.

• NuPoCo Greedy. To demonstrate the effect of the thread placement

technique (Section 4.3.2), this policy performs only DoP computation

(Section 4.3.2).

• NuPoCo Our proposal.

With Batch and Native, loops are scheduled statically as this yields the

best performance among all available OpenMP loop schedulers on our plat-

forms. For Equal, Scalability, NuPoCo Greedy, and NuPoCo, we use the

cooperative work scheduler presented in Chapter 2 to provide dynamic spa-

tial scheduling. NuPoCo is executed with the following parameters: the initial

profiling phase is 150ms (Section 4.3.2). The thread placement algorithm (Algo-

rithm 3) is invoked every 50ms and uses a threshold value of 2 for core swapping.

To measure the co-location performance, we consider the total execution

time from start to finish of all co-located applications. Each scheduler is eval-

uated using the normalized total turnaround time (NTT) with regards to Na-

92

Co-location type Co-located workloads

Mix of Type-A
(1) BT, FT (2) BT, SP

(3) FT, SP (4) BT, FT, SP

Mix of Type-A and B
(5) BT, FT, EP (6) BT, SP, EP

(6) BT, SP, EP (7) FT, SP, EP

Mix of Type-A and C (8) BT, KM (9) FT, KM (10) SP, KM

Table 4.2 Co-location scenarios.

tive. We also report the speedup relative to the harmonic mean (Hmean) which

is known as a speedup metric that also considers the fairness of co-located

jobs [61]. All results are obtained by executing each scenario three times and

taking the average.

We consider various co-location scenarios as follows. First, two Type-A ap-

plications that require substantial system resources are co-located. To see the

performance behavior for different types of applications, the Type-B (EP) and

the Type-C (KM) application are co-located with several Type-A applications.

Details of each scenario are given in Table 4.2.

Experimental Results

Figure 4.8 shows the NTT of the six execution modes Batch, Native, Equal,

Scalability, NuPoCo Greedy, and NuPoCo on the AMD and the Intel system

for ten different scenarios. All co-located applications are started at the same

time but finish at different points in time.

The results show that, on average, NuPoCo achieves the best system through-

put among the six core allocation configurations on both platforms. Under the

geometric mean, NuPoCo achieves an NTT of 0.91 (9% improvement) on the

AMD system and 0.81 (19% improvement) on the Intel platform over the Linux

scheduler. The performance improvement with NuPoCo is up to 20% on the AMD

platform (scenario 4) and 35% on the Intel system (scenario 10). NuPoCo also

93

Batch
Native

Equal
Scalability

NuPoCo Greedy
NuPoCo

0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

N
T
T

64-core AMD platform
1.59 2.11

0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

(1)B
T+FT

(2)B
T+SP

(3)FT+SP

(4)B
T+FT+SP

(5)B
T+FT+EP

(6)B
T+SP+EP

(7)FT+SP+EP

(8)B
T+K

M

(9)FT+K
M

(10)SP+K
M

G
eom

ean

N
T
T

72-core Intel platform

Figure 4.8 Normalized total turnaround time (NTT) to Linux Native for the
co-location scenarios.

does not report any performance degradation for the ten scenarios. The average

job turnaround time of co-located applications with NuPoCo is 10.8% and 12.3%

shorter than that of Native for the AMD and the Intel platform, respectively.

Scenarios 1–4 mix two to three Type-A applications causing high compe-

tition for platform resources. We observe that the Batch configuration is a

suitable choice for scenarios 1–4 as they utilize the platform’s CPU core and

memory systems well and show good scalability. Native can not efficiently

execute these scenarios (especially scenario 3) compared to Batch or NuPoCo

94

because it suffers from a high resource interference as all of the applications

have a high degree of resource demands. For scenarios 1–3, NuPoCo shows al-

most the same performance as Batch on the AMD/Intel platforms. For scenario

4, NuPoCo outperforms Batch by 10%. This is because the three Type-A appli-

cations contain serial sections during which NuPoCo is able dynamically assign

more cores to parallel sections.

To test the effectiveness of the presented methods when different types of

applications are co-located with Type-A, we execute EP, a (Type-B) application

with two applications from Type-A in scenarios 5–7. We observe that perfor-

mance of Batch decreases compared to scenarios 1–3. Since EP puts no pressure

on the memory system, the Batch configuration suffers from a low utilization

when EP is executed standalone. On the other hand, Native is able to increase

resource utilization for co-located EP and Type-A applications compared to

Batch. NuPoCo achieves better performance than the other schedulers thanks

to its online performance prediction model and dynamic thread count adjust-

ment.

For the remaining scenarios 8–10, we co-locate KM with BT, FT, and SP.

KM does not require a lot of CPU resources because of its long serial sections

and the synchronizations, hence, allocating only a subset of cores to KM is ben-

eficial. As expected, Batch experiences a significant performance degradation

when executing KM. NuPoCo performs well for these scenarios, but we observe

that on the Intel platform, the Equal policy performs best for scenarios 8 and 9.

A static core allocation scheme can be beneficial for KM and its short parallel

section that is executed iteratively.

Overall, we observe that the conventional allocation approach to co-location,

Scalability, is not beneficial to improve the system’s throughput. Although

CPU utilization is maximized, co-located applications suffer from memory con-

95

Batch
Native

Equal
Scalability

NuPoCo Greedy
NuPoCo

0

0.2

0.4

0.6

0.8

1.0

(1) B
T+FT

(2) B
T+SP

(3) FT+SP

(9) B
T+FT+SP

(7) B
T+EP+FT

(8) B
T+EP+SP

(10) EP+FT+SP

(4) B
T+K

M

(5) FT+K
M

(6) SP+K
M

G
eom

ean

H
m

ea
n

 s
p

ee
d

u
p

64-core AMD platform

0

0.2

0.4

0.6

0.8

1.0

(1)B
T+FT

(2)B
T+SP

(3)FT+SP

(4)B
T+FT+SP

(5)B
T+FT+EP

(6)B
T+SP+EP

(7)FT+SP+EP

(8)B
T+K

M

(9)FT+K
M

(10)SP+K
M

G
eom

ean

H
m

ea
n

 s
p

ee
d

u
p

72-core Intel platform

Figure 4.9 Hmean of speedup relative to standalone execution for the co-location
scenarios.

tention and a low CPU utilization when scalable applications finish earlier.

Additionally, in scenarios 2, 8, and 10, Scalability suffers from a severe per-

formance degradation. A closer inspection reveals that the hill-climbing algo-

rithm in some cases is oscillating, thus continuously changing the number of

assigned cores. The benefit of the thread placement (Section 4.3.2) in NuPoCo

is visible in comparison with NuPoCo Greedy. Despite the additional runtime

overhead, proper thread placement is beneficial in general.

In terms of the Hmean speedup shown in Figure 4.9, NuPoCo outperforms

96

Native by 13.2% and 10.8% on the AMD and Intel platforms, respectively. The

results show that fairness is not only preserved but improved with NuPoCo. The

Linux scheduler often favors specific workloads resulting in a slow performance

for other applications. This is also visible in Figure 4.10. Batch achieves a

relatively good Hmean speedup because the first job in Batch is always assigned

the optimal value.

To summarize, the results show that NuPoCo performs well for a diverse mix

of applications, especially when the co-located applications exhibit different

performance characteristics. If the co-located workloads exhibit similar char-

acteristics, NuPoCo consistently provides good performance comparable to the

best system configuration (Batch or Native).

Case-Study and Overhead Analysis

To better understand and demonstrate NuPoCo’s operation, three application

types, FT (Type-A), EP (Type-B), and BS (Type-C) are co-located. Using

the open-source trace visualizer SnuMAP [37], Figure 4.10 visualizes the core

allocations over the course of execution on the 64-core AMD platform.

In this scenario, each application starts at a different time. EP is started

first and monopolizes the core resources. FT joins a bit later and starts its first

parallel section at t1 with the clean-profiling phase. NuPoCo then performs

the DoP computation followed by the thread placement technique for EP and

FT. We observe that the profiling stage in NuPoCo is almost invisible, and the

core allocations quickly converges to the steady state (t1–t2). The different

core allocations indicate that NuPoCo differentiates between multiple parallel

sections in FT. Once BS is started, it uses only one core for its initial long serial

section until BS reaches the main parallel section. Over the entire execution

with a scheduling epoch of 50ms, in total 32 thread count selections and 1, 627

97

8
16
24
32
40

48
56
64
cores EP FT blackscholes (BS)

tt1 t2

N
at
iv
e

N
u
P
oC
o

8
16
24
32
40

48
56
64

EP
starts

FT
starts

BS
starts

EP
ends

FT
ends

BS
ends

EP & FT
ends

BS
ends

Figure 4.10 Trace visualization for a co-location under Native and NuPoCo on
the AMD machine.

thread placements have been executed with an average computational overhead

of 1.8ms and 1.5ms. Since NuPoCo runs in parallel to the applications, this

overhead is hidden, or rather included in the results. Compared to Native, we

observe that thread interference of Native’s time-sharing model causes severe

synchronization delays for parallel sections in FT and the serial process of BS.

For this scenario, NuPoCo reports a 19% shorter total execution time over

Native.

4.4.2 Evaluation Scenario 2

In addition to the experimental results in Section 4.4.1 which are based on the

results presented in the PACT 2018 paper [15], we provide additional exper-

iments for more co-location scenarios where applications are executed under

98

COOP-ULT and OpenMP Fortran applications. In addition, the new experiments

compare our approach with other state-of-the-art core allocation techniques by

implementing their method.

We used the same AMD and Intel multi-socket systems described in Sec-

tion 1.2.2. One of the difference between the scenarios in Section 4.4.1 is that,

in this experimental setup, we used 512GB memory since we had changed the

DRAM chips. For the COOP-ULT technique we used GNU OpenMP runtime

provided by gcc-9.

Co-location scenarios

For co-location scenarios, we selected applications that have different resource

requirement levels and evaluate the core allocation performance for all possible

pairs of the selected workloads. To consider applications with different resource

usage, we use five different applications BT, FT, SP, SC, and KM described in

Section 4.6. Then, we evaluate the total turnaround time of the core allocation

techniques for all possible combinations (two and three applications pairs; total

18 different co-location scenarios) except few cases where the total memory

consumption is more than 128GB or if the scenario eventually has a tail serial

execution (only a single thread executes during a significant tail execution time).

Comparisons

The presented approach is compared with the following execution modes:

• Timesharing (Baseline): applications execute in the default mode (i.e.

they create as many threads as there are cores in the system) and are

co-located by the Linux scheduler. Thread binding is disabled to allow

the Linux SMP scheduler to perform thread and data placement.

99

• Simple Policy: resource managers may use a simple decision making

process to select the proper option to execute multiple applications. For

example, a resource manager can execute applications with the default

time-sharing mode or execute them in series with a batch-style scheduling.

In addition, threads can be bound to specific cores or can be scheduled

using Linux SMP scheduling. This simple policy represents the best option

among these simple options (i.e. timesharing and batch with or without

thread affinity setting).

• C3PO (CPU-centric):We implemented C3PO’s hill-climbing algorithm

as presented at PACT’13 [75]. At runtime, the algorithm increases or de-

creases the number of assigned cores to the applications based on the

measured CPU utilization.

• AB (speedup-centric): this policy provides core resources for the co-

located applications in proportion to their Amdahl speedup curve (i.e.

high speedup applications use more cores). To obtain the speedup curve

for each application, the AB method requires at least two profiling runs

of an application with different core allocations. We implemented the

Amdahl Bidding algorithm as presented at HPCA’18 [91].

• EQP (naive): this policy assigns the same number of cores to all run-

ning parallel sections and a single core to a serial process. The cores are

allocated linearly. This policy has been used in Callisto (EuroSys’14 [40]).

• NuPoCo Our proposal.

With Batch and Native, loops are scheduled statically as this yields the

best performance among all available OpenMP loop schedulers on our plat-

forms. Since the original source code of C3PO and AB is not available, our

100

implementation may have some differences in some detailed configurations (e.g.

scheduling period). For C3PO and AB, applications use the given allocated

core resources using thread affinity setting using a kernel module as imple-

mented in their frameworks. In other words, in C3PO and AB, for an appli-

cation, the kernel module assigns CPU affinity for the application’s spawned

threads. All the worker threads of the application can be assigned to any core

resource among the allocated core resources. For Equal and NuPoCo, we use

the COOP-ULT technique presented in Chapter 2 to execute applications in spa-

tial core allocation.

Experimental Results

Figure 4.11 shows the normalized total turnaround time for the all two and three

applications pairs on the AMD and the Intel system. The results show that,

on average, NuPoCo achieves the best system throughput among the six core

allocation configurations on both platforms. Under the geometric mean, NuPoCo

achieves an NTT of 0.78 (22% improvement) on the AMD system and 0.80 (20%

improvement) on the Intel platform over the Linux scheduler. NuPoCo also does

not report significant performance degradation over all the scenarios showing

the benefit of space-shared core allocation for co-located parallel applications.

We observe that the Simple policy configuration often improves perfor-

mance over time-sharing for specific scenarios such as FT+SP; these workloads

require high resource usage compared to other scenarios and Simple policy

can smartly chose not to co-locate these applications and execute them in the

batch mode. Native can not efficiently execute these scenarios (especially sce-

nario 3) compared to Batch or NuPoCo because it suffers from a high resource

interference as all of the applications have a high degree of resource demands.

Overall, we observe that the state-of-the-art core allocation approaches such

101

0.00
0.20
0.40
0.60
0.80
1.00
1.20
1.40
1.60

BT+FT
BT+SP

BT+SC

BT+KM
FT

+SP
FT

+SC

FT
+KM

SP
+SC

SP
+KM

BT+FT
+SC

BT+FT
+KM

BT+SP
+SC

BT+SP
+KM

BT+SC
+K

M

FT
+SP

+SC

FT
+SP

+KM

FT
+SC

+KM

SP
+SC

+KM

Geomean

N
or

m
al

ize
d

Ex
ec

ut
io

n
Ti

m
e Runtime performance of co-located applications (AMD64)

Timesharing Simple policy C3PO AB EQP NuPoCo

0.00

0.20

0.40

0.60

0.80

1.00

1.20

BT+FT
BT+SP

BT+SC

BT+KM
FT

+SP
FT

+SC

FT
+KM

SP
+SC

SP
+KM

BT+FT
+SC

BT+FT
+KM

BT+SP
+SC

BT+SP
+KM

BT+SC
+K

M

FT
+SP

+SC

FT
+SP

+KM

FT
+SC

+KM

SP
+SC

+KM

Geomean

N
or

m
al

ize
d

Ex
ec

ut
io

n
Ti

m
e Runtime performance of co-located applications (Intel72)

Timesharing Simple policy C3PO AB EQP NuPoCo

Figure 4.11 Normalized total turnaround time (NTT) to Linux Native for the
co-location scenarios.

as C3PO and AB are not beneficial to improve the system’s throughput compared

to NuPoCo. Although CPU utilization is maximized, co-located applications suf-

fer from memory contention and a low CPU utilization when scalable applica-

tions finish earlier. Additionally, in specific scenarios such as FT+SP+SC in AMD,

C3PO suffers from a severe performance degradation. A closer inspection reveals

that the hill-climbing algorithm in some cases is oscillating, thus continuously

changing the number of assigned cores.

To summarize, similar to the evaluation in Section 4.4.1, the results show

that NuPoCo performs well for a diverse mix of applications for these new ex-

periments, especially when the co-located applications exhibit different perfor-

102

Core
(re-)allocation

J1 J2 J3 Analytical
Model

Job queue

Evaluate core allocation

Resource
isolation

Profile
information

Evolutionary core allocation

Job begin
or end

Model-based
allocation

Figure 4.12 Overview of MOCA.

mance characteristics. If the co-located workloads exhibit similar characteristics

(e.g. FT+SP in AMD) compared to other scenarios, NuPoCo consistently provides

good performance comparable to the best system configuration selected by the

Simple policy.

4.5 MOCA: An Evolutionary Approach to Core Allo-
cation

In this section, we present MOCA (Multi-Objective Core Allocation), an on-

going research on the core allocation problem. While MOCA aims to find a

better allocation over NuPoCo, selecting the best core allocation among all

possible allocations is still not realistic because there are too many possible

allocations. Instead of finding the best allocation, therefore, MOCA focuses on

finding an appropriate allocation that achieves a desired utilization goal within

a reasonable amount of time.

Figure 4.12 illustrates an overview of the MOCA’s core allocation. MOCA

employs evolutionary meta-heuristics inspired by genetic algorithms (GAs) [50,

31] for multi-objective optimization problems (MOOPs). Starting with ran-

103

domized allocations, MOCA’s evolutionary method changes the core allocation

using the concepts of crossover and mutation in GAs to improve a core allo-

cation. In Section 4.5.1, we present the details of the evolutionary approach.

In the evolutionary core allocation, MOCA uses model-based allocation that

leverages the analytical model in Chapter 3 in the evolutionary process to es-

timate the resource utilization for a given allocation without executing on the

given hardware platform. Section 4.5.2 presents the details of the model-based

allocation.

MOCA (re)starts its core allocation if there is any update in the job queue

(e.g. a new application joins to the job queue or an application has been com-

pleted). Note that, unlike NuPoCo, MOCA currently allocates core resources

per application (not at the level of parallel loop). While NuPoCo determines

thread count at CPU-node granularity (8 nodes à 8 cores on AMD, 4 nodes

à 18 cores on the Intel system), MOCA allocates individual cores based on

the evolutionary approach which is more complex than the greedy algorithm.

Per-parallel loop management often incurs a high overhead in the evolutionary

allocation approach depending on the loop’s problem size and the platform’s

performance. Managing the resource management granularity (e.g. per parallel

loop or per application management) is a future work of MOCA.

MOCA provides spatial scheduling for a core (re-)allocation. MOCA uses

the cooperative runtime system (COOP-ULT) to exploit malleable execution

of OpenMP applications (Chapter 2). For other types of applications such as

Spark, MOCA uses Docker [27] for spatial core allocation.

4.5.1 Evolutionary Core Allocation

Figure 4.13 illustrates the MOCA’s evolutionary method. We first explain how

to encode a core allocation to the concept of chromosome used in GA ap-

104

Encoding
core allocation

1 1 2 1

1 1 2 1

2 1 2 1 2 1 1 1

1 2 2 1

(1) Generate
new allocations

(2) Evaluate
new allocations

(3) Selection
of sets

1 1 2 1 2 1 1 1

2 1 2 11 1 1 1

1 1 1 1 2 2 2 1

2 2 2 1

1 2 2 1

2 1 2 1

1 1 2 1

2 1 1 1

1 1 1 1

Sampling Run /
Analytic Model

Randomly select
two allocations

Mutation

CrossoverCrossover

Mutation

Set1: Meet desired
optimization goal Set2: Otherwise

(4) Generate
the next
generation

Job ID

core resources

Generation k

Initial generation
(generation 0):
random allocations

Figure 4.13 Evolutionary core allocation.

proaches. The approach considers each core resource to be a gene of a chro-

mosome. Each core can execute any of the co-located applications. Hence, each

gene in the encoded core allocation contains the job ID.

The evolution starts with randomized allocations and then follows the gen-

eral process used in typical GA approaches. For generation k, we keep four (the

typical number used in many GA approaches) different allocations along with

their utilization information. 1⃝ New Allocations: in the first step, we ran-

domly pick two allocations in generation k and perform crossover among the

selected two allocations. We also allow mutation; cores can randomly change

the assigned job ID with a given probability. This is necessary to overcome the

105

local-optimum problem. 2⃝ Evaluate: for these two new allocations, we need

to evaluate their resource utilization. MOCA’s model-based allocation exploits

an analytical model to estimate resource utilization without executing the allo-

cation on the given system. If not using the analytical model, MOCA can use a

sampling run for each of these allocation to measure their CPU utilization and

memory bandwidth. 4⃝ Sets: MOCA maintains two separated sets that store

core allocations depending on their resource utilization. Set1 stores core allo-

cations where both the CPU utilization and memory bandwidth usage exceeds

the given utlization goal. Set2 stores other core allocations. 5⃝ Next Gener-

ation: we finally select four core allocations from Set1 and Set2 to generate

next generation k + 1. We first select allocations from Set1 if there are any

allocations in Set1. If the number of allocations in Set1 exceeds the population

(4), we select allocations that have higher CPU utilization. This means that, in

the MOCA’s policy, once a desired goal of CPU (cpu threshold) and memory

bandwidth (bw threshold) usage is achieved, MOCA focuses on maximizing

CPU utilization with an assumption that once the memory system is saturated

enough, improving CPU throughput is more beneficial for system performance.

Otherwise, to reach the desired resource utilization goal, MOCA’s evolutionary

allocation selects next core allocation generations based on the summation of

CPU and memory bandwidth utilization as the objective function. If the num-

ber of allocations in Set1 is less than 4, we then select allocations that have

higher values of the summation of CPU utilization and memory bandwidth

usage from Set2.

4.5.2 Model-Based Allocation

The evolution process in Section 4.5.1 requires frequent changes to the core

allocation to find better allocations. To remove or reduce runtime core (re-

106

)allocations, the model-based allocation uses an analytical model.

Evaluation of Core Allocation

Here, we describe how we define and measure CPU utilization and memory

bandwidth from available hardware performance counters.

Useful CPU time Stall for
memory reqs.

Other
stalls

Time for
synchronizations

CPU cycles
Stall cycles

Elapsed time
(Max cycles = Elapsed time X CPU freq.)

Useful cycles
(CPU cycles – Stall cycles)

Figure 4.14 CPU time breakdown and available measures.

cpu util: Figure 4.14 shows a CPU time breakdown and some information that

we can measure from hardware performance counters. Many monitoring tools

such as htop use cpu cycles when computing per-core utilization. However, this

overestimates the usefulness of the core resource because cpu cycles include

stalls in shared resources. Therefore, for each core resource c, we measure per-

core utilization using cpu cycless and stall cycles, and compute the average of

per-core utilization as the system’s overall cpu utilization cpu util.

cpu util =
1

|C|
·
∑
c∈C

(useful cycles(c)
max cycles(c)

)
(4.8)

bw util: To estimate memory bandwidth usage, MOCA uses the number of

memory requests per time. AMD’sMemory Controller Requests (NBPMCx1F0) [2,

3] and Intel’s UNC H IMC WRITES/READS [43, 44] performance counters

provide the necessary information. For each memory node m in the set of all

memory nodes M , the utilization of memory bandwidth is defined as the mea-

sured number of memory requests divided by the maximal number of memory

requests that the memory node can serve, as follows.

107

bw util =
1

|M |
·
∑
m∈M

(# measured requests per time(m)

maximum requests per time(m)

)
(4.9)

To measure the maximum number of requests per time for each memory

node, we use synthetic workloads StreamTriad from the Stream benchmark

suite [64]. For each measurement, we allocate all data to the specific memory

node and use all available cores to generate as many memory requests as possible

during the given time.

Profiling

The required information for the analytical model is collected using hardware

performance counters. We measure per-core LLC miss rate (llc) and per-core

memory requests (mrr) that affect memory bandwidth utilization of individual

memory controllers, and the total number of CPU cycles and stall cycles to take

into account an application’s synchronization overhead (sync). AMD [2, 3] and

Intel [43, 44] systems support all required counters. The list of per-application

profile is given in Table 4.3.

To obtain this information, one profiling run is needed to execute the ap-

plication in isolation using all available hardware cores. The profiling cost is

smaller than other analytical core allocation techniques based on scalability in-

formation (i.e. at least two profiling runs are required to estimate the speedup

curve). Application profiling can also theoretically be done at runtime by (tem-

porarily) allocating all cores to the application.

There are also several machine-dependent parameters. In multi-socket sys-

tems, one node consists of a CPU node, itself composed of a group of CPU

cores, and its attached memory node, as shown in Figure 4.15. The individ-

ual nodes are connected by an interconnection network such as AMD’s Hy-

perTransport [74] or Intel’s QPI (Quick Path Interconnect) [68]. To take the

108

Name Description (for computation, refer to Figure 4.14)

sync
synchronization overhead (e.g. scheduling overhead, thread

synchronization). sync = 1
|C| ·

∑
c∈C

time for sync.(c)
elapsed time(c)

mrr(m)

per-core memory request (from application cores to memory
node m) rate; the number of requests per useful compute

cycle. mrr(m) = 1
|C| ·

measured requests(c)∑
c∈C useful cycles(c)

llc(m)

per-core LLC miss rate (from application cores to memory
node m); the number of LLC misses per useful compute

cycle. llc(m) = 1
|C| ·

∑
c∈C

llc misses(c → m)
useful cycles(c)

Table 4.3 Profiled application information.

Name Description

µ(m) memory service rate of memory node m

link(c→ m)
delay of interconnection link that connects between core
c to memory node m

Table 4.4 Hardware-dependent parameters.

machine’s available memory bandwidth into account, we measure the machine’s

memory service rate µ(m) for each memory node m and interconnection delay

link(c → m) that connects between CPU core c and memory node m. These

parameters are determined by executing synthetic workloads from the Stream

benchmark [64] that can generate memory accesses from specific cores to spe-

cific memory nodes. The process takes only a few minutes and is required only

once for a given hardware platform.

Analytical Model

As shown in Figure 4.15, the analytical model estimates utilization of CPU

cores and memory node bandwidth for a given core allocation X. In Chapter 3,

we have shown that, typically memory intensive parallel workloads exhibit al-

most a Poisson memory access distribution and the memory accesses can be

109

m
e

m
o

ry
n

o
d

e
m

e
m

o
ry

n
o

d
e

m
e

m
o

ry
no

d
e

m
e

m
o

ry
no

d
e

CPU node

core

LLC

inter-
connect

memory
controller

DRAM
chips

core core core

J1 J2

J1 J1

estimate bandwidth util.
for each memory node

J1 J2

J1 J1

J1 J2

J1 J1

J1 J2

J2 J2

analytical
model

Allocation: X = { J1, J2, J1, …, J1}
core

allocation

C = { C1, C2, …, C16)
J = { J1, J2 }

estimate core util.
for each CPU core

Figure 4.15 Analytical model for multi-socket multicore system.

modeled with the analytical queueing model. We employ the idea of the pre-

sented analytical model in Chapter 3 to estimate memory bandwidth usage and

CPU utilization in MOCA.

bw util: To estimate bw util, i.e. the average of utilization of individual memory

nodes, we first model each memory node (bandwidth) using an M/M/1/N/N

queueing system given in Figure 4.16. The queueing system models the mean

memory response time and utilization of an individual memory node. For each

memory node, a memory controller serves the memory requests issued by the

last-level caches (LLC) of all CPU nodes in the system. For the queueing system

of memory node m, therefore, we regard each CPU node as a queueing customer

and the memory bandwidth is considered to be the queueing server, as shown

in Figure 4.16. The arrival rate (i.e. memory request rate) from each CPU

node to the memory node m is defined as the summation of per-core memory

request from all cores in the CPU node. The service rate of each memory node is

computed offline as discused in Section 4.5.2. With the average memory request

rate of CPU nodes and the memory service rate, we can compute the memory

controller utilization U(m) and the mean response time r(m) using closed-form

expression. Then, bw util is computed as the average of utilization on individual

memory nodes, i.e. bw util = 1
|M | ·

∑
m∈M (Umem(m)).

110

memory
controller

Nnodes = # CPU nodes

LL
C

LL
C

LL
C

λ = average of
per-node request rate

µ = memory
service rate

1

Queue (Nnodes)

N

r = mean memory response time

Parameters

λ =
∑

c∈C(X[c].mrr(m))

Nnodes

µ(m) = obtained offline (refer to Ta-
ble 4.4)

Computed information

r(m) = 1
µ(

N
Umem(m) −

µ
λ)

Umem(m) = 1− (
∑N

k=0
N !

(N−k)!(
λ
µ)

k)−1

Figure 4.16 Queueing system for an individual memory node m.

cpu util: As explained in Figure 4.14 (Equation 4.8), core utilization is defined

as the rate of useful CPU time over the total time. To model per-core utilization

(Ucore(c)), we estimate the overhead of synchronizations and memory responses

for a given total time 1, as follows.

Ucore(c) =
1− sync time(c)−memory time(c)

1
(4.10)

where sync time(c) and memory time(c) represents the time taken by synchro-

nization and memory responses, respectively.

The synchronization time sync time(c) is computed using a linear equation,

assuming that an application’s synchronization overhead increases in depen-

dence of the number of allocated cores for the application, as follows.

sync time(c) = (X[c].sync) · (X[c].#cores)

|C|
(4.11)

where X[c] indicates the application assigned to core c, and X[c].sync repre-

sents the application’s synchronization overhead (the rate of synchronization

over total time) when using all available cores in C which is obtained by appli-

cation profiling. X[c].#cores represents the total number of cores assigned for

application X[c].

111

0
0.2
0.4
0.6
0.8

1

1 25 50 75 10
0

12
5

15
0

17
5

20
0

Ut
ili

za
tio

n

Generation

Evaluation of Evolutionary Allocation

CPU utilization

Bandwidth utilization

Figure 4.17 An evolutionary process with the analytical model. This scenario
considers 16 core resources and four memory nodes each with a service rate
of µ(m) = 150 and remote link delay link = 1/150. There are two co-located
applications each with a memory request rate mrr(m) randomly assigned be-
tween 0 and 40. To test 200 generations, the process takes 17.3ms using an Intel
Xeon E7-8870 processor core [42].

The time for memory responses is computed based on the number of read

misses in the LLC during time 1 and their expected response times, as given

by the following equation.

memory time(c) =
∑
m∈M

(X[c].llcm) · (r(m) + link(c→ m)) (4.12)

where X[c].llcm represents the LLC read miss rate of the core c, and r(m)

represents the mean response time at memory node m and is computed by the

queueing model in Figure 4.16.

For remote memory accesses from core c to memory m, we add the intercon-

nection delay link(c→ m). Hence, a high number of remote accesses (llcm) will

decrease utilization of the core. Since our evolutionary method tries to improve

both CPU utilization and memory bandwidth, the allocation after the evolu-

tion is expected to reduce the number of remote memory accesses in NUMA

systems.

112

Applying to MOCA

The aim of this analytical model is to quickly estimate the resource usage for

the evolutionary method. Figure 4.17 shows how the evolution reaches a desired

resource utilization goal with the analytical model. The evaluation shows that

the analytical model tasks only a few tens of miliseconds to complete testing 200

generations, and we observe that using only 25–50 generations is sufficient to

reach a good allocation. Hence, to expedite the evolutionary process, MOCA’s

model-based allocation tests 50 generations using this analytical model to de-

termine the core allocation.

4.6 Evaluation of MOCA

We evaluate MOCA on a 64-core (8-node) AMD Opteron platform and a 72-

core (4-node) Intel Xeon platform. The AMD system has 128 GB, the Intel

platform contains 512GB of DRAM memory. The Linux kernel versions are

4.4.35 for AMD and 4.4.0 for the Intel platform.

Target Applications

For co-location, we use applications from NPB [4], Spark bench [55] (Table 4.5).

Similar to our previous experiments, we selected BT, FT, SP, and EP from

NPB3.4 (Fortran). The four NPB applications use input class D with the large

problem size. The number of iteration steps is adjusted to obtain similar stan-

dalone turnaround times for all applications. We also evaluate other types of

workloads from the Spark bench. From Spark bench, we selected LR (Linear

Regression), PR (Page rank), and SVM (Support Vector Machine). For these

workloads, we use Docker images for resource isolation.

113

Table 4.5 Target applications and their performance characteristics.

Name Application cpu util bw util sync. Data size

BT BT High Medium Low Medium

FT FT High High Low Huge

SP SP High High Low Huge

EP EP High Low Low Small

LR linear regression High Medium Medium Medium

PR page rank Low Medium Medium Medium

SVM support vector machine Low Medium Medium Huge

Evaluated Core Allocation Policies

Similar to NuPoCo’s experiments, MOCA is evaluated against the four other

policies Baseline, EQP, C3PO, and AB which are described in Section 4.4.2.

Unlike the evaluation in Section 4.4.2, in this experimental setup, we also apply

COOP-ULT technique for C3PO and AB for executing applications in spatial

core allocation. Note that, since directly comparing with other existing frame-

works is difficult due to the lack of availability, we implemented the existing

policies in our core allocation framework.

Experimental Results

We first show that optimizing multi-dimensional resources improves system

throughput compared to CPU and speedup-centric approaches and can re-

duce the total execution time. We evaluate total turnaround time for multipro-

grammed scenarios under different core allocation policies. In each co-location

scenario, all co-located applications are started at the same time (but finish at

different points in time). The first co-location scenario co-locates 2 and 3 work-

loads from the six applications BT, FT, SP, LR, PR, SVM obtained from NPB and

Spark. From these six applications, therefore,
(
6
2

)
plus

(
6
3

)
distinct co-location

114

0

0.5

1

1.5

2

BT
+F
T

BT
+S
P

BT
+L
R

BT
+P
R

FT
+S
P

FT
+LR

FT
+P
R

SP
+L
R

SP
+P
R

LR
+P
R

Ge
om
ea
n

N
TT

NPB&Spark, 2apps, AMD
EQP C3PO AB MOCA

0

0.5

1

1.5

2

BT
+F
T
BT
+S
P
BT
+L
R
BT
+P
R

BT
+S
VM

FT
+S
P
FT
+LR

FT
+P
R

FT
+S
VM

SP
+L
R
SP
+P
R

SP
+S
VM

LR
+P
R

LR
+S
VM

PR
+S
VM

Ge
om
ea
n

N
TT

NPB&Spark, 2apps, Intel
EQP C3PO AB MOCA

Figure 4.18 Mixes of two applications from NPB and Spark.

scenarios are evaluated. Note that the SVM application was excluded on the

AMD system because this workload exhibits large memory requirements that

cause memory oversubscription when co-located with other workloads on the

AMD system. Figure 4.18 and Figure 4.19 show the NTT of the four execution

modes EQP, C3PO, AB, and MOCA on the AMD and the Intel system for all possible

combinations.

The results show that, in general, MOCA achieves a better system throughput

(shorter execution time) than the default Linux’s time-shared execution model.

In Figure 4.18 (co-location of two application from NPB and Spark), under

the geometric mean, MOCA achieves an NTT of 0.88 (12% improvement) on

the AMD system and 0.95 (5% improvement) on the Intel platform over the

Linux scheduler. In Figure 4.19 (three-application mixes of NPB and Spark),

115

0

0.5

1

1.5

2

BT
+F
T+
SP

BT
+F
T+
LR

BT
+F
T+
PR

BT
+S
P+
LR

BT
+S
P+
PR

BT
+L
R+
PR

FT
+S
P+
LR

FT
+S
P+
PR

FT
+LR
+P
R

SP
+L
R+
PR

Ge
om
ea
n

N
TT

NPB&Spark, 3apps, AMD
EQP C3PO AB MOCA

0

0.5

1

1.5

BT
+F
T+
SP

BT
+F
T+
LR

BT
+F
T+
PR

BT
+F
T+
SV
M

BT
+S
P+
LR

BT
+S
P+
PR

BT
+S
P+
SV
M

BT
+L
R+
PR

BT
+L
R+
SV
M

BT
+P
R+
SV
M

FT
+S
P+
LR

FT
+S
P+
PR

FT
+S
P+
SV
M

FT
+LR
+P
R

FT
+LR
+S
VM

FT
+P
R+
SV
M

SP
+L
R+
PR

SP
+L
R+
SV
M

SP
+P
R+
SV
M

LR
+P
R+
SV
M

Ge
om
ea
n

N
TT

NPB&Spark, 3apps, Intel
EQP C3PO AB MOCA

Figure 4.19 Mixes of three applications from NPB and Spark bench.

MOCA achieves an NTT of 0.865 (13.5% improvement) on AMD and 0.935 (6.5%

improvement) on Intel.

For these experiments, MOCA achieves also significant performance im-

provements compared to other CPU-centric (C3PO) and speedup-centric (AB)

core allocation policies. For NPB and Spark application mixes (Figures 4.18

and 4.19), C3PO and AB achieve only marginal improvements or even suffer a

performance loss compared to the baseline. These allocations often incur a sig-

nificantly higher turnaround time compared to the baseline or MOCA. For ex-

ample, looking at BT+SP in Figure 4.18, AB exhibits a significantly larger total

turnaround time on both systems. This is because AB prioritize the highly-

scalable application BT. The scalable application BT finishes quickly, however,

this leads to an inefficient execution of SP which does not scale well.

In addition to the makespan (total turnaround time) analysis, we also show

that MOCA’s core allocation improves the overall resource usage compared

116

0

0.2

0.4

0.6

0.8

1

CPU MEM IPSN
or

m
al

iz
ed

 to
 th

e
Be

st
NPB&Spark, 2apps, AMD

EQP C3PO AB MOCA

0

0.2

0.4

0.6

0.8

1

CPU MEM IPSN
or

m
al

iz
ed

 to
 th

e
Be

st

NPB&Spark, 2apps, Intel

EQP C3PO AB MOCA

0

0.2

0.4

0.6

0.8

1

CPU MEM IPSN
or

m
al

iz
ed

 to
 th

e
Be

st

NPB&Spark, 3apps, AMD

EQP C3PO AB MOCA

0

0.2

0.4

0.6

0.8

1

CPU MEM IPSN
or

m
al

iz
ed

 to
 th

e
Be

st

NPB&Spark, 3apps, Intel

EQP C3PO AB MOCA

Figure 4.20 Resource usage and IPS comparison for the co-location scenarios.
CPU refers the number of useful CPU cycles per time (for details, refer to Fig-
ure 4.14). MEM refers the number of memory requests per time.

to other core allocation policies. To evaluate performance of core allocation

policies when all co-located workloads are executing, we compare resource usage

of core allocation during 10 seconds on the Intel and 20 seconds on the AMD

(considering the different platform throughput). Figure 4.20 shows the resource

usage in terms of the number of useful CPU cycles, the number of memory

requests and instructions per second for different allocations for the co-location

scenarios in Figures 4.18, 4.19. The results show that, for most scenarios, MOCA

achieves high resource usage. MOCA often achieves low CPU utilization (e.g.

NPB&Spark on AMD) compared to other CPU-centric approaches, however,

its overall utilization and IPS are higher compared to other policies, as we aim

to maximize overall utilization beyond CPUs. In many cases in Figure 4.20,

MOCA achieves about 20% improvement in terms of IPS compared to EQP,

117

C3PO, and AB, on both the AMD and the Intel system.

4.7 Discussion

Co-location of multiple parallel jobs on the same multicore machine is increas-

ingly important. In this chapter, we presented parallelism management tech-

niques that leverages the cooperative runtime support (Chapter 2) and the

analytical model (Chapte 3) for co-located parallel applications.

4.7.1 Contributions and Limitations

One of our key contribution is that we have shown how we can leverage an

analytical model to estimate utilization of multiple resources. As we have seen

in Section 4.2.2, if the wall times of the parallel jobs are not given, it is important

to maximize overall system utilization to efficiently utilize the given hardware

resources and improve the runtime performance. This study provides a useful

experience to bridge the gap between analytical (and theoretical) modeling and

practical resource management.

One limitation of the study is that, our core allocation policy does not al-

ways provide the optimal result depending on the types of parallel jobs and

their execution time. For example, if there are a CPU-intensive jobs and a

memory-intensive job and if the CPU intensive job has much longer execution

time, maximizing CPU utilization may lead to better result in terms of the

total turnaround time. To address this issue, parallelism managers need to con-

sider how the parallel job scheduler will co-locates parallel jobs and understand

the performance characteristics of the given jobs (based on some information

provided by the user or job profiling). The parallelism manager can then in-

telligently apply the appropriate parallelism management policy or provide a

feedback to the (cluster-level) job scheduler to decide a better job co-location

118

that may benefit from the given parallelism management policy.

4.7.2 Summary

In this chapter, we have presented NuPoCo, a parallelism management frame-

work for co-located parallel workloads on NUMA multi-socket multicore sys-

tems. At-runtime performance prediction of CPU and memory controller uti-

lization is used to determine the degree of parallelism for all running workloads

with the goal of maximizing system resource utilization. The evaluations show

that the NuPoCo framework executes multiple OpenMP parallel applications

with a significantly shorter total turnaround time than the Linux time-sharing

model and a existing parallelism management policy maximizing the CPU uti-

lization. Then, we presented MOCA, an elastic core allocation approach that

leverages the idea of evolution in genetic algorithms to optimize the utilization

of the multi-dimensional CPU and memory resources on NUMA multi-socket

multicore systems. To provide an efficient parallel execution, MOCA uses two

runtime techniques, model-based allocation and cooperative user-level tasking,

to allow parallel programs to dynamically change the parallelism with low over-

head and to evaluate core allocations without executing on real-hardware. Eval-

uated with various scenarios of co-located OpenMP applications on a 64-core

AMD and a 72-core Intel machine, our core allocation achieves a reduction of

the total turnaround time by 5-30% compared to the default Linux scheduler

and state-of-the-art existing parallelism management policies focusing only on

CPU utilization.

119

Chapter 5

Conclusion and Future Work

5.1 Conclusion

Shared-memory multiprocessor platforms are becoming more complex with an

increasing number of CPU sockets and memory controllers. A single application

is typically not able to achieve the peak system performance on such complex

hardware platforms. It is therefore gaining importance to execute multiple par-

allel applications simultaneously on the same multicore machine for an increased

resource utilization. Malleable parallel execution and spatial core allocation are

key to execute multiple co-located parallel applications efficiently on multicore

servers that contain an increasingly large number of core resources. However, it

still remains a challenge for existing runtime techniques to execute co-located

parallel applications efficiently under the spatial scheduling approach.

In this thesis, we presented novel runtime and resource management tech-

niques for co-located parallel applications. First, we presented cooperative run-

time system that provides malleable parallel execution under dynamic spatial

120

core allocation. The runtime technique provides an ability for OpenMP parallel

programs to dynamically adapt their degree of parallelism to the varying core

resource availability through efficient user-level tasking and dynamic schedul-

ing. The experimental results in Chapter 2 have shown that, with changing

core resource availability the cooperative runtime system can execute parallel

applications more efficiently (i.e. 20–30% shorter execution time on average)

compared to the traditional execution model that does not adjust the degree of

parallelism of the application. Another contribution of this thesis is an analytical

performance model that can estimate resource utilization and the performance

of parallel programs in dependence of the allocated core resources. The analyti-

cal model is based on theM/M/1/N/N queueing model to analytically compute

memory bandwidth and CPU utilization using closed-form expressions. Evalua-

tions in Chapter 3 have shown that our model can predict the speedup of parallel

programs with a high accuracy (less than 10% of percentage errors on average)

for various OpenMP parallel loops. Thanks to the simplicity of the model, the

model can also be applied to resource management problems. Based on the co-

operative parallel runtime support and the analytical model, we presented core

allocation techniques to optimize system utilization by managing core resources

between co-located parallel applications. The core allocation technique partic-

ularly focuses on optimizing utilization of multi-dimensional resources of CPU

cores and memory bandwidth on multi-socket systems. Evaluated with vari-

ous scenarios of co-located parallel applications, our core allocation achieves a

reduction of the total turnaround time by 5-30% compared to the traditional

execution under Linux’s time-shared scheduler.

In conclusion, in this thesis, we have shown how we can achieve efficient

malleable parallel execution through a runtime-level support and how we can

analytically model the performance of parallel programs using queueing sys-

121

tems. Then, we have shown that, with an appropriate core allocation we can

improve resource utilization and runtime performance for co-located parallel ap-

plications. I hope that this research can provide valuable experience for future

data centers and HPC systems to provide an efficient runtime environment.

5.2 Future work

There are a number of future research directions. The first research direction

is improving the core allocation policy and algorithm for better runtime per-

formance and resource utilization. The other interesting direction is applying

our runtime techniques to HPC systems that employ an idea of parallel job

co-scheduling.

5.2.1 Improving Multi-Objective Core Allocation

The core allocation techniques presented in this thesis aim to optimize utiliza-

tion of multi-dimensional resources of CPU cores and memory bandwidth by

using a greedy algorithm or an evolutionary approach. While the core allocation

approach is more sophisticated than other previous runtime core management

policies that focus only on CPU utilization or application speedup. However,

there are still rooms for improvements in the multi-resource scheduling.

First, we can improve the core allocation research by considering utilization

of other shared resources (e.g. shared caches) beyond the CPU and memory

bandwidth. Specially, we expect the evolutionary method based on genetic algo-

rithms can also be used for optimizing multi-dimensional resources. Moreover,

the system may have scheduling constraints. For example, applications may

have different service level agreements or different entitles. The core allocation

algorithms used in this thesis focused only on maximizing system utilization

without considering the different entitlements of parallel jobs. It is an impor-

122

tant research direction to consider different entitlements of different jobs and

their fairness.

5.2.2 Co-Scheduling of Parallel Jobs for HPC Systems

The HPC community is heading towards the exascale era where power and en-

ergy efficiency is of utmost importance. Conventional HPC schedulers, however,

will not be able to achieve maximal system efficiency because they provide dis-

tinct multicore nodes between parallel jobs, which results in under-utilization

of multicore nodes. Executing multiple parallel jobs on the same machine is

becoming more important to achieve maximal energy efficiency for exascale

computing. However, the co-location approach will raise a number of research

challenges because the approach requires changes to conventional FCFS (and

backfilling) scheduling.

First, to apply job co-location in the node-level, schedulers need to predict

performance of parallel jobs if they are executed on the same multicore node.

The analytical performance modeling for OpenMP parallel loops will be useful

to develop the necessary performance profiling and prediction tools. Moreover,

to be able to dynamically change the number of threads (i.e. the number of

allocated resources) for parallel jobs, we can leverage our cooperative runtime

system presented in Chapter 2. The co-scheduling approach is not fit for con-

ventional FCFS and backfilling schedulers because these schedulers assume a

fixed amount of resources and job runtime which are informed by users. To

apply a co-scheduling scheme, we need a different job description model and

different pricing model, which is also an interesting topic of future research.

123

Appendix A

Additional Experiments for the
Performance Model

This appendix contains additional experimental results of the performance

model presented in Chapter 3. In addition, we provide a goodness of fit test to

justify the model’s assumptions that memory requests follow a Poisson distri-

bution and that memory controllers exhibit an exponential service time.

A.1 Memory Access Distribution and Poisson Distri-
bution

A.1.1 Memory Access Distribution

Results in Section 3.2.3 plot the distribution of the number of memory accesses

per unit time for a number of parallel loops. The full results of all 24 target

parallel loops in Chapter 3 are given by the following Figure A.1 (PMF of

memory request rates (AMD)) and Figure A.2 (PMF of memory requests rate

(Intel)).

124

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

200k400k600k800k 1M

P
ro

b
ab

il
it

y

Memory requests per 1ms

mem8
mem7
mem6
mem5

mem4
mem3
mem2
mem1

(1) x solve (BT)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

200k 400k 600k 800k 1M
Memory requests per 1ms

(2) y solve (BT)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

200k 400k 600k 800k 1M
Memory requests per 1ms

(3) z solve (BT)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

200k 400k 600k 800k 1M
Memory requests per 1ms

(4) add (BT)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

200k400k600k800k 1M

P
ro

b
ab

il
it

y

Memory requests per 1ms

(5) conj grad2 (CG)

0.0

0.1

0.2

200k 400k 600k 800k 1M
Memory requests per 1ms

(6) cffts1 (FT)

0.0

0.1

0.2

0.3

0.4

200k 400k 600k 800k 1M
Memory requests per 1ms

(7) cffts2 (FT)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

200k 400k 600k 800k 1M
Memory requests per 1ms

(8) cffts3 (FT)

0.0

0.1

0.2

200k400k600k800k 1M

P
ro

b
ab

il
it

y

Memory requests per 1ms

(9) rhs1 (SP)

0.0

0.1

0.2

0.3

0.4

200k 400k 600k 800k 1M
Memory requests per 1ms

(10) rhs2 (SP)

0.0

0.1

0.2

0.3

0.4

200k 400k 600k 800k 1M
Memory requests per 1ms

(11) rhs3 (SP)

0.0

0.1

0.2

0.3

0.4

200k 400k 600k 800k 1M
Memory requests per 1ms

(12) rhs4 (SP)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

200k400k600k800k 1M

P
ro

b
ab

il
it

y

Memory requests per 1ms

(13) rhs5 (SP)

0.0

0.1

0.2

200k 400k 600k 800k 1M
Memory requests per 1ms

(14) x solve (SP)

0.0

0.1

0.2

200k 400k 600k 800k 1M
Memory requests per 1ms

(15) y solve (SP)

0.0

0.1

0.2

200k 400k 600k 800k 1M
Memory requests per 1ms

(16) z solve (SP)

0.0

0.1

0.2

0.3

0.4

200k400k600k800k 1M

P
ro

b
ab

il
it

y

Memory requests per 1ms

(17) txinvr (SP)

0.0

0.1

0.2

0.3

0.4

200k 400k 600k 800k 1M
Memory requests per 1ms

(18) tzetar (SP)

0.0

0.1

0.2

200k 400k 600k 800k 1M
Memory requests per 1ms

(19) rprj3 (MG)

0.0

0.1

0.2

0.3

0.4

200k 400k 600k 800k 1M
Memory requests per 1ms

(20) psinv (MG)

0.0

0.1

0.2

200k400k600k800k 1M

P
ro

b
ab

il
it

y

Memory requests per 1ms

(23) interp1 (MG)

0.0

0.1

0.2

200k 400k 600k 800k 1M
Memory requests per 1ms

(22) resid (MG)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

200k 400k 600k 800k 1M
Memory requests per 1ms

(23) main (BS)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

200k 400k 600k 800k 1M
Memory requests per 1ms

(25) tiling1 (FM)

Figure A.1 Probability mass function (PMF) of the number of memory requests
per time of the parallel loops in the main paper at each memory node on the
64-core AMD platform.

125

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

200k400k600k800k 1M

P
ro

b
ab

il
it

y

Memory requests per 1ms

mem4
mem3
mem2
mem1

(1) x solve (BT)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

200k 400k 600k 800k 1M
Memory requests per 1ms

(2) y solve (BT)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

200k 400k 600k 800k 1M
Memory requests per 1ms

(3) z solve (BT)

0.0

0.1

0.2

200k 400k 600k 800k 1M
Memory requests per 1ms

(4) add (BT)

0.0

0.1

0.2

0.3

0.4

200k400k600k800k 1M

P
ro

b
ab

il
it

y

Memory requests per 1ms

(5) conj grad2 (CG)

0.0

0.1

0.2

200k 400k 600k 800k 1M
Memory requests per 1ms

(6) cffts1 (FT)

0.0

0.1

0.2

200k 400k 600k 800k 1M
Memory requests per 1ms

(7) cffts2 (FT)

0.0

0.1

0.2

200k 400k 600k 800k 1M
Memory requests per 1ms

(8) cffts3 (FT)

0.0

0.1

0.2

200k400k600k800k 1M

P
ro

b
ab

il
it

y

Memory requests per 1ms

(9) rhs1 (SP)

0.0

0.1

0.2

200k 400k 600k 800k 1M
Memory requests per 1ms

(10) rhs2 (SP)

0.0

0.1

0.2

200k 400k 600k 800k 1M
Memory requests per 1ms

(11) rhs3 (SP)

0.0

0.1

0.2

200k 400k 600k 800k 1M
Memory requests per 1ms

(12) rhs4 (SP)

0.0

0.1

0.2

200k400k600k800k 1M

P
ro

b
ab

il
it

y

Memory requests per 1ms

(13) rhs5 (SP)

0.0

0.1

200k 400k 600k 800k 1M
Memory requests per 1ms

(14) x solve (SP)

0.0

0.1

200k 400k 600k 800k 1M
Memory requests per 1ms

(15) y solve (SP)

0.0

0.1

200k 400k 600k 800k 1M
Memory requests per 1ms

(16) z solve (SP)

0.0

0.1

0.2

0.3

0.4

200k400k600k800k 1M

P
ro

b
ab

il
it

y

Memory requests per 1ms

(17) txinvr (SP)

0.0

0.1

0.2

0.3

0.4

200k 400k 600k 800k 1M
Memory requests per 1ms

(18) tzetar (SP)

0.0

0.1

200k 400k 600k 800k 1M
Memory requests per 1ms

(19) rprj3 (MG)

0.0

0.1

0.2

200k 400k 600k 800k 1M
Memory requests per 1ms

(20) psinv (MG)

0.0

0.1

0.2

200k400k600k800k 1M

P
ro

b
ab

il
it

y

Memory requests per 1ms

(23) interp1 (MG)

0.0

0.1

200k 400k 600k 800k 1M
Memory requests per 1ms

(22) resid (MG)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

200k 400k 600k 800k 1M
Memory requests per 1ms

(23) main (BS)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

200k 400k 600k 800k 1M
Memory requests per 1ms

(25) tiling1 (FM)

Figure A.2 Probability mass function (PMF) of the number of memory requests
per time of the parallel loops in the main paper at each memory node on the
72-core Intel platform.

126

A.1.2 Kolmogorov Smirnov Test

A goodness of fit test was conducted in order to justify the assumptions of

Poisson-distributed memory requests and exponential service times (i.e., that

the number of completed memory operations per time follows a Poisson dis-

tribution). The test was conducted for all target parallel workloads and both

target platforms (the 64-core AMD and 72-core Intel system).

We used the two-sample Kolmogorov-Smirnov (KS) test to verify the Pois-

son distribution mathematically. From two different datasets, the KS test com-

putes the statistical value (we used scipy.stats.ks 2samp [77]), where a lower

value means that the two datasets are similar. For each parallel loop, a his-

togram with ten categories for a number of data samples containing the number

of memory requests per unit time is used for comparison with a Poisson dis-

tribution. Overall, the majority of parallel loops exhibit a Poisson distribution.

Detailed results are listed in the following tables.

Analyzing Poisson memory requests

- Figure A.3: Histogram of memory requests (AMD).

- Figure A.4: Histogram of memory requests (Intel).

- Table A.1: KS test results (AMD).

- Table A.2: KS test results (Intel).

Analyzing exponential memory service times

- Figure A.6: Histogram of memory services (AMD).

- Figure A.8: Histogram of memory services (Intel).

- Table A.3: KS test results (AMD and Intel).

127

 0
 1200
 2400
 3600
 4800

mem1
(0.1)

F
re

q
u

en
cy

mem2
(0.1)

mem3
(0.1)

 0
 1200
 2400
 3600
 4800

mem4
(0.1)

mem5
(0.1)

mem6
(0.1)

 0
 1200
 2400
 3600
 4800

[0
,1

0
)

[1
0

,2
0

)
[2

0
,3

0
)

[3
0

,4
0

)
[4

0
,5

0
)

[5
0

,6
0

)
[6

0
,7

0
)

[7
0

,8
0

)
[8

0
,9

0
)

[9
0

,1
0

0
)

mem7
(0.1)

[0
,1

0
)

[1
0

,2
0

)
[2

0
,3

0
)

[3
0

,4
0

)
[4

0
,5

0
)

[5
0

,6
0

)
[6

0
,7

0
)

[7
0

,8
0

)
[8

0
,9

0
)

[9
0

,1
0

0
)

mem8
(0.1)

(1) x solve (BT)

 0
 1200
 2400
 3600
 4800

mem1
(0.1)

mem2
(0.1)

mem3
(0.1)

 0
 1200
 2400
 3600
 4800

mem4
(0.1)

mem5
(0.1)

mem6
(0.2)

 0
 1200
 2400
 3600
 4800

[0
,1

0
)

[1
0

,2
0

)
[2

0
,3

0
)

[3
0

,4
0

)
[4

0
,5

0
)

[5
0

,6
0

)
[6

0
,7

0
)

[7
0

,8
0

)
[8

0
,9

0
)

[9
0

,1
0

0
)

mem7
(0.1)

[0
,1

0
)

[1
0

,2
0

)
[2

0
,3

0
)

[3
0

,4
0

)
[4

0
,5

0
)

[5
0

,6
0

)
[6

0
,7

0
)

[7
0

,8
0

)
[8

0
,9

0
)

[9
0

,1
0

0
)

mem8
(0.1)

(2) y solve (BT)

 0
 1200
 2400
 3600
 4800

mem1
(0.1)

mem2
(0.1)

mem3
(0.1)

 0
 1200
 2400
 3600
 4800

mem4
(0.1)

mem5
(0.1)

mem6
(0.2)

 0
 1200
 2400
 3600
 4800

[0
,1

0
)

[1
0

,2
0

)
[2

0
,3

0
)

[3
0

,4
0

)
[4

0
,5

0
)

[5
0

,6
0

)
[6

0
,7

0
)

[7
0

,8
0

)
[8

0
,9

0
)

[9
0

,1
0

0
)

mem7
(0.1)

[0
,1

0
)

[1
0

,2
0

)
[2

0
,3

0
)

[3
0

,4
0

)
[4

0
,5

0
)

[5
0

,6
0

)
[6

0
,7

0
)

[7
0

,8
0

)
[8

0
,9

0
)

[9
0

,1
0

0
)

mem8
(0.1)

(3) z solve (BT)

 0
 200
 400
 600
 800

mem1
(0.1)

mem2
(0.1)

mem3
(0.1)

 0
 200
 400
 600
 800

mem4
(0.1)

mem5
(0.1)

mem6
(0.1)

 0
 200
 400
 600
 800

[0
,1

0
)

[1
0

,2
0

)
[2

0
,3

0
)

[3
0

,4
0

)
[4

0
,5

0
)

[5
0

,6
0

)
[6

0
,7

0
)

[7
0

,8
0

)
[8

0
,9

0
)

[9
0

,1
0

0
)

mem7
(0.1)

[0
,1

0
)

[1
0

,2
0

)
[2

0
,3

0
)

[3
0

,4
0

)
[4

0
,5

0
)

[5
0

,6
0

)
[6

0
,7

0
)

[7
0

,8
0

)
[8

0
,9

0
)

[9
0

,1
0

0
)

mem8
(0.1)

(4) add (BT)

 0
 50

 100
 150
 200

mem1
(0.2)

F
re

q
u

en
cy

mem2
(0.2)

mem3
(0.2)

 0
 50

 100
 150
 200

mem4
(0.1)

mem5
(0.1)

mem6
(0.1)

 0
 50

 100
 150
 200

[0
,1

0
)

[1
0

,2
0

)
[2

0
,3

0
)

[3
0

,4
0

)
[4

0
,5

0
)

[5
0

,6
0

)
[6

0
,7

0
)

[7
0

,8
0

)
[8

0
,9

0
)

[9
0

,1
0

0
)

mem7
(0.2)

[0
,1

0
)

[1
0

,2
0

)
[2

0
,3

0
)

[3
0

,4
0

)
[4

0
,5

0
)

[5
0

,6
0

)
[6

0
,7

0
)

[7
0

,8
0

)
[8

0
,9

0
)

[9
0

,1
0

0
)

mem8
(0.2)

(5) conj grad2 (CG)

 0
 25
 50
 75

 100
mem1
(0.1)

mem2
(0.1)

mem3
(0.1)

 0
 25
 50
 75

 100
mem4
(0.1)

mem5
(0.1)

mem6
(0.1)

 0
 25
 50
 75

 100

[0
,1

0
)

[1
0

,2
0

)
[2

0
,3

0
)

[3
0

,4
0

)
[4

0
,5

0
)

[5
0

,6
0

)
[6

0
,7

0
)

[7
0

,8
0

)
[8

0
,9

0
)

[9
0

,1
0

0
)

mem7
(0.1)

[0
,1

0
)

[1
0

,2
0

)
[2

0
,3

0
)

[3
0

,4
0

)
[4

0
,5

0
)

[5
0

,6
0

)
[6

0
,7

0
)

[7
0

,8
0

)
[8

0
,9

0
)

[9
0

,1
0

0
)

mem8
(0.1)

(6) cffts1 (FT)

 0
 25
 50
 75

 100
mem1
(0.1)

mem2
(0.1)

mem3
(0.1)

 0
 25
 50
 75

 100
mem4
(0.1)

mem5
(0.1)

mem6
(0.1)

 0
 25
 50
 75

 100

[0
,1

0
)

[1
0

,2
0

)
[2

0
,3

0
)

[3
0

,4
0

)
[4

0
,5

0
)

[5
0

,6
0

)
[6

0
,7

0
)

[7
0

,8
0

)
[8

0
,9

0
)

[9
0

,1
0

0
)

mem7
(0.1)

[0
,1

0
)

[1
0

,2
0

)
[2

0
,3

0
)

[3
0

,4
0

)
[4

0
,5

0
)

[5
0

,6
0

)
[6

0
,7

0
)

[7
0

,8
0

)
[8

0
,9

0
)

[9
0

,1
0

0
)

mem8
(0.1)

(7) cffts2 (FT)

 0
 50

 100
 150
 200

mem1
(0.1)

mem2
(0.1)

mem3
(0.1)

 0
 50

 100
 150
 200

mem4
(0.1)

mem5
(0.1)

mem6
(0.1)

 0
 50

 100
 150
 200

[0
,1

0
)

[1
0

,2
0

)
[2

0
,3

0
)

[3
0

,4
0

)
[4

0
,5

0
)

[5
0

,6
0

)
[6

0
,7

0
)

[7
0

,8
0

)
[8

0
,9

0
)

[9
0

,1
0

0
)

mem7
(0.1)

[0
,1

0
)

[1
0

,2
0

)
[2

0
,3

0
)

[3
0

,4
0

)
[4

0
,5

0
)

[5
0

,6
0

)
[6

0
,7

0
)

[7
0

,8
0

)
[8

0
,9

0
)

[9
0

,1
0

0
)

mem8
(0.1)

(8) cffts3 (FT)

 0
 50

 100
 150
 200

mem1
(0.1)

F
re

q
u

en
cy

mem2
(0.1)

mem3
(0.1)

 0
 50

 100
 150
 200

mem4
(0.1)

mem5
(0.1)

mem6
(0.1)

 0
 50

 100
 150
 200

[0
,1

0
)

[1
0

,2
0

)
[2

0
,3

0
)

[3
0

,4
0

)
[4

0
,5

0
)

[5
0

,6
0

)
[6

0
,7

0
)

[7
0

,8
0

)
[8

0
,9

0
)

[9
0

,1
0

0
)

mem7
(0.1)

[0
,1

0
)

[1
0

,2
0

)
[2

0
,3

0
)

[3
0

,4
0

)
[4

0
,5

0
)

[5
0

,6
0

)
[6

0
,7

0
)

[7
0

,8
0

)
[8

0
,9

0
)

[9
0

,1
0

0
)

mem8
(0.1)

(9) rhs1 (SP)

 0
 50

 100
 150
 200

mem1
(0.1)

mem2
(0.1)

mem3
(0.1)

 0
 50

 100
 150
 200

mem4
(0.1)

mem5
(0.1)

mem6
(0.1)

 0
 50

 100
 150
 200

[0
,1

0
)

[1
0

,2
0

)
[2

0
,3

0
)

[3
0

,4
0

)
[4

0
,5

0
)

[5
0

,6
0

)
[6

0
,7

0
)

[7
0

,8
0

)
[8

0
,9

0
)

[9
0

,1
0

0
)

mem7
(0.1)

[0
,1

0
)

[1
0

,2
0

)
[2

0
,3

0
)

[3
0

,4
0

)
[4

0
,5

0
)

[5
0

,6
0

)
[6

0
,7

0
)

[7
0

,8
0

)
[8

0
,9

0
)

[9
0

,1
0

0
)

mem8
(0.2)

(10) rhs2 (SP)

 0
 100
 200
 300
 400

mem1
(0.1)

mem2
(0.1)

mem3
(0.1)

 0
 100
 200
 300
 400

mem4
(0.1)

mem5
(0.1)

mem6
(0.1)

 0
 100
 200
 300
 400

[0
,1

0
)

[1
0

,2
0

)
[2

0
,3

0
)

[3
0

,4
0

)
[4

0
,5

0
)

[5
0

,6
0

)
[6

0
,7

0
)

[7
0

,8
0

)
[8

0
,9

0
)

[9
0

,1
0

0
)

mem7
(0.1)

[0
,1

0
)

[1
0

,2
0

)
[2

0
,3

0
)

[3
0

,4
0

)
[4

0
,5

0
)

[5
0

,6
0

)
[6

0
,7

0
)

[7
0

,8
0

)
[8

0
,9

0
)

[9
0

,1
0

0
)

mem8
(0.1)

(11) rhs3 (SP)

 0
 100
 200
 300
 400

mem1
(0.1)

mem2
(0.1)

mem3
(0.1)

 0
 100
 200
 300
 400

mem4
(0.1)

mem5
(0.1)

mem6
(0.1)

 0
 100
 200
 300
 400

[0
,1

0
)

[1
0

,2
0

)
[2

0
,3

0
)

[3
0

,4
0

)
[4

0
,5

0
)

[5
0

,6
0

)
[6

0
,7

0
)

[7
0

,8
0

)
[8

0
,9

0
)

[9
0

,1
0

0
)

mem7
(0.1)

[0
,1

0
)

[1
0

,2
0

)
[2

0
,3

0
)

[3
0

,4
0

)
[4

0
,5

0
)

[5
0

,6
0

)
[6

0
,7

0
)

[7
0

,8
0

)
[8

0
,9

0
)

[9
0

,1
0

0
)

mem8
(0.1)

(12) rhs4 (SP)

 0
 100
 200
 300
 400

mem1
(0.1)

F
re

q
u

en
cy

mem2
(0.1)

mem3
(0.1)

 0
 100
 200
 300
 400

mem4
(0.1)

mem5
(0.1)

mem6
(0.1)

 0
 100
 200
 300
 400

[0
,1

0
)

[1
0

,2
0

)
[2

0
,3

0
)

[3
0

,4
0

)
[4

0
,5

0
)

[5
0

,6
0

)
[6

0
,7

0
)

[7
0

,8
0

)
[8

0
,9

0
)

[9
0

,1
0

0
)

mem7
(0.1)

[0
,1

0
)

[1
0

,2
0

)
[2

0
,3

0
)

[3
0

,4
0

)
[4

0
,5

0
)

[5
0

,6
0

)
[6

0
,7

0
)

[7
0

,8
0

)
[8

0
,9

0
)

[9
0

,1
0

0
)

mem8
(0.1)

(13) rhs5 (SP)

 0
 300
 600
 900

 1200
mem1
(0.2)

mem2
(0.1)

mem3
(0.2)

 0
 300
 600
 900

 1200
mem4
(0.2)

mem5
(0.1)

mem6
(0.2)

 0
 300
 600
 900

 1200

[0
,1

0
)

[1
0

,2
0

)
[2

0
,3

0
)

[3
0

,4
0

)
[4

0
,5

0
)

[5
0

,6
0

)
[6

0
,7

0
)

[7
0

,8
0

)
[8

0
,9

0
)

[9
0

,1
0

0
)

mem7
(0.1)

[0
,1

0
)

[1
0

,2
0

)
[2

0
,3

0
)

[3
0

,4
0

)
[4

0
,5

0
)

[5
0

,6
0

)
[6

0
,7

0
)

[7
0

,8
0

)
[8

0
,9

0
)

[9
0

,1
0

0
)

mem8
(0.1)

(14) x solve (SP)

 0
 300
 600
 900

 1200
mem1
(0.2)

mem2
(0.1)

mem3
(0.2)

 0
 300
 600
 900

 1200
mem4
(0.1)

mem5
(0.1)

mem6
(0.2)

 0
 300
 600
 900

 1200

[0
,1

0
)

[1
0

,2
0

)
[2

0
,3

0
)

[3
0

,4
0

)
[4

0
,5

0
)

[5
0

,6
0

)
[6

0
,7

0
)

[7
0

,8
0

)
[8

0
,9

0
)

[9
0

,1
0

0
)

mem7
(0.1)

[0
,1

0
)

[1
0

,2
0

)
[2

0
,3

0
)

[3
0

,4
0

)
[4

0
,5

0
)

[5
0

,6
0

)
[6

0
,7

0
)

[7
0

,8
0

)
[8

0
,9

0
)

[9
0

,1
0

0
)

mem8
(0.1)

(15) y solve (SP)

 0
 300
 600
 900

 1200
mem1
(0.2)

mem2
(0.1)

mem3
(0.2)

 0
 300
 600
 900

 1200
mem4
(0.1)

mem5
(0.1)

mem6
(0.2)

 0
 300
 600
 900

 1200

[0
,1

0
)

[1
0

,2
0

)
[2

0
,3

0
)

[3
0

,4
0

)
[4

0
,5

0
)

[5
0

,6
0

)
[6

0
,7

0
)

[7
0

,8
0

)
[8

0
,9

0
)

[9
0

,1
0

0
)

mem7
(0.1)

[0
,1

0
)

[1
0

,2
0

)
[2

0
,3

0
)

[3
0

,4
0

)
[4

0
,5

0
)

[5
0

,6
0

)
[6

0
,7

0
)

[7
0

,8
0

)
[8

0
,9

0
)

[9
0

,1
0

0
)

mem8
(0.1)

(16) z solve (SP)

 0
 50

 100
 150
 200

mem1
(0.1)

F
re

q
u

en
cy

mem2
(0.1)

mem3
(0.1)

 0
 50

 100
 150
 200

mem4
(0.1)

mem5
(0.1)

mem6
(0.1)

 0
 50

 100
 150
 200

[0
,1

0
)

[1
0

,2
0

)
[2

0
,3

0
)

[3
0

,4
0

)
[4

0
,5

0
)

[5
0

,6
0

)
[6

0
,7

0
)

[7
0

,8
0

)
[8

0
,9

0
)

[9
0

,1
0

0
)

mem7
(0.1)

[0
,1

0
)

[1
0

,2
0

)
[2

0
,3

0
)

[3
0

,4
0

)
[4

0
,5

0
)

[5
0

,6
0

)
[6

0
,7

0
)

[7
0

,8
0

)
[8

0
,9

0
)

[9
0

,1
0

0
)

mem8
(0.1)

(17) txinvr (SP)

 0
 50

 100
 150
 200

mem1
(0.1)

mem2
(0.1)

mem3
(0.1)

 0
 50

 100
 150
 200

mem4
(0.1)

mem5
(0.1)

mem6
(0.1)

 0
 50

 100
 150
 200

[0
,1

0
)

[1
0

,2
0

)
[2

0
,3

0
)

[3
0

,4
0

)
[4

0
,5

0
)

[5
0

,6
0

)
[6

0
,7

0
)

[7
0

,8
0

)
[8

0
,9

0
)

[9
0

,1
0

0
)

mem7
(0.1)

[0
,1

0
)

[1
0

,2
0

)
[2

0
,3

0
)

[3
0

,4
0

)
[4

0
,5

0
)

[5
0

,6
0

)
[6

0
,7

0
)

[7
0

,8
0

)
[8

0
,9

0
)

[9
0

,1
0

0
)

mem8
(0.1)

(18) tzetar (SP)

 0
 200
 400
 600
 800

mem1
(0.1)

mem2
(0.1)

mem3
(0.1)

 0
 200
 400
 600
 800

mem4
(0.1)

mem5
(0.2)

mem6
(0.1)

 0
 200
 400
 600
 800

[0
,1

0
)

[1
0

,2
0

)
[2

0
,3

0
)

[3
0

,4
0

)
[4

0
,5

0
)

[5
0

,6
0

)
[6

0
,7

0
)

[7
0

,8
0

)
[8

0
,9

0
)

[9
0

,1
0

0
)

mem7
(0.1)

[0
,1

0
)

[1
0

,2
0

)
[2

0
,3

0
)

[3
0

,4
0

)
[4

0
,5

0
)

[5
0

,6
0

)
[6

0
,7

0
)

[7
0

,8
0

)
[8

0
,9

0
)

[9
0

,1
0

0
)

mem8
(0.1)

(19) rprj3 (MG)

 0
 25
 50
 75

 100
mem1
(0.1)

mem2
(0.1)

mem3
(0.1)

 0
 25
 50
 75

 100
mem4
(0.1)

mem5
(0.1)

mem6
(0.1)

 0
 25
 50
 75

 100

[0
,1

0
)

[1
0

,2
0

)
[2

0
,3

0
)

[3
0

,4
0

)
[4

0
,5

0
)

[5
0

,6
0

)
[6

0
,7

0
)

[7
0

,8
0

)
[8

0
,9

0
)

[9
0

,1
0

0
)

mem7
(0.1)

[0
,1

0
)

[1
0

,2
0

)
[2

0
,3

0
)

[3
0

,4
0

)
[4

0
,5

0
)

[5
0

,6
0

)
[6

0
,7

0
)

[7
0

,8
0

)
[8

0
,9

0
)

[9
0

,1
0

0
)

mem8
(0.1)

(20) psinv (MG)

 0
 100
 200
 300
 400

mem1
(0.1)

F
re

q
u

en
cy

mem2
(0.1)

mem3
(0.1)

 0
 100
 200
 300
 400

mem4
(0.1)

mem5
(0.1)

mem6
(0.1)

 0
 100
 200
 300
 400

[0
,1

0
)

[1
0

,2
0

)
[2

0
,3

0
)

[3
0

,4
0

)
[4

0
,5

0
)

[5
0

,6
0

)
[6

0
,7

0
)

[7
0

,8
0

)
[8

0
,9

0
)

[9
0

,1
0

0
)

mem7
(0.1)

[0
,1

0
)

[1
0

,2
0

)
[2

0
,3

0
)

[3
0

,4
0

)
[4

0
,5

0
)

[5
0

,6
0

)
[6

0
,7

0
)

[7
0

,8
0

)
[8

0
,9

0
)

[9
0

,1
0

0
)

mem8
(0.1)

(23) interp1 (MG)

 0
 300
 600
 900

 1200
mem1
(0.1)

mem2
(0.1)

mem3
(0.1)

 0
 300
 600
 900

 1200
mem4
(0.1)

mem5
(0.1)

mem6
(0.1)

 0
 300
 600
 900

 1200

[0
,1

0
)

[1
0

,2
0

)
[2

0
,3

0
)

[3
0

,4
0

)
[4

0
,5

0
)

[5
0

,6
0

)
[6

0
,7

0
)

[7
0

,8
0

)
[8

0
,9

0
)

[9
0

,1
0

0
)

mem7
(0.1)

[0
,1

0
)

[1
0

,2
0

)
[2

0
,3

0
)

[3
0

,4
0

)
[4

0
,5

0
)

[5
0

,6
0

)
[6

0
,7

0
)

[7
0

,8
0

)
[8

0
,9

0
)

[9
0

,1
0

0
)

mem8
(0.1)

(22) resid (MG)

 0
 25
 50
 75

 100
mem1
(0.1)

mem2
(0.2)

mem3
(0.2)

 0
 25
 50
 75

 100
mem4
(0.2)

mem5
(0.1)

mem6
(0.1)

 0
 25
 50
 75

 100

[0
,1

0
)

[1
0

,2
0

)
[2

0
,3

0
)

[3
0

,4
0

)
[4

0
,5

0
)

[5
0

,6
0

)
[6

0
,7

0
)

[7
0

,8
0

)
[8

0
,9

0
)

[9
0

,1
0

0
)

mem7
(0.2)

[0
,1

0
)

[1
0

,2
0

)
[2

0
,3

0
)

[3
0

,4
0

)
[4

0
,5

0
)

[5
0

,6
0

)
[6

0
,7

0
)

[7
0

,8
0

)
[8

0
,9

0
)

[9
0

,1
0

0
)

mem8
(0.1)

(23) main (BS)

 0
 2
 4
 6
 8

 10
mem1
(0.1)

mem2
(0.1)

mem3
(0.1)

 0
 2
 4
 6
 8

 10
mem4
(0.1)

mem5
(0.1)

mem6
(0.1)

 0
 2
 4
 6
 8

 10

[0
,1

0
)

[1
0

,2
0

)
[2

0
,3

0
)

[3
0

,4
0

)
[4

0
,5

0
)

[5
0

,6
0

)
[6

0
,7

0
)

[7
0

,8
0

)
[8

0
,9

0
)

[9
0

,1
0

0
)

mem7
(0.1)

[0
,1

0
)

[1
0

,2
0

)
[2

0
,3

0
)

[3
0

,4
0

)
[4

0
,5

0
)

[5
0

,6
0

)
[6

0
,7

0
)

[7
0

,8
0

)
[8

0
,9

0
)

[9
0

,1
0

0
)

mem8
(0.1)

(25) tiling1 (FM)

Figure A.3 Histogram of the measured number of memory requests per time
(1us) of the parallel loops in the main paper at each memory node on the
64-core AMD platform, and comparison with a Poisson distribution.

128

 0

 100

 200

 300

 400
mem1
(0.1)

F
re

q
u

en
cy

mem2
(0.1)

 0

 100

 200

 300

 400

[0
,1

0
)

[1
0
,2

0
)

[2
0
,3

0
)

[3
0
,4

0
)

[4
0
,5

0
)

[5
0
,6

0
)

[6
0
,7

0
)

[7
0
,8

0
)

[8
0
,9

0
)

[9
0
,1

0
0
)

mem3
(0.1)

[0
,1

0
)

[1
0
,2

0
)

[2
0
,3

0
)

[3
0
,4

0
)

[4
0
,5

0
)

[5
0
,6

0
)

[6
0
,7

0
)

[7
0
,8

0
)

[8
0
,9

0
)

[9
0
,1

0
0
)

mem4
(0.1)

(1) x solve (BT)

 0

 100

 200

 300

 400
mem1

(0.1)

mem2

(0.1)

 0

 100

 200

 300

 400

[0
,1

0
)

[1
0
,2

0
)

[2
0
,3

0
)

[3
0
,4

0
)

[4
0
,5

0
)

[5
0
,6

0
)

[6
0
,7

0
)

[7
0
,8

0
)

[8
0
,9

0
)

[9
0
,1

0
0
)

mem3

(0.1)

[0
,1

0
)

[1
0
,2

0
)

[2
0
,3

0
)

[3
0
,4

0
)

[4
0
,5

0
)

[5
0
,6

0
)

[6
0
,7

0
)

[7
0
,8

0
)

[8
0
,9

0
)

[9
0
,1

0
0
)

mem4

(0.1)

(2) y solve (BT)

 0

 200

 400

 600

 800
mem1

(0.1)

mem2

(0.1)

 0

 200

 400

 600

 800

[0
,1

0
)

[1
0
,2

0
)

[2
0
,3

0
)

[3
0
,4

0
)

[4
0
,5

0
)

[5
0
,6

0
)

[6
0
,7

0
)

[7
0
,8

0
)

[8
0
,9

0
)

[9
0
,1

0
0
)

mem3

(0.1)

[0
,1

0
)

[1
0
,2

0
)

[2
0
,3

0
)

[3
0
,4

0
)

[4
0
,5

0
)

[5
0
,6

0
)

[6
0
,7

0
)

[7
0
,8

0
)

[8
0
,9

0
)

[9
0
,1

0
0
)

mem4

(0.1)

(3) z solve (BT)

 0

 25

 50

 75

 100
mem1

(0.2)

mem2

(0.2)

 0

 25

 50

 75

 100

[0
,1

0
)

[1
0
,2

0
)

[2
0
,3

0
)

[3
0
,4

0
)

[4
0
,5

0
)

[5
0
,6

0
)

[6
0
,7

0
)

[7
0
,8

0
)

[8
0
,9

0
)

[9
0
,1

0
0
)

mem3

(0.2)

[0
,1

0
)

[1
0
,2

0
)

[2
0
,3

0
)

[3
0
,4

0
)

[4
0
,5

0
)

[5
0
,6

0
)

[6
0
,7

0
)

[7
0
,8

0
)

[8
0
,9

0
)

[9
0
,1

0
0
)

mem4

(0.2)

(4) add (BT)

 0

 25

 50

 75

 100
mem1
(0.1)

F
re

q
u

en
cy

mem2
(0.1)

 0

 25

 50

 75

 100

[0
,1

0
)

[1
0
,2

0
)

[2
0
,3

0
)

[3
0
,4

0
)

[4
0
,5

0
)

[5
0
,6

0
)

[6
0
,7

0
)

[7
0
,8

0
)

[8
0
,9

0
)

[9
0
,1

0
0
)

mem3
(0.1)

[0
,1

0
)

[1
0
,2

0
)

[2
0
,3

0
)

[3
0
,4

0
)

[4
0
,5

0
)

[5
0
,6

0
)

[6
0
,7

0
)

[7
0
,8

0
)

[8
0
,9

0
)

[9
0
,1

0
0
)

mem4
(0.1)

(5) conj grad2 (CG)

 0

 25

 50

 75

 100
mem1

(0.2)

mem2

(0.2)

 0

 25

 50

 75

 100

[0
,1

0
)

[1
0
,2

0
)

[2
0
,3

0
)

[3
0
,4

0
)

[4
0
,5

0
)

[5
0
,6

0
)

[6
0
,7

0
)

[7
0
,8

0
)

[8
0
,9

0
)

[9
0
,1

0
0
)

mem3

(0.2)

[0
,1

0
)

[1
0
,2

0
)

[2
0
,3

0
)

[3
0
,4

0
)

[4
0
,5

0
)

[5
0
,6

0
)

[6
0
,7

0
)

[7
0
,8

0
)

[8
0
,9

0
)

[9
0
,1

0
0
)

mem4

(0.2)

(6) cffts1 (FT)

 0

 25

 50

 75

 100
mem1

(0.1)

mem2

(0.2)

 0

 25

 50

 75

 100

[0
,1

0
)

[1
0
,2

0
)

[2
0
,3

0
)

[3
0
,4

0
)

[4
0
,5

0
)

[5
0
,6

0
)

[6
0
,7

0
)

[7
0
,8

0
)

[8
0
,9

0
)

[9
0
,1

0
0
)

mem3

(0.1)

[0
,1

0
)

[1
0
,2

0
)

[2
0
,3

0
)

[3
0
,4

0
)

[4
0
,5

0
)

[5
0
,6

0
)

[6
0
,7

0
)

[7
0
,8

0
)

[8
0
,9

0
)

[9
0
,1

0
0
)

mem4

(0.1)

(7) cffts2 (FT)

 0

 25

 50

 75

 100
mem1

(0.2)

mem2

(0.2)

 0

 25

 50

 75

 100

[0
,1

0
)

[1
0
,2

0
)

[2
0
,3

0
)

[3
0
,4

0
)

[4
0
,5

0
)

[5
0
,6

0
)

[6
0
,7

0
)

[7
0
,8

0
)

[8
0
,9

0
)

[9
0
,1

0
0
)

mem3

(0.2)

[0
,1

0
)

[1
0
,2

0
)

[2
0
,3

0
)

[3
0
,4

0
)

[4
0
,5

0
)

[5
0
,6

0
)

[6
0
,7

0
)

[7
0
,8

0
)

[8
0
,9

0
)

[9
0
,1

0
0
)

mem4

(0.2)

(8) cffts3 (FT)

 0

 50

 100

 150

 200
mem1
(0.2)

F
re

q
u

en
cy

mem2
(0.2)

 0

 50

 100

 150

 200

[0
,1

0
)

[1
0
,2

0
)

[2
0
,3

0
)

[3
0
,4

0
)

[4
0
,5

0
)

[5
0
,6

0
)

[6
0
,7

0
)

[7
0
,8

0
)

[8
0
,9

0
)

[9
0
,1

0
0
)

mem3
(0.2)

[0
,1

0
)

[1
0
,2

0
)

[2
0
,3

0
)

[3
0
,4

0
)

[4
0
,5

0
)

[5
0
,6

0
)

[6
0
,7

0
)

[7
0
,8

0
)

[8
0
,9

0
)

[9
0
,1

0
0
)

mem4
(0.2)

(9) rhs1 (SP)

 0

 25

 50

 75

 100
mem1

(0.1)

mem2

(0.1)

 0

 25

 50

 75

 100

[0
,1

0
)

[1
0
,2

0
)

[2
0
,3

0
)

[3
0
,4

0
)

[4
0
,5

0
)

[5
0
,6

0
)

[6
0
,7

0
)

[7
0
,8

0
)

[8
0
,9

0
)

[9
0
,1

0
0
)

mem3

(0.1)

[0
,1

0
)

[1
0
,2

0
)

[2
0
,3

0
)

[3
0
,4

0
)

[4
0
,5

0
)

[5
0
,6

0
)

[6
0
,7

0
)

[7
0
,8

0
)

[8
0
,9

0
)

[9
0
,1

0
0
)

mem4

(0.1)

(10) rhs2 (SP)

 0

 25

 50

 75

 100
mem1

(0.2)

mem2

(0.2)

 0

 25

 50

 75

 100

[0
,1

0
)

[1
0
,2

0
)

[2
0
,3

0
)

[3
0
,4

0
)

[4
0
,5

0
)

[5
0
,6

0
)

[6
0
,7

0
)

[7
0
,8

0
)

[8
0
,9

0
)

[9
0
,1

0
0
)

mem3

(0.2)

[0
,1

0
)

[1
0
,2

0
)

[2
0
,3

0
)

[3
0
,4

0
)

[4
0
,5

0
)

[5
0
,6

0
)

[6
0
,7

0
)

[7
0
,8

0
)

[8
0
,9

0
)

[9
0
,1

0
0
)

mem4

(0.2)

(11) rhs3 (SP)

 0

 50

 100

 150

 200
mem1

(0.2)

mem2

(0.2)

 0

 50

 100

 150

 200

[0
,1

0
)

[1
0
,2

0
)

[2
0
,3

0
)

[3
0
,4

0
)

[4
0
,5

0
)

[5
0
,6

0
)

[6
0
,7

0
)

[7
0
,8

0
)

[8
0
,9

0
)

[9
0
,1

0
0
)

mem3

(0.2)

[0
,1

0
)

[1
0
,2

0
)

[2
0
,3

0
)

[3
0
,4

0
)

[4
0
,5

0
)

[5
0
,6

0
)

[6
0
,7

0
)

[7
0
,8

0
)

[8
0
,9

0
)

[9
0
,1

0
0
)

mem4

(0.2)

(12) rhs4 (SP)

 0

 50

 100

 150

 200
mem1
(0.2)

F
re

q
u

en
cy

mem2
(0.2)

 0

 50

 100

 150

 200

[0
,1

0
)

[1
0
,2

0
)

[2
0
,3

0
)

[3
0
,4

0
)

[4
0
,5

0
)

[5
0
,6

0
)

[6
0
,7

0
)

[7
0
,8

0
)

[8
0
,9

0
)

[9
0
,1

0
0
)

mem3
(0.2)

[0
,1

0
)

[1
0
,2

0
)

[2
0
,3

0
)

[3
0
,4

0
)

[4
0
,5

0
)

[5
0
,6

0
)

[6
0
,7

0
)

[7
0
,8

0
)

[8
0
,9

0
)

[9
0
,1

0
0
)

mem4
(0.2)

(13) rhs5 (SP)

 0

 200

 400

 600

 800
mem1

(0.1)

mem2

(0.2)

 0

 200

 400

 600

 800

[0
,1

0
)

[1
0
,2

0
)

[2
0
,3

0
)

[3
0
,4

0
)

[4
0
,5

0
)

[5
0
,6

0
)

[6
0
,7

0
)

[7
0
,8

0
)

[8
0
,9

0
)

[9
0
,1

0
0
)

mem3

(0.1)

[0
,1

0
)

[1
0
,2

0
)

[2
0
,3

0
)

[3
0
,4

0
)

[4
0
,5

0
)

[5
0
,6

0
)

[6
0
,7

0
)

[7
0
,8

0
)

[8
0
,9

0
)

[9
0
,1

0
0
)

mem4

(0.2)

(14) x solve (SP)

 0

 200

 400

 600

 800
mem1

(0.1)

mem2

(0.1)

 0

 200

 400

 600

 800

[0
,1

0
)

[1
0
,2

0
)

[2
0
,3

0
)

[3
0
,4

0
)

[4
0
,5

0
)

[5
0
,6

0
)

[6
0
,7

0
)

[7
0
,8

0
)

[8
0
,9

0
)

[9
0
,1

0
0
)

mem3

(0.1)

[0
,1

0
)

[1
0
,2

0
)

[2
0
,3

0
)

[3
0
,4

0
)

[4
0
,5

0
)

[5
0
,6

0
)

[6
0
,7

0
)

[7
0
,8

0
)

[8
0
,9

0
)

[9
0
,1

0
0
)

mem4

(0.1)

(15) y solve (SP)

 0

 200

 400

 600

 800
mem1

(0.1)

mem2

(0.1)

 0

 200

 400

 600

 800

[0
,1

0
)

[1
0
,2

0
)

[2
0
,3

0
)

[3
0
,4

0
)

[4
0
,5

0
)

[5
0
,6

0
)

[6
0
,7

0
)

[7
0
,8

0
)

[8
0
,9

0
)

[9
0
,1

0
0
)

mem3

(0.1)

[0
,1

0
)

[1
0
,2

0
)

[2
0
,3

0
)

[3
0
,4

0
)

[4
0
,5

0
)

[5
0
,6

0
)

[6
0
,7

0
)

[7
0
,8

0
)

[8
0
,9

0
)

[9
0
,1

0
0
)

mem4

(0.1)

(16) z solve (SP)

 0

 25

 50

 75

 100
mem1
(0.3)

F
re

q
u

en
cy

mem2
(0.3)

 0

 25

 50

 75

 100

[0
,1

0
)

[1
0
,2

0
)

[2
0
,3

0
)

[3
0
,4

0
)

[4
0
,5

0
)

[5
0
,6

0
)

[6
0
,7

0
)

[7
0
,8

0
)

[8
0
,9

0
)

[9
0
,1

0
0
)

mem3
(0.3)

[0
,1

0
)

[1
0
,2

0
)

[2
0
,3

0
)

[3
0
,4

0
)

[4
0
,5

0
)

[5
0
,6

0
)

[6
0
,7

0
)

[7
0
,8

0
)

[8
0
,9

0
)

[9
0
,1

0
0
)

mem4
(0.3)

(17) txinvr (SP)

 0

 25

 50

 75

 100
mem1

(0.2)

mem2

(0.2)

 0

 25

 50

 75

 100

[0
,1

0
)

[1
0
,2

0
)

[2
0
,3

0
)

[3
0
,4

0
)

[4
0
,5

0
)

[5
0
,6

0
)

[6
0
,7

0
)

[7
0
,8

0
)

[8
0
,9

0
)

[9
0
,1

0
0
)

mem3

(0.2)

[0
,1

0
)

[1
0
,2

0
)

[2
0
,3

0
)

[3
0
,4

0
)

[4
0
,5

0
)

[5
0
,6

0
)

[6
0
,7

0
)

[7
0
,8

0
)

[8
0
,9

0
)

[9
0
,1

0
0
)

mem4

(0.2)

(18) tzetar (SP)

 0

 50

 100

 150

 200
mem1

(0.3)

mem2

(0.3)

 0

 50

 100

 150

 200

[0
,1

0
)

[1
0
,2

0
)

[2
0
,3

0
)

[3
0
,4

0
)

[4
0
,5

0
)

[5
0
,6

0
)

[6
0
,7

0
)

[7
0
,8

0
)

[8
0
,9

0
)

[9
0
,1

0
0
)

mem3

(0.3)

[0
,1

0
)

[1
0
,2

0
)

[2
0
,3

0
)

[3
0
,4

0
)

[4
0
,5

0
)

[5
0
,6

0
)

[6
0
,7

0
)

[7
0
,8

0
)

[8
0
,9

0
)

[9
0
,1

0
0
)

mem4

(0.3)

(19) rprj3 (MG)

 0

 25

 50

 75

 100
mem1

(0.2)

mem2

(0.2)

 0

 25

 50

 75

 100

[0
,1

0
)

[1
0
,2

0
)

[2
0
,3

0
)

[3
0
,4

0
)

[4
0
,5

0
)

[5
0
,6

0
)

[6
0
,7

0
)

[7
0
,8

0
)

[8
0
,9

0
)

[9
0
,1

0
0
)

mem3

(0.2)

[0
,1

0
)

[1
0
,2

0
)

[2
0
,3

0
)

[3
0
,4

0
)

[4
0
,5

0
)

[5
0
,6

0
)

[6
0
,7

0
)

[7
0
,8

0
)

[8
0
,9

0
)

[9
0
,1

0
0
)

mem4

(0.2)

(20) psinv (MG)

 0

 50

 100

 150

 200
mem1
(0.3)

F
re

q
u

en
cy

mem2
(0.2)

 0

 50

 100

 150

 200

[0
,1

0
)

[1
0
,2

0
)

[2
0
,3

0
)

[3
0
,4

0
)

[4
0
,5

0
)

[5
0
,6

0
)

[6
0
,7

0
)

[7
0
,8

0
)

[8
0
,9

0
)

[9
0
,1

0
0
)

mem3
(0.2)

[0
,1

0
)

[1
0
,2

0
)

[2
0
,3

0
)

[3
0
,4

0
)

[4
0
,5

0
)

[5
0
,6

0
)

[6
0
,7

0
)

[7
0
,8

0
)

[8
0
,9

0
)

[9
0
,1

0
0
)

mem4
(0.2)

(23) interp1 (MG)

 0

 200

 400

 600

 800
mem1

(0.2)

mem2

(0.1)

 0

 200

 400

 600

 800

[0
,1

0
)

[1
0
,2

0
)

[2
0
,3

0
)

[3
0
,4

0
)

[4
0
,5

0
)

[5
0
,6

0
)

[6
0
,7

0
)

[7
0
,8

0
)

[8
0
,9

0
)

[9
0
,1

0
0
)

mem3

(0.2)

[0
,1

0
)

[1
0
,2

0
)

[2
0
,3

0
)

[3
0
,4

0
)

[4
0
,5

0
)

[5
0
,6

0
)

[6
0
,7

0
)

[7
0
,8

0
)

[8
0
,9

0
)

[9
0
,1

0
0
)

mem4

(0.2)

(22) resid (MG)

 0

 25

 50

 75

 100
mem1

(0.2)

mem2

(0.2)

 0

 25

 50

 75

 100

[0
,1

0
)

[1
0
,2

0
)

[2
0
,3

0
)

[3
0
,4

0
)

[4
0
,5

0
)

[5
0
,6

0
)

[6
0
,7

0
)

[7
0
,8

0
)

[8
0
,9

0
)

[9
0
,1

0
0
)

mem3

(0.2)

[0
,1

0
)

[1
0
,2

0
)

[2
0
,3

0
)

[3
0
,4

0
)

[4
0
,5

0
)

[5
0
,6

0
)

[6
0
,7

0
)

[7
0
,8

0
)

[8
0
,9

0
)

[9
0
,1

0
0
)

mem4

(0.1)

(23) main (BS)

 0

 2

 4

 6

 8

 10

mem1
(0.1)

mem2
(0.1)

 0

 2

 4

 6

 8

 10

[0
,1

0
)

[1
0
,2

0
)

[2
0
,3

0
)

[3
0
,4

0
)

[4
0
,5

0
)

[5
0
,6

0
)

[6
0
,7

0
)

[7
0
,8

0
)

[8
0
,9

0
)

[9
0
,1

0
0
)

mem3
(0.1)

[0
,1

0
)

[1
0
,2

0
)

[2
0
,3

0
)

[3
0
,4

0
)

[4
0
,5

0
)

[5
0
,6

0
)

[6
0
,7

0
)

[7
0
,8

0
)

[8
0
,9

0
)

[9
0
,1

0
0
)

mem4
(0.1)

(25) tiling1 (FM)

Figure A.4 Histogram of the measured number of memory requests per time
(1us) of the parallel loops in the main paper at each memory node on the
72-core Intel platform, and comparison with a Poisson distribution.

129

Loop N1 N2 N3 N4 N5 N6 N7 N8 Avg. Geo. Crit. Passed

x solve (BT) 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.19 D

y solve (BT) 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 D

z solve (BT) 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 D

add (BT) 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.19 D

conj grad2 (CG) 0.3 0.3 0.3 0.1 0.1 0.1 0.2 0.2 0.2 0.18 0.19 D

cffts1 (FT) 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.19 D

cffts2 (FT) 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 D

cffts3 (FT) 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.19
rhs1 (SP) 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.19

rhs2 (SP) 0.2 0.2 0.2 0.1 0.2 0.2 0.2 0.2 0.19 0.18 0.19 D

rhs3 (SP) 0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.1 0.11 0.11 0.19 D

rhs4 (SP) 0.2 0.2 0.1 0.1 0.1 0.2 0.2 0.2 0.16 0.15 0.19 D

rhs5 (SP) 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.19 D

x solve (SP) 0.1 0.2 0.2 0.2 0.2 0.1 0.2 0.2 0.17 0.17 0.19 D

y solve (SP) 0.2 0.1 0.2 0.2 0.1 0.2 0.2 0.1 0.16 0.15 0.19 D

z solve (SP) 0.2 0.1 0.1 0.2 0.1 0.2 0.2 0.1 0.15 0.14 0.19 D

txinvr (SP) 0.2 0.2 0.2 0.2 0.2 0.2 0.1 0.1 0.18 0.17 0.19 D

tzetar (SP) 0.2 0.2 0.2 0.2 0.2 0.2 0.1 0.2 0.19 0.18 0.19 D

rprj3 (MG) 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.19 D

psinv (MG) 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 D

interp1 (MG) 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.19 D

resid (MG) 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.19 D

main (BS) 0.1 0.2 0.1 0.3 0.3 0.2 0.2 0.2 0.2 0.19 0.23 D

tiling1 (FM) 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 2.0 D

average 0.14 0.14 0.14 0.14 0.13 0.14 0.14 0.13
geomean 0.13 0.13 0.13 0.13 0.12 0.13 0.13 0.13

Table A.1 Results of the two-sample Kolmogorov-Smirnov test for the targeted
parallel loops on the 64-core AMD platform. The test does not reject the hy-
pothesis that the datasets follow a Poisson distribution if the statistical value
is less than the critical value with significance level of α = 0.05.

130

Loop Node1 Node2 Node3 Node4 Avg. Geo. Crit. Passed

x solve (BT) 0.2 0.2 0.2 0.1 0.18 0.17 0.19 D

y solve (BT) 0.1 0.1 0.1 0.1 0.1 0.1 0.19 D

z solve (BT) 0.1 0.1 0.1 0.1 0.1 0.1 0.19 D

add (BT) 0.3 0.3 0.3 0.3 0.3 0.3 0.24

conj grad2 (CG) 0.2 0.1 0.1 0.1 0.13 0.12 0.33 D

cffts1 (FT) 0.2 0.2 0.2 0.2 0.2 0.2 0.25 D

cffts2 (FT) 0.2 0.2 0.2 0.2 0.2 0.2 0.23 D

cffts3 (FT) 0.2 0.2 0.2 0.2 0.2 0.2 0.19
rhs1 (SP) 0.4 0.4 0.3 0.3 0.35 0.35 0.19

rhs2 (SP) 0.2 0.2 0.2 0.2 0.2 0.2 0.19 D

rhs3 (SP) 0.4 0.4 0.4 0.4 0.4 0.4 0.19
rhs4 (SP) 0.3 0.4 0.3 0.4 0.35 0.35 0.19
rhs5 (SP) 0.5 0.4 0.5 0.5 0.47 0.47 0.19

x solve (SP) 0.1 0.1 0.2 0.1 0.13 0.12 0.19 D

y solve (SP) 0.3 0.2 0.2 0.2 0.22 0.22 0.19
z solve (SP) 0.2 0.3 0.3 0.2 0.25 0.24 0.19

txinvr (SP) 0.2 0.3 0.2 0.1 0.2 0.19 0.23 D

tzetar (SP) 0.2 0.2 0.2 0.2 0.2 0.2 0.21 D

rprj3 (MG) 0.3 0.3 0.3 0.3 0.3 0.3 0.19

psinv (MG) 0.2 0.1 0.1 0.1 0.13 0.12 0.34 D

interp1 (MG) 0.2 0.2 0.1 0.2 0.17 0.17 0.19 D

resid (MG) 0.2 0.2 0.1 0.1 0.15 0.14 0.19 D

main (BS) 0.2 0.1 0.1 0.1 0.13 0.12 0.21 D

tiling1 (FM) 0.1 0.1 0.1 0.1 0.1 0.1 -
average 0.23 0.22 0.21 0.2
geomean 0.21 0.2 0.18 0.17

Table A.2 Results of the two-sample Kolmogorov-Smirnov test for the targeted
parallel loops on the 72-core Intel platform. The test does not reject the hy-
pothesis that the datasets follow a Poisson distribution if the statistical value
is less than the critical value with significance level of α = 0.05. The runtime
of tiling1 is too short to provide a meaningful number of samples and has thus
been omitted.

131

0.0

0.2

0.4

0.6

0.8

1.0

200k 400k 600k 800k 1M

P
ro

b
ab

il
it

y

Served memory ops. per 1ms

stride128
stride64
stride32
stride16
stride8

(1) StreamWrite

200k 400k 600k 800k 1M
Served memory ops. per 1ms

(2) StreamLoad

200k 400k 600k 800k 1M
Served memory ops. per 1ms

(3) StreamCopy

200k 400k 600k 800k 1M
Served memory ops. per 1ms

(4) StreamAdd

Figure A.5 PDF of the number of served memory operations for the synthetic
workloads from the memory system on the AMD platform.

0
20
40
60
80

100
stride8
(0.2)

F
re

q
u

en
cy

stride16
(0.2)

0
20
40
60
80

100

[0
,5

0
)

[5
0
,1

0
0
)

[1
0
0
,1

5
0
)

[1
5
0
,2

0
0
)

[2
0
0
,2

5
0
)

[2
5
0
,3

0
0
)

[3
0
0
,3

5
0
)

[3
5
0
,4

0
0
)

[4
0
0
,4

5
0
)

[4
5
0
,5

0
0
)

stride32
(0.2)

[0
,5

0
)

[5
0
,1

0
0
)

[1
0
0
,1

5
0
)

[1
5
0
,2

0
0
)

[2
0
0
,2

5
0
)

[2
5
0
,3

0
0
)

[3
0
0
,3

5
0
)

[3
5
0
,4

0
0
)

[4
0
0
,4

5
0
)

[4
5
0
,5

0
0
)

stride64
(0.2)

(1) StreamWrite

0
20
40
60
80

100
stride8
(0.2)

stride16
(0.1)

0
20
40
60
80

100

[0
,5

0
)

[5
0
,1

0
0
)

[1
0
0
,1

5
0
)

[1
5
0
,2

0
0
)

[2
0
0
,2

5
0
)

[2
5
0
,3

0
0
)

[3
0
0
,3

5
0
)

[3
5
0
,4

0
0
)

[4
0
0
,4

5
0
)

[4
5
0
,5

0
0
)

stride32
(0.1)

[0
,5

0
)

[5
0
,1

0
0
)

[1
0
0
,1

5
0
)

[1
5
0
,2

0
0
)

[2
0
0
,2

5
0
)

[2
5
0
,3

0
0
)

[3
0
0
,3

5
0
)

[3
5
0
,4

0
0
)

[4
0
0
,4

5
0
)

[4
5
0
,5

0
0
)

stride64
(0.1)

(2) StreamLoad

0
20
40
60
80

100
stride8
(0.2)

stride16
(0.2)

0
20
40
60
80

100

[0
,5

0
)

[5
0
,1

0
0
)

[1
0
0
,1

5
0
)

[1
5
0
,2

0
0
)

[2
0
0
,2

5
0
)

[2
5
0
,3

0
0
)

[3
0
0
,3

5
0
)

[3
5
0
,4

0
0
)

[4
0
0
,4

5
0
)

[4
5
0
,5

0
0
)

stride32
(0.2)

[0
,5

0
)

[5
0
,1

0
0
)

[1
0
0
,1

5
0
)

[1
5
0
,2

0
0
)

[2
0
0
,2

5
0
)

[2
5
0
,3

0
0
)

[3
0
0
,3

5
0
)

[3
5
0
,4

0
0
)

[4
0
0
,4

5
0
)

[4
5
0
,5

0
0
)

stride64
(0.2)

(3) StreamCopy

0
20
40
60
80

100
stride8
(0.2)

stride16
(0.2)

0
20
40
60
80

100

[0
,5

0
)

[5
0
,1

0
0
)

[1
0
0
,1

5
0
)

[1
5
0
,2

0
0
)

[2
0
0
,2

5
0
)

[2
5
0
,3

0
0
)

[3
0
0
,3

5
0
)

[3
5
0
,4

0
0
)

[4
0
0
,4

5
0
)

[4
5
0
,5

0
0
)

stride32
(0.1)

[0
,5

0
)

[5
0
,1

0
0
)

[1
0
0
,1

5
0
)

[1
5
0
,2

0
0
)

[2
0
0
,2

5
0
)

[2
5
0
,3

0
0
)

[3
0
0
,3

5
0
)

[3
5
0
,4

0
0
)

[4
0
0
,4

5
0
)

[4
5
0
,5

0
0
)

stride64
(0.1)

(4) StreamAdd

Figure A.6 Histogram of the number of served memory operations for the syn-
thetic workloads from the memory system on the AMD platform, and compar-
ison with a Poisson distribution.

0.0

0.2

0.4

0.6

0.8

1.0

200k 400k 600k 800k 1M

P
ro

b
ab

il
it

y

Served memory ops. per 1ms

stride128
stride64
stride32
stride16
stride8

(1) StreamWrite

200k 400k 600k 800k 1M
Served memory ops. per 1ms

(2) StreamLoad

200k 400k 600k 800k 1M
Served memory ops. per 1ms

(3) StreamCopy

200k 400k 600k 800k 1M
Served memory ops. per 1ms

(4) StreamAdd

Figure A.7 PDF of the number of served memory operations for the synthetic
workloads from the memory system on the Intel platform.

0
20
40
60
80

100
stride8
(0.2)

F
re

q
u

en
cy

stride16
(0.1)

0
20
40
60
80

100

[0
,5

0
)

[5
0
,1

0
0
)

[1
0
0
,1

5
0
)

[1
5
0
,2

0
0
)

[2
0
0
,2

5
0
)

[2
5
0
,3

0
0
)

[3
0
0
,3

5
0
)

[3
5
0
,4

0
0
)

[4
0
0
,4

5
0
)

[4
5
0
,5

0
0
)

stride32
(0.0)

[0
,5

0
)

[5
0
,1

0
0
)

[1
0
0
,1

5
0
)

[1
5
0
,2

0
0
)

[2
0
0
,2

5
0
)

[2
5
0
,3

0
0
)

[3
0
0
,3

5
0
)

[3
5
0
,4

0
0
)

[4
0
0
,4

5
0
)

[4
5
0
,5

0
0
)

stride64
(0.0)

(1) StreamWrite

0
20
40
60
80

100
stride8
(0.1)

stride16
(0.1)

0
20
40
60
80

100

[0
,5

0
)

[5
0
,1

0
0
)

[1
0
0
,1

5
0
)

[1
5
0
,2

0
0
)

[2
0
0
,2

5
0
)

[2
5
0
,3

0
0
)

[3
0
0
,3

5
0
)

[3
5
0
,4

0
0
)

[4
0
0
,4

5
0
)

[4
5
0
,5

0
0
)

stride32
(0.2)

[0
,5

0
)

[5
0
,1

0
0
)

[1
0
0
,1

5
0
)

[1
5
0
,2

0
0
)

[2
0
0
,2

5
0
)

[2
5
0
,3

0
0
)

[3
0
0
,3

5
0
)

[3
5
0
,4

0
0
)

[4
0
0
,4

5
0
)

[4
5
0
,5

0
0
)

stride64
(0.2)

(2) StreamLoad

0
20
40
60
80

100
stride8
(0.2)

stride16
(0.2)

0
20
40
60
80

100

[0
,5

0
)

[5
0
,1

0
0
)

[1
0
0
,1

5
0
)

[1
5
0
,2

0
0
)

[2
0
0
,2

5
0
)

[2
5
0
,3

0
0
)

[3
0
0
,3

5
0
)

[3
5
0
,4

0
0
)

[4
0
0
,4

5
0
)

[4
5
0
,5

0
0
)

stride32
(0.0)

[0
,5

0
)

[5
0
,1

0
0
)

[1
0
0
,1

5
0
)

[1
5
0
,2

0
0
)

[2
0
0
,2

5
0
)

[2
5
0
,3

0
0
)

[3
0
0
,3

5
0
)

[3
5
0
,4

0
0
)

[4
0
0
,4

5
0
)

[4
5
0
,5

0
0
)

stride64
(0.0)

(3) StreamCopy

0
20
40
60
80

100
stride8
(0.2)

stride16
(0.1)

0
20
40
60
80

100

[0
,5

0
)

[5
0
,1

0
0
)

[1
0
0
,1

5
0
)

[1
5
0
,2

0
0
)

[2
0
0
,2

5
0
)

[2
5
0
,3

0
0
)

[3
0
0
,3

5
0
)

[3
5
0
,4

0
0
)

[4
0
0
,4

5
0
)

[4
5
0
,5

0
0
)

stride32
(0.1)

[0
,5

0
)

[5
0
,1

0
0
)

[1
0
0
,1

5
0
)

[1
5
0
,2

0
0
)

[2
0
0
,2

5
0
)

[2
5
0
,3

0
0
)

[3
0
0
,3

5
0
)

[3
5
0
,4

0
0
)

[4
0
0
,4

5
0
)

[4
5
0
,5

0
0
)

stride64
(0.1)

(4) StreamAdd

Figure A.8 Histogram of the number of served memory operations for the syn-
thetic workloads from the memory system on the Intel platform, and comparison
with a Poisson distribution.

132

Arch. Workload
Stride

8 16 32 64 128

A
M
D

StreamWrite 0.20 0.20 0.20 0.20 0.20

StreamLoad 0.20 0.10 D 0.10 D 0.10 D 0.10 D
StreamCopy 0.20 0.20 0.20 0.20 0.20

StreamAdd 0.20 0.20 0.10 D 0.10 D 0.10 D

In
te
l

StreamWrite 0.20 0.10 D 0.00 D 0.00 D 0.00 D

StreamLoad 0.10 D 0.10 D 0.20 0.20 0.20

StreamCopy 0.20 0.20 0.00 D 0.00 D 0.00 D

StreamAdd 0.20 0.10 D 0.10 D 0.10 D 0.10 D

Table A.3 Results of the two-sample Kolmogorov-Smirnov test to check whether
the memory services times of the Stream microbenchmarks follow a Poisson
distribution. The critical value is 0.19 with α = 0.05. A checkmark (D) indicates
that the test has been passed. 50% of the benchmarks pass the test, and the
other 50% fail the test only by a minimal margin, i.e., are very close to a Poisson
distribution.

133

A.2 Additional Performance Modeling Results

A.2.1 Results with Intel Hyperthreading

In Chapter 3, Intel’s Hyperthreading was not enabled to minimize the intra-

node resource interference. With Hyperthreading enabled, the presented model

loses some accuracy (especially LoopPerf-T) but is still able to capture the

trend of a loop’s speedup as shown in Figure A.9.

A.2.2 Results with Cooperative User-Level Tasking

The evaluation of the presented analytical model in Chapter 3 assumed work-

loads with dynamic loop scheduling. In other words, the execution scenario is

almost the same with the execution under COOP-DYN discussed in Chapter 2.

In principle, the model can be applied to model workloads with COOP-ULT

since the COOP-ULT technique is also based on dynamic scheduling. Here, to

show that our model can support COOP-ULT, we additionally provide exper-

iments to evaluate the accuracy of the performance model for static parallel

loops executed with COOP-ULT. The MAPE values and the speedup curves are

given in Figure A.10 and Figure A.11. The results show that, the proposed

techniques LoopPerf-S and LoopPerf-T achieve less than 10% of MAPE val-

ues. The speedup curves are given in Figure A.10 and Figure A.11. We observe

that LoopPerf also predict the speedup of the parallel loops without showing a

significant difference compared to the results in Figure 3.14 and Figure 3.15.

134

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

(1) x
_solve (B

T)

(2) y
_solve (B

T)

(3) z
_solve (B

T)

(4) a
dd (B

T)

(5) c
onj_grad2 (C

G)

(6) c
fft

s1 (F
T)

(7) c
fft

s2 (F
T)

(8) c
fft

s3 (F
T)

(9) r
hs1 (S

P)

(10) r
hs2 (S

P)

(11) r
hs3 (S

P)

(12) r
hs4 (S

P)

(13) r
hs5 (S

P)

(14) x
_solve (S

P)

(15) y
_solve (S

P)

(16) z
_solve (S

P)

(17) tx
invr (

SP)

(18) tz
etar (

SP)

(19) r
prj3

 (M
G)

(20) p
sin

v (M
G)

(21) in
terp1 (M

G)

(22) r
esid

 (M
G)

(23) m
ain (B

S)

(24) ti
lin

g1 (F
M)

Geomean

M
A

P
E

 (
%

)

144-core (w/ Hyperthreading) Intel Xeon platformBest-F

LoopPerf-S

LoopPerf-T

1

2

3

4

36 72 108 144

S
p

ee
d

u
p

CPU cores

Best-F
LoopPerf-S
LoopPerf-T
measurement

(1) x solve (BT)

36 72 108 144

CPU cores

(2) y solve (BT)

36 72 108 144

CPU cores

(3) z solve (BT)

36 72 108 144

CPU cores

(4) add (BT)

1

2

3

4

36 72 108 144

S
p

ee
d

u
p

CPU cores

(5) conj grad2 (CG)

36 72 108 144

CPU cores

(6) cffts1 (FT)

36 72 108 144

CPU cores

(7) cffts2 (FT)

36 72 108 144

CPU cores

(8) cffts3 (FT)

1

2

3

4

36 72 108 144

S
p

ee
d

u
p

CPU cores

(9) rhs1 (SP)

36 72 108 144

CPU cores

(10) rhs2 (SP)

36 72 108 144

CPU cores

(11) rhs3 (SP)

36 72 108 144

CPU cores

(12) rhs4 (SP)

1

2

3

4

36 72 108 144

S
p

ee
d

u
p

CPU cores

(13) rhs5 (SP)

36 72 108 144

CPU cores

(14) x solve (SP)

36 72 108 144

CPU cores

(15) y solve (SP)

36 72 108 144

CPU cores

(16) z solve (SP)

1

2

3

4

36 72 108 144

S
p

ee
d

u
p

CPU cores

(17) txinvr (SP)

36 72 108 144

CPU cores

(18) tzetar (SP)

36 72 108 144

CPU cores

(19) rprj3 (MG)

36 72 108 144

CPU cores

(20) psinv (MG)

1

2

3

4

36 72 108 144

S
p

ee
d

u
p

CPU cores

(21) interp1 (MG)

36 72 108 144

CPU cores

(22) resid (MG)

36 72 108 144

CPU cores

(23) main (BS)

36 72 108 144

CPU cores

(24) tiling1 (FM)

Figure A.9 Predicted versus measured speedup of the parallel loops on the Intel
platform with Hyperthreading enabled (144 cores).

135

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

(1) x
_solve (B

T)

(2) y
_solve (B

T)

(3) z
_solve (B

T)

(4) a
dd (B

T)

(5) c
onj_grad2 (C

G)

(6) c
fft

s1 (F
T)

(7) c
fft

s2 (F
T)

(8) c
fft

s3 (F
T)

(9) r
hs1 (S

P)

(10) r
hs2 (S

P)

(11) r
hs3 (S

P)

(12) r
hs4 (S

P)

(13) r
hs5 (S

P)

(14) x
_solve (S

P)

(15) y
_solve (S

P)

(16) z
_solve (S

P)

(17) tx
invr (

SP)

(18) tz
etar (

SP)

(19) r
prj3

 (M
G)

(20) p
sin

v (M
G)

(21) in
terp1 (M

G)

(22) r
esid

 (M
G)

Geomean

72-core Intel Xeon platform

M
A

P
E

 (
%

) Best-F

LoopPerf-S

LoopPerf-T

 0
 1
 2
 3
 4
 5
 6
 7
 8

8 16 24 32 40 48 56 64

S
p

ee
d

u
p

CPU cores

Best-F
LoopPerf-S
LoopPerf-T
measurement

(1) x solve (BT)

8 16 24 32 40 48 56 64

CPU cores

(2) y solve (BT)

8 16 24 32 40 48 56 64

CPU cores

(3) z solve (BT)

8 16 24 32 40 48 56 64

CPU cores

(4) add (BT)

 0
 1
 2
 3
 4
 5
 6
 7
 8

8 16 24 32 40 48 56 64

S
p

ee
d

u
p

CPU cores

(5) conj grad2 (CG)

8 16 24 32 40 48 56 64

CPU cores

(6) cffts1 (FT)

8 16 24 32 40 48 56 64

CPU cores

(7) cffts2 (FT)

8 16 24 32 40 48 56 64

CPU cores

(8) cffts3 (FT)

 0
 1
 2
 3
 4
 5
 6
 7
 8

8 16 24 32 40 48 56 64

S
p

ee
d

u
p

CPU cores

(9) rhs1 (SP)

8 16 24 32 40 48 56 64

CPU cores

(10) rhs2 (SP)

8 16 24 32 40 48 56 64

CPU cores

(11) rhs3 (SP)

8 16 24 32 40 48 56 64

CPU cores

(12) rhs4 (SP)

 0
 1
 2
 3
 4
 5
 6
 7
 8

8 16 24 32 40 48 56 64

S
p

ee
d

u
p

CPU cores

(13) rhs5 (SP)

8 16 24 32 40 48 56 64

CPU cores

(14) x solve (SP)

8 16 24 32 40 48 56 64

CPU cores

(15) y solve (SP)

8 16 24 32 40 48 56 64

CPU cores

(16) z solve (SP)

 0
 1
 2
 3
 4
 5
 6
 7
 8

8 16 24 32 40 48 56 64

S
p

ee
d

u
p

CPU cores

(17) txinvr (SP)

8 16 24 32 40 48 56 64

CPU cores

(18) tzetar (SP)

8 16 24 32 40 48 56 64

CPU cores

(19) rprj3 (MG)

8 16 24 32 40 48 56 64

CPU cores

(20) psinv (MG)

 0
 1
 2
 3
 4
 5
 6
 7
 8

8 16 24 32 40 48 56 64

S
p

ee
d

u
p

CPU cores

(21) interp1 (MG)

8 16 24 32 40 48 56 64

CPU cores

(22) resid (MG)

Figure A.10 The predicted speedup and the measured speedup of the parallel
loops executed under COOP-ULT on the 64-core AMD platform.

136

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

(1) x
_solve (B

T)

(2) y
_solve (B

T)

(3) z
_solve (B

T)

(4) a
dd (B

T)

(5) c
onj_grad2 (C

G)

(6) c
fft

s1 (F
T)

(7) c
fft

s2 (F
T)

(8) c
fft

s3 (F
T)

(9) r
hs1 (S

P)

(10) r
hs2 (S

P)

(11) r
hs3 (S

P)

(12) r
hs4 (S

P)

(13) r
hs5 (S

P)

(14) x
_solve (S

P)

(15) y
_solve (S

P)

(16) z
_solve (S

P)

(17) tx
invr (

SP)

(18) tz
etar (

SP)

(19) r
prj3

 (M
G)

(20) p
sin

v (M
G)

(21) in
terp1 (M

G)

(22) r
esid

 (M
G)

Geomean

72-core Intel Xeon platform

M
A

P
E

 (
%

) Best-F

LoopPerf-S

LoopPerf-T

1

2

3

4

18 36 54 72

S
p

ee
d

u
p

CPU cores

Best-F
LoopPerf-S
LoopPerf-T
measurement

(1) x solve (BT)

18 36 54 72

CPU cores

(2) y solve (BT)

18 36 54 72

CPU cores

(3) z solve (BT)

18 36 54 72

CPU cores

(4) add (BT)

1

2

3

4

18 36 54 72

S
p

ee
d

u
p

CPU cores

(5) conj grad2 (CG)

18 36 54 72

CPU cores

(6) cffts1 (FT)

18 36 54 72

CPU cores

(7) cffts2 (FT)

18 36 54 72

CPU cores

(8) cffts3 (FT)

1

2

3

4

18 36 54 72

S
p

ee
d

u
p

CPU cores

(9) rhs1 (SP)

18 36 54 72

CPU cores

(10) rhs2 (SP)

18 36 54 72

CPU cores

(11) rhs3 (SP)

18 36 54 72

CPU cores

(12) rhs4 (SP)

1

2

3

4

18 36 54 72

S
p

ee
d

u
p

CPU cores

(13) rhs5 (SP)

18 36 54 72

CPU cores

(14) x solve (SP)

18 36 54 72

CPU cores

(15) y solve (SP)

18 36 54 72

CPU cores

(16) z solve (SP)

1

2

3

4

18 36 54 72

S
p

ee
d

u
p

CPU cores

(17) txinvr (SP)

18 36 54 72

CPU cores

(18) tzetar (SP)

18 36 54 72

CPU cores

(19) rprj3 (MG)

18 36 54 72

CPU cores

(20) psinv (MG)

1

2

3

4

18 36 54 72

S
p

ee
d

u
p

CPU cores

(21) interp1 (MG)

18 36 54 72

CPU cores

(22) resid (MG)

Figure A.11 The predicted speedup and the measured speedup of the parallel
loops executed under COOP-ULT on the 72-core Intel platform.

137

A.2.3 Results with Other Loop Schedulers

In our previous PACT 2016 paper [17], the model (based on the Best-F method)

has also been evaluated for other scheduling methods including static, guided

and dynamic scheduling as well as for different memory allocation schemes. The

results have shown that the presented queueing system-based approach works

well for the different execution scenarios except for a number of pathological

cases where the parallel loops suffer from a large load imbalance with static

scheduling. For the evaluation, we select the kernels of six applications (BT,

CG, EP, FT, MG, SP) from SNU-NPB3.3 OpenCL implementation [80] of the

NAS parallel benchmarks on the 64-core AMD system used in this thesis.

Table A.4 shows the results for self scheduling (i.e. dynamic scheduling, but

chunk size is fix to 1), guided, and static scheduling. Self- and static scheduling

suffer from scalability issues or load imbalances and thus exhibit higher error

rates of 10-12%. For example, FT.init ui and SP.compute rhs1 display a very

high error (427 and 78%) in Table A.4 compared to Li or static scheduling

because the central scheduler becomes the bottleneck when delivering work-

groups to an increasing number of worker cores. Similarly, MG.kernel resid

and MG.kernel rprj3 show a high error (66 and 117%) in the static scheduler

because of load imbalances caused by the static work distribution. This is an

expected limitation of the proposed model as we assume memory contention to

be the only limiting factor and do not account for bottlenecks in the scheduler

or imbalanced workloads.

A.2.4 Results with Different Number of Memory Nodes

In the next two experiments, the number of available memory nodes are re-

duced from originally eight to four and two (Memory-0123 and Memory-01,

respectively) in order to see how the model performs under increasing memory

138

Kernels
Self Guided Static

scal. err(%) R2 scal. err(%) R2 scal. err(%) R2

BT.z solve 7.19 4.21 0.97 7.21 4.22 0.97 7.15 5.14 0.96

CG.conj grad 2 3.95 24.36 0.7 4.52 9.85 0.92 3.63 31.51 0.11

CG.conj grad 6 4.14 22.11 0.64 4.04 28.19 0.55 3.87 19.93 0.72

EP.embar 7.63 1.82 0.99 7.71 1.6 1.0 7.97 1.36 1.0

FT.init ui 0.92 426.77 -1235.12 3.38 19.3 0.53 2.9 26.99 0.54

FT.compute indexmap 5.84 4.27 0.88 6.51 2.58 0.95 5.2 9.1 0.76

FT.compute initial cond 6.76 4.4 0.94 7.06 3.59 0.97 7.17 3.74 0.97

FT.cffts1 6.6 13.89 0.79 4.09 11.47 0.9 2.77 33.81 0.49

FT.cffts2 5.53 4.85 0.97 5.14 4.34 0.99 2.87 34.96 0.44

FT.cffts3 5.83 3.77 0.98 5.56 3.48 0.99 4.15 16.67 0.8

SP.exact rhs2 4.23 23.34 0.59 4.11 9.64 0.93 4.3 11.32 0.9

SP.exact rhs3 5.57 6.39 0.93 5.54 5.19 0.95 5.71 7.53 0.92

SP.exact rhs4 6.05 5.83 0.95 5.92 3.77 0.98 6.28 5.45 0.94

SP.compute rhs1 2.59 78.38 -9.67 5.16 7.55 0.94 5.91 3.47 0.98

SP.compute rhs2 5.1 11.75 0.77 4.02 12.45 0.88 4.33 15.78 0.83

SP.compute rhs3 4.36 6.02 0.97 4.37 6.2 0.97 4.46 6.25 0.97

SP.compute rhs4 5.84 3.23 0.99 6.33 3.64 0.98 6.29 2.88 0.99

SP.compute rhs5 6.56 3.01 0.98 7.42 2.18 0.99 7.52 2.04 0.99

SP.z solve 3.3 44.15 -1.13 4.52 6.93 0.96 4.77 6.97 0.96

SP.tzetar 4.08 8.77 0.91 4.06 9.52 0.9 4.07 9.07 0.9

MG.kernel resid 3.97 20.77 0.54 4.13 12.03 0.9 1.07 66.14 0.29

MG.kernel rprj3 3.72 23.92 0.44 4.08 25.52 0.6 1.27 116.85 0.32

MG.kernel interp 1 3.77 6.19 0.94 3.54 11.44 0.86 2.91 24.07 -0.42

MG.kernel psinv 3.67 6.38 0.96 4.22 9.22 0.92 3.62 9.55 0.92

Average 4.54 10.47 -51.17 4.96 6.84 0.90 4.14 10.92 0.72

Table A.4 Scalability prediction accuracy for different work schedulers.

contention. We observe that the error of the estimation increases as the num-

ber of memory nodes decreases. Memory-01 in particular diverges a lot from the

predicted value with an average MAPE of 14.7% and an R2 of -10.3. With only

a small number of available memory nodes, memory-intensive kernels often do

not scale at all, i.e., the scalability curve is (almost) flat. Even if the model

captures the trend of a kernel’s scalability well, modest prediction errors can

lead to large percentage errors and negative R2 values. This is, however, rather

a limitation of the evaluation metrics than of the model as the visualization of

the predicted versus the actual speedup reveals: the prediction of, for example,

139

Kernels
Memory 0-3 Memory 0-1

scal. err(%) R2 scal. err(%) R2

BT.z solve 6.99 4.43 0.96 3.87 23.88 -0.66

CG.conj grad 2 2.36 15.96 0.43 1.27 28.77 -16.7

CG.conj grad 6 2.37 20.0 0.28 1.35 16.97 -3.58

EP.embar 7.73 1.55 1.0 7.68 1.73 0.99

FT.init ui 3.43 14.44 0.62 0.97 41.84 -113.64

FT.compute indexmap 6.74 2.71 0.99 5.65 4.77 0.97

FT.compute initial cond 6.96 3.04 0.97 6.45 2.71 0.98

FT.cffts1 3.66 9.75 0.86 1.11 21.81 -16.64

FT.cffts2 3.95 9.39 0.88 1.56 26.2 -4.26

FT.cffts3 3.81 9.57 0.85 1.9 14.35 0.09

SP.exact rhs2 3.8 10.17 0.85 1.12 24.22 -14.54

SP.exact rhs3 4.22 4.71 0.97 1.64 22.5 -2.29

SP.exact rhs4 4.53 3.62 0.98 1.76 24.37 -2.41

SP.compute rhs1 3.99 9.26 0.86 2.01 17.86 -0.54

SP.compute rhs2 3.3 10.39 0.78 1.18 12.7 -2.49

SP.compute rhs3 2.84 16.51 0.46 1.42 6.33 0.69

SP.compute rhs4 3.73 5.97 0.93 1.69 19.31 -1.33

SP.compute rhs5 6.15 2.55 0.99 2.43 22.68 -0.94

SP.z solve 3.64 11.1 0.82 1.18 26.17 -8.84

SP.tzetar 2.71 17.01 0.41 1.34 5.92 0.57

MG.kernel resid 2.63 38.66 -2.33 1.08 22.93 -27.08

MG.kernel rprj3 2.78 39.54 -1.34 1.22 10.82 -0.83

MG.kernel interp 1 2.96 24.5 -0.37 1.07 23.22 -27.7

MG.kernel psinv 2.56 11.93 0.65 1.13 15.67 -7.85

Average 3.82 9.00 0.52 1.75 14.70 -10.33

Table A.5 Prediction accuracy for varying memory configurations.

FT.init ui on two memory nodes has a percentage error of 42% and an R2

of -114 even though the model catches the scalability trend well. For more de-

tails about the experimental scenarios and configurations, please refer to our

research paper [17].

140

Appendix B

Other Research Contributions of
the Author

In this thesis, we have discussed three runtime-level parallelism management

techniques for co-located parallel applications: cooperative OpenMP runtime

systems, an analytical performance model, a core allocation technique. Dur-

ing my Ph.D. years, I have also participated in a number of different research

projects and had opportunities to explore other topics of research beyond the

work discussed in this thesis. To maintain the unity of this thesis, the details of

other research projects are not discussed. Instead, here, we provide some brief

information about other research contributions by this author.

B.1 Compiler and Runtime Support for Integrated
CPU-GPU Systems

During 2017–2019, I participated in a joint research project between Seoul Na-

tional University and ETH Zürich, with two PIs, Prof. Bernhard Egger (SNU)

and Prof. Thomas R. Gross (ETH Zürich). The main goal of this research

141

project is to leverage an interaction between compiler and the runtime sys-

tem for better resource management on heterogeneous systems. Particularly,

through this project, I have worked on a number of researches to optimize per-

formance of integrated CPU/GPU systems. Modern mobile/desktop processors

often integrate multiple compute devices such as multicore CPUs and GPUs

with shared memory.

In one of our research paper at PACT 2018 [16], we presented an online

optimization technique for irregular data-parallel workloads that fail to fully

exploit the computational power of the GPU on integrated architectures. The

idea is to execute work chunks of similar load on the GPU and assign irregular

chunks to the CPU on-the-fly. To this end, a source-to-source compiler dynami-

cally creates profiling code that allows the runtime system to collect information

about the computational load of the threads immediately before the kernel is

launched. Based on this profile information, the workload is reshaped such that

all threads with a high computational load above a dynamically determined

threshold are executed on the CPU cores while the GPU only executes only

threads below that threshold and with a similar computational load.

On integrated architectures, the limited shared memory bandwidth can lead

to a reduced performance when both the CPU and the CPU are executing a

workload. We have been developing a software-based technique to throttle the

number of CPU and GPU threads to improve performance within the limited

memory bandwidth without hardware support. We use static analysis to un-

derstand the memory access pattern of the kernel code. Based on the features

(e.g. the number of consecutive, stride, and random memory access operations)

extracted from the kernel code, we apply a machine learning-based model to

predict the optimal number of CPU and GPU threads.

142

B.2 Modeling NUMA Architectures with Stochastic
Tool

I have also worked on a joint research with Prof. Reza Entezari-Maleki who

conducts research on performance modeling. We apply several analytical mod-

eling techniques to model real hardware architectures. In our paper research

paper [30] in which I am co-authored, for example, we employ a stochastic tool

called stochastic reward nets (SRNs) to model and evaluate memory perfor-

mance on NUMA multi-socket systems. I contributed to this work by providing

architectural insights and by validating the models on real hardwares.

B.3 Runtime Environment for a Manycore Architec-
ture

In 2014–2016, I participated in a joint research project between five differ-

ent research groups at SNU (funded by Samsung). In this project, the project

teams did research for a full-stack design of a 96-core manycore architecture.

The CSAP lab worked on the implementation of the runtime environment for

the manycore architecture. In particular, I contributed to develop runtime and

resource management techniques to efficiently execute (multiple) OpenCL ap-

plications on the manycore chip. Our implementation was built on top of a

System-C and Timed QEMU-based manycore simulator [38].

143

Bibliography

[1] AMD. AMD Opteron 6300 Series Processors 6380 product information.

https://www.amd.com/en/products/cpu/6380. [online; accessed July

2020].

[2] AMD. BIOS and kernel developer’s guide (BKDG) for AMD family 15h

models 00h-0fh processors, 2012.

[3] AMD. Revision Guide for AMD Family 15h Models 00h-0Fh Processors,

2014.

[4] David H Bailey, Eric Barszcz, John T Barton, David S Browning, Russell L

Carter, Leonardo Dagum, Rod A Fatoohi, Paul O Frederickson, Thomas A

Lasinski, Rob S Schreiber, et al. The NAS parallel benchmarks. Interna-

tional Journal of High Performance Computing Applications, 5(3):63–73,

1991.

[5] Andrew Baumann, Paul Barham, Pierre-Evariste Dagand, Tim Harris,

Rebecca Isaacs, Simon Peter, Timothy Roscoe, Adrian Schüpbach, and

Akhilesh Singhania. The multikernel: A new os architecture for scalable

multicore systems. In Proceedings of the ACM SIGOPS 22Nd Symposium

144

on Operating Systems Principles, SOSP ’09, pages 29–44, New York, NY,

USA, 2009. ACM.

[6] Benjamin Berg, Jan-Pieter Dorsman, and Mor Harchol-Balter. Towards

optimality in parallel job scheduling. Proc. ACM Meas. Anal. Comput.

Syst., 1(2):40:1–40:30, December 2017.

[7] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. The

parsec benchmark suite: Characterization and architectural implications.

In Proceedings of the 17th International Conference on Parallel Architec-

tures and Compilation Techniques, PACT ’08, pages 72–81, New York, NY,

USA, 2008. ACM.

[8] Robert D Blumofe, Christopher F Joerg, Bradley C Kuszmaul, Charles E

Leiserson, Keith H Randall, and Yuli Zhou. Cilk: An efficient multithreaded

runtime system. Journal of parallel and distributed computing, 37(1):55–69,

1996.

[9] OpenMP Architecture Review Board. OpenMP. http://openmp.org,

2018. [online; accessed July 2020].

[10] Jens Breitbart, Simon Pickartz, Stefan Lankes, Josef Weidendorfer, and

Antonello Monti. Dynamic co-scheduling driven by main memory band-

width utilization. In 2017 IEEE International Conference on Cluster Com-

puting (CLUSTER), pages 400–409, Sept 2017.

[11] Jens Breitbart, Josef Weidendorfer, and Carsten Trinitis. Case study on

co-scheduling for hpc applications. In 2015 44th International Conference

on Parallel Processing Workshops, pages 277–285, Sept 2015.

145

[12] Jens Breitbart, Josef Weidendorfer, and Carsten Trinitis. Automatic co-

scheduling based on main memory bandwidth usage. In Proceedings of

the 20th Workshop on Job Scheduling Strategies for Parallel Processing

(JSSPP), JSSPP ’16, May 2016.

[13] Marc Casas and Greg Bronevetsky. Active measurement of the impact

of network switch utilization on application performance. In 2014 IEEE

28th International Parallel and Distributed Processing Symposium, pages

165–174, May 2014.

[14] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W. Sheaf-

fer, Sang-Ha Lee, and Kevin Skadron. Rodinia: A benchmark suite for het-

erogeneous computing. In 2009 IEEE International Symposium on Work-

load Characterization (IISWC), pages 44–54, Oct 2009.

[15] Younghyun Cho, Camilo A. Celis Guzman, and Bernhard Egger. Maximiz-

ing system utilization via parallelism management for co-located parallel

applications. In Proceedings of the 27th International Conference on Paral-

lel Architectures and Compilation Techniques, PACT ’18, pages 14:1–14:14,

New York, NY, USA, 2018. ACM.

[16] Younghyun Cho, Florian Negele, Seohong Park, Bernhard Egger, and

Thomas R. Gross. On-the-fly workload partitioning for integrated cpu/gpu

architectures. In Proceedings of the 27th International Conference on Par-

allel Architectures and Compilation Techniques, PACT ’18, pages 21:1–

21:13, New York, NY, USA, 2018. ACM.

[17] Younghyun Cho, Surim Oh, and Bernhard Egger. Online scalability char-

acterization of data-parallel programs on many cores. In 2016 International

146

Conference on Parallel Architecture and Compilation Techniques (PACT),

pages 191–205, Sept 2016.

[18] Younghyun Cho, Surim Oh, and Bernhard Egger. Cooperative parallel

runtimes for multicores. In 10th workshop on Programmability and Archi-

tectures for Heterogeneous Multicores, MULTIPROG’17, January 2017.

[19] Younghyun Cho, Surim Oh, and Bernhard Egger. Performance model-

ing of parallel loops on multi-socket platforms using queueing systems.

IEEE Transactions on Parallel and Distributed Systems, 31(2):318–331,

Feb 2020.

[20] Alexander Collins, Tim Harris, Murray Cole, and Christian Fensch. Lira:

Adaptive contention-aware thread placement for parallel runtime systems.

In Proceedings of the 5th International Workshop on Runtime and Oper-

ating Systems for Supercomputers, page 2. ACM, 2015.

[21] Timothy Creech, Aparna Kotha, and Rajeev Barua. Efficient multipro-

gramming for multicores with scaf. In 2013 46th Annual IEEE/ACM

International Symposium on Microarchitecture (MICRO), pages 334–345,

Dec 2013.

[22] Matthew Curtis-Maury, Filip Blagojevic, Christos D. Antonopoulos, and

Dimitrios S. Nikolopoulos. Prediction-based power-performance adapta-

tion of multithreaded scientific codes. IEEE Transactions on Parallel and

Distributed Systems, 19(10):1396–1410, Oct 2008.

[23] Leonardo Dagum and Rameshm Enon. OpenMP: an industry standard api

for shared-memory programming. Computational Science & Engineering,

IEEE, 5(1), 1998.

147

[24] Mohammad Dashti, Alexandra Fedorova, Justin Funston, Fabien Gaud,

Renaud Lachaize, Baptiste Lepers, Vivien Quema, and Mark Roth. Traffic

management: A holistic approach to memory placement on numa systems.

In Proceedings of the Eighteenth International Conference on Architectural

Support for Programming Languages and Operating Systems, ASPLOS ’13,

pages 381–394, New York, NY, USA, 2013. ACM.

[25] Christina Delimitrou and Christos Kozyrakis. Paragon: Qos-aware schedul-

ing for heterogeneous datacenters. In Proceedings of the Eighteenth Inter-

national Conference on Architectural Support for Programming Languages

and Operating Systems, ASPLOS ’13, page 77–88, New York, NY, USA,

2013. Association for Computing Machinery.

[26] Christina Delimitrou and Christos Kozyrakis. Quasar: Resource-efficient

and qos-aware cluster management. In Proceedings of the 19th Interna-

tional Conference on Architectural Support for Programming Languages

and Operating Systems, ASPLOS ’14, page 127–144, New York, NY, USA,

2014. Association for Computing Machinery.

[27] Docker Documentation. http://docs.docker.com. [online; accessed July

2020].

[28] Murali Krishna Emani and Michael O’Boyle. Celebrating diversity: A mix-

ture of experts approach for runtime mapping in dynamic environments. In

Proceedings of the 36th ACM SIGPLAN Conference on Programming Lan-

guage Design and Implementation, PLDI ’15, pages 499–508, New York,

NY, USA, 2015. ACM.

[29] Murali Krishna Emani, Zheng Wang, and Michael F. P. O’Boyle. Smart,

adaptive mapping of parallelism in the presence of external workload. In

148

Proceedings of the 2013 IEEE/ACM International Symposium on Code

Generation and Optimization (CGO), pages 1–10, Feb 2013.

[30] Reza Entezari-Maleki, Younghyun Cho, and Bernhard Egger. Evaluation of

memory performance in numa architectures using stochastic reward nets.

Journal of Parallel and Distributed Computing, 144:172 – 188, 2020.

[31] Yuping Fan, Zhiling Lan, Paul Rich, William E. Allcock, Michael E. Papka,

Brian Austin, and David Paul. Scheduling beyond cpus for hpc. In Pro-

ceedings of the 28th International Symposium on High-Performance Par-

allel and Distributed Computing, HPDC ’19, page 97–108, New York, NY,

USA, 2019. Association for Computing Machinery.

[32] Dror G Feitelson, Larry Rudolph, and Uwe Schwiegelshohn. Parallel job

scheduling—a status report. In Job Scheduling Strategies for Parallel Pro-

cessing, pages 1–16. Springer, 2005.

[33] Alvaro Frank, Tim Süss, and André Brinkmann. Effects and benefits of

node sharing strategies in hpc batch systems. In 2019 IEEE Interna-

tional Parallel and Distributed Processing Symposium (IPDPS), pages 43–

53, May 2019.

[34] GNU libgomp documentation. http://gcc.gnu.org/onlinedocs/

libgomp. [online; accessed July 2020].

[35] Daniel Goodman, Georgios Varisteas, and Tim Harris. Pandia: Com-

prehensive contention-sensitive thread placement. In Proceedings of the

Twelfth European Conference on Computer Systems, EuroSys ’17, pages

254–269, New York, NY, USA, 2017. ACM.

149

[36] Dominik Grewe, Zheng Wang, and Michael F. P. O’Boyle. A workload-

aware mapping approach for data-parallel programs. In Proceedings of the

6th International Conference on High Performance and Embedded Archi-

tectures and Compilers, HiPEAC ’11, pages 117–126, New York, NY, USA,

2011. ACM.

[37] Camilo A. Celis Guzman, Younghyun Cho, and Bernhard Egger. SnuMAP:

an Open-source Trace Profiler for Manycore Systems. https://csap.snu.

ac.kr/software/snumap/, 2017. [online; accessed July 2020].

[38] Shin haeng Kang, Donghoon Yoo, and Soonhoi Ha. Tqsim: A fast cycle-

approximate processor simulator based on qemu. Journal of Systems Ar-

chitecture, 66-67:33 – 47, 2016.

[39] Mor Harchol-Balter. Performance Modeling and Design of Computer Sys-

tems: Queueing Theory in Action. Cambridge University Press, 2013.

[40] Tim Harris, Martin Maas, and Virendra J. Marathe. Callisto: Co-

scheduling parallel runtime systems. In Proceedings of the Ninth European

Conference on Computer Systems, EuroSys ’14, New York, NY, USA, 2014.

ACM.

[41] Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali Ghodsi, An-

thony D. Joseph, Randy Katz, Scott Shenker, and Ion Stoica. Mesos:

A platform for fine-grained resource sharing in the data center. In Pro-

ceedings of the 8th USENIX Conference on Networked Systems Design and

Implementation, NSDI’11, Berkeley, CA, USA, 2011. USENIX Association.

[42] Intel. Intel Xeon Processor E7-8870 v3. https://

ark.intel.com/content/www/us/en/ark/products/84682/

150

intel-xeon-processor-e7-8870-v3-45m-cache-2-10-ghz.html.

[online; accessed July 2020].

[43] Intel. Intel 64 and IA-32 Architectures Software Developer’s Manual, 2015.

[44] Intel. Intel Xeon Processor E5 and E7 v3 Family Uncore Performance

Monitoring Reference Manual, 2015.

[45] Shintaro Iwasaki, Abdelhalim Amer, Kenjiro Taura, Sangmin Seo, and

Pavan Balaji. Bolt: Optimizing openmp parallel regions with user-level

threads. In 2019 28th International Conference on Parallel Architectures

and Compilation Techniques (PACT), pages 29–42, Sep. 2019.

[46] Henk Jonkers. Queueing models of parallel applications: the glamis

methodology. In Computer Performance Evaluation Modelling Techniques

and Tools, pages 123–138. Springer, 1994.

[47] Henk Jonkers. Queueing models of shared-memory parallel applications.

In Computer and Telecommunication Systems Performance Engineering.

Pentech Press Ltd, 1994.

[48] Karthik Kambatla, Vamsee Yarlagadda, Íñigo Goiri, and Ananth Grama.

Ubis: Utilization-aware cluster scheduling. In 2018 IEEE International

Parallel and Distributed Processing Symposium (IPDPS), pages 358–367,

May 2018.

[49] Khronos Group. The open standard for parallel programming of hetero-

geneous systems. https://www.khronos.org/opencl/. [online; accessed

August 2020].

[50] Abdullah Konak, David W. Coit, and Alice E. Smith. Multi-objective

optimization using genetic algorithms: A tutorial. Reliability Engineering

151

& System Safety, 91(9):992 – 1007, 2006. Special Issue - Genetic Algorithms

and Reliability.

[51] David Kroft. Lockup-free instruction fetch/prefetch cache organization.

In Proceedings of the 8th Annual Symposium on Computer Architecture,

ISCA ’81, pages 81–87, Los Alamitos, CA, USA, 1981. IEEE Computer

Society Press.

[52] Kishore Kumar Pusukuri, Rajiv Gupta, and Laxmi N. Bhuyan. Adapt: A

framework for coscheduling multithreaded programs. ACM Trans. Archit.

Code Optim., 9(4):45:1–45:24, January 2013.

[53] Janghaeng Lee, Haicheng Wu, Madhumitha Ravichandran, and Nathan

Clark. Thread tailor: Dynamically weaving threads together for efficient,

adaptive parallel applications. In Proceedings of the 37th Annual Inter-

national Symposium on Computer Architecture, ISCA ’10, pages 270–279,

New York, NY, USA, 2010. ACM.

[54] Hui Li, Sudarsan Tandri, Michael Stumm, Sevcik, and Kenneth C. Local-

ity and loop scheduling on numa multiprocessors. In 1993 International

Conference on Parallel Processing - ICPP’93, volume 2, pages 140–147,

Aug 1993.

[55] Min Li, Jian Tan, Yandong Wang, Li Zhang, and Valentina Salapura.

Sparkbench: A comprehensive benchmarking suite for in memory data

analytic platform spark. In Proceedings of the 12th ACM International

Conference on Computing Frontiers, CF ’15, New York, NY, USA, 2015.

Association for Computing Machinery.

[56] David A Lifka. The anl/ibm sp scheduling system. In Job Scheduling

Strategies for Parallel Processing, pages 295–303. Springer, 1995.

152

[57] Rose Liu, Kevin Klues, Sarah Bird, Steven Hofmeyr, Krste Asanović, and

John Kubiatowicz. Tessellation: Space-time partitioning in a manycore

client os. In Proceedings of the First USENIX Conference on Hot Topics

in Parallelism, HotPar’09, pages 10–10, Berkeley, CA, USA, 2009. USENIX

Association.

[58] Xu Liu and John Mellor-Crummey. A tool to analyze the performance of

multithreaded programs on numa architectures. In Proceedings of the 19th

ACM SIGPLAN Symposium on Principles and Practice of Parallel Pro-

gramming, PPoPP ’14, pages 259–272, New York, NY, USA, 2014. ACM.

[59] Qiuyun Llull, Songchun Fan, Seyed Majid Zahedi, and Benjamin C. Lee.

Cooper: Task colocation with cooperative games. In 2017 IEEE Interna-

tional Symposium on High Performance Computer Architecture (HPCA),

pages 421–432, Feb 2017.

[60] Arthur Francisco Lorenzon, Charles Cardoso de Oliveira, Jeckson Del-

lagostin Souza, and Antonio Carlos Schneider Beck. Aurora: Seamless

optimization of openmp applications. IEEE Transactions on Parallel and

Distributed Systems, pages 1–1, 2018.

[61] Kun Luo, Jayanth Gummaraju, and Manoj Franklin. Balancing thoughput

and fairness in smt processors. In IsPASS, volume 1, pages 164–171, 2001.

[62] Zoltan Majo and Thomas R. Gross. Memory management in numa mul-

ticore systems: Trapped between cache contention and interconnect over-

head. SIGPLAN Not., 46(11):11–20, June 2011.

[63] Zoltan Majo and Thomas R Gross. Matching memory access patterns and

data placement for NUMA systems. In Proceedings of the Tenth Interna-

153

tional Symposium on Code Generation and Optimization, pages 230–241.

ACM, 2012.

[64] John D. McCalpin. Stream: Sustainable memory bandwidth in high

performance computers. Technical report, University of Virginia, Char-

lottesville, Virginia, 1991-2007. A continually updated technical report.

http://www.cs.virginia.edu/stream/.

[65] Ryan W. Moore and Bruce R. Childers. Using utility prediction models to

dynamically choose program thread counts. In 2012 IEEE International

Symposium on Performance Analysis of Systems Software, pages 135–144,

April 2012.

[66] AhuvaW. Mu’alem and Dror G. Feitelson. Utilization, predictability, work-

loads, and user runtime estimates in scheduling the ibm sp2 with backfill-

ing. Parallel and Distributed Systems, IEEE Transactions on, 12(6):529–

543, 2001.

[67] Onur Mutlu and Thomas Moscibroda. Parallelism-aware batch schedul-

ing: Enhancing both performance and fairness of shared dram systems.

In Proceedings of the 35th Annual International Symposium on Computer

Architecture, ISCA ’08, pages 63–74, Washington, DC, USA, 2008. IEEE

Computer Society.

[68] Bhyrav Mutnury, Frank Paglia, James Mobley, Girish K. Singh, and Ron

Bellomio. Quickpath interconnect (qpi) design and analysis in high speed

servers. In 19th Topical Meeting on Electrical Performance of Electronic

Packaging and Systems, pages 265–268, Oct 2010.

[69] Angeles Navarro, Rafael Asenjo, Siham Tabik, and Calin Cascaval. Analyt-

ical modeling of pipeline parallelism. In 2009 18th International Conference

154

on Parallel Architectures and Compilation Techniques, pages 281–290, Sep.

2009.

[70] Jun Woo Park, Alexey Tumanov, Angela Jiang, Michael A. Kozuch, and

Gregory R. Ganger. 3sigma: Distribution-based cluster scheduling for run-

time uncertainty. In Proceedings of the Thirteenth EuroSys Conference,

EuroSys ’18, pages 2:1–2:17, New York, NY, USA, 2018. ACM.

[71] Arun Raman, Hanjun Kim, Taewook Oh, Jae W. Lee, and David I. August.

Parallelism orchestration using dope: The degree of parallelism executive.

In Proceedings of the 32nd ACM SIGPLAN Conference on Programming

Language Design and Implementation, PLDI ’11, page 26–37, New York,

NY, USA, 2011. Association for Computing Machinery.

[72] Arun Raman, Ayal Zaks, Jae W. Lee, and David I. August. Parcae: A

system for flexible parallel execution. In Proceedings of the 33rd ACM

SIGPLAN Conference on Programming Language Design and Implemen-

tation, PLDI ’12, pages 133–144, New York, NY, USA, 2012. ACM.

[73] James Reinders. Intel threading building blocks: outfitting C++ for multi-

core processor parallelism. ” O’Reilly Media, Inc.”, 2007.

[74] Gabriele Sartori. Hypertransport Technology. Platform Conference, 2001.

[75] Hiroshi Sasaki, Satoshi Imamura, and Koji Inoue. Coordinated power-

performance optimization in manycores. In Proceedings of the 22nd Inter-

national Conference on Parallel Architectures and Compilation Techniques,

pages 51–61, Sept 2013.

[76] Hiroshi Sasaki, Teruo Tanimoto, Koji Inoue, and Hiroshi Nakamura.

Scalability-based manycore partitioning. In Proceedings of the 21st Inter-

155

national Conference on Parallel Architectures and Compilation Techniques,

PACT ’12, pages 107–116, New York, NY, USA, 2012. ACM.

[77] Scipy stats.ks 2samp document. https://docs.scipy.org/doc/

scipy-0.14.0/reference/generated/scipy.stats.ks_2samp.html.

[online; accessed July 2020].

[78] Vicent Selfa, Julio Sahuquillo, Salvador Petit, and Maŕıa E. Gómez.

A hardware approach to fairly balance the inter-thread interference in

shared caches. IEEE Transactions on Parallel and Distributed Systems,

28(11):3021–3032, 2017.

[79] Sangmin Seo, Abdelhalim Amer, Pavan Balaji, Cyril Bordage, George

Bosilca, Alex Brooks, Philip Carns, Adrián Castelló, Damien Genet,

Thomas Herault, Shintaro Iwasaki, Prateek Jindal, Laxmikant V. Kalé,

Sriram Krishnamoorthy, Jonathan Lifflander, Huiwei Lu, Esteban Mene-

ses, Marc Snir, Yanhua Sun, Kenjiro Taura, and Pete Beckman. Argobots:

A lightweight low-level threading and tasking framework. IEEE Transac-

tions on Parallel and Distributed Systems, 29(3):512–526, March 2018.

[80] Sangmin Seo, Gangwon Jo, and Jaejin Lee. Performance characterization

of the nas parallel benchmarks in opencl. In 2011 IEEE International

Symposium on Workload Characterization (IISWC), pages 137–148, Nov

2011.

[81] Srinath Sridharan, Gagan Gupta, and Gurindar S. Sohi. Adaptive, effi-

cient, parallel execution of parallel programs. In Proceedings of the 35th

ACM SIGPLAN Conference on Programming Language Design and Im-

plementation, PLDI ’14, pages 169–180, New York, NY, USA, 2014. ACM.

156

[82] Sharanyan Srikanthan, Sandhya Dwarkadas, and Kai Shen. Data sharing

or resource contention: Toward performance transparency on multicore sys-

tems. In 2015 USENIX Annual Technical Conference (USENIX ATC 15),

pages 529–540, Santa Clara, CA, 2015. USENIX Association.

[83] János Sztrik. Basic queueing theory. University of Debrecen: Faculty of

Informatics, 2011.

[84] Bogdan Marius Tudor and Yong Meng Teo. A practical approach for per-

formance analysis of shared-memory programs. In Parallel & Distributed

Processing Symposium (IPDPS), 2011 IEEE International, pages 652–663.

IEEE, 2011.

[85] Bogdan Marius Tudor, Yong Meng Teo, and Simon See. Understanding

off-chip memory contention of parallel programs in multicore systems. In

Parallel Processing (ICPP), 2011 International Conference on, pages 602–

611. IEEE, 2011.

[86] Alexey Tumanov, Timothy Zhu, Jun Woo Park, Michael A. Kozuch, Mor

Harchol-Balter, and Gregory R. Ganger. Tetrisched: Global rescheduling

with adaptive plan-ahead in dynamic heterogeneous clusters. In Proceed-

ings of the Eleventh European Conference on Computer Systems, EuroSys

’16, pages 35:1–35:16, New York, NY, USA, 2016. ACM.

[87] András Vajda. Programming many-core chips. Springer Science & Business

Media, 2011.

[88] Wei Wang, Jack W. Davidson, and Mary Lou Soffa. Predicting the memory

bandwidth and optimal core allocations for multi-threaded applications on

large-scale numa machines. In 2016 IEEE International Symposium on

157

High Performance Computer Architecture (HPCA), pages 419–431, March

2016.

[89] Wei Wang, Tanima Dey, Jack W. Davidson, and Mary Lou Soffa. Dramon:

Predicting memory bandwidth usage of multi-threaded programs with high

accuracy and low overhead. In 2014 IEEE 20th International Symposium

on High Performance Computer Architecture (HPCA), pages 380–391, Feb

2014.

[90] David Wentzlaff, Charles Gruenwald III, Nathan Beckmann, Kevin

Modzelewski, Adam Belay, Lamia Youseff, Jason Miller, and Anant Agar-

wal. An operating system for multicore and clouds: mechanisms and imple-

mentation. In Proceedings of the 1st ACM symposium on Cloud computing,

pages 3–14. ACM, 2010.

[91] Seyed Majid Zahedi, Qiuyun Llull, and Benjamin C. Lee. Amdahl’s law

in the datacenter era: A market for fair processor allocation. In 2018

IEEE International Symposium on High Performance Computer Architec-

ture (HPCA), pages 1–14, Feb 2018.

[92] Sergey Zhuravlev, Sergey Blagodurov, and Alexandra Fedorova. Address-

ing shared resource contention in multicore processors via scheduling. In

Proceedings of the Fifteenth Edition of ASPLOS on Architectural Support

for Programming Languages and Operating Systems, ASPLOS XV, pages

129–142, New York, NY, USA, 2010. ACM.

[93] Pengfei Zou, Xizhou Feng, and Rong Ge. Contention aware workload and

resource co-scheduling on power-bounded systems. In 2019 IEEE Interna-

tional Conference on Networking, Architecture and Storage (NAS), pages

1–8, Aug 2019.

158

초록

멀티코어 시스템에서 여러 개의 병렬 처리 어플리케이션들을 함께 실행시키는 것

은주어진하드웨어자원을효율적으로사용하기위해서점점더중요해지고있다.

하지만, 현재 런타임 시스템에서 여러 개의 병렬 처리 어플리케이션들을 동시에

효율적으로 실행시키는 것은 여전히 어려운 문제이다. OpenMP와 같이 통상 사

용되는 병렬화 런타임 시스템들은 모든 하드웨어 코어 자원을 사용하기 위해서

일반적으로 코어 개수 만큼 스레드를 생성하여 어플리케이션을 실행시킨다. 이

때, 어플리케이션은 모든 코어 자원을 활용할 때 오히려 최적의 성능을 얻지 못할

수도 있으며, 운영체제 커널의 부하는 실행되는 어플리케이션의 개수가 늘어날

수록 관리해야 하는 스레드의 개수가 늘어나기 때문에 계속해서 커지게 된다.

본 학위 논문에서, 우리는 함께 실행되는 병렬 처리 어플리케이션들의 런타임

성능을 높이는 것에 집중한다. 이를 위해, 본 연구의 핵심 목표는 함께 실행되는

어플리케이션들에게 공간 분할식 스케줄링 방법을 적용하는 것이다. 각 어플리

케이션에게 독립적인 코어 자원을 할당해주는 공간 분할식 스케줄링은 점점 더

늘어나는 코어 자원의 개수를 효율적으로 관리하기 위한 방법으로 많은 관심을

받고 있다. 하지만, 공간 분할 스케줄링 방법을 통해 어플리케이션을 실행시키는

것은 두 가지 연구 과제를 가지고 있다. 먼저, 각 어플리케이션은 가변적인 코어

자원 상에서 효율적으로 실행되기 위한 런타임 기술을 필요로 하고, 스케줄러는

어플리케이션들의 성능 특성을 고려해서 런타임 성능을 높일 수 있도록 적당한

수의 코어 자원을 제공해야한다.

이 학위 논문에서, 우리는 함께 실행되는 병렬 처리 어플리케이션들을 공간 분

할 스케줄링을 통해서 효율적으로 실행시키기 위한 세가지 런타임 시스템 기술을

소개한다. 먼저 우리는 협동적인 런타임 시스템이라는 기술을 소개하는데, 이는

OpenMP 병렬 처리 어플리케이션들에게 유연하고 효율적인 실행 환경을 제공한

159

다. 이 기술은 공유 메모리 병렬 실행에 내재되어 있는 특성을 활용하여 병렬처리

프로그램들이 변화하는 코어 자원에 맞추어 병렬성의 정도를 동적으로 조절할 수

있도록 해준다. 이러한 유연한 실행 모델은 병렬 어플리케이션들이 사용 가능한

코어 자원이 동적으로 변화하는 환경에서 어플리케이션의 스레드 수준 병렬성을

다루지 못하는 기존 런타임 시스템들에 비해서 더 효율적으로 실행될 수 있도록

해준다.

두번째로, 본 논문은 사용되는 코어 자원에 따른 병렬처리 프로그램의 성능 및

자원 활용도를 예측할 수 있도록 해주는 분석적 성능 모델을 소개한다. 병렬 처리

코드의 성능 확장성이 일반적으로 메모리 성능에 좌우된다는 관찰에 기초하여, 제

안된해석모델은큐잉이론을활용하여메모리시스템의성능정보들을계산한다.

이 큐잉 시스템에 기반한 방법은 유용한 성능 정보들을 수식을 통해 효율적으로

계산할 수 있도록 하며 상용 시스템에서 제공하는 하드웨어 성능 카운터만을 요구

하기 때문에 활용 가능성 또한 높다.

마지막으로, 본 논문은 동시에 실행되는 병렬 처리 어플리케이션들 사이에서

코어 자원을 할당해주는 프레임워크를 소개한다. 제안된 프레임워크는 동시에 동

작하는 병렬 처리 어플리케이션의 병렬성 및 코어 자원을 관리하여 멀티 소켓

멀티코어 시스템에서 CPU 자원 및 메모리 대역폭 자원 활용도를 동시에 최적

화한다. 해석적인 모델링과 제안된 코어 할당 프레임워크의 성능 평가를 통해서,

우리가 제안하는 정책이 일반적인 경우에 CPU 자원의 활용도만을 최적화하는

방법에 비해서 함께 동작하는 어플리케이션들의 실행시간을 감소시킬 수 있음을

보여준다.

주요어: 런타임 시스템, 성능 모델링, 자원 관리

학번: 2013-20887

160

Acknowledgements

I consider myself fortunate that I was able to study and do research in an

excellent environment at Seoul National University (SNU). The Ph.D. study,

however, was sometimes very difficult and overwhelming with many challenges

and a lot of worries about research. It would not have been possible to complete

my Ph.D. study without the help and support of the many people around me.

I would like to extend my sincere thanks to all of them.

First and foremost, I would like to express my deep appreciation to my

advisor Professor Bernhard Egger who gave me the opportunity to study at

SNU and provided an excellent working environment in the Computer Systems

and Platforms (CSAP) lab. I am sincerely grateful for his continuous support,

advice, patience, and encouragement during the years of my Ph.D. study. I also

thank him for providing an international and collaborative working environment

through various research projects.

I also thank the members of my Ph.D. committee, Professor Jaejin Lee,

Professor Heon-Young Yeom, Professor Lawrence Rauchwerger, and Professor

David August for their kind agreement to examine this thesis and for their

valuable feedback and suggestions on this work.

I would also like to thank my past research collaborators. I am grateful to

161

Professor Thomas Gross for his guidance on our joint research project and pro-

viding a comfortable working environment during my stay at ETH Zürich. I also

thank Dr. Florian Negele for working closely with me on this SNU-ETH project.

Thanks to him, I have lots of good memories of Zürich and Liechtenstein.

Special thanks go to my good friend and research collaborator Professor

Reza Entezari-Maleki. Through our joint work, I was able to learn lots of the-

oretical background of analytical modeling from him.

I was fortunate to have many good fellow students in the CSAP lab. I met

more than 30 people including master and doctoral students, visiting students,

and research assistants. I thank all of them for spending time with me. My

special thanks go to Camilo Celis Guzman for working hard with me on our

research projects and for being a good friend to me. Also, I thank Changyeon

Jo who has spent the longest time with me in the lab.

I am grateful for the immeasurable support I have received from my parents,

parents-in-law, and all the family members. Their support helped me consis-

tently focus on the research. My deepest thanks go to my parents, Jinhong

Cho and Inhee Hwang, for their unconditional love and their support in ev-

ery of my decision in my life. Also, I thank my sister Kyungseon Cho for her

encouragement during my Ph.D. study.

My biggest thanks go to my wife Surim Oh. She has been both great col-

league and companion, and the motivation for me to be a better person. I thank

her for working with me while she was in the CSAP lab. More importantly,

thanks to her constant support and encouragement, I was able to overcome the

difficult steps in the last Ph.D. years. I am looking forward to starting our next

journey very much.

Younghyun Cho, Seoul, July 2020

162

	1 Introduction
	1.1 Motivation
	1.2 Background
	1.2.1 The OpenMP Runtime System
	1.2.2 Target Multi-Socket Multicore Systems

	1.3 Contributions
	1.3.1 Cooperative Runtime Systems
	1.3.2 Performance Modeling
	1.3.3 Parallelism Management

	1.4 Related Work
	1.4.1 Cooperative Runtime Systems
	1.4.2 Performance Modeling
	1.4.3 Parallelism Management

	1.5 Organization of this Thesis

	2 Dynamic Spatial Scheduling with Cooperative Runtime Systems
	2.1 Overview
	2.2 Malleable Workloads
	2.3 Cooperative OpenMP Runtime System
	2.3.1 Cooperative User-Level Tasking
	2.3.2 Cooperative Dynamic Loop Scheduling

	2.4 Experimental Results
	2.4.1 Standalone Application Performance
	2.4.2 Performance in Spatial Core Allocation

	2.5 Discussion
	2.5.1 Contributions
	2.5.2 Limitations and Future Work
	2.5.3 Summary

	3 Performance Modeling of Parallel Loops using Queueing Systems
	3.1 Overview
	3.2 Background
	3.2.1 Queueing Models
	3.2.2 Insights on Performance Modeling of Parallel Loops
	3.2.3 Performance Analysis

	3.3 Queueing Systems for Multi-Socket Multicores
	3.3.1 Hierarchical Queueing Systems
	3.3.2 Computingthe Parameter Values

	3.4 The Speedup Prediction Model
	3.4.1 The Speedup Model
	3.4.2 Implementation

	3.5 Evaluation
	3.5.1 64-core AMD Opteron Platform
	3.5.2 72-core Intel Xeon Platform

	3.6 Discussion
	3.6.1 Applicability of the Model
	3.6.2 Limitations of the Model
	3.6.3 Summary

	4 Maximizing System Utilization via Parallelism Management
	4.1 Overview
	4.2 Background
	4.2.1 Modeling Performance Metrics
	4.2.2 Our Resource Management Policy

	4.3 NuPoCo: Parallelism Management for Co-Located Parallel Loops
	4.3.1 Online Performance Model
	4.3.2 Managing Parallelism

	4.4 Evaluation of NuPoCo
	4.4.1 Evaluation Scenario 1
	4.4.2 Evaluation Scenario 2

	4.5 MOCA: An Evolutionary Approach to Core Allocation
	4.5.1 Evolutionary Core Allocation
	4.5.2 Model-Based Allocation

	4.6 Evaluation of MOCA
	4.7 Discussion
	4.7.1 Contributions and Limitations
	4.7.2 Summary

	5 Conclusion and Future Work
	5.1 Conclusion
	5.2 Future work
	5.2.1 Improving Multi-Objective Core Allocation
	5.2.2 Co-Scheduling of Parallel Jobs for HPC Systems

	A Additional Experiments for the Performance Model
	A.1 Memory Access Distribution and Poisson Distribution
	A.1.1 Memory Access Distribution
	A.1.2 Kolmogorov Smirnov Test

	A.2 Additional Performance Modeling Results
	A.2.1 Results with Intel Hyperthreading
	A.2.2 Results with Cooperative User-Level Tasking
	A.2.3 Results with Other Loop Schedulers
	A.2.4 Results with Different Number of Memory Nodes

	B Other Research Contributions of the Author
	B.1 Compiler and Runtime Support for Integrated CPU-GPU Systems
	B.2 Modeling NUMA Architectures with Stochastic Tool
	B.3 Runtime Environment for a Manycore Architecture

	초록
	Acknowledgements

<startpage>18
1 Introduction 1
 1.1 Motivation 1
 1.2 Background 5
 1.2.1 The OpenMP Runtime System 5
 1.2.2 Target Multi-Socket Multicore Systems 7
 1.3 Contributions 8
 1.3.1 Cooperative Runtime Systems 9
 1.3.2 Performance Modeling 9
 1.3.3 Parallelism Management 10
 1.4 Related Work 11
 1.4.1 Cooperative Runtime Systems 11
 1.4.2 Performance Modeling 12
 1.4.3 Parallelism Management 14
 1.5 Organization of this Thesis 15
2 Dynamic Spatial Scheduling with Cooperative Runtime Systems 17
 2.1 Overview 17
 2.2 Malleable Workloads 19
 2.3 Cooperative OpenMP Runtime System 21
 2.3.1 Cooperative User-Level Tasking 22
 2.3.2 Cooperative Dynamic Loop Scheduling 27
 2.4 Experimental Results 30
 2.4.1 Standalone Application Performance 30
 2.4.2 Performance in Spatial Core Allocation 33
 2.5 Discussion 35
 2.5.1 Contributions 35
 2.5.2 Limitations and Future Work 36
 2.5.3 Summary 37
3 Performance Modeling of Parallel Loops using Queueing Systems 38
 3.1 Overview 38
 3.2 Background 41
 3.2.1 Queueing Models 41
 3.2.2 Insights on Performance Modeling of Parallel Loops 43
 3.2.3 Performance Analysis 46
 3.3 Queueing Systems for Multi-Socket Multicores 54
 3.3.1 Hierarchical Queueing Systems 54
 3.3.2 Computingthe Parameter Values 60
 3.4 The Speedup Prediction Model 63
 3.4.1 The Speedup Model 63
 3.4.2 Implementation 64
 3.5 Evaluation 65
 3.5.1 64-core AMD Opteron Platform 66
 3.5.2 72-core Intel Xeon Platform 68
 3.6 Discussion 70
 3.6.1 Applicability of the Model 70
 3.6.2 Limitations of the Model 72
 3.6.3 Summary 73
4 Maximizing System Utilization via Parallelism Management 74
 4.1 Overview 74
 4.2 Background 76
 4.2.1 Modeling Performance Metrics 76
 4.2.2 Our Resource Management Policy 79
 4.3 NuPoCo: Parallelism Management for Co-Located Parallel Loops 82
 4.3.1 Online Performance Model 82
 4.3.2 Managing Parallelism 86
 4.4 Evaluation of NuPoCo 90
 4.4.1 Evaluation Scenario 1 90
 4.4.2 Evaluation Scenario 2 98
 4.5 MOCA: An Evolutionary Approach to Core Allocation 103
 4.5.1 Evolutionary Core Allocation 104
 4.5.2 Model-Based Allocation 106
 4.6 Evaluation of MOCA 113
 4.7 Discussion 118
 4.7.1 Contributions and Limitations 118
 4.7.2 Summary 119
5 Conclusion and Future Work 120
 5.1 Conclusion 120
 5.2 Future work 122
 5.2.1 Improving Multi-Objective Core Allocation 122
 5.2.2 Co-Scheduling of Parallel Jobs for HPC Systems 123
 A Additional Experiments for the Performance Model 124
 A.1 Memory Access Distribution and Poisson Distribution 124
 A.1.1 Memory Access Distribution 124
 A.1.2 Kolmogorov Smirnov Test 127
 A.2 Additional Performance Modeling Results 134
 A.2.1 Results with Intel Hyperthreading 134
 A.2.2 Results with Cooperative User-Level Tasking 134
 A.2.3 Results with Other Loop Schedulers 138
 A.2.4 Results with Different Number of Memory Nodes 138
 B Other Research Contributions of the Author 141
 B.1 Compiler and Runtime Support for Integrated CPU-GPU Systems 141
 B.2 Modeling NUMA Architectures with Stochastic Tool 143
 B.3 Runtime Environment for a Manycore Architecture 143
초록 159
Acknowledgements 161
</body>

